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Abstract

In this paper we study common belief in rationality in strategic-form games with ordinal utili-
ties, employing a model of qualitative beliefs. We characterize the three main solution concepts
for such games, viz., Iterated Deletion of Strictly Dominated Strategies (IDSDS), Iterated Dele-
tion of Börgers-dominated Strategies (IDBS) and Iterated Deletion of Inferior Strategy Profiles
(IDIP), by means of gradually restrictive properties imposed on the models of qualitative beliefs.
As a corollary, we prove that IDIP refines IDBS, which refines IDSDS.

1. Introduction

Traditionally, game-theoretic analysis has been based on the assumption that the game under consid-
eration is common knowledge among the players. That is, besides asking that the rules of the game
(i.e., the set of players, the set of strategies and the set of outcomes for each strategy profile) are com-
monly known, we typically assume that the players have vNM preferences and that these preferences
are also commonly known.1 Under these assumptions, rationality and common belief of rationality
characterizes correlated rationalizability, i.e., the strategy profiles that survive Iterated Deletion of
Strictly Dominated Strategies are exactly those that can be rationally played under common belief
of rationality (e.g., see Brandenburger and Dekel, 1987; Tan and Werlang, 1988).

While it is certainly reasonable to assume that the rules of the game are commonly known, the
last two assumptions seem harder to justify at the outset. The issue with the preferences being
commonly known has already been addressed by Harsanyi (1967-68) and the extensive literature on
incomplete information games that followed his seminal contribution. Within Harsanyi’s extended
model, rationality and common belief of rationality characterizes interim correlated rationalizability
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(e.g., see Dekel et al., 2007; Ely and Peski, 2006). However, in Harsanyi’s program, preferences are
still assumed to be vNM and therefore the utilities of the game outcomes remain cardinal.

There have been several attempts to relax this last assumption by considering ordinal utilities.
Relaxing this assumption can be motivated not only from a theoretical, but also from an applied
point of view, given that in lab experiments we typically test predictions made by solution concepts
for games with ordinal utilities, such as pure-strategy Nash Equilibrium, or pure-strategy Iterated
Deletion of Strictly (resp., Weakly) Dominated Strategies. From a theoretical standpoint, the main
consequence of sticking to ordinal utilities is that we have to replace the usual models of probabilis-
tic beliefs with Kripke structures, and thus abandon the standard notion of Bayesian rationality.
Depending on the notion of rationality that we adopt, there are various solution concepts charac-
terized by rationality and common belief in rationality, e.g., Iterated Deletion of Strictly Dominated
Strategies (the pure strategy version of rationalizability à la Bernheim, 1984; Pearce, 1984, hence-
forth IDSDS), Iterated Deletion of Börgers-dominated Strategies (Börgers, 1993, henceforth IDBS),
Iterated Deletion of Inferior Strategy Profiles (the pure strategy version of strong rationalizability à
la Stalnaker, 1994, henceforth IDIP).

In this paper we investigate the content of the notion of common belief of rationality in strategic-
form games with ordinal utilities within a qualitative context. In particular, following the literature
on qualitative beliefs (e.g., see de Finetti, 1949; Koopman, 1940), we endow the standard KD45
Kripke structures with a qualitative likelihood relation for each player at each state. This additional
structure allows us to characterize each of the aforementioned solution concepts within our framework
in terms of restrictions on the qualitative beliefs, and without needing to vary the notion of rationality
that we employ. In particular, we prove that IDSDS is characterized by common belief in rationality
in a very broad class of models (Theorem 1); IDBS is characterized by common belief in rationality
if we restrict attention to full-support beliefs (Theorem 2); and finally, IDIP is characterized by
common belief in rationality if we further restrict attention to correct full-support beliefs (Theorem
3).

With our three main results at hand, not only do we manage to put under the same umbrella the
three main solution concepts for games with ordinal utilities that have been studied in the literature,
but we also manage to prove that they monotonically refine each other (see Corollary 1). In particular,
the fact that we impose stronger and stronger restrictions on our epistemic characterizations, implies
that IDIP refines IDBS, while IDBS refines IDSDS. In fact, while the second relationship (between
IDSDS and IDBS) seems to be perhaps straightforward, the one between IDBS and IDIP is far from
trivial.

Qualitative beliefs have been extensively studied in the literature since the early contributions
of de Finetti (1949) and Koopman (1940). Most papers in the literature have focused on whether
a qualitative likelihood relation can be represented by a probability measure (Kraft et al., 1959;
Mackenzie, 2017; Scott, 1964; Scott and Suppes, 1958; Villegas, 1967) and on the respective logical
foundations (Gärdenfors, 1975; Segerberg, 1971; van der Hoek, 1996). For an early overview on
qualitative beliefs see Fishburn (1986). To the best of our knowledge there has not been any attempt
to embed qualitative probability in a game-theoretic model.

The paper is structured as follows: In Section 2 we introduce qualitative likelihood relations to
a game-theoretic framework; in Section 3 we define our notion of rationality and we prove our three
characterization results; in Section 4 we present some secondary results; Section 5 concludes; all
proof are relegated to the Appendices.

2



2. Qualitative models of ordinal games

A finite strategic-form game with ordinal payoffs is a quintuple G = 〈I, (Si)i∈I , O, z, (Di)i∈I〉, where
I = {1, 2, . . . , n} is a finite set of players, Si is a finite set of strategies (or actions) of player i ∈ I
with S = S1 × · · · × Sn being the set of strategy profiles, O is a finite set of outcomes, z : S → O is
a function that associates with every strategy profile s = (s1, . . . , sn) ∈ S an outcome z(s) ∈ O, Di

is player i’s ordinal ranking of the outcomes, i.e., a binary relation on O which is complete (i.e., for
all o, o′ ∈ O, o Di o

′ or o′ Di o) and transitive (i.e., for all o, o′, o′′ ∈ O, if o Di o
′ and o′ Di o

′′ then
o Di o

′′). The interpretation of o Di o
′ is that player i considers outcome o to be at least as good as

outcome o′.
Games are often represented in reduced form by replacing the triple 〈O, z, (Di)i∈I〉 with a list

(πi)i∈I of payoff functions, where πi : S → R is any real-valued function that satisfies the property
that, for all s, s′ ∈ S, πi(s) ≥ πi(s

′) if and only if z(s) Di z(s′). In the following we will adopt
this more succinct representation of strategic-form games. It is important to note, however, that
the payoff functions are taken to be purely ordinal and one could replace πi with any other function
obtained by composing πi with an arbitrary strictly increasing function on the set of real numbers.2

A strategic-form game provides only a partial description of an interactive situation, since it does
not specify what choices the players make, nor what beliefs they have about their opponents’ choices.
A specification of these missing elements is obtained by introducing the notion of a “model of the
game”, which represents a possible context in which the game is played. The players’ beliefs are
represented by means of a finite KD45 Kripke frame 〈Ω, (Bi)i∈I〉, where Ω is a finite set of states (or
possible worlds) and for every player i ∈ I, Bi is a binary relation on Ω. We denote by Bi(ω) the set of
states that are reachable from ω by Bi, that is, Bi(ω) = {ω′ ∈ Ω : ωBiω′}. The relation Bi is assumed
to be serial (i.e., for all ω ∈ Ω, Bi(ω) 6= ∅), transitive (i.e., if ω′ ∈ Bi(ω) then Bi(ω′) ⊆ Bi(ω)) and
euclidean (i.e., if ω′ ∈ Bi(ω) then Bi(ω) ⊆ Bi(ω′)). Obviously, by transitivity and euclideanness, we
obtain that for every ω′ ∈ Bi(ω), Bi(ω′) = Bi(ω).3

As usual, Bi(ω) is interpreted as the set of states that are doxastically accessible to player i at
state ω, that is, the states that she considers possible according to her beliefs. At state ω, player
i is said to believe an event E ⊆ Ω if and only if Bi(ω) ⊆ E, i.e., if E is true at every state that
she considers possible at ω. Thus we can define a belief operator Bi : Ω → 2Ω (where 2Ω denotes
the collection of subsets of Ω) as follows: for E ⊆ Ω, we denote by BiE the event that player i
believes event E, i.e., formally, BiE = {ω ∈ Ω : Bi(ω) ⊆ E}. Seriality of the accessibility relation
Bi guarantees that the player’s beliefs are consistent (i.e., it is not the case that she believes E and
also ¬E: BiE ⊆ ¬Bi¬E), while transitivity corresponds to positive introspection (i.e., if the player
believes E then she believes that she believes E: for all E ⊆ Ω, BiE ⊆ BiBiE) and euclideanness
corresponds to negative introspection (i.e., if the player does not believe E then she believes that
she does not believe E: for all E ⊆ Ω, ¬BiE ⊆ Bi¬BiE).4 Note that erroneous beliefs are not ruled
out : it is possible for a player to believe E even though E is actually false, that is, it may be the
case that ω ∈ BiE even though ω /∈ E. Erroneous beliefs are ruled out if one imposes the restriction
that Bi be reflexive (i.e., ω ∈ Bi(ω) for all ω ∈ Ω). If reflexivity is added to the above assumptions,
then Bi becomes an equivalence relation and thus gives rise to a partition of Ω; in such a case it is

2This is in contrast to von Neumann-Morgenstern utility functions whose properties (e.g., risk attitudes) are
preserved only under positive affine transformations.

3In the game-theoretic literature, it is more common to view Bi as a function that associates with every state
ω ∈ Ω a set of states Bi(ω) ⊆ Ω and to call such a function a possibility correspondence or information correspondence.
Of course, the two views (binary relation and possibility correspondence) are equivalent. For more details on Kripke
frames see, e.g., Aumann (1999); Battigalli and Bonanno (1999); Chellas (1980); van Ditmarsch et al. (2015); Fagin
et al. (1995); Hughes and Cresswell (1968); Kripke (1959).

4For every event F ⊆ Ω, ¬F denotes the complement of F , that is, ¬F = Ω \ F .
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common to use the term “knowledge” rather than “belief”.
While the relation Bi captures what player i believes or is certain of, a second (complete) relation

�ω
i on the algebra of subsets of Bi(ω) captures the relative likelihood judgments of player i on the

events contained in Bi(ω): formally, for each E,F ⊆ Bi(ω), E �ω
i F if, at state ω, player i considers

event E to be at least as likely as event F . Define E �ω
i F as E �ω

i F and F �ω
i E, i.e., the

interpretation of E �ω
i F is that, at state ω, player i considers event E to be strictly more likely

than event F . Similarly define E ∼ω
i F as E �ω

i F and F �ω
i E, i.e., the interpretation of E ∼ω

i F
is that, at state ω, player i considers event E to be as likely as event F . An event E ⊆ Bi(ω) is null
for player i at state ω if E ∼ω

i ∅, and it is non-null otherwise.
The following minimal properties on the qualitative likelihood relation �ω

i are imposed: for every
i ∈ I, every ω ∈ Ω and every E,F ⊆ Bi(ω),

(L1) Bi(ω) �ω
i ∅,

(L2) if E ⊆ F then (a) F �ω
i E, and (b) if E �ω

i ∅ then F �ω
i ∅,

(L3) if E ∼ω
i ∅, F ∼ω

i ∅ and E ∪ F 6= Bi(ω) then E ∪ F ∼ω
i ∅.

Intuitively, (L1) guarantees that not every event is deemed null; (L2) says that whenever E implies
F , player i must deem the consequence F at least as likely as its cause E; (L3) says that the union
of any two null events is also null, unless this union covers the states deemed possible by the player.
As usual, we require each player to know her own qualitative likelihood judgement, i.e., formally, the
following condition is imposed: for every i ∈ I and every ω ∈ Ω,

(L4) if ω′ ∈ Bi(ω) then �ω′
i = �ω

i .

Further properties will be introduced as needed.5

So far we have introduced the notion of a frame rather abstractly, viz., we have not assigned a
meaning to each event E ⊆ Ω. Let us do so, by introducing a strategy function σi : Ω→ Si for each
player i ∈ I. Then, each state ω ∈ Ω is associated with the strategy profile σ(ω) = (σ1(ω), . . . , σn(ω)).
Moreover, we denote by σ−i(ω) the profile of strategies played, at ω, by the players other than i,
that is, σ−i(ω) = (σ1(ω), . . . , σi−1(ω), σi+1(ω), . . . , σn(ω)); thus the entire profile, σ(ω), can also be
denoted by (σi(ω), σ−i(ω)). Then we impose the following standard property: for every i ∈ I and
every ω ∈ Ω,

(Σ0) if ω′ ∈ Bi(ω) then σi(ω
′) = σi(ω

′).

That is, intuitively each player knows her own strategy at every state.

Definition 1. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉 a qualitative
doxastic model of G is a tuple M = 〈Ω, (Bi)i∈I , (�ω

i )ω∈Ω
i∈I , (σi)i∈I〉, where 〈Ω, (Bi)i∈I〉 is a KD45

Kripke frame, �ω
i is a qualitative likelihood relation satisfying (L1) − (L4) and σi : Ω → Si is a

strategy function satisfying (Σ0). Let M0 be the class of all finite qualitative doxastic models of G.

5As we have already mentioned, early contributions in this literature focused on the problem of “representing
a qualitative likelihood relation with a probability measure” (e.g., see Fishburn, 1986). It is not difficult to verify
that (L1)− (L3) do not suffice for a probability-measure representation to be obtained, e.g., the well-known example
of Kraft et al. (1959) satisfies our three basic properties and yet the likelihood relation cannot be probabilistically
represented. In fact, even in the presence additional properties – that we will impose in the upcoming sections – our
likelihood relations will not always be represented by a probability measure.
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3. Common belief of rationality

Fix a player i and two strategies a, b ∈ Si of player i, and denote by ‖b ≥ a‖ the event that strategy
b yields at least as high a payoff for player i as strategy a, that is, ‖b ≥ a‖ = {ω ∈ Ω : πi(b, σ−i(ω)) ≥
πi(a, σ−i(ω))}. Similarly, ‖b > a‖ = {ω ∈ Ω : πi(b, σ−i(ω)) > πi(a, σ−i(ω))} is the event that strategy
b yields a strictly higher payoff for player i than strategy a.

Definition 2. Player i is rational at state ω whenever, for all b ∈ Si,

if ω ∈ Bi‖b ≥ σi(ω)‖ then ‖b > σi(ω)‖ ∩ Bi(ω) ∼ω
i ∅. (1)

Let Ri ⊆ Ω be the event that player i is rational and R =
⋂

i∈I Ri be the event that all players are
rational.

Intuitively, if at ω player i believes that b yields at least as high a payoff as the chosen strategy
σi(ω) at every state deemed possible, then the event that b yields a strictly higher payoff than σi(ω)
is a null event for player i at ω.

We want to investigate the implications of common belief of rationality. Given an event E, let
BIE =

⋂
i∈I BiE denote the event that all the players believe E. Then the event that E is commonly

believed, denoted by CBE, is defined as the infinite intersection CBE = BIE∩BIBIE∩BIBIBIE∩· · · ,
that is, the event that everybody believes E, and everybody believes that everybody believes E, and
everybody believes that everybody believes that everybody believes E, and so on. It is well-known
that, for every state ω and every event E, ω ∈ CBE if and only if B∗(ω) ⊆ E, where B∗(ω) is
the transitive closure of

⋃
i∈I Bi(ω).6 We are interested in the event that there is common belief of

rationality, henceforth denoted by CBR. In particular, we ask the question: which strategy profiles
are compatible with states in CBR?

Definition 3. We say that common belief of rationality in a class of modelsM⊆M0 (epistemically)
characterizes the set S∗ ⊆ S of strategy profiles whenever the following two conditions hold:

(A) in every model M ∈M, if ω ∈ CBR then σ(ω) ∈ S∗,

(B) for every s ∈ S∗, there exists a model M ∈M and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

In the following sections, we will epistemically characterize three well-known solution concepts
for ordinal strategic-form games (viz., Iterated Deletion of Strictly Dominated Strategies, Iterated
Deletion of Börgers-dominated Strategies, and Iterated Deletion of Inferior Profiles) by means of
common belief of rationality, by successively imposing stronger properties on the models of qualitative
beliefs. That way, (i) we will place these different solution concepts under the same umbrella of
common belief of rationality, and (ii) we will formally order the solution concepts in terms of the
strategy profiles that they predict.

3.1. Iterated Deletion of Strictly Dominated Strategies

A strategy a ∈ Si of player i is strictly dominated if there is another strategy b ∈ Si such that
π(b, s−i) > π(a, s−i) for every strategy profile s−i ∈ S−i of the players other than i, where as usual
S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn. Iterated Deletion of Strictly Dominated Strategies (IDSDS)
is the following algorithm: reduce the game by deleting, for each player, all the strategies that are
strictly dominated and then repeat the procedure in the reduced game, and so on, until there are no
strictly dominated strategies left. Formally, the procedure is defined as follows:

6B∗ is thus defined as follows: ω′ ∈ B∗(ω) if and only if there is a sequence {ω1, . . . , ωm} in Ω and a sequence
{i1, . . . , im−1} in I such that (1) ω1 = ω, (2) ωm = ω′, and (3) for every j = 1, . . . ,m− 1, ωj+1 ∈ Bij (ωj).
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Definition 4. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉, recursively
define the sequence of reduced games {G0, G1, . . . , Gm, . . . } as follows: for each i ∈ I,

(4.1) let S0
i = Si, and let D0

i ( S0
i be the set of i’s strategies that are strictly dominated in G0 = G;

(4.2) for each m ≥ 1 let Gm−1 be the reduced game with strategy sets Sm−1
i , and define Sm

i =
Sm−1
i \ Dm−1

i , where Dm−1
i ( Sm−1

i is the set of i’s strategies that are strictly dominated in
Gm−1.

Let S∞i =
⋂∞

m=0 S
m
i . The strategy profiles in S∞ = S∞1 × · · · × S∞n are those surviving IDSDS.

Obviously, since the strategy sets are finite, there exists an integer r such that S∞ = Sk for every
k ≥ r, i.e., the procedure terminates after finitely many steps. Moreover, it is straightforward to
verify that S∞ 6= ∅.

This is the pure-strategy version of the procedure that was first introduced by Bernheim (1984);
Pearce (1984) and was later shown to be characterized by common belief of rationality by Bran-
denburger and Dekel (1987); Tan and Werlang (1988). Recall that we have restricted attention to
ordinal payoffs and thus a pure strategy of player i can be strictly dominated only by another pure
strategy; in other words, domination by a mixed strategy is not meaningful in this context.

Theorem 1 (Characterization of IDSDS). If no restrictions (besides (L1)−(L4)) are imposed on the
relative likelihood relations (�ω

i )ω∈Ω
i∈I then common belief of rationality characterizes IDSDS. Formally,

(A0) in every model M ∈M0, if ω ∈ CBR then σ(ω) ∈ S∞,

(B0) for every s ∈ S∞, there exists a model M ∈M0 and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

However, it is possible that a strategy that survives IDSDS is compatible with common belief of
rationality only at states ω where the only non-null event is Bi(ω) itself.7 To see this, consider the
game in Figure 1, where no strategy is strictly dominated and thus IDSDS does not eliminate any
strategy, i.e., S∞ = {a, b, c} × {d, e}. Consider an arbitrary model M ∈ M0 and a state ω0 ∈ Ω

a

Player 1 b

c

1 , 1 1 , 0

2 , 0 1 , 1

1 , 1 2 , 0

d

Player 2

e

Figure 1: IDSDS.

where Player 1 is rational and plays a. That is, ω0 ∈ R1 and σ1(ω0) = a (thus implying σ1(ω) = a
for every ω ∈ B1(ω0) by (Σ0)). By seriality, B1(ω0) 6= ∅. Note that B1(ω0) = D ∪ E, where
D = {ω ∈ B1(ω0) : σ2(ω) = d} and E = {ω ∈ B1(ω0) : σ2(ω) = e}. If E = ∅ then B1(ω0) ⊆ ‖b > a‖

7Obviously such likelihood relation cannot be represented by a probability measure. Instead it could be represented
by a capacity, and in particular by a (Hurwicz) capacity taht assigns weight 0 to every strict subset of Bi(ω) and weight
1 to Bi(ω) itself (e.g., see Chateauneuf et al., 2007).
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and thus, since B1(ω0) �ω0
1 ∅, it follows that Player 1 is not rational at state ω0, contradicting our

hypothesis that ω0 ∈ R1. Similarly, if D = ∅ then B1(ω0) ⊆ ‖c > a‖ and thus, since B1(ω0) �ω0
1 ∅,

it follows that Player 1 is not rational at state ω0, yielding a contradiction. Suppose now that D 6= ∅
and E 6= ∅. Then, since ω0 ∈ B1(‖b ≥ a‖ ∩ ‖c ≥ a‖) and Player 1 is rational at state ω0, it must be
that D ∼ω0

1 ∅ and E ∼ω0
1 ∅. It follows that every event F ⊆ B1(ω0) with F 6= B1(ω0) is such that

F ∼ω0
1 ∅.8

3.2. Iterated Deletion of Börgers-dominated Strategies

Börgers (1993) introduced a refined notion of pure-strategy dominance. In particular, let a, b ∈ Si

be two pure strategies of player i, and let X−i ⊆ S−i be a non-empty set of strategy-profiles of
the players other than i (note that X−i need not have a product structure). We say that b weakly
dominates a relative to X−i whenever: (1) πi(b, x−i) ≥ πi(a, x−i) for all x−i ∈ X−i, and (2) there
exists some x̂−i ∈ X−i such that πi(b, x̂−i) > πi(a, x̂−i). Then, a pure strategy a ∈ Si is Börgers-
dominated (henceforth B-dominated) if for every non-empty subset X−i ⊆ S−i there exists a strategy
b ∈ Si (which is allowed to vary with X−i) such that b weakly dominates a relative to X−i. Iterated
Deletion of B-dominated Strategies (IDBS) is the following algorithm: reduce the game by deleting,
for each player, all the strategies that are B-dominated and then repeat the procedure in the reduced
game, and so on, until there are no B-dominated strategies left.

Definition 5. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉, recursively
define the sequence of reduced games {G0, G1, . . . , Gm, . . . } as follows: for each i ∈ I,

(5.1) let B0
i = Si, and let E0

i ( B0
i be the set of i’s strategies that are B-dominated in G0 = G;

(5.2) for each m ≥ 1 let Gm−1 be the reduced game with strategy sets Bm−1
i , and define Bm

i =
Bm−1

i \ Em−1
i , where Em−1

i ( Bm−1
i is the set of i’s strategies that are B-dominated in Gm−1.

Let B∞i =
⋂∞

m=0B
m
i . The strategy profiles in B∞ = B∞1 × · · · ×B∞n are those surviving IDBS.

Similarly to IDSDS, since the strategy sets are finite, there exists an integer r such that B∞ =
Bk for every k ≥ r, i.e., the procedure terminates after finitely many steps. Furthermore, it is
straightforward to verify that B∞ 6= ∅.

For example, in the game of Figure 1, strategy a of Player 1 is B-dominated. Indeed, a is weakly
dominated by b relative to {d} and also relative to {d, e}, and it is weakly dominated by c relative to
{e}. However, as we saw above, unless additional restrictions (besides (L1) − (L4)) are imposed on
the relative likelihood relations, there exists a model and a state within this model such that strategy
a is rational according to Definition 2. In what follows we shall restrict attention to models with
cautious players, i.e., with players who have full-support beliefs.

Definition 6. A finite qualitative doxastic model of a strategic-form game with ordinal payoffs has
full support if, for every i ∈ I and every ω ∈ Ω,

(L5) {ω′} �ω
i ∅ for all ω′ ∈ Bi(ω).

Let M1 (M0 denote the class of finite full-support qualitative doxastic models.

Theorem 2 (Characterization of IDBS). If the relative likelihood relations (�ω
i )ω∈Ω

i∈I are full-support
then common belief of rationality characterizes IDBS. Formally,

8By Property (L2) of the relative likelihood relation, every subset of D is null and so is every subset of E and by
property (L3) the union of two such sets is null, unless it is equal to B1(ω0).

7



(A1) in every model M ∈M1, if ω ∈ CBR then σ(ω) ∈ B∞,

(B1) for every s ∈ B∞, there exists a model M ∈M1 and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

Note that, in order to “rationalize” a strategy profile in B∞, it may be necessary for a player to
have erroneous beliefs. To see this, consider the game in Figure 2, where B∞ = S, that is, IDBS does
not eliminate any strategy; in particular, (a, d) ∈ B∞.9 Consider an arbitrary full-support model of
this game and a state ω0 such that σ(ω0) = (a, d). Since, for every s2 ∈ {c, d}, π1(b, s2) ≥ π1(a, s2),
‖b ≥ a‖ = Ω and thus B1(ω0) ⊆ ‖b ≥ a‖. That is, ω0 ∈ B1‖b ≥ a‖. Hence, if Player 1 is rational at
ω0 (according to Definition 2) then ‖b > a‖ ∩ B1(ω0) = ∅.10 Thus, σ2(ω) = c for all ω ∈ B1(ω0). In
particular, it must be that ω0 /∈ B1(ω0). Thus at state ω0 Player 2 actually plays d but Player 1 –
who plays a – must erroneously believe that Player 2 is playing c. In the next section we investigate

a

b

Player 1
1 , 1 1 , 0

1 , 0 2 , 2

c

Player 2

d

Figure 2: IDBS.

the consequences of ruling out false beliefs, while maintaining caution, i.e. full-support beliefs.

3.3. Iterated Deletion of Inferior Strategy Profiles

The following algorithm is the pure-strategy version of a procedure first introduced by Stalnaker
(1994) and further studied in Bonanno (2008); Bonanno and Nehring (1998); Hillas and Samet (2014);
Trost (2013). Unlike the procedures considered above (viz., IDSDS and IDBS), this procedure deletes
entire strategy profiles, rather than individual strategies. In particular, let X ⊆ S be a set of strategy
profiles (not necessarily having a product sructure). A strategy profile x ∈ X is inferior relative to
X if there exist a player i and a strategy si ∈ Si of player i (i.e., si need not belong to the projection
of X onto Si) such that (1) πi(si, x−i) > πi(xi, x−i), and (2) for all s−i ∈ S−i, either (xi, s−i) /∈ X or
πi(si, s−i) ≥ πi(xi, s−i). Iterated Deletion of Inferior Profiles (IDIP) is the following algorithm: reduce
the game by deleting all the inferior strategy profiles and then repeat the procedure by eliminating
inferior profiles relative to the strategy profiles that have not been eliminated so far, until there are
no inferior profiles left. Formally, the algorithm is defined as follows:

Definition 7. Given a strategic-form game with ordinal payoffs G = 〈I, (Si, πi)i∈I〉, recursively
define the sequence of sets of strategy profiles {T 0, T 1, . . . , Tm, . . . } as follows:

(7.1) let T 0 = S, and let I0 ( T 0 be the set of inferior strategy profiles relative to T 0;

9For Player 1, a is weakly dominated by b relative to {d} and {c, d} but not relative to {c} and for Player 2 d is
weakly dominated by c relative to {a} but not relative to {b} or {a, b}.

10Suppose that ω0 ∈ R1. Then, by Definition 2, since ω0 ∈ B1‖b ≥ a‖, it must be that ‖b > a‖ ∩ B1(ω0) ∼ω0
i ∅.

Fix an arbitrary ω ∈ B1(ω0) and suppose that ω ∈ ‖b > a‖ so that ‖b > a‖ ∩ B1(ω0) ⊇ {ω}, noting that, by (Σ0),
σ1(ω) = σ1(ω0) = a. By the assumption of full support, {ω} �ω0

1 ∅ and thus, by (L2), ‖b > a‖ ∩ B1(ω0) �ω0
1 ∅,

yielding a contradiction.
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(7.2) for each m ≥ 1 let Tm = Tm−1 \ Im−1, where Im−1 ( Tm−1 is the set of strategy profiles in
Tm−1 that are inferior relative to Tm−1.

Then T∞ =
⋂∞

m=0 T
m denotes the strategy profiles surviving IDIP.

Once again, since the strategy sets are finite, there exists an integer r such that T∞ = T k for
every k ≥ r, i.e., the procedure terminates after finitely many steps. Besides, it is straightforward to
verify that T∞ 6= ∅.

As an illustration of this procedure, consider the game in Figure 3. In this game (a, d) is inferior

a

b

Player 1
1 , 1 1 , 2

1 , 1 2 , 0

c

Player 2

d

Figure 3: IDIP.

relative to T 0 = S since π1(b, d) > π1(a, d) and π1(b, c) = π1(a, c) (and (a, c) ∈ S). No other strategy
profile is inferior relative to T 0 and thus I0 = {(a, d)} so that T 1 = {(a, c), (b, c), (b, d)}. Now (b, d)
is inferior relative to T 1 since π2(b, c) > π2(b, d) and (a, d) /∈ T 1. No other strategy profile is inferior
relative to T 1 and thus I1 = {(b, d)} so that T 2 = {(a, c), (b, c)}. Now no strategy profile is inferior
relative to T 2 so that T∞ = T 2.

We now turn to investigating the consequences of ruling out false beliefs. At state ω player i has
correct beliefs if ω is one of the states that player i considers possible at ω, that is, if ω ∈ Bi(ω).

Definition 8. A finite qualitative doxastic model of a strategic-form game with ordinal payoffs rules
out false beliefs if, for every i ∈ I and every ω ∈ Ω,

(K0) ω ∈ Bi(ω).

Let M2 (M1 denote the class of finite full-support qualitative doxastic models that rule out false
beliefs.

Theorem 3 (Characterization of IDIP). If the relative likelihood relations (�ω
i )ω∈Ω

i∈I are full-support
and the binary relations (Bi)i∈I are reflexive then common belief of rationality characterizes IDIP.
Formally,

(A2) in every model M ∈M2, if ω ∈ CBR then σ(ω) ∈ T∞,

(B2) for every s ∈ T∞, there exists a model M ∈M2 and a state ω in that model such that σ(ω) = s
and ω ∈ CBR.

Property (K0) says that no player can have false beliefs. This is actually stronger than simply
requiring that it is commonly believed that every player has correct beliefs. In fact, in order to get
a characterization of the set T∞, common belief that all players have correct beliefs is not sufficient
(see Section 4.2).
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4. Discussion

4.1. Monotonicity result

A direct implication of our three theorems is the following (monotonicity) result, which proves that
IDIP is a refinement of IDBS, which is a refinement of IDSDS.

Corollary 1 (Monotonicity result). T∞ ⊆ B∞ ⊆ R∞.

The proof follows directly from M2 ( M1 ( M0. The second part of the result is not very
surprising and can also be proven directly, viz., it can be shown that for every m ≥ 0 it is the case
that Bm ⊆ Rm. However, this is not the case with the first part of our monotonicity result, which is
far from trivial. The difficulty of proving the result stems from the fact that there exist games where
Bm ( Tm for some m > 0, as illustrated in the game in Figure 4.

a

Player 1 b

c

1 , 1 2 , 1

2 , 1 0 , 1

1 , 1 1 , 1

d

Player 2

e

Figure 4: Monotonicity.

In this game, c is B-dominated, while no other strategy is subsequently eliminated. That is,
formally B∞ = B1 = {a, b} × {d, e}. On the other hand, the only inferior strategy profile relative
to the entire game is (c, e), and therefore T 1 ) B1. But then, (c, d) is inferior relative to T 1, thus
implying that B∞ = B2 = T 2 = T∞, consistently with the conclusions of our Corollary 1.

4.2. Correct beliefs

As we have already mentioned above, common belief in correct beliefs does not suffice for a strategy
that survives IDIP to be played. Formally, let Ci = {ω ∈ Ω : ω ∈ Bi(ω)} be the event that player
i has correct beliefs, and let C∪ =

⋃
i∈I Ci be the event that at least one player has correct beliefs

and C =
⋂

i∈I Ci the event that all players have correct beliefs. As the following example shows, it
is possible that ω ∈ CBR ∩ CBC and yet the strategy profile played at ω does not survive IDIP.

a

b

Player 1
1 , 1 1 , 0

1 , 0 2 , 2

c

Player 2

d

Figure 5: Common belief in correct beliefs.
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Consider the following model of the game in Figure 5: Ω = {ω1, ω2, ω3},B1(ω1) = {ω1},B1(ω2) =
B1(ω3) = {ω3},B2(ω1) = B2(ω2) = {ω1},B2(ω3) = {ω3}, σ1(ω1) = b, σ1(ω2) = σ1(ω3) = a, σ2(ω1) =
σ2(ω2) = d and σ2(ω3) = c. Then σ(ω2) = (a, d) /∈ T∞ and yet ω2 ∈ CBR ∩ CBC (in fact,
B∗(ω2) = {ω1, ω3},C = {ω1, ω3} and R = Ω). Note that, in this model, at state ω2 both players
have false beliefs. This is because, although it is common belief at ω2 that only strategy profiles in
T∞ are played, the strategy profile actually played does not belong to T∞.

Although common belief in correct beliefs does not suffice for IDIP, it guarantees common belief
in the event that only strategy profiles in T∞ are played. Let T∞ = {ω ∈ Ω : σ(ω) ∈ T∞.

Proposition 1. If the relative likelihood relations (�ω
i )ω∈Ω

i∈I are full-support then common belief of
rationality and common belief of correct beliefs imply common belief in IDIP. Formally, CBR ∩
CBC ⊆ CBT∞ in every model M ∈M1.

The condition that there is common belief that all players have correct beliefs (ω ∈ CBC) is nec-
essary for Proposition 1. To see this, consider the game in Figure 6, where T∞ = {(a, c), (b, c)}.
Consider the following model of this game: Ω = {ω1, ω2},B1(ω1) = B1(ω2) = {ω2},B2(ω1) =

a

b

Player 1
1 , 1 1 , 1

1 , 1 2 , 0

c

Player 2

d

Figure 6: Correct beliefs.

{ω1},B2(ω2) = {ω2}, σ1(ω1) = σ1(ω2) = a, σ2(ω1) = d, σ2(ω2) = c. Then R = CBR = Ω, while
T∞ = {ω2} (since σ(ω1) = (a, d) /∈ T∞). Since B∗(ω1) = {ω1, ω2}, ω1 ∈ CBR but ω1 /∈ CBT∞. In
this model, at state ω1 Player 1 has false beliefs (C1 = {ω2}) and thus ω1 /∈ CBC.

The following Corollary shows that if, to the hypotheses of Proposition 1, we add the further
hypothesis that at least one player does not have false beliefs, then it follows that the strategy
profile actually played also belongs to T∞. Recall that C∪ =

⋃
i∈I Ci is the event that at least one

player has correct beliefs.

Corollary 2. If the relative likelihood relations (�ω
i )ω∈Ω

i∈I are full-support then common belief of ratio-
nality, common belief of correct beliefs and correct beliefs of at least one player imply IDIP. Formally,
CBR ∩ CBC ∩C∪ ⊆ T∞ in every model M ∈M1.

5. Conclusion

In this paper we have studied the behavioral implications of common belief of rationality in strategic-
form games with ordinal utilities, using qualitative beliefs. Focusing on ordinal utilities is relevant
both theoretically (as we implicitly relax the admittedly unrealistic assumption of commonly known
vNM preferences), as well as empirically (as experimental economists typically use solution concepts
for games with ordinal payoffs for their benchmark theoretical predictions).

Our contribution is threefold. Firstly, this is the first paper in the literature to embed quali-
tative likelihood relations into a game-theoretic model. Secondly, we manage to characterize three
well-known solution concepts for games with ordinal payoffs in terms of common belief of rationality,
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without needing to vary the notion of rationality that we employ, but rather by gradually strength-
ening the properties of the model of qualitative beliefs that we use. Finally, as a consequence of our
characterization results, we prove that the aforementioned solution concepts monotonically refine
each other, viz., IDIP refines IDBS, which in turn refines IDSDS. Notably, the first refinement result
is far from trivial to prove.

A. Proofs of Section 3

Proof of Theorem 1. (A0) Fix a strategic-form game with ordinal payoffs and a model M ∈M0

of the game. Suppose that ω1 ∈ CBR. That is, B∗(ω1) ⊆ R. We want to show that σ(ω1) ∈ S∞.
The proof is by induction.

Initial Step. First we show (by contradiction) that, for every player i ∈ I and for every ω ∈ B∗(ω1),
σi(ω) /∈ D0

i (see Definition 4). Suppose not. Then there exist a player i and an ω2 ∈ B∗(ω1) such
that σi(ω2) ∈ D0

i , that is, strategy σi(ω2) of player i is strictly dominated in G by some other
strategy ŝi ∈ Si: for every s−i ∈ S−i, πi(ŝi, s−i) > πi(σi(ω2), s−i). Thus, for every ω ∈ Bi(ω2),
πi(ŝi, σ−i(ω)) > πi(σi(ω2), σ−i(ω)), that is, ‖ŝi > σi(ω2)‖ ∩ Bi(ω2) = Bi(ω2). Since Bi(ω2) �ω2

i ∅,
it follows from Definition 2 that ω2 /∈ Ri, thus contradicting the hypothesis that ω2 ∈ B∗(ω1) ⊆ R
(recall that R ⊆ Ri). Thus, for every ω ∈ B∗(ω1), σi(ω) ∈ Si\D0

i = S1
i .

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every player j ∈ I and for every
ω ∈ B∗(ω1), σj(ω) ∈ Sm

j . We want to show (again by contradiction) that, for every player i ∈ I and
for every ω ∈ B∗(ω1), σi(ω) /∈ Dm

i . Suppose not. Then there exist a player i and a ω2 ∈ B∗(ω1)
such that σi(ω2) ∈ Dm

i , that is, strategy σi(ω2) is strictly dominated in Gm by some other strategy
s̃i ∈ Sm

i . Since, by hypothesis, for every player j and for every ω ∈ B∗(ω1), σj(ω) ∈ Sm
j , it follows

– since Bi(ω2) ⊆ B∗(ω2) ⊆ B∗(ω1) (the latter inclusion follows from transitivity of B∗) – that, for
every ω ∈ Bi(ω2), πi(s̃i, σ−i(ω)) > πi(σi(ω2), σ−i(ω)), that is, ‖s̃i > σi(ω2)‖ ∩ Bi(ω2) = Bi(ω2).
Since Bi(ω2) �ω2

i ∅, it follows from Definition 2 that ω2 /∈ Ri, contradicting the hypothesis that
ω2 ∈ B∗(ω1) ⊆ R. Thus, for every player i ∈ I and for every ω ∈ B∗(ω1), σi(ω) ∈

⋂∞
m=1 S

m
i = S∞i .

It only remains to show that σi(ω1) ∈ S∞i . Fix an arbitrary ω2 ∈ Bi(ω1). Since Bi(ω1) ⊆ B∗(ω1),
ω2 ∈ B∗(ω1). Thus σi(ω2) ∈ S∞i . By (Σ0), since ω2 ∈ Bi(ω1), σi(ω2) = σi(ω1). Thus σi(ω1) ∈ S∞i .

(B0) Given a game G construct the following model M ∈M0: Ω = S∞ = S∞1 × · · · × S∞n ; for every
player i and for every s ∈ S∞, Bi(s) = {s′ ∈ S∞ : s′i = si} (that is, at state s player i considers
possible each of the strategy profiles of the other players in S∞−i, while her strategy is held constant
at si); σi : S∞ → Si is defined by σi(s) = si (that is, σi(s) is the ith coordinate of s); finally, for
every i ∈ I and s ∈ S∞, Bi(s) �s

i ∅ and, for every E ⊆ Bi(s) with E 6= Bi(s), E ∼s
i ∅. Fix an

arbitrary state s ∈ S∞ and an arbitrary player i. By definition of S∞, for every s′i ∈ S∞i there
exists an ŝ−i ∈ S∞−i such that πi(si, ŝ−i) ≥ πi(s

′
i, ŝ−i). By construction, (si, ŝ−i) ∈ Bi(s) so that

‖s′i > si‖ ∩ Bi(s) 6= Bi(s) and thus, by construction, ‖s′i > si‖ ∩ Bi(s) ∼s
i ∅ so that, by Definition

2, s ∈ Ri. Since s and i were chosen arbitrarily, if follows that, for every s ∈ S∞, s ∈ R, that is,
R = S∞ and thus CBR = S∞.

Proof of Theorem 2. (A1) Fix a strategic-form game with ordinal payoffs and a model M ∈M1.
Suppose that ω1 ∈ CBR (that is, B∗(ω1) ⊆ R). We want to show that σ(ω1) ∈ B∞. The proof is by
induction.

Initial Step. First we show (by contradiction) that, for every player i ∈ I and for every ω ∈ B∗(ω1),
σi(ω) /∈ E0

i (see Definition 5). Suppose not. Then there exist a player i and a ω2 ∈ B∗(ω1) such
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that σi(ω2) ∈ E0
i , that is, strategy σi(ω2) of player i is B-dominated relative to S−i, i.e., for every

X−i ⊆ S−i there exists a strategy si ∈ Si such that (1) for all x−i ∈ X−i, πi(si, x−i) ≥ πi(σi(ω2), x−i),
and (2) there exists an x̂−i ∈ X−i such that πi(si, x̂−i) > πi(σi(ω2), x̂−i). Let X−i = σ−i(Bi(ω2)) =
{s−i ∈ S−i : s−i = σ−i(ω) for some ω ∈ Bi(ω2)}. Let si ∈ Si and x̂−i ∈ X−i satisfy (1) and (2)
and let ω̂ ∈ Bi(ω2) be such that σ−i(ω̂) = x̂−i. Then, by (1), ω2 ∈ Bi‖si ≥ σi(ω2)‖ and by (2)
‖si > σi(ω2)‖ ∩ Bi(ω2) ⊇ {ω̂}. By (L5), {ω̂} �ω2

i ∅ and thus, by (L2), ‖si > σi(ω2)‖ ∩ Bi(ω2) �ω2
i ∅;

hence ω2 /∈ Ri (see Definition 2), contradicting the hypothesis that ω1 ∈ CBR and ω2 ∈ B∗(ω1) (which
implies that ω2 ∈ R ⊆ Ri). Thus we have shown that, for every ω ∈ B∗(ω1), σi(ω) ∈ Si\E0

i = B1
i .

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every player j ∈ I and for every
ω ∈ B∗(ω1), σj(ω) ∈ Bm

j , that is, B∗(ω1) ⊆ Bm. We want to show (by contradiction) that, for
every player i ∈ I and for every ω ∈ B∗(ω1), σi(ω) /∈ Em

i . Suppose not. Then there exist a player
i and an ω2 ∈ B∗(ω1) such that σi(ω2) ∈ Em

i , that is, strategy σi(ω2) of player i is B-dominated
relative to Bm

−i: for every X−i ⊆ Bm
−i there exists a strategy si ∈ Si such that (1) for all x−i ∈ X−i,

πi(si, x−i) ≥ πi(σi(ω2), x−i) and (2) there exists an x̂−i ∈ X−i such that πi(si, x̂−i) > πi(σi(ω2), x̂−i).
Let X−i = σ−i(Bi(ω2)) = {s−i ∈ S−i : s−i = σ−i(ω) for some ω ∈ Bi(ω2)}. By the induction
hypothesis and the fact that Bi(ω2) ⊆ B∗(ω2) ⊆ B∗(ω1) (the latter inclusion follows from transitivity
of B∗), X−i ⊆ Bm

−i. Let si ∈ Si and x̂−i ∈ X−i satisfy (1) and (2) and let ω̂ ∈ Bi(ω2) be such that
σ−i(ω̂) = x̂−i. Then, by (1), ω2 ∈ Bi‖si ≥ σi(ω2)‖ and by (2) ‖si > σi(ω2)‖ ∩ Bi(ω2) ⊇ {ω̂}. By
(L5), {ω̂} �ω2

i ∅ and thus, by (L2), ‖si > σi(ω2)‖ ∩ Bi(ω2) �ω2
i ∅; hence ω2 /∈ Ri (see Definition 2),

contradicting the hypothesis that ω1 ∈ CBR and ω2 ∈ B∗(ω1) (which implies that ω2 ∈ R ⊆ Ri).
Thus, for every player i ∈ I and for every ω ∈ B∗(ω1), σi(ω) ∈

⋂∞
m=1B

m
i = B∞i .

It only remains to show that σi(ω1) ∈ B∞i . Take ω2 ∈ Bi(ω1). Since Bi(ω1) ⊆ B∗(ω1), ω2 ∈ B∗(ω1).
Thus σi(ω2) ∈ B∞i . By (Σ0), since ω2 ∈ Bi(ω1), σi(ω2) = σi(ω1). Thus σi(ω1) ∈ B∞i .

(B1) Given a game G construct the following model M ∈ M1: Ω = B∞ = B∞1 × · · · × B∞n ; for
every player i and for every s ∈ B∞, σi : B∞ → Si is defined by σi(s) = si (that is, σi(s) is the
ith coordinate of s). To define Bi first note that, by Definition of B∞, every si ∈ B∞i is not B-
dominated relative to B∞−i, that is, there exists an Xsi

−i ⊆ B∞−i (note this set may vary with si, hence
the superscript “si”) such that, for all s′i ∈ Si, either there exists an x̂−i ∈ Xsi

−i such that:

πi(s
′
i, x̂−i) < πi(si, x̂−i) (A.1)

or for all x−i ∈ Xsi
−i,

πi(s
′
i, x̂−i) ≤ πi(si, x̂−i). (A.2)

For every si ∈ B∞i fix one such set Xsi
−i (there may be several) and define Bi(si, s′−i) = {si} ×Xsi

−i.
By construction, (si, x̂−i) ∈ Bi(s) and thus, either, by (A.1), s /∈ Bi‖s′i ≥ si‖ or, by (A.2), ‖s′i > si‖∩
Bi(s) = ∅. It follows that, for every i ∈ I and for every s ∈ B∞, s ∈ Ri and thus B∞ = R = CBR.
Note that for completeness – although strictly speaking this is not needed – we can add the condition
that, for every i ∈ I and s ∈ B∞, {s′} �s

i ∅, for every s′ ∈ Bi(s).

The proof of Theorem 3 uses as intermediate results the ones stated in Section 4.2 and proved in
Appendix B.

Proof of Theorem 3. (A2) Given a game, consider a model M ∈M2. Then C = CBC = C∪ =
Ω. Let ω ∈ CBR. Then, by Corollary 2 in Section 4.2, ω ∈ T∞.

(B2) Given a game construct the following model of it: Ω = T∞; for every player i and for every
s ∈ T∞, Bi(s) = {s′ ∈ T∞ : s′i = si} (that is, s′ ∈ Bi(s) if and only if both s and s′ belong to

13



T∞ and player i’s strategy is the same in s and s′); σi : T∞ → Si is defined by σi(s) = si (that
is, σi(s) is the ith coordinate of s); finally, for all i ∈ I, s ∈ T∞ and s′ ∈ Bi(s), {s′} �s

i ∅. Note
that each relation Bi is an equivalence relation. Fix an arbitrary state s ∈ T∞ and an arbitrary
player i and suppose that, for some s′i ∈ Si, πi(s

′
i, s−i) > πi(si, s−i), that is, s ∈ ‖s′i > si‖, so that

‖s′i > si‖ ∩ Bi(s) ⊇ {s} �s
i ∅. Then, by definition of T∞, there exists an ŝ−i ∈ S−i such that

(si, ŝ−i) ∈ T∞ and πi(s
′
i, ŝ−i) < πi(si, ŝ−i); by construction, (si, ŝ−i) ∈ Bi(s) so that s /∈ Bi‖s′i ≥ si‖.

Thus, by Definition 2, player i is rational at state s, that is, s ∈ Ri. Since i and s were chosen
arbitrarily, it follows that R = T∞.

B. Proofs of Section 4

Proof of Corollary 1. Fix an arbitrary s ∈ T∞. Then, by Theorem 3, there exists some model
in M ∈ M2 such that for some state ω (in this model), σ(ω) = s and ω ∈ CBR. Since M2 ⊆ M1 it
follows that M ∈M1, and therefore, by Theorem 2, s ∈ B∞, thus proving T∞ ⊆ B∞.

Likewise, fix an arbitrary s′ ∈ B∞. Then, by Theorem 2, there exists some model M ′ ∈M1 such
that for some state ω′ (in this model), σ(ω′) = s′ and ω′ ∈ CBR. Since M1 ⊆ M0 it follows that
M ′ ∈M0, and therefore, by Theorem 1, s′ ∈ S∞, thus proving B∞ ⊆ S∞.

Proof of Proposition 1. Fix a strategic-form game and a model M ∈ M1. Suppose that ω1 ∈
CBR ∩ CBC, i.e., B∗(ω1) ⊆ R ∩C. We want to show that σ(ω1) ∈ T∞. As before, the proof is by
induction.

Initial Step. First we show (by contradiction) that, for every ω ∈ B∗(ω1), σ(ω) /∈ I0 (see Definition
7). Suppose, that there exists an ω2 ∈ B∗(ω1) such that σ(ω2) ∈ I0, that is, σ(β) is inferior relative
to the entire set of strategy profiles S. Then there exists a player i and a strategy ŝi ∈ Si such that

πi(ŝi, s−i) ≥ πi(σi(ω2), s−i), for all s−i ∈ S−i, (B.1)

πi(ŝi, σ−i(ω2)) > πi(σi(ω2), σ−i(ω2)). (B.2)

Hence, for every ω ∈ Bi(ω2), πi(ŝi, σ−i(ω)) ≥ πi(σi(ω2), σ−i(ω)), that is, ω2 ∈ Bi‖ŝi ≥ σi(ω2)‖.
Furthermore, since B∗(ω1) ⊆ C ⊆ Ci and ω2 ∈ B∗(ω1), ω2 ∈ Bi(ω2). Since the model has full
support, {ω2} �ω2

i ∅ and thus, by (B.1), ‖ŝi > σi(ω2)‖ ∩ Bi(ω2) �ω2
i ∅ (appealing to (L2) with

F = ‖ŝi > σi(ω2)‖ and E = {ω2}), so that, by Definition 2, player i is not rational at state
ω2, contradicting the hypothesis that ω2 ∈ B∗(ω1) and ω1 ∈ CBR. Thus, for every ω ∈ B∗(ω1),
σ(ω) ∈ T 0\I0 = T 1 (recall that T 0 = S).

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every ω ∈ B∗(ω1), σ(ω) ∈ Tm. We
want to show that, for every ω ∈ B∗(ω1), σ(ω) /∈ Im. Suppose, by contradiction, that there exists a
ω2 ∈ B∗(ω1) such that σ(ω2) ∈ Im, that is, σ(ω2) is inferior relative to Tm. Then there exist a player
i and a strategy s̃i ∈ Si such that

πi(s̃i, σ−i(ω2)) > πi(σi(ω2), σ−i(ω2)), (B.3)

πi(s̃i, s−i) ≥ πi(σi(ω2), s−i), for all s−i ∈ S−i such that (σi(ω2), s−i) ∈ Tm. (B.4)

By the induction hypothesis, for every ω ∈ B∗(ω1), (σi(ω), σ−i(ω)) ∈ Tm. Thus, since Bi(ω2) ⊆
B∗(ω2) ⊆ B∗(ω1) (the latter inclusion follows from transitivity of B∗), we have that, for every ω ∈
Bi(ω2), (σi(ω2), σ−i(ω)) ∈ Tm (recall that, by (Σ0), if ω ∈ Bi(ω2) then σi(ω) = σi(ω2)). Since
B∗(ω1) ⊆ C ⊆ Ci and ω2 ∈ B∗(ω1), ω2 ∈ Bi(ω2). Since the model has full support, {ω2} �ω2

i ∅ and
thus ‖ŝi > σi(ω2)‖∩Bi(ω2) �ω2

i ∅ so that, by (B.3) and Definition 2, player i is not rational at state
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ω2, contradicting the hypothesis that ω2 ∈ B∗(ω1) and ω1 ∈ CBR. Thus, we have shown that, for
every ω ∈ B∗(ω1), σ(ω) ∈

⋂∞
m=1 T

m = T∞, that is, ω1 ∈ CBT∞.

Proof of Corollary 2. Fix a strategic-form game with ordinal payoffs and a model M ∈ M1.
Suppose that ω0 ∈ CBR ∩CBC ∩C∪. Since ω0 ∈ C∪, there exists a player i ∈ I such that ω0 ∈ Ci,
that is, ω0 ∈ Bi(ω0). Hence, by definition of B∗, ω0 ∈ B∗(ω0). By Proposition 1, ω0 ∈ CBT∞, that
is, for every ω ∈ B∗(ω0), ω ∈ T∞. Hence ω0 ∈ T∞.
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