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1 Introduction

What are the behavioral implications of ”common cautious belief of rationality”? Con-

sider the following example of a strategic game.1

x

Rowena y

z

Colin

a b c

4, 0 4, 1 0, 2

0, 0 0, 1 4, 2

3, 0 2, 2 2, 1

There are two players, Rowena and Colin, each of them possessing three actions. Colin’s

action a is strictly dominated by any mixture of his other actions. But after elimi-

nating action a, no other action is weakly dominated. Hence, the maximal reduction

under iterated admissibility or iterated elimination of weakly dominated strategies is

{x, y, z} × {b, c}. This is also the prediction of ”common cautious belief in rationality”

if iterated admissibility is taken as embodying this assumption. At a second glance, the

only reason why we cannot eliminate action z of Rowena is that it is rationalizable with

a full support belief on Colin’s actions {b, c} that remain after eliminating a in the first

round.2 When Rowena assigns probability 1
2

both to actions b and c of Colin, she is

indifferent between all of her actions. Yet, a cautious player should never completely

rule out any action of the opponent. In particular because of her indifference, Rowena

may consider what happens if her primary belief in {b, c} is contradicted and Colin plays

action a nevertheless. Conditional on such a contradiction, Rowena strictly prefers x

over z. Thus, she may use this secondary belief in a as a criterion to select among her

actions in case of indifference with respect to her primary belief. After eliminating z,

we can eliminate successively actions b and x by iterated strict dominance. So, contrary

to iterated admissibility, already eliminated actions of an opponent can still serve as

tie-breaker between actions of a player later on.

The procedure just described is an instance of a novel solution concept to strategic

games that we call comprehensive rationalizability. The maximal reduction of compre-

hensive rationalizability in the game above is {(y, c)}. In this example, it is a strict

refinement of iterated admissibility. However, we will show that this is not the case in

1This game is a variant of a game discussed in Brandenburger, Friedenberg, and Keisler (2008, p.
313) who attributed it to Pierpaolo Battigalli.

2Note that we can also not eliminate z by weak dominance in the first round since it is rationalizable
for instance with the belief

(
1
2 , 0,

1
2

)
on {a, b, c}, respectively.
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general. Surprisingly, comprehensive rationalizability neither refines nor is refined by it-

erated admissibility. Yet, in many applications in the literature it coincides with iterated

admissibility.

Besides defining comprehensive rationalizability, showing some of its properties, and

exploring it in some applications, we provide an epistemic characterization of comprehen-

sive rationalizability by rationality and common strategic assumption of rationality in a

universal lexicographic beliefs type space. To this end, we append the game with types

for each player, each type specifying a lexicographic belief system over opponents’ types.

A lexicographic belief system is a finite sequence of probability measures interpreted as

the type’s primary belief, secondary belief etc. over the opponents’ types. Moreover, we

define for each player a strategy map, that is, a function that assigns to each type of the

player a pure strategy. Each type’s lexicographic belief over the opponents’ types together

with opponents’ strategy maps induce then a lexicographic conjecture over opponents’

profiles of strategies, that is, a sequence of beliefs over opponents’ profiles of strategies

whose supports are disjoint, and whose union of supports cover the entire strategy space

of opponents.

Figure 1: Type Structure

s2  
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a b c 
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To illustrate the approach informally, consider again the previous example. A lexico-

graphic beliefs type space is depicted in the upper right orthant of Figure 1. For each

player, we introduce just three types. The types of Rowena are located on the x-axis

while the types of Colin are located on the y-axis. The tuples of numbers indicate the lex-

icographic beliefs of each type; the lexicographic beliefs of Rowena’s types are arranged

in columns of first components in each tuple while the lexicographic beliefs of Colin’s

types are arranged in rows of second components in each tuple. Secondary beliefs are

printed in ”[...]”, while primary beliefs are printed without those brackets. For instance,

type χ1 of Rowena (player 1) assigns primary probability 1
2

each to types γ2 and β2 of

Colin (player 2) while assigning secondary probability 1 to type α2 of Colin. Thus, type

χ1 of Rowena views types γ2 and β2 infinitely more likely than type α2 of Colin. Type β2

of Colin assigns primary probability 1 to type ω1 of Rowena and secondary probability
1
2

each to types χ1 and ψ1 of Rowena. The lower right and upper left orthants depict

the strategy maps σi that map for each player i = 1, 2 types into pure strategies. For

instance, type χ1 of Rowena plays σ1(χ1) = x while type β2 of Colin plays σ2(β2) = b.

The lower right orthant depicts the strategic game above. Note that the lexicographic

beliefs of each player’s types together with the opponent’s strategy map induce a lex-

icographic conjecture over the opponent’s strategies. For instance, type χ1 of Rowena

assigns primary probability 1
2

each to Colin playing c and b while assigning secondary

probability 1 to Colin playing a.

To sketch our epistemic characterization, consider again type ω1 of Rowena. With

her lexicographic conjecture, her action x is rational. In fact, the only type in this

type structure, who is not rational is Colin’s type α2. His conjecture over Rowena’s

strategies does not rationalize his action a. In fact, no belief over Rowena’s strategies

could rationalize playing his action a. The rational type profiles are indicated by the

rectangle labeled RMA0R. Their corresponding level-1 comprehensive rationalizable

strategies are labeled by R0 in the lower left orthant. Consider now again type χ1 of

Rowena. She considers it infinitely more likely that Colin is of the rational type β2 or γ2

than him being of the irrational type α2. Thus, we say that type χ1 assumes that Colin is

rational. Similarly, for instance Colin’s type β2 assumes Rowena’s rational type ω1. Note,

however, that Rowena’s type ω1 does not assume that Colin is rational since she assigns

primary probability 1
2

to Colin being of the irrational type α2. Any player’s type in the

rectangle labeled by RMA1R assumes rational types of the opponent. RMA1R stands for

the event of ”rationality and level 1 mutual assumption of rationality”. It does not imply

Rowena’s strategy z since Rowena’s type ω1 who plays z does not assume Colin to be
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rational. The strategies corresponding to types in RMA1R are strategies in the rectangle

labeled R1 in the lower left orthant. Continuing in this fashion level by level, we identify

the types in RMA3R who play comprehensive rationalizable strategies in R3. This is

the set of types in the event ”rationality and common assumption of rationality”. Note

that the type structure depicted in Figure 1 is just a simple example. Our main result

characterizes comprehensive rationalizability in the universal lexicographic beliefs type

space: The set of comprehensive rationalizable strategies is the set of strategies played

by the types in the event “rationality and common strategic assumption of rationality”

in the universal space.

There is a growing literature on approaches that characterize various notions of ”com-

mon cautious belief in rationality”. Brandenburger (1992), Samuelson (1992), Börgers

and Samuelson (1992), Börgers (1994), Stahl (1995), Ben Porath (1997), Asheim (2001),

Ewerhart (2002), Asheim and Dufwenberg (2003), Brandenburger, Friedenberg, and

Keisler (2008), Halpern and Pass (2009), Barelli and Galanis (2013), Keisler and Lee

(2015), Yang (2015), Cantonini and De Vito (2014), Lee (2016), and Perea (2012) all

focus on iterated admissibility. Closest to our work is Stahl (1995), Brandenburger,

Friedenberg, and Keisler (2008), Keisler and Lee (2015), Lee (2016), Yang (2015), and

Cantonini and De Vito (2014). Stahl (1995) defines a notion of rationalizability with

lexicographic beliefs and shows that it characterizes iterated admissibility similarly to

the characterization of iterated elimination of strictly dominated strategies by (corre-

lated) rationalizability (Bernheim, 1984, Pearce, 1984). In contrast to our approach,

he does not require lexicographic beliefs to satisfy mutual singularity. Stahl’s analysis

remains ”pre-epistemic” in the sense that he has no explicit type-structure to define the

event that a player is rational, the event that a player believes that another is rational

etc. Brandenburger, Friedenberg, and Keisler (2008) add a type structure that allows

them to formalize rationality and common assumption of rationality. In their setting, a

player assumes an event if she considers the event infinitely more likely than the comple-

ment. They show that in their set up rationality and common assumption of rationality

does not characterize iterated admissibility but the more general solution concept of self-

admissible sets (see also Brandenburger and Friedenberg, 2010). They actually show a

negative result according to which there is no complete and continuous type structure

that allows for rationality and common assumption of rationality. Yang (2015) outlines

that a positive result can be obtained if the sequences of probability measures in lexi-

cographic beliefs have a finite bound. Keisler and Lee (2015) provide a positive result

by dropping the continuity assumption. They also conclude that the negative result of
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Brandenburger, Friedenberg, and Keisler (2008) is due to the fact that players are ”too

cautious” about assuming events in the type space. In some sense, we avoid this problem

by allowing types to have lexicographic beliefs with non-full supports over opponents’

types while requiring lexicographic beliefs with full-support over opponents’ strategies.

More precisely, we require that the union of supports of the lexicographic belief on op-

ponents’ strategies must cover the entire opponents’ strategy space while the union of

supports of the lexicographic belief on opponents’ types may not cover the entire space

of opponents’ type profiles. We think that such a formulation is natural as cautiousness

should be foremost with respect to others’ behavior rather than more abstract constructs

such as types. We also assume, as Brandenburger, Friedenberg, and Keisler (2008) do,

that any lexicographic belief satisfy disjoint supports, which again we think is natural

to assume when beliefs in the sequence are interpreted at alternative hypotheses. The

assumption of disjoint supports of the lexicographic conjecture on others’ strategies is

akin to the notion of a basis of a consistent conditional probability system (Siniscalchi

2016), which by definition has disjoint supports as well.3

Almost all of the above mentioned papers seek an epistemic justification for an ex-

isting solution concept and - like in the case of iterated admissibility in Brandenburger,

Friedenberg, and Keisler (2008) may fail to justify it by ”natural” conditions in their type

structure. In contrast, we start with a type structure and sensible epistemic conditions

and obtain as a result a new solution concept that may be of interest independently from

its epistemic characterization. Our solution concept differs from iterated admissibility

as indicated already in the above example. It captures a more demanding notion of

caution with respect to beliefs about opponents’ behavior but not necessarily opponents’

types. At the same time, we demonstrate with a number of examples that this difference

in caution about opponents’ behavior between iterated admissibility and comprehensive

rationalizability does not play a role in many applications. We conclude that while it

might be more difficult to provide epistemic characterizations for iterated admissibility,

it is quite natural to provide epistemic characterizations of a closely related solution

concept that also justifies the use of iterated admissibility in many applications.

The paper is organized as follows: In Section 2 we introduce some preliminary defi-

nitions of lexicographic belief systems, conjectures, domination, and best replies. This is

followed by Section 3 in which we define comprehensive rationalizability and show that a

3Moreover, assuming that the player unravels in her mind the elimination process of others’ strategies,
in a dynamic process in which the other players have to choose between their eliminated and surviving
strategies, our notion of strategic assumption is akin to structural preference (Siniscalchi 2016) in the
unraveled game.
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comprehensive rationalizable outcome exists in every finite strategic game. In Section 4

we define lexicographic beliefs type spaces. In Section 5 we provide an epistemic charac-

terization of comprehensive rationalizability – the main result of the paper. In Section 6

we relate comprehensive rationalizability to rationalizability, iterated admissibility, and

an iterative solution concept introduced by Dekel and Fudenberg (1990). In Section 7

we discuss applications. Some of the proofs are relegated to the appendix.

2 Lexicographic Conjectures and Best Replies

In this section, we start to introduce basic notions of lexicographic beliefs, conjectures,

domination, and best replies.

For a non-empty standard Borel space X, ∆(X) is the space of probability measures

on X, with the σ-algebra generated by the events {µ ∈ ∆(X) | µ(E) ≥ p} for measurable

E and p ∈ [0, 1].

Definition 1 (Lexicographic belief) A lexicographic belief µ over a standard Borel

space X is a finite sequence of probability measures on X

µ = (µ1, . . . , µn) ∈ (∆ (X))n

which are mutually singular:

µ`⊥µ`′ for ` 6= `′.

That is, there are disjoint measurable events E1, ..., En ⊆ X that partition X such that

µ`(E`) = 1, ` = 1, ..., n. Hence, µ`(E`′) = 0, for ` 6= `′.

Blume, Brandenburger, and Dekel (1991a) axiomatize versions of subjective expected

utility with lexicographic beliefs in the context of individual choice under uncertainty. In

particular, they also axiomatize a version in which probabilities of the sequence of prob-

abilities measures have pairwise disjoint supports and their union cover the entire space

of underlying uncertainties. Such lexicographic beliefs we call lexicographic conjectures.

More formally, we define:

Definition 2 (Lexicographic conjecture) A lexicographic conjecture µ over a finite

space X is a lexicographic belief with the additional property that the union of the supports
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of µ cover X: ⋃
`≤n

suppµ` = X.

For any lexicographic belief µ = (µ1, . . . , µn) ∈ (∆ (X))n we call n the length of the

lexicographic belief µ.

We denote the set of lexicographic beliefs on X by ∆̈(X). For a finite space X we

denote the set of lexicographic conjectures on X by ∆̄(X). Note that in this case we

have ∆̄(X) ⊆ ∆̈(X).

If Y and Z are two disjoint measurable subsets of X, we say that the lexicographic

belief µ = (µ1, . . . , µn) deems Y as infinitely more likely than Z if µ` (Y ) > 0 for some

` ∈ {1, . . . , n}, and whenever µ`′ (Z) > 0 it is the case that µ`′′ (Y ) = 0 for all `′′ ≥ `′.

If Y ′ and Z ′ are two subsets of X, not necessarily disjoint, we say that the lexicographic

belief µ = (µ1, . . . , µn) deems Y ′ as infinitely more likely than Z ′ if it deems Y ′ \ Z ′

infinitely more likely than Z ′.

We say that Y is assumed by the lexicographic belief µ = (µ1, . . . , µn) if it deems Y

as infinitely more likely than X \ Y .

The notion of infinitely more likely is due to Blume, Brandenburger, and Dekel (1991a)

in the finite case. Brandenburger, Friedenberg, and Keisler (2008) generalize it to topo-

logical spaces. They also introduced the notion of assumption.

The proof of the following lemma is contained in the appendix. The lemma relates

the notion of assumption to the sequence of probabilities of a lexicographic conjecture.

Lemma 1 Let X be a nonempty finite space and µ = (µ1, ..., µn), n ≥ 1, be a lexico-

graphic conjecture on X. Let E ⊆ X be such that µ assumes E. Then there is an ` with

1 ≤ ` ≤ n such that µj(E) = 1 for all j ≤ ` and µj(E) = 0 for n ≥ j > `. If X 6= E, we

must have ` < n.

Consider a game Γ with finitely many players i ∈ I and finite strategy sets (Si)i∈I
equipped with the discrete topology, and utility functions (ui)i∈I .

If µi = (µi1, . . . , µ
i
n) ∈ (∆ (S−i))

n
is a lexicographic conjecture over the other players’

strategy profiles S−i =
∏

j 6=i S
j, and si, ŝi ∈ Si are two strategies of player i, we say that

the strategy si is `-dominated by ŝi w.r.t. µi, denoted

si ≺`µi ŝi

7



if ∫
ui
(
si, ·
)

dµi` <

∫
ui
(
ŝi, ·
)

dµi`

while ∫
ui
(
si, ·
)

dµi`′ =

∫
ui
(
ŝi, ·
)

dµi`′

for all `′ < ` (if such `′ exist, i.e., if ` 6= 1).

We further say that the strategy si is lexicographically dominated by ŝi w.r.t. µi,

denoted si ≺µi ŝi if si ≺`µi ŝi for some ` ≤ n.

If si is not lexicographically dominated w.r.t. µi by any other strategy of player i, we

say that si is a lexicographic best reply to µi. We denote by LBRi (µi) ⊆ Si the set of

player i’s lexicographic best replies to µi.

3 Comprehensive Rationalizability

We now define our solution concept that we will obtain from our epistemic characteriza-

tion. In what follows we will use the notational convention Y −i =
∏

j∈I,j 6=i Y
j.

Definition 3 (Comprehensive Rationalizability) Let Ci
−1 = ∆̄ (S−i) and Ri

−1 = Si.

Define inductively

Ci
k+1 =

{
µi ∈ Ci

k | R−ik is assumed by µi
}

Ri
k+1 =

{
si ∈ Si | ∃µi ∈ Ci

k+1 for which si is a lexicographic best reply
}

Player i’s comprehensive rationalizable strategies are

Ri
∞ =

∞⋂
k=0

Ri
k.

Two points are worth emphasizing. First, at each level k, players form lexicographic

conjectures over other players’ strategy profiles. That is, at each level k, a player i’s

lexicographic belief over opponents’ strategies is such that its union of supports covers

the opponents’ strategy space. Second, while comprehensive rationalizability is defined

as a reduction procedure on lexicographic conjectures, it implies immediately a reduction

procedure on strategies.

Remark 1 Ri
k ⊆ Ri

k−1 for every k ≥ 1.
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For finite games, we can show that comprehensive rationalizable strategies always

exist. The proof is by induction on the levels of lexicographic conjectures.

Proposition 1 (Existence) For all i ∈ I, Ci
k 6= ∅ and Ri

k 6= ∅ for any k ≥ 0.

Proof. Both Ri
−1 and Ci

−1 are nonempty for all i ∈ I. Assume Ri
k and Ci

k are

nonempty for all i ∈ I.

Claim: There exists a σik+1 ∈ Ci
k that assumes R−ik .

Proof of the claim: Fix σik = (µi1,k, ..., µ
i
m,k) ∈ Ci

k. Note that by the induction

hypothesis σik assumes R−i` for ` = −1, ..., k− 1. Again, by the induction hypothesis R−ik
is nonempty and by Remark 1, R−ik ⊆ R−ik−1.

Since R−ik is nonempty by the induction hypothesis, and σik is a lexicographic conjec-

ture (in particular it is a full support sequence), we have a j ≤ m such that µij,k(R
−i
k ) > 0.

Without loss of generality assume R−ik $ R−ik−1, since otherwise σik already assumes R−ik .

Let µin1,k
, ..., µinp,k

be all the µij,k such that µij,k(R
−i
k ) > 0 with nr < nr+1, for all

r = 1, ..., p−1. Moreover, let µim1,k
, ..., µimq ,k

be all the µij,k such that µij,k(R
−i
k−1\R

−i
k ) > 0.

Since σik assumes R−ik−1, there exists an ` ≤ m such that µij,k(R
−i
k−1) = 1 for all

j = 1, ..., ` and µij,k(R
−i
k−1) = 0 for j > `. Note that we have {n1, ..., np} ∪ {m1, ...,mq} =

{1, ..., `}.

Now, define

σik+1 =
(
νi1,k+1, ..., ν

i
p+q+m−`,k+1

)
where

νij,k+1 =


µinj ,k

(· | R−ik ) for j = 1, ..., p

µimj−p,k
(· | R−ik−1 \R

−i
k ) for j = p+ 1, ..., p+ q

µij−p−q+`,k for j = p+ q + 1, ..., p+ q +m− `.

By construction σik+1 assumes R−ik and R−ik−1, but also R−ij for j < k− 1. To see this,

let j < k−1. Since σik assumes R−ij , there exists `′ ≥ 1 such that µir,k(R
−i
j ) = 1 for r ≤ `′

and µir,k(R
−i
j ) = 0 for all r > `′. But since R−ik ⊆ R−ij , we have `′ ≥ `. If R−ik = R−ij , there

is nothing to show. If R−ik $ R−ij then, by the fact that σik is a lexicographic conjecture

(in particular, a full support sequence), we must have `′ > `. Then, νir,k+1(R−ij ) = 1 for

r = 1, ..., p+q, but also for all j = p+q+1, ..., p+q−`+`′. And we have by construction,
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νir,k+1(R−ij ) = 0 for r > p+ q − `+ `′. So, σik+1 assumes also R−ij . This finishes the proof

of the claim.

Since Ci
k+1 is nonempty and the game is finite, we must have that Ri

k+1 is nonempty. �

Our next goal will be to provide an epistemic characterization of comprehensive ratio-

nalizable strategies. To this effect we will first define in the next section a lexicographic

beliefs type spaces.

4 Lexicographic Beliefs Type Space

For a given game with a finite set of players I and a finite space of strategy profiles

S =
∏

i∈I S
i,

T =
〈
T i
〉
i∈I

is a lexicographic beliefs type space if for all i ∈ I, T i =
⋃
n≥1 T

i
n and each T in is a standard

Borel space, with measurable mappings4

σi : T i → Si

specifying each type’s strategy, defined by the measurable mappings

σin : T in → Si, n ≥ 1

and the measurable mappings

τ i : T i → ∆̈
(
T−i
)

specifying each type’s state of mind regarding the other players’ types, as defined by the

measurable mappings

τ in : T in →
(
∆
(
T−i
))n ∩ ∆̈

(
T−i
)
, n ≥ 1

having the property that the n-tuple of beliefs τ in (tin)|S−i of tin ∈ T in on S−i defined by

τ in
(
tin
)
|S−i (·) := τ in

(
tin
)(((

σj
)
j 6=i

)−1

(·)
)

4We endow T i with the following σ-algebra: A ⊆ T i is measurable iff A∩ T i
n is measurable in T i

n, for
all n ≥ 1.
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constitutes a lexicographic conjecture over S−i (i.e., these beliefs are mutually singular

and the union of their supports is S−i). Note that this implies that the maps σi are onto,

for i ∈ I.

We denote the subset of ∆̈ (T−i) with this property by ∆̂ (T−i). Note that the range

of τ i is in fact ∆̂ (T−i).

Some (but not all) of the T in may be empty. Actually the condition on the marginals

on S−i implies that T in is empty for n > |S−i|.

Notice that in this definition, only the beliefs of the types tin on the other players’

strategies S−i are required to form a lexicographic conjecture; in contrast, the beliefs of

the types tin on the other players’ types T−i are not required to have supports whose

union cover T−i.

The motivation for this distinction is that if a player’s expected utilities under the

primary belief coincide for two strategies, then the player considers opponents’ strategies

outside the support of the primary belief. To be more precise, note that according to

Blume, Brandenburger, and Dekel’s (1991a, Theorem 5.3) decision theoretic axiomati-

zation of lexicographic expected utility for a finite space, lexicographic conjectures with

non-overlapping supports have an interesting interpretation: The primary belief µ1 can

be interpreted as prior belief. If the expected utilities under µ1 from two strategies are

the same, then the player considers opponents’ strategies in S−i\supp µ1. The secondary

belief µ2 takes then the place of the “posterior” conditional on the event S−i \ supp µ1.

Inductively, for ` > 1 the `-th order belief takes the place of “posterior” belief conditional

on the event S−i \
(⋃`−1

k=1 supp µk

)
in the case that the expected utilities under µ`′ for

`′ < ` from two strategies are the same.

An alternative motivation for this distinction is that in a prior unmodeled stage

before playing the game, player i may potentially get surprising verifiable evidence that

her primary belief on the other players’ strategy profile S−i was wrong (i.e., that the

other players’ strategy profiles not ruled out by that evidence was assigned probability

zero by the primary belief), in which case she resorts to her secondary belief, and so

forth. In contrast, no direct verifiable evidence is feasible regarding the other players’

beliefs. Hence, prior to playing the game there cannot arise a necessity for player i to

replace her primary belief about the other players’ beliefs, and therefore player i need

not necessarily entertain an exhaustive arsenal of mutually singular alternative beliefs on

the other players’ types. This does not preclude, of course, that a switch of player i to a

secondary (or ternary, etc.) belief about the other players’ strategies may be correlated
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with a corresponding switch in belief about the other players’ types.

For our epistemic characterization, it is desirable to capture all hierarchies of lexi-

cographic beliefs whose marginals on strategies correspond to lexicographic conjectures.

That is, it is desirable to use a “rich” lexicographic type space. To this extent we will,

introduce the universal lexicographic beliefs type space.

Fix type spaces T = 〈T i〉i∈I and T̃ =
〈
T̃ i
〉
i∈I

. Let hi : T i → T̃ i be measurable

for all i ∈ I. Then h = (hi)∈I is a type morphism if for all i ∈ I and for all ti ∈ T i,

σi (ti) = σ̃i (hi (ti)) and for every measurable E ⊆ T̃−i, τ i (ti) (h−i (E)) = τ̃ i (hi (ti)) (E).

The lexicographic beliefs type space T̄ is universal if every type space T admits a

unique type morphism to T̄ .

Lee (2015, Corollary 7.4) proved that a universal space T̄ =
〈
T̄ i
〉
i∈I exists and is

unique (up to type isomorphism, of course), where T̄ i =
⋃∞
n=1 T̄

i
n and T̄ in are, each, the

projective limit of coherent hierarchies
(
T̄ i,mn

)∞
m=1

of lexicographic beliefs of length n on∏
j 6=i

(⋃∞
k=1

(
Sj ×

∏m−1
`=1 T̄ j,`k

))
.

5 Epistemic Characterization

First, we qualify the notion of assumption. A type strategically assumes a subset of

opponents’ types E if she assumes E and for any strategy profile played by some profile

of types in this set E, she deems the opponents’ profile of types in E who play this strategy

profile infinitely more likely than type-profiles that are not in E but nevertheless play

this strategy profile.

The role of “strategic” in the term “strategic assumption” is the following. We do not

only want sufficiently rational types of a player to believe that other players are rational

and play rational strategies but also that if a rational strategy is played, it is played for

rational reasons. Loosely speaking, if a rational type of a player finds a new manuscript

of a Dostojevsky novel written on a computer, we want him to believe that it was a

Dostojevsky who wrote that novel and not a monkey that just randomly played with the

keyboard of the computer typing that manuscript by chance.

Definition 4 (Strategic Assumption) We say τ i(ti) strategically assumes E−i ⊆ T−i

if τ i(ti) assumes E−i and for every s−i ∈ σ−i(E−i), τ i(ti) deems {t−i ∈ E−i | σ−i(t−i) =

s−i} as infinitely more likely than {t−i /∈ E−i | σ−i(t−i) = s−i}.

12



Remark 2 Strategic assumption of E−i by τ i(ti) together with the property that τ i (ti)|S−i (·)
is a lexicographic belief implies that {t−i /∈ E−i | σ−i(t−i) = s−i} gets probability 0 at all

levels of τ i(ti).5

The property that the lexicographic marginal on strategy profiles of other players are

mutually disjoint, implies that each such profile gets positive probability at at most one

level of the lexicographic order. The property that those marginals form a lexicographic

conjecture (i.e., union of supports cover the entire space) implies that such profiles get

positive probability at exactly one level. This means the following: If τ i(ti) strategically

assumes E−i, then the type profiles in E−i are the sole explanation of type ti for why

strategy profiles in σ−i(E−i) might be played. Alternative explanations, namely types in

T−i \ E−i that also play such a profile are not only deemed infinitely less likely, but are

discarded altogether.

Without the qualification ”strategic” in strategic assumption, the following situation

might occur. Type ti assumes that other players are rational, assumes that others assume

that others are rational etc., and yet explains a profile of actions played by such very

rational types of players as being played by very irrational types of other players!

Although the nature of the next two lemmata is technical, they turn out to be ex-

tremely useful for our characterization. First, the set of types that deem some measurable

subset of opponents’ types infinitely more likely than another measurable subset of op-

ponents’ types is itself a measurable subset of any given lexicographic beliefs type space.

Second, the set of types that strategically assumes a measurable subset of opponents’

types is a measurable subset of any given lexicographic beliefs type space. Both lemmata

are proved in the appendix.

Lemma 2 In every lexicographic beliefs type space, for any measurable sets Y ⊆ T−i

and Z ⊆ T−i with Y ∩ Z = ∅ we have {ti | τ i(ti) deems Y infinitely more likely than Z}
is measurable.

Lemma 3 In every lexicographic beliefs type space T , for any measurable event E−i ⊆
T−i, the event {ti | τ i(ti) strategically assumes E−i} is measurable in T i.

5Note that we could have used alternatively Remark 2 as the definition of strategic assumption. The
equivalence of the notion of strategic assumption of Definition 4 and the notion of Remark 2 relies on
non-overlapping supports. Although the notion of strategic assumption of Definition 4 makes sense even
without non-overlapping supports, the equivalence to the notion in Remark 2 would break down.
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Next, we define the “epistemic analogue” to comprehensive rationalizability, namely

rationality and common strategic assumption of rationality. To this end, let 〈T i〉i∈I be a

lexicographic beliefs type space for a given game with strategy profiles S =
∏

i∈I S
i.

Definition 5 (Rationality and Common Strategic Assumption of Rationality)

Define the following sequence of events of player i’s Rationality and Mutual Strategic As-

sumption of degree k ≥ 0 of Rationality:

RMA0R
i :=

{
ti ∈ T i | σi

(
ti
)

is a lexicographic best reply to τ i
(
ti
)
|S−i

}
and inductively

RMAk+1R
i :=

{
ti ∈ RMAkR

i | τ i
(
ti
)

strategically assumes RMAkR
−i}

Furthermore, define the event of i’s rationality and common strategic assumption of

rationality to be

RCARi =
∞⋂
k=0

RMAkR
i.

From now on, in this section, all considerations take place in the universal lexi-

cographic beliefs type space T̄ =
〈
T̄ i
〉
i∈I for the given game Γ with strategy profiles

S =
∏

i∈I S
i.

The following construction is crucial for linking levels of lexicographic conjectures of

comprehensive rationalizability with hierarchies of lexicographic beliefs in the universal

type space.

Construction Let r ≥ 0 be such that Ci
r+n = Ci

r and Ri
r+n = Ri

r, for all i ∈ I and

n ≥ 0. Note that the finiteness of the set of players and of each player’s strategy set

implies that such an r indeed exists. For each si ∈ Ri
r choose µi1(si) ∈ Ci

r such that si is

a lexicographic best reply to µi1(si) = (βi1,1(si), ..., βi1,n(si)(s
i)).

Likewise, for any si /∈ Ri
r, choose a µi1(si) ∈ Ci

m with m maximal < r such that si

is a lexicographic best reply to µi1(si) = (βi1,1(si), ..., βi1,n(si)(s
i)), if such a µi1(si) exists.

Otherwise let µi1(si) = (βi1,1(si), ..., βi1,n(si)(s
i)) be any lexicographic conjecture.

Define µi2(si) = (βi2,1(si), ..., βi2,n(si)(s
i)) such that βi2,`(s

i)(·) :=
∑

s−i∈S−i βi1,`(s
i)({s−i})·

δ(sj ,µj1(sj))j 6=i
(·), where s−i = (sj)j 6=i. By definition marg|S−iβi2,`(s

i)(·) = βi1,`(s
i)(·).

Let m ≥ 1. Assume for each i ∈ I and si ∈ Si, we have already defined by induction

14



ti,m(si) =
(
si, (βi1,`(s

i), ..., βm,`(s
i))`≤n(si)

)
∈ T̄ i,m

n(si)
.

Then define βim+1,`(s
i)(·) :=

∑
s−i∈S−i βi1,`(s

i)({s−i})δ(tj,m(sj))j 6=i
(·).

By the induction hypothesis βim,`(s
i) =

∑
s−i∈S−i βi1,`(s

i)({s−i})δ(ti,m−1(sj))j 6=i
and we

have that marg|T̄−i
m
δ(tj,m(sj))j 6=i

(·) = δ(tj,m−1(sj))j 6=i
(·) since tj,m(sj) extends tj,m−1(sj) by

construction.

If we let ti(si) = (si, (βi1,`(s
i), ...)`≤n(si)) then as the universal lexicographic beliefs

space is the projective limit we have τ̄ i(ti(si))` =
∑

s−i∈S−i βi1,`(s
i)({s−i})δ(tj(sj))j 6=i

(·).
This finishes the construction.

With this construction we can now show a preliminary result. Types in the just

constructed subset of the universal space who play m-level comprehensive rationalizable

strategies strategically assume those sets of just constructed types of opponents’ that

play p-level comprehensive rationalizable strategies, for all p smaller than m.

Lemma 4 For all i ∈ I, for all m ≥ 0, for all p < m, and for all si ∈ Ri
m, τ i(ti(si))

strategically assumes {t−i(s−i) | s−i ∈ R−ip }.

Proof. By definition, if si ∈ Ri
m, then µi1 assumes R−ip for all p < m. Note, this is

also true for m ≥ r + 1, since Ci
r = Ci

r+n, for all n ≥ 1. Therefore, by construction of

ti(si), τ i(ti(si)) assumes {t−i(s−i) | s−i ∈ R−ip } =: t−i(R−ip ). But also, by construction,

if s−i ∈ σ−i(t−i(R−ip )) = R−ip , then ti(si) deems {t−i(ŝ−i) | σ−i(ŝ−i) = s−i and ŝ−i ∈
R−ip } = {t−i(s−i)} as infinitely more likely than {t−i /∈ t−i(R−ip ) | σ−i(t−i) = s−i}.
Note, by construction this latter set gets probability 0 at every level of τ i(ti(si)), while

τ i(ti(si))`({t−i(s−i)}) > 0 if and only if βi1,`(s
i)({s−i}) > 0. But since µi1(si) is a lexico-

graphic conjecture on S−i this happens for some ` ≤ n(si). �

Similarly, the next preliminary result shows that a type in the universal type space

who is rational and mutually strategically assumes rationality at the m-th level must

assume that opponents play strategies consistent with rationality and mutual strategic

assumption of rationality at the m− 1-th level.

Lemma 5 For all i ∈ I and m ≥ 1, if ti ∈ RMAmR
i, then τ i(ti)|S−i assumes σ−i (RMAm−1R

−i).

Proof. Let ti ∈ RMAmR
i. Since τ i(ti) strategically assumes RMAm−1R

−i, there is an

index ` ≥ 1 such that τ i(ti)`′ (RMAm−1R
−i) = 1 for all `′ ≤ ` and τ i(ti)`′ (RMA`′R

−i) =
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0 for all `′ > `. This implies that if (τ i(ti)`′)|S−i({s−i}) > 0, for some `′ ≤ `, then

s−i ∈ σ−i(RMAm−1R
−i), since RMAm−1R

−i ⊆ (σ−i)−1(σ−i(RMAm−1R
−i)).

Conversely, let s−i ∈ σ−i(RMAm−1R
−i). By the second condition of the definition of

strategic assumption and the definition of infinitely more likely, we have

τ i(ti)`′ ({t−i ∈ RMAm−1R
−i | σ−i(t−i) = s−i}) > 0 for some `′ and since τ i(ti)`′′(RMAm−1R

−i) =

0 for all `′′ > `, we have `′ ≤ `. But this implies that (τ i(ti)`′)|S−i({s−i}) > 0. Together

with the first part of the induction step, we have that σ−i(RMAm−1R
−i) is assumed by

τ i(ti)|S−i . �

With the next lemma we start relating strategies played by a rational player who

mutually strategically assumes rationality at the m-th level to m-level comprehensive

rationalizable strategies. If the strategies played by rational types who also mutually

strategically assume rationality at level p are exactly the p-level comprehensive rational

strategies for 0 ≤ p < m, then the strategies played by rational types who also mutu-

ally strategically assume rationality at the m-th level must be m-level comprehensive

rationalizable.

Lemma 6 For all m ≥ 0, if σi(RMApR
i) = Ri

p, for all 0 ≤ p < m and all i ∈ I, then

σi(RMAmR
i) ⊆ Ri

m, for all i ∈ I.

Proof. Let si ∈ σi(RMApR
i). Then there is a ti ∈ RMAmR

i with σi(ti) = si. By

Lemma 5, τ i(ti)|S−i assumes σ−i(RMApR
−i) = R−ip , for all p < m. Since ti ∈ RMA0R

i,

si is a lexicographic best reply to τ i(ti)|S−i . Hence si ∈ Ri
m. �

Lemma 7 For all m ≥ 0, if it is the case that si ∈ Ri
p if and only if ti(si) ∈ RMApR

i,

for all 0 ≤ p < m and all i ∈ I, then si ∈ Ri
m implies ti(si) ∈ RMAmR

i, for all i ∈ I.

Proof. Let si ∈ Ri
m for some m ≥ 0. τ i(ti(si))` assigns probability 1 to {t−i(s−i) |

s−i ∈ S−i}, for all ` ≤ n(si). Hence, τ i(ti(si)) strategically assumes RMApR
−i iff

τ i(ti(si)) strategically assumes RMApR
−i ∩ {t−i(s−i) | s−i ∈ S−i}, for 0 ≤ p < m.

If m ≥ 0, by construction si is a lexicographic best reply to τ(ti(si))|S−i .

Now let m > 0 and si ∈ Ri
m. By the induction hypothesis, for all j we have {tj(sj) |

sj ∈ Rj
p} = {tj(sj) | tj(sj) ∈ RMApR

j}, for 0 ≤ p < m.

Now, by the above observation, for all ` ≤ n(si) we have

τ i(ti(si))`
(
{t−i(s−i) | s−i ∈ R−ip }

)
= τ i(ti(si))`(RMApR

−i), for 0 ≤ p < m.
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By Lemma 4 τ i(ti(si)) strategically assumes
(
{t−i(s−i) | s−i ∈ R−ip }

)
, for 0 ≤ p < m,

and hence strategically assumes RMApR
−i, for 0 ≤ p < m. Hence, since si is a lexico-

graphic best reply to τ(ti(si))|S−i , we have shown that ti(si) ∈ RMAmR
i. �

The preliminary results allow us now to provide a characterization for every finite

level of mutual strategic assumption of rationality/comprehensive rationalizability.

Lemma 8 For all m ≥ 0 and all i ∈ I: σi(RMAmR
i) = Ri

m and si ∈ Ri
m if and only if

ti(si) ∈ RMAmR
i.

Proof. By induction on m ≥ 0. Let m = 0. By Lemma 6, σi(RMA0R
i) ⊆ Ri

0.

In particular, since σi(ti(si)) = si by construction, ti(si) ∈ RMA0R
i implies si ∈ Ri

0.

By Lemma 7, si ∈ Ri
0 implies that ti(si) ∈ RMA0R

i. Hence, we also have Ri
0 ⊆

σi(RMA0R
i).

Let m ≥ 1 and assume that σi(RMApR
i) = Ri

p and that si ∈ Ri
p if and only if

ti(si) ∈ RMApR
i, for all p with 0 ≤ p ≤ m−1. Then, by Lemma 6, σi(RMAmR

i) ⊆ Ri
m.

By Lemma 7, si ∈ Ri
m implies ti(si) ∈ RMAmR

i.

Hence, σi(RMAmR
i) = Ri

m. �

Using this characterization result, we can also prove that the characterization holds

in the limit.

Lemma 9 For all i ∈ I, Ri
∞ = σi(RMA∞R

i).

Proof. By Lemma 8 we have for all m ≥ 0 that si ∈ Ri
m if and only if ti(si) ∈

RMAmR
i.

We have si ∈ Ri
∞ if and only if si ∈ Ri

m, for all m ≥ 0, if and only if ti(si) ∈ RMAmR
i,

for all m ≥ 0, if and only if ti(si) ∈ RMA∞R
i. Since ti(si) plays si, we have that

Ri
∞ ⊆ σi(RMA∞R

i). On the other hand, if ti ∈ RMA∞R
i it follows that ti ∈ RMAmR

i,

for all m ≥ 0, and therefore σi(ti) ∈ Ri
m, for all m ≥ 0, by Lemma 8. But σi(ti) ∈ Ri

m,

for all m ≥ 0, implies σi(ti) ∈ Ri
∞. Hence we have show that σi(RMA∞R

i) = Ri
∞, for

all i ∈ I. �

Our characterization theorem now summarizes Lemmata 8 and 9. Recall from Propo-

sition 1 that Ri
∞ 6= ∅, for all i ∈ I.
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Theorem 1 (Epistemic Characterization) In the universal lexicographic beliefs type

space T̄ , for each k ≥ 0 the strategies σi (RMAkR
i) played by the types in RMAkR

i are

the strategies in Ri
k,

Ri
k = σi

(
RMAkR

i
)

and also in the limit, the comprehensive rationalizable strategies of player i are the strate-

gies played by i’s types in the event of i’s rationality and common strategic assumption

of rationality,

Ri
∞ = σi

(
RCARi

)
.

6 Relationship to other Iterative Solution Concepts

6.1 Comprehensive Rationalizability versus Iterated Admissi-

bility

Iterated admissibility has a long tradition in game theory and its applications. For

instance, Kohlberg and Mertens (1986) argue that it is a necessary condition for a satis-

factory solution to any game. The earliest applications seem to go back to Farquharson

(1969), Brams (1975), and Moulin (1979). Iterated admissibility is appealing for several

reasons: First, it is easy to apply since it is defined in terms of an algorithm that suc-

cessively eliminates weakly dominated actions. Moreover, it yields relatively sharp pre-

dictions. Second, it is not an equilibrium concept and consequently it does not presume

the existence of an equilibrium convention. Third, admissible strategies are equivalent

to best responses to full support beliefs (Pearce, 1984, Lemma 4). Thus, iterated ad-

missibility captures optimizing under some form of cautious beliefs. In this section, we

compare comprehensive rationalizability with iterated admissibility.

An action si ∈ Si is weakly dominated with respect to X × Y ⊆ Si × S−i if there

exist αi ∈ ∆(Si) with αi(X) = 1 such that
∑

s̃i∈X α
i(s̃i)ui(s̃i, s−i) ≥ ui(si, s−i) for every

s−i ∈ Y and
∑

s̃i∈X α
i(s̃i)ui(s̃i, s−i) > ui(si, s

−i) for some s−i ∈ Y . Otherwise, we say

that si is admissible with respect to X × Y .

Let Si−1 = Si and define for k ≥ 0

Sik+1 =
{
si ∈ Sik | si is admissible with respect to Sik × S−ik

}
.
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The set of iteratively admissible actions of player i is

Si∞ =
∞⋂
k=0

Sik.

Similar to Moulin (1979) we say that a game is solvable by iterated admissibility if

the maximal reduction S∞ = ×i∈ISi∞ is nonempty and for every player i ∈ I, the payoff

function ui is constant with respect to si on all outcomes in S∞ = ×j∈ISj∞, i.e., for all

si, s̃i ∈ Si∞, ui(si, s−i) = ui(s̃i, s−i) for all s−i ∈ S−i∞ .6 Analogously, a game is solvable by

comprehensive rationalizability if R∞ is nonempty and for every player i ∈ I, the payoff

function is constant with respect to si on all outcomes in ×j∈IRj
∞. Clearly, if a game is

solvable by iterated admissibility (or comprehensive rationalizability, respectively), then

S∞ (R∞, respectively) is a subset of its Nash equilibria.

In the introductory example we have shown that there are games in which the set

of comprehensive rationalizable strategies strictly refines the set of iterated admissible

strategies. As we show in the next example, this is not generally the case.

Example 1 Surprisingly, comprehensive rationalizability is not a refinement of iterated

admissibility as the following example demonstrates.

x

y

z

w

a b c

4, 0 4, 1 0, 1

0, 0 0, 1 4, 1

3, 0 2, 2 2, 1

5, 0 0, 1 0, 2

The order of elimination under iterated admissibility is a, w, c and then both y and z.

The maximal reduction or iterative admissible actions are {(x, b)}.

For comprehensive rationalizability, the order of elimination is a and then both z and

w. The set of comprehensive rationalizable profiles is {x, y} × {b, c}.

That every first level admissible strategy is first level comprehensive rationalizable

and vice versa follows from Blume, Brandenburger and Dekel (1991b, Proposition 1) and

Pearce (1984, Lemma 4).

6Note thought that different from Moulin (1979) we allow for domination by mixed strategies.
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Remark 3 Every first level admissible strategy is first level comprehensive rationalizable

and vice versa. I.e., for any i ∈ I, Si0 = Ri
0.

Both the introductory example and Example 1 show that this observation does not

extend to higher levels. What are sufficient conditions for the equivalence of iteratively

admissible strategies and comprehensive rationalizability?

Consider first one of the most studied classes of games in game theory, the class of

2× 2 games. For 2× 2 games we are able to show that comprehensive rationalizability is

equivalent to iterative admissibility. In fact, we can show this equivalence more generally

for any 2× n game (resp. n× 2 game).

Proposition 2 Let n ≥ 1. For any n × 2 game (resp. 2 × n game), Sik = Ri
k, for

all k ≥ 0 and i = 1, 2. Hence, the set of comprehensive rationalizable strategy profiles

coincides with the set of iterative admissible strategy profiles, i.e., Si∞ = Ri
∞, for i = 1, 2.

The proof of the proposition is in the appendix.

Together with the example of the 3×3 game in the Introduction, Proposition 2 implies

that the class of n × 2 games (resp. 2 × n games) is a “maximal” class of games where

the equivalence between comprehensive rationalizability and iterated admissibility holds

without further restrictions.

What can be said about sufficient conditions for equivalence beyond n × 2 games?

Consider again Example 1. The reason why comprehensive rationalizability does not

refine iterated admissibility there is that no full support belief of player 1 on the first

level admissible strategies of player 2 exists such that z is a strict best reply. E.g., for

player 1, playing both x or y is as good as playing z against the belief that assigns equal

probability on both b and c. The following proposition further develops this observation.

Proposition 3 If for all i ∈ I, k ≥ 1, and si ∈ Sik there exists a full support belief

ηi ∈ ∆(S−ik−1) for which si is the unique best reply amongst the actions in Sik, then

Sik = Ri
k, for all i ∈ I and k ≥ −1. Consequently, Si∞ = Ri

∞, for all i ∈ I.

The proof of the proposition is in the appendix.

6.2 Rationalizability

Bernheim (1984) and Pearce (1984) (see also Spohn, 1982) introduced rationalizabil-

ity. Let P i
−1 = Si and define for k ≥ −1, Bi

k+1 = ∆(P−ik ) and P i
k+1 = {si ∈ Si :
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si is a best reply to some µ ∈ Bi
k+1}. The set of rationalizable actions is P i

∞ =
⋂∞
k=0 P

i
k.

7

Proposition 4 For every i ∈ I and k ≥ 0, Ri
k ⊆ P i

k. Moreover, every comprehensive

rationalizable action is rationalizable.

Proof. By definition, Ri
−1 = P i

−1 = Si for all i ∈ I. Suppose that Ri
k ⊆ P i

k for all

i ∈ I and some k ≥ −1.

Let si ∈ Ri
k+1. Then, si is a lexicographic best reply to some lexicographic conjecture

(µ1, ..., µn) ∈ Ci
k+1 that assumes R−ik . In particular, it is a best reply to µ1, and by

Lemma 1 the support of µ1 is contained in R−ik ⊆ P−ik . Hence, si is a best reply to some

belief (namely µ1) on P−ik and therefore si ∈ P i
k+1. �

Since well-known games such as Guess-the-Average are solvable by rationalizability,

the result implies that they are solvable by comprehensive rationalizability as well.

6.3 One round elimination of weakly dominated actions fol-

lowed by iterative elimination of strictly dominated actions

Dekel and Fudenberg (1990) introduce one round elimination of weakly dominated actions

followed by iterative elimination of strictly dominated actions as solution concept, which

has been characterized epistemically by Brandenburger (1992), Börgers (1994), and Ben

Porath (1997). Let WS∞ denote the maximal reduction of this procedure.

Proposition 5 For every player i ∈ I, Ri
∞ ⊆ WSi∞.

Proof. By defintion, we have Si0 = WSi0. Hence, by Remark 2, Ri
0 = WSi0. By Pearce

(1984, Lemma 3), every action not strictly dominated is a best reply to some belief over

opponents’ actions and vice versa. Thus the result follows exactly like in the proof of

Proposition 4. �

7 Economic Applications

In many economically relevant examples the condition of Proposition 3 is satisfied and

comprehensive rationalizability coincides with iterated admissibility. We discuss some of

the examples in sequel. The first example concerns voting with a president.

7“Best reply” refers to the pure action best reply.
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Example 2 (Voting with a president) Consider an example of majority voting with

a president (Moulin, 1986, p. 73-74). Three players have to select one of three alterna-

tives {a, b, c}. If a majority votes for an alternative, it will be implemented. Otherwise,

the alternative selected by player 1, the president, is selected. For simplicity, for each

assign payoffs 3, 2 and 1 in the order of preferences. The strategic form is given by the

following three matrixes where player 1 chooses matrices, player 2 rows and player 3

columns.

a

b

c

a b c

3, 2, 1 3, 2, 1 3, 2, 1

3, 2, 1 2, 1, 3 3, 2, 1

3, 2, 1 3, 2, 1 1, 3, 2

a

b

c

a b c

3, 2, 1 2, 1, 3 2, 1, 3

2, 1, 3 2, 1, 3 2, 1, 3

2, 1, 3 2, 1, 3 1, 3, 2

a

b

c

a b c

3, 2, 1 1, 3, 2 1, 3, 2

1, 3, 2 2, 1, 3 1, 3, 2

1, 3, 2 1, 3, 2 1, 3, 2

a b c

At the first round, the only admissible strategy of player 1 is a. For player 2 it is the

set {a, c}, since for her b is weakly dominated by c. For player 3 it is {b, c}, since for

him, a is weakly dominated by b. Hence the game is reduced to

a

c

b c

3, 2, 1 3, 2, 1

3, 2, 1 1, 3, 2

a

One more round of elimination of weakly dominanted strategies leads to (a, c, c), the only

iterative admissible profile. Interestingly, in this profile the president faces his lowest

ranked alternative.

Since Si1 is a singleton for i = 1, 2, 3, Proposition 3 trivially applies and the unique

comprehensive rationalizable strategy profile is (a, c, c) as well.

Example 3 (Dividing Money) The following game is due to Brams, Kilgour, and

Davis (1993), see also Osborne (2004, p. 38). Two players use the following procedure to

divide $10 between themselves. Each person names a number of dollars (a nonnegative

integer), at most equal to $10. If the sum is at most $10, then each person receives the

amount of money she named and the remainder is burned. If the sum exceeds $10 and the

players named different amounts, then the person who named the smaller amount receives

that amount and the other player receives the remaining money. If the sum exceeds $10
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and the amounts named by the players are the same, then each player receives $5.

In the first round, every amount weakly lower than $5 is weakly dominated by $6. If

the opponent names more than $6, then the sum exceeds $10 and the player receives $6.

If the opponent names exactly $6, then the sum also exceeds $10, and both players receive

$5. If the opponent names any amount strictly less than $5, then the sum is at most $10,

and the player receives $6. Any other amount a ∈ {$6, ..., $9} is a strict best response to

a+ 1, and $10 is a strict best response to $0.

In the following rounds, the highest remaining amount is weakly dominated by $6 and

all other amounts are a strict best response to that amount plus 1. Thus, the maximal

reduction under iterated admissibility is ($6, $6) yielding a payoff of $5 to each player.

Note that since every amount not eliminated at the previous round is a strict best reply to

some full support belief on the amounts that survived till the round before, Proposition 3

applies and the game is solvable by comprehensive rationalizability yielding the same

outcome as the IA-procedure.

7.1 Price Competition

Consider a symmetric Bertrand duopoly in which each firm is restricted to choose integer

prices. Let p be the price and c the cost (also in integers), and

D(p) =

{
α− p if p ≤ α

0 if p > α

and assume c+ 1 < α. The profit function of firm i 6= j is given by

π(pi, pj) =


(pi − c)D(pi) if pi < pj
1
2
(pi − c)D(pi) if pi = pj

0 if pi > pj

Assume that the monopoly price is unique. (If α+ c is even, this is the case and the

monopoly price is 0.5(α + c)).

Proposition 6 In the Bertrand duopoly, p = c + 1 is the unique comprehensive ratio-

nalizable price. It is also the unique iterative admissible price.

The proof is in the appendix.
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7.2 Second Price Common Value Auctions

Consider a second price common value auction in which each of the n bidders receives a

privately observed signal xi about the value of the object to be auctioned off. The signals

xi, i = 1, ..., n are independently and identically distributed over some finite set X ⊂ N
(integers) and we assume that every signal may be drawn with positive probability. Let

xmax denote the realization of the highest of these n signals (i.e., first order statistic).

The common value of the object to each bidder is xmax. Each bidder submits a bid in

a sealed envelop. The highest bidder wins and pays the second highest bid. In case of

a tie, each highest bidder obtains the object with equal probability. Let bi : X −→ R
denote the bid function of player i.

Bidding your value is the unique bidding function that is obtained after two rounds

of iterated admissibility (see Harstad and Levin, 1985). Comprehensive rationalizability

yields the same outcome.

Proposition 7 In the second price common value sealed bid auction, Ri
k = {b(xi) = xi}

for all k ≥ 2 and i ∈ I.

The proof is in the appendix.

7.3 Comprehensive Rationalizable Implementation

Many economic problems take the following form: How to design without knowledge of

the preferences of the individuals an institution in which individuals interact such that

any outcome of their interaction satisfies certain desirable properties such as efficiency

etc.? Such problems are referred to as implementation problems as they “implement”

those outcomes in some solution concept of the game to be designed (i.e., the institution).

What outcomes can be implemented in comprehensive rationalizable strategies?

Let X denote the set of simple lotteries (i.e., with finite support) over an arbitrary

set of alternatives. Each player i ∈ I has now preferences over lotteries represented by

ui : X ×R×Ψi −→ R, where Ψi is a finite set of utility parameters for player i. Distinct

parameters in Ψi are associated with distinct preferences orderings over X×R. Moreover,

we assume that a player is never indifferent between all lotteries in X. The function is

linear in its first argument.

We assume that the preference profile ψ ∈ Ψ = ×i∈IΨi is common knowledge among

players in I. Yet, the social planner does not know ψ and wants to implement some
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lottery over alternatives in X.

A social choice function f : Ψ −→ X associates with each preference profile a lottery

over alternatives. We consider a finite mechanism with transfers 〈M1, ...,Mn, g, t〉 defined

by a finite action set M i for each player i, an outcome function g : M −→ X that

associates with each action profile in M = ×i∈IM i a lottery over outcomes, and a transfer

rule t = (ti)i∈I : M −→ Rn that for each player associates with each action profile a fine.

(The second argument in each player’s utility function refers to the fines. Less fines are

preferred to more.) A mechanism 〈M1, ...,Mn, g, t〉 and a preference profile in Ψ define

a strategic game with complete information.

A mechanism exactly implements a social choice function f in comprehensive ratio-

nalizable strategies with fines bounded by t̄ > 0 if and only if | ti(m) |≤ t̄ for all m ∈M
and i ∈ I, and for any ψ ∈ Ψ, there exists m∗(ψ) ∈ M such that g(m∗(ψ)) = f(ψ),

t(m∗(ψ)) = 0, and R∞(ψ) = {m∗(ψ)}. A social choice function f is exactly imple-

mentable in comprehensive rationalizable strategies with small fines if for all t̄ > 0, there

exists a mechanism which exactly implements f with fines bounded by t̄.

Proposition 8 Suppose that there are at least three players. Then any social choice

function is exactly implementable in comprehensive rationalizable strategies with small

fines.

The proof is in the appendix.

A Proofs

Proof of Lemma 1

If µj(X \ E) = 0 for all j with 1 ≤ j ≤ n, then µj(E) = 1 for all j. Otherwise, let k be

the smallest k ≤ n such that µk(X \ E) > 0. Then by the definition of infinitely more

likely and assumption µj(E) = 0 for all j ≥ k. Since each µj is a probability measure,

µj(X \ E) = 0 for j < k implies for µj(E) = 1 for j < k. By the definition of infinitely

more likely and assumption, we cannot have µ1(X \E) > 0, hence µ1(E) = 1. If E 6= X,

the fact µ has full support implies that there is a j with µj(X \ E) > 0. Hence k ≤ j

and ` = k − 1 < n. �
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Proof of Lemma 2

Let Y, Z ⊆ T−i be measurable and Y ∩ Z = ∅ .

For any n, T in is measurable.

For ` ≤ n the set Bi,>0
` (Y ) := {ti ∈ T in | τ i(ti)`(Y ) > 0} as well as the set {ti ∈ T in |

τ i(ti)`(Z) = 0} are measurable by definition.

Hence Bi
I,`(Y, Z)n = {tin | τ i(tin)`(Y ) > 0, τ i(tin)k(Y ) = 0, for k > `, τ i(tin)j(Z) =

0, for j ≤ `} is measurable, since it is an intersection of measurable sets.

The set Bi
I(Y, Z)n := {tin ∈ T in|τ i(tin) deems Y as infinitely more likely than Z} is⋃

`=1,...,nB
i
I,`(Y, Z)n, and therefore measurable.

Hence the set
⋃
n≥1B

i
I(Y, Z)n is measurable. �

Proof of Lemma 3

For all s−i ∈ σ−i(E−i) the set

{ti | τ i(ti) deems (σ−i)−1({s−i})∩E−i as infinitely more likely than ((σ−i)−1({s−i}))\E−i)}

is measurable by Lemma 2.

The set

{ti | τ i(ti) stratgically assumes E−i}

is an intersection of the measurable set

{ti | τ i(ti) assumes E−i}

and finitely many measurable sets

{ti | τ i(ti) deems (σ−i)−1({s−i})∩E−i as infinitely more likely than ((σ−i)−1({s−i}))\E−i)},

where s−i ∈ σ−i(E−i). �

Proof of Proposition 2

Let S2 = {b1, b2}.

Note that in the two procedures of comprehensive rationalizability and iterated ad-
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missibility, a player can only eliminate some additional actions in stage m+1 if the other

player has eliminated some action(s) in stage m.

Since, by Remark 3 every first level admissible strategy is first level comprehensive

rationalizable and vice versa, if iterative admissibility does not eliminate any action in

stage 0, then so does comprehensive rationalizability and vice versa. In such a case, both

procedures stop at stage 0 and Sik = Ri
k, for all k ≥ 0 and i = 1, 2, and Si∞ = Ri

∞, for

i = 1, 2.

Note that player 2 cannot eliminate an action later than in stage 1, since player 1 can

at most once (namely in stage 0) eliminate actions without player 2 having eliminated

any action.

Since player 2 can eliminate at most one action (either in stage 0 or in stage 1), player

1 can only eliminate actions in at most two stages (1st in stage 0 and 2nd in stage 1, if

player 2 has eliminated an action in stage 0, resp. 2nd in stage 2 if player 2 has eliminated

an action in stage 1). But of course, it is also possible that player 1 does not eliminate

any action in stage 0, or only in stage 0.

Consider the case that player 1 eliminates some actions in stage 0 according to iterated

admissibility (and hence also to comprehensive rationalizability) and player 2 does not

eliminate any action in any stage according to iterated admissibility. Since S2
0 = R2

0,

player 2 cannot eliminate any action according to comprehensive rationalizability in stage

0.

Now, assume by contradiction, that player 2 eliminates an action, say b2 according

to comprehensive rationalizability in stage 1. Then, b1 is a strictly better reply than b2

to any conjecture on S1 that assumes S1
0 . It cannot be that there is an action a ∈ S1

0

to which b2 is a strict better reply than b1. Otherwise there is a full support belief µ1

(giving enough weight to action a) on S1
0 to which b2 is a strict better reply than b1 and

hence by considering any full support belief µ2 on S1 \ S1
0 , we have that (µ1, µ2) is a

lexicographic conjecture on S1 assuming S1
0 to which b2 is the unique best reply. But

then b2 could not have been eliminated according to comprehensive rationalizability in

stage 1. If there is an action in S1
0 to which b1 is a strict better reply than b2, since

there is no action in S1
0 to which b2 is a strict better reply than b1, conditional on S1

0 ,

b1 weakly dominates b2, and hence b2 would be eliminated according to IA in stage 1, a

contradiction. Hence, against any action of player 1 in S1
0 , both actions of player 2 give

the same payoff. Therefore, since b1 is a strictly better reply than b2 to any lexicographic

conjecture on S1 that assumes S1
0 , b1 must be a strictly better reply than b2 to any
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lexicographic conjecture on S1 \ S1
0 , and hence in particular to any full support belief on

S1 \ S1
0 . But this implies, since both actions are equivalent conditional on S1

0 , that b1

must be a strictly better reply than b2 to any full support belief on S1. But then, by

Pearce (1984) Lemma 4, b2 must have been eliminated according to iterated admissibility

in stage 0, again a contradiction.

If player 2 eliminates some action according to iterated admissibility in stage 0, Re-

mark 3 (and the fact that there is nothing any more to eliminate) implies that S2
k = R2

k,

for all k ≥ 0.

Since S2
0 = R2

0 in any case, if player 2 eliminates an action according to iterated

admissibility in stage 1, since then S2
1 is a singleton, Proposition 3 below implies that

S2
k = R2

k, for all k ≥ 0.

Taken altogether, we have now shown that S2
k = R2

k, for all k ≥ 0, and since we know

by Remark 3 that S1
0 = R1

0, it remains to show that S1
k = R1

k, for all k ≥ 1.

If player 2 does not eliminate any action, then player 1 cannot (according to neither

comprehensive rationalizability nor iterated admissibility) eliminate any action in stages

k ≥ 1, and it follows that S1
k = R1

k, for all k ≥ 1.

So, assume that player 2 eliminates one action, say b2 in either stage m = 0 or in

stage m = 1.

If m = 1, then player 1 cannot eliminate any action in stage 1 according to iterated

admissibility or comprehensive rationalizability. Hence, in both cases (m = 0, 1) we have

S1
m = S1

0 = R1
0 = R1

m.

According to iterated admissibility, in stage m + 1 player 1 eliminates exactly those

actions in S1
0 that do not give the maximal payoff against b1 amongst the actions in S1

0 .

If an action a ∈ S1
0 of player 1 gives the maximal payoff against b1 amongst the actions in

S1
0 , but gives a lower payoff against b2 than some other action a′ ∈ S1

0 , where a′ also gives

the maximal payoff against b1 amongst the actions in S1
0 , then a is weakly dominated by

a′ and so a must have been already eliminated in stage 0, a contradiction.

According to comprehensive rationalizability, in stage m+1 player 1 assumes action b1

of player 2. Hence his actions in R1
m+1 are exactly those actions in S1 that give maximal

payoff against b1 and among the actions with this property those that give maximal

payoff against b2. Note that the difference of R1
m+1 to the set S1

m+1 is only that here the

surviving actions satisfy a certain optimality criterion (lexicographic optimality against

b1 and only the against b2) globally (that is in comparison to all other actions in S1),

while in S1
m+1 the same criterion is applied locally (amongst the actions in S1

0). But note
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that such an action in R1
m+1 is obviously not weakly dominated in S1 and so could not

have been eliminated according to iterated admissibility in stage 0. So, any action that

is in R1
m+1 is in S1

0 . Hence, the global optimum is in the set considered locally, and hence

the sets R1
m+1 and S1

m+1 coincide. �

Proof of Proposition 3

For all i ∈ I, Si0 = Ri
0 follows from Remark 2. (Note that trivially, we also have

Si−1 = Ri
−1, for all i ∈ I.)

Induction Step: Let k ≥ 0 and i ∈ I. We show that if for all j ∈ I, Sjk = Rj
k and for

every si ∈ Sik+1 there exists a full support belief ηi ∈ ∆(S−ik ) for which si is the strict

best reply in Sik+1, then Sik+1 = Ri
k+1.

First, we show Sik+1 ⊆ Ri
k+1. Let ηi ∈ ∆(S−ik ) be full support on S−ik such that

si ∈ Sik+1 is the unique best reply in Sik+1 to ηi. Then si is also the unique best reply in

Sik to ηi, since any best reply amongst the actions in Sik to ηi must be in Sik+1 already.

Consider any lexicographic conjecture µ = (µi1, ..., µ
i
n) ∈ Ci

k, for some n ≥ 1. Let

µin1
, ..., µinp

be all the µim such that µim(S−i \ S−ik ) > 0, ordered such that nr < nr+1, for

all r = 1, ..., p− 1. Now, set νi1 := ηi and νim := µnm−1(· | S−i \ S−ik ), for m = 2, ..., p+ 1.

Then νi = (νi1, ..., ν
i
p+1) assumes S−ik = R−ik . Since µi ∈ Ci

k, it follows easily (like in the

proof of Proposition 1) that νi assumes R−iq , for q = −1, ..., k − 1. Hence, νi ∈ Ci
k+1.

Let s̃i be any lexicographic best reply in Si to νi. Since νi ∈ Ci
k+1, we have that

s̃i ∈ Ri
k+1 ⊆ Ri

k = Sik. In particular, s̃i is at least as good a reply in Sik to ηi = νi1 as si

is. By the uniqueness assumption, we have s̃i = si. We conclude that si ∈ Ri
k+1.

Next, we show that Ri
k+1 ⊆ Sik+1. Let si ∈ Ri

k+1. There exists a lexicographic

conjecture µi = (µi1, ..., µ
i
n) ∈ Ci

k+1, for some n ≥ 1 such that si is a lexicographic best

reply to µi. Since µi assumes R−ik , by Lemma 1, there is an ` ∈ {1, ..., n} such that

µij(R
−i
k ) = 1 for 1 ≤ j ≤ ` and µij(R

−i
k ) = 0 for n ≥ j ≥ `. By the induction hypothesis,

S−ik = R−ik . By Blume, Brandenburger, and Dekel (1991b, Proposition 1), applied to

(µi1, ..., µ
i
`), there is a full support belief ηi on S−ik such that si is a best reply (even in

Si) to ηi. Hence, since si ∈ Ri
k+1 ⊆ Ri

k = Sik, it follows that si ∈ Sik+1.

It follows that Sik = Ri
k, for all k ≥ −1 and all i ∈ I. Hence, Si∞ =

⋂∞
k=−1 S

i
k =⋂∞

k=−1R
i
k = Ri

∞ for every i ∈ I. �
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Proof of Proposition 6

We consider iterative admissibility and then apply Proposition 3 to show that it coincides

with comprehensive rationalizability. In the first round every price in excess of the

monopoly price is weakly dominated by the monopoly price. If the opponent sets a price

weakly higher than the monopoly price, then the monopoly price is strictly better than

any price strictly higher than the monopoly price. If the opponent sets a price strictly

below the monopoly price, the monopoly price is as good as any price strictly higher

than the monopoly price. In fact, there is no belief about the opponent’s prices for which

a price strictly higher than the monopoly price is a best reply. Also in the first round,

every price equal to at most c is weakly dominated by the price c+1. If the opponent sets

a price weakly larger than c+ 1, then a price equal to c+ 1 is strictly better than a price

equal to at most c. If the opponent sets a price strictly below c+ 1, then a price equal to

c+1 is as good as a price equal to c and strictly better than a price strictly below c. That

is, c is a best reply to the belief that the opponent sets a price of at most c but it is not

the unique best reply. c can never be a best reply to a full support belief. Every other

price p is a strict best response to p + 1, so no other price is weakly dominated. To see

this, note that for any p ≥ c+1 it is strictly better to obtain all the demand at the price p

than to obtain half of the demand at the price p+ 1. That is, consider any p ≥ c+ 2. We

need to show that 1
2
(p− c)(α−p) < (p−1− c)(α−p+ 1) = (p−1− c)(α−p) +p−1− c.

We have 1
2
(p− c) ≤ p−1− c and p−1− c > 0 because p ≥ c+ 2. By the same argument,

at each subsequent round of iterative elimination, the highest remaining price is weakly

dominated by the next highest price. The pair of prices that remains is (c+ 1, c+ 1).

Let p` be the highest price that remains after the `-th round of elimination of weakly

dominated prices. Proposition 3 implies that at each level ` = 0, 1, ..., the set of admissible

prices coincide with the set of comprehensive rationalizable prices since every price in

{c + 1, ..., p`} is a strict best reply to a full support belief over prices remaining from

the previous round. E.g., p ∈ {c + 1, ..., p`} is a strict best reply to the belief that is

concentrated on p+ 1. �

Proof of Proposition 7

For each bidder i ∈ I, any bid strictly above maxX and strictly below xi is weakly

dominated. Thus, by Remark 2 Ri
0 = {bi : For all xi ∈ X, xi ≤ b(xi) ≤ maxX}.

At the second level, suppose a bidder bids strictly above his signal. If his bid is

below the highest bid, then he does not obtain the object. Bidding his signal would be
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a lexicographic best reply in this case as he receives nothing and pays nothing. If the

second highest bid is below his signal, then he still receives the object. Bidding his signal

would be a lexicographic best reply in this case since he would still obtain the object and

his payment would remain unchanged.

Consider now the case in which the second highest bid is between his bid and his

signal. By his second level lexicographic conjectures he assumes that all bidders j 6= i

select a bid in {xj,maxX}. Thus, in this case xmax > xi. This means he would pay more

than the value of the object. A lexicographic best reply is to bid his signal instead, in

which case he pays nothing and obtains nothing. In fact, it is the only lexicographic best

reply since opponents may have drawn any signals from X. Thus we have shown that at

the second level, bidding the signal remains as the only comprehensive rationalizable bid

function. �

Proof of Proposition 8

Abreu and Matsushima (1994) show that any social choice function is exactly imple-

mentable in iterated admissible actions. In their proof, they show that in fact it is

exactly implementable with one round elimination of weakly dominated actions followed

by many rounds of elimination of strictly dominated actions. In their mechanism, the

maximal reductions of both procedures coincide. Thus the result follows from Proposi-

tion 5 above. �

References

[1] Abreu, D. and H. Matsushima (1994). Exact implementation, Journal of Economic

Theory 64, 1–19.

[2] Aliprantis, C. and K. Border (2007). Infinite dimensional analysis: A Hitchhiker’s

guide, 3rd edition, Springer-Verlag

[3] Asheim, G. (2001). Proper rationalizability in lexicographic beliefs, International

Journal of Game Theory 30, 453–478.

[4] Asheim, G. and M. Dufwenberg (2003). Admissibility and common belief, Games

and Economic Behavior 42, 208–234.

31



[5] Barelli, P. and S. Galanis (2013). Admissibility and event rationality, Games and

Economic Behavior 77, 21–40.

[6] Battigalli, P. (1996). Strategic rationality orderings and the best rationalization

principle, Games and Economic Behavior 13, 178–200.

[7] Ben Porath, E. (1997). Rationality, Nash equilibrium, and backward induction in

perfect information games, Review of Economic Studies 64, 23–46.

[8] Bernheim, B.D. (1984). Rationalizable strategic behavior, Econometrica 52, 1007–

1028.

[9] Blume, L., Brandenburger, A., and E. Dekel (1991a). Lexicographic probabilities

and choice under uncertainty, Econometrica 59, 61–79.

[10] Blume, L., Brandenburger, A., and E. Dekel (1991b). Lexicographic probabilities

and equilibrium refinements, Econometrica 59, 81–98.

[11] Börgers, T. (1994). Weak dominance and approximate common knowledge, Journal

of Economic Theory 64, 265–276.

[12] Börgers, T. and L. Samuelson (1992). Cautious utility maximization and iterated

weak dominance, International Journal of Game Theory 21, 13–25.

[13] Brandenburger, A. (1992). Lexicographic probabilities and iterated admissibility,

in: Dasgupta, P., Gale, D., Hart, O., and E. Maskin (eds.), Economic analysis of

markets and games, Cambridge, MA: MIT Press, 282–290.

[14] Brandenburger, A., Friedenberg, A. and J. Keisler (2008). Admissibility in games,

Econometrica 76, 307–352.

[15] Brams, S.J. (1975). Game theory and politics, New York: Free Press.

[16] Brams, S.J., Kilgour, D.M., and M.D. Davis (1993). Unraveling in games of sharing

and exchange, in: Binmore, K.G., Kirman, A., and P. Tani (eds.), Frontiers of Game

Theory, MIT Press, 195–212.

[17] Catonini, E. and N. De Vito (2014). Common assumption of cautious rationality

and iterated admissibility, mimeo.

[18] Dekel, E. and D. Fudenberg (1990). Rational behavior with payoff uncertainty, Jour-

nal of Economic Theory 52, 243–267.

32



[19] Ewerhart, C. (2002). Ex-ante justifiable behavior, common knowledge, and iterated

admissibility, mimeo.

[20] Farquharson, R. (1969). Theory of Voting, New Haven: Yale University Press.

[21] Halpern, J. and R. Pass (2009). A logical characterization of iterated admissibility,

in: Proceedings of Twelfth Conference on Theoretical Aspects of Rationality and

Knowledge, 146–155.

[22] Harstad, R. and D. Levin (1985). A class of dominance-solvable common value auc-

tions, Review of Economic Studies 52, 525–528.

[23] Keisler, J. and Lee B.S. (2015). Common assumption of rationality, mimeo.

[24] Kohlberg, E. and J.-F. Mertens (1986). On the strategic stability of equilibria,

Econometrica 54, 1003–1037.

[25] Lee B.S. (2015). Generalizing type spaces, mimeo.

[26] Lee B.S. (2016). Admissibility and assumption, Journal of Economic Theory 163,

42–72.

[27] Moulin, H. (1986). Game theory for the social sciences, 2nd edition, New York

University Press.

[28] Moulin, H. (1979). Dominance solvable voting schemes, Econometrica 47, 1337–1351.

[29] Osborne, M. (2004). An introduction to game theory, Oxford University Press.

[30] Pearce, D. (1984). Rationalizable strategic behavior and the problem of perfection,

Econometrica 52, 1029–1050.

[31] Perea, A. (2012). Epistemic game theory: Reasoning and choice, Cambridge Uni-

versity Press.

[32] Samuelson, L. (1992). Dominated strategies and common knowledge, Games and

Economic Behavior 4, 284–313.

[33] Siniscalchi, M. (2016). Structural rationality in dynamic games, mimeo.

[34] Spohn, W. (1982). How to make sense of game theory, in: Stegmüller, W., Balzer,

W., and W. Spohn (eds.), Philosophy of economics, Springer-Verlag, 239–270.

33



[35] Stahl, D.O. (1995). Lexicographic rationalizability and iterated admissibility, Eco-

nomics Letters 47, 155–159.

[36] Yang C.-C. (2015). Weak assumption and iterative admissibility, Journal of Eco-

nomic Theory 158, 87–101.

34


