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Increasing Taxes After a Financial Crisis: Not a Bad
Idea After All...

Abstract

Based on OECD evidence, equity/housing-price busts and credit crunches are followed by

substantial increases in public consumption. These increases in unproductive public spending

lead to increases in distortionary marginal taxes, a policy in sharp contrast with presumably

optimal Keynesian �scal stimulus after a crisis. Here we claim that this seemingly adverse

policy selection is optimal under rational learning about the frequency of rare capital-value

busts. Bayesian updating after a bust implies massive belief jumps toward pessimism, with

investors and policymakers believing that busts will be arriving more frequently in the future.

Lowering taxes would be as if trying to kick a sick horse in order to stand up and run, since

pessimistic markets would be unwilling to invest enough under any temporarily generous tax

regime.

Keywords: Bayesian learning, controlled di¤usions and jump processes, learning about

jumps, Gamma distribution, rational learning

JEL classi�cation: H30, D83, C11, D90, E21, D81, C61



1. Introduction

The 2008 credit crunch has reminded that optimal �scal policy after a crisis is a poorly

understood subject. Looking at empirical facts, Table 1 shows a post-crisis �scal-policy

regularity in OECD countries that can be considered as unconventional: government con-

sumption increases after credit crunches and asset-price/house-price busts.1 The massive

loss in capital value brought by such severe incidents a¤ects the productive capacity of the

private sector. So, common intuition suggests that governments should avoid spending in

unproductive public consumption which further implies higher distortionary marginal tax

rates.2 An increase in marginal tax rates seems to be in sharp contrast with the presumably

optimal Keynesian policy of tax cuts in order to stimulate demand during a crisis.3

�(Government Consumption): �G (%)

Event Ordinary Severe (Bust/Crunch)

Recession 1.79 2.16

Credit Contraction 2.83 5.98���

House-price decline 3.39 8.75���

Equity-price declines 3.59 7.48���

Table 1 - Data (Claessens, Kose, Terrones, EP 2009): 21 OECD countries from 1960-2007

1 Table 1 contains selected values from Claessens et al. (2009, Table 9, p. 685), reporting medians of peak-to-
trough changes in government consumption corresponding to each category of crunch/bust/recession event.
Symbol �G denotes changes in government consumption, while symbol �***� indicates signi�cance at the
1% level. Table A.1 in Appendix A provides some more estimates based on Claessens et al. (2009).
2 The UK experience after the 2008 global �nancial crisis is one of the most characteristic examples of the
implied tax-burden increases. As reported in Institute for Fiscal Studies (2013, Figure 5.8, p. 132), although
drastic tax cuts had been attempted in �scal years 2008 and 2009, since 2011 �scal consolidation and tax
increases have been far more drastic and dramatic.
3 In 2009, the International Monetary Fund (IMF) announced that most countries in the Group of Twenty
(G-20) had attempted discretionary Keynesian-type �scal-stimulus policies, including drastic tax cuts, see
International Monetary Fund (2009, p. 26) and several other references in that report.
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We pose two questions. First, is �scal stimulus through tax cuts an optimal policy after

a capital-bust crisis? Second, is the message of Table 1 toward the direction of an optimal

�scal policy, or do we need to resort to any complicated political-economy mechanics in

order to explain it? We argue that limited information, not limited rationality, about the

frequency of capital-value busts can corroborate that increasing taxes after a bust incident is

part of an optimal policy. Speci�cally, we demonstrate that after a capital bust, a pessimistic

spell pervades markets. For a long period, investors think that capital busts will be arriving

more frequently in the future. Investments become weak, due to the belief that part of each

dollar invested will end up destroyed more frequently in the future. After a bust, benevolent

policymakers shift to providing public goods because �scal stimulus is ine¤ective in such a

pessimistic weak-investment environment. We argue that this intuition is dominant using a

model of endogenous growth with especially strong permanent negative e¤ects of taxation on

future investments and with especially clear analytics concerning optimal-�scal policy (see

Xie, 1997). Our main message is that pessimism and weak investment after a capital bust

may dominate any �scal-stimulus e¤ects, and that �scal-stimulus should be reconsidered

during such periods.

We build an endogenous-growth model with busts (disasters) in capital�s productive-

capacity, driven by a Poisson process. We assume that the disaster-frequency parameter

of the Poisson process is not known with perfect con�dence by any agents in the model.

So, both the private sector and welfare-maximizing policy makers must learn about this

disaster-frequency parameter. A virtual econometrician in the model collects and processes

data which are records of the dates and the cumulative count of past disasters. We obtain

a result that simpli�es such a Bayesian-learning analysis: we prove that this data combined

with knowledge that the data-generating process is Poisson, implies that prior beliefs about
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the disaster-frequency parameter are Gamma-distributed. Using Bayes� rule, the virtual

econometrician �nds that posterior beliefs about the disaster-frequency parameter are also

Gamma-distributed. So, such a Bayesian-learning setup can become a handy and tractable

modeling ingredient.4

The subjective expectation of the disaster-frequency parameter plays a key role in both

individual decision-making and in optimal-policy setting. This subjective expectation ap-

pears directly in all Hamilton-Jacobi-Bellman equations of decision making, and possesses

intuitive dynamics during the process of learning. In particular, after a disaster occurs,

Bayes�rule implies that average disaster-frequency beliefs jump to pessimistic levels. This

new level of pessimism persists for several years, and optimism is rebuilt gradually during pe-

riods that no other disaster occurs, until the arrival of the next disaster.5 These endogenous

spells of pessimism that follow each disaster episode are what makes the study of optimal

�scal policy after capital-value busts special: in a pessimistic environment investment deci-

sions may be lukewarm under most policy regimes, as tax cuts may not be as e¤ective as

they would be during times of non-extreme beliefs. To understand the interplay between

elevated rare-disaster pessimism and policy e¤ectiveness is the main goal of this paper.

We select an appropriate vehicle in order to perform a thought experiment that pushes

the concept of distortionary taxation towards its limits. We choose the �AK�endogenous-

growth model which emphasizes the permanent e¤ect of any period�s tax distortion on capital

4 A study which assumes Gamma-distributed jump-frequency-parameter prior beliefs in the context of an
asset-pricing model is Comon (2001). While Comon (2001) assumes such a prior distribution (perhaps due
to the facilitating fact that these prior and posterior distributions are in the same family, i.e., conjugate), we
prove that jump-frequency-parameter prior beliefs are necessarily Gamma-distributed under our sampling
assumptions.
5 Survey evidence using subjective statements regarding the likelihood of an imminent stock-market crash
after the year-2000 dot-com bust and the year-2008 Lehman-Brothers default, corroborates that pessimistic
disaster expectations followed these crash episodes. This survey database is the Crash-Con�dence Index
which is constructed using the survey method in Shiller et al. (1996) �for example, see the plot in Koulo-
vatianos and Wieland (2011, Figure 2).

3



accumulation.6 We introduce a public-consumption externality in the utility function in an

additively-separable way, in order to disjoin any direct impact of public goods on the marginal

utility of private consumption at any time. Within this framework we study private-sector

economic decisions under rational learning. Subject to these private-sector decisions and

competitive market clearing, we study the optimal provision of public consumption by a

benevolent rational-learning planner who levies marginal income taxes.

Beyond mere-technicality issues, we assume logarithmic momentary utility functions. In

the deterministic version of our setup, Xie (1997, pp. 416-9) has demonstrated that the op-

timal �scal policy (open-loop policy with commitment) is time-consistent. Time consistency

of optimal policy survives in our stochastic model with rational learning, o¤ering analyti-

cal tractability. In a numerically solved deterministic setup which is similar to ours (yet,

without endogenous growth), Klein et al. (2008) report quantitative di¤erences in optimal

time-inconsistent (open-loop) vs. time-consistent (closed-loop) �scal policies.7 Instead, the

functional forms we use in our model make these two types of �scal policies to coincide.

So, our analysis clari�es the qualitative responses of these �scal-policy types under the op-

timism/pessimism swinging in a rational-learning environment with disaster risk.8 Finally,

as in Klein et al. (2008), in the interest of simplicity and tractability, we do not allow any

government to issue �scal debt, given that our approach is one of setting the optimal size of

government and not the way of �nancing exogenous government spending.9

6 Rebelo (1991) demonstrates that the absence of productivity externalities in aggregate production makes
capital taxation to have an excessively high negative imact on welfare through capital-accumulation distor-
tions in endogenous-growth environments with �AK�type of production technology.
7 In addition, Klein and Rios-Rull (2003) report quantitative di¤erences in the cyclical responses of time-
inconsistent (open-loop) vs. time-consistent (closed-loop) �scal policies in a setup that studies the optimal
�nancing of useless government spending.
8 Examining the quantitative di¤erences between time-consistent and time-inconsistent �scal policies under
learning in more general setups is an interesting, yet demanding extention, which is not pursued here.
9 Dealing with both the choice of government size and a mixture of �nancing government spending can lead
to a government maximization problem that is not well de�ned. In order to avoid such technical problems
and policy indeterminacy, see the relevant discussion in Klein et al. (2008, p. 804), and especially the two
papers of Stockman (2001, 2004). Two recent papers that study the problem of how to optimally �nance
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The key message revealed by our setup is sharp. After a disaster has occurred, pessimistic

beliefs, that rare disasters are more frequent than thought before, prevail. During such

periods of elevated pessimism optimal-policy setting under rational learning implies higher

public-consumption provision and higher distortionary taxes. This happens because private-

capital accumulation is expected to be less pro�table than before the disaster, and investment

rates are low. So, the policy maker appreciates that the responsiveness of private-sector�s

investment to marginal-tax changes is weakened by this type of disaster-frequency pessimism.

Hence, at times of disaster-expectations pessimism there is a weakening of the distortionary

e¤ect of marginal taxation, which motivates increasing marginal tax rates at exactly these

times in our model.

Our analysis corroborates that reducing tax rates at times after a disaster has occurred

is not necessarily e¤ective for stimulating investment. In particular, given the severely dis-

tortionary nature of marginal taxes in �AK�-type endogenous growth models, most models

with capital accumulation would support what our optimal-policy experiment suggests: tax

cuts in periods of elevated disaster-risk pessimism may not be the optimal policy to follow.

2. Bayesian Learning about the Jump Frequency of Poisson-Driven
Jumps

Before we proceed with the formal description of the model, we state and prove a key

result regarding Bayesian learning about jumps which are generated by Poisson processes.

Speci�cally, consider that in a continuous-time economic model the Poisson process, q (t),

exogenously given government spending in overlapping-generations models that consider �scal debt as well
are Conesa et al. (2009) and Fehr and Kindermann (2015).

5



characterized by,

dq (t) =

8><>: �

0

with Probability ��dt

with Probability 1� ��dt
, (1)

with �� > 0, drives the occurrence of jumps of size � 6= 0, which apply to some of the

model�s variables. The Poisson process q (t) is independent from other exogenous random

variables in the model. The jump size � can be an independent random variable, too. So,

at any particular time t � 0, q (t) =
P

i 1ft̂i�tg� in which t̂i = ft � 0 j dq (t) 6= 0g, and

1ft̂i�tg =
�
1, if s = t̂i ; 0, if s 6= t̂i ; for all s � t

	
.

We assume that all decision makers know all parameters of the model except ��. In order

to deal with this parameter uncertainty let�s assume that the economy is equipped with an

invisible virtual econometrician who collects the following jump data: dates at which jumps

occur. This data-collection assumption seems minimal, yet there is no more raw information

one can collect.10 If the virtual econometrician assumes that the data-generating process is

Poisson, then the jump-frequency parameter is indeed the one and only parameter to learn

about.11

In this section we demonstrate an explicit and tractable result. If the virtual econometri-

cian indeed makes the Poisson assumption about the data-generating process and interprets

her track record of jump data through the Poisson lens, then there is a necessary implica-

tion: the virtual econometrician�s beliefs about the jump-frequency parameter can only be

Gamma-distributed.
10See, for example, Claessens et al. (2009), and Barro and Ursua (2009) who collect cross-country data on
rare disasters. That database consists of disaster dates and also jump magnitudes. Here we assume that the
random process driving the magnitude of disasters is both known and independent from the Poisson process
which governs the random occurrence dates of disasters.
11Ross (2003, p. 275) demostrantes that the concept of memorylessness coincides with the concept of
exponentially-distributed arrival times of discrete events with a single constant parameter driving the asso-
ciated density function. So, the virtual econometrician�s Poisson assumption is essentially the assumption
that the data-generating process is memoryless, i.e., this process self regenerates the same forward proba-
bilities of future arrival times as actual time passes by.
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The two parameters of the Gamma distribution of the disaster-frequency-parameter be-

liefs are explicitly speci�ed, and have a natural interpretation. The one Gamma-distribution

parameter is the total time elapsed since sample collection started.12 The other Gamma-

distribution parameter is the total cumulative count of past jumps since sampling started.

Certainly, what makes the jump-frequency-parameter perceptions a random variable is the

randomness of any collected data sample. Here, sharply, both Gamma-distribution parame-

ters perfectly describe the track-record data sampled.

A well-known result is that the Bayesian posterior of a Gamma prior is also Gamma.

This statistical conjugacy leads to recursive tractability in models of decision making. Both

this tractability and the intuitiveness of the underlying assumptions that imply Gamma-

distributed disaster-frequency-parameter beliefs, make this section�s learning setup a natural

and promising building block for studying Bayesian learning about rare disasters in a wide

range of decision-making problems.

2.1 Data collection speci�cation and implied beliefs

Without loss of generality, consider that the time instant at which the virtual econometrician

starts keeping a track record is t = 0. Let any integer n � 1, and denote by Tn the arrival

time of the n-th jump. Let also �Ti denote the time elapsed between the (i� 1)-th and the

i-th jump for all i 2 f2; :::; ng. Assume that T1 is known and �xed, let �T1 � T1 � 0 = T1

by convention, and notice that,

Tn =

nX
i=1

�Ti . (2)

Assumption 1 For all t � 0, the virtual econometrician keeps a track record

of all inter-arrival times f�Tigni=1 if n � 1.
12While it is not necessary that sampling started with the �rst actual jump observation, it is necessary to
have at least one jump observation in the sample in order that the Gamma distribution be well-de�ned.
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Assumption 1 formally states that the virtual econometrician keeps track of dates at

which disasters occur. In addition, the virtual econometrician assumes that the data-

generating process is Poisson. This Poisson perception is equivalent to stating that the

virtual econometrician thinks that inter-arrival times, f�Tigni=1, are exponentially distrib-

uted.13 Let�s state this distributional perception formally and de�ne what exactly the econo-

metrician learns about.

Assumption 2 For all t � 0, the virtual econometrician thinks that all inter-

arrival times f�Tigni=1 if n � 1, are exponentially distributed but does not know

this exponential distribution�s true associated parameter �. The non-informative

priors of the virtual econometrician are Haldane�s agnostic priors. On the con-

trary, the virtual econometrician knows the probability distribution of disaster

magnitudes, �, and knows that � is independent from the exponential process

that generates all disaster inter-arrival times.

Let the virtual econometrician focus on some certain level of the exponential distribu-

tion�s parameter, say ~� > 0.14 Naturally, the virtual econometrician wants to examine the

likelihood that ~� re�ects the inter-arrival-time data, f�Tigni=1, accurately. The rest of this

section builds on the analysis of Ross (2003, pp. 293-4) and focuses on this speci�c concern:

what is the probability that ~� perfectly explains all available data f�Tigni=1?15

So, �x any subjective parameter level ~� > 0 and under the condition that nature�s true

parameter � = ~�, de�ne the point process which counts any past and future jumps (counting

13For a formal proof of this statement see, for example, Ross (2003, Proposition 5.1 p. 293).
14Throughout, a tilde denotes subjective perception of a certain variable.
15Ross (2003, pp. 293-4) derives the probability distribution of waiting time until the n-th jump, which is
di¤erent from the question we pose here. Yet, we borrow some solution arguments from Ross (2003, pp.
293-4) in order to build our proofs.
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process),

N (t) � #
�
t̂ 2 [0; t]

�� d~q �t̂� j�=~� 6= 0	 , for all t � 0 . (3)

in which

d~q (t) j�=~� =

8><>: ��

0

with Probability ~�dt

with Probability 1� ~�dt
.

Under the convention that � = ~�, and since the Poisson process has independent increments,

all time intervals�Ti are independent from each other, and each interval�Ti is exponentially

distributed with parameter ~� > 0. Given this independent-increments property, within a

time interval [0; t] for any t � 0, the average frequency of disasters is ~� = ~� � t. So, by the

de�nition of the Poisson distribution and (3),

Pr fN (t) � ng =
1X
i=n

e�
~�
~�i

i!
=

1X
i=n

e�
~�t

�
~�t
�i
i!

, n = 1; 2; :::, for all t � 0 . (4)

Notice that de�nition (2) implies

Pr fN (t) � ng = Pr fTn � tg , n = 1; 2; :::, for all t � 0 . (5)

Yet,

Tn � t, ~� � Tn � ~� � t,
~� � Tn
t

� ~� , n = 1; 2; :::, for all t > 0 . (6)

The term
�
~� � Tn

�
=t is the point estimate of the disaster frequency that is induced by the

cumulative history of collected data, Tn, at any point in time t > 0, under the assumption

that the data generating process is driven by parameter ~�. Notice that (5) and (6) imply,

Pr fN (t) � ng = Pr
(
~� � Tn
t

� ~�
)
� FTn

�
~�
�
, (7)

in which FTn
�
~�
�
is the data-induced cumulative distribution function (c.d.f.) of ~�. With

these observations at hand, we can prove the main result of this section which is stated by

Theorem 1.
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Theorem 1 Under Assumptions 1 and 2, for all t > 0, the probability that

some ~�
o
> 0 perfectly explains all available data is given by the density of a

Gamma distribution with parameters t (the elapsed time from the beginning of

sampling), and N (t). Consequently, disaster-frequency-parameter beliefs of a

virtual econometrician follow this Gamma distribution.

Proof

From (7) and (4) it is,

FTn

�
~�
�
=

1X
i=n

e�
~�t

�
~�t
�i
i!

.

Yet, since FTn
�
~�
�
is a c.d.f.,

Pr
n
~� = ~�

o
o
= F 0Tn

�
~�
�
j~�=~�o = fTn

�
~�
o
�
,

in which fTn
�
~�
o
�
is the data-induced density function conditional upon n observed past

disasters. In particular, for t � T1,

fTn

�
~�
o
�
= F 0Tn

�
~�
�
j~�=~�o

= �t
1X
i=n

e�
~�
o
t

�
~�
o
t
�i

i!
+ t

1X
i=n

e�
~�
o
t

�
~�
o
t
�i�1

(i� 1)!

= �t
1X
i=n

e�
~�
o
t

�
~�
o
t
�i

i!
+ t

1X
i=n+1

e�
~�
o
t

�
~�
o
t
�i�1

(i� 1)! + t � e
�~�ot

�
~�
o
t
�n�1

(n� 1)!

= t � e�~�
o
t

�
~�
o
t
�n�1

(n� 1)!

and since the econometrician exploits up to the last observation until time t > 0, we can set

n = N (t), i.e.

fTn

�
~�
o
�
= t � e�~�

o
t

�
~�
o
t
�N(t)�1

[N (t)� 1]! , if t � T1, and 0 otherwise, (8)
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which is the density function of a Gamma-distributed variable. Since the virtual econome-

trician has Haldane�s agnostic priors, these can be described by a Gamma distribution with

hyperparameters equal to 0.16 Combining (8) with these hyperparameters which are equal

to 0, the hyperparameters of (8) remain as in equation (8), i.e., as described by the theorem,

completing the proof. �

Theorem 1 gives su¢ cient structure for the modeling of rare disasters. Speci�cally,

Theorem 1 demonstrates that N (t) and the elapsed sampling time are su¢ cient statistics

for identifying the whole probability density function of beliefs about the disaster frequency.

Next section provides the key implications of Theorem 1 which provide facility to Bayesian-

learning modeling.

2.2 Posterior beliefs, posterior-belief moments, and long-run learn-
ing

From this section and on we view the elapsed sampling time as a state variable, for conve-

nience in dynamic-programming applications. We denote the length of the elapsed sampling

time by T (t) for all t � 0. In addition, we assume that T (0) > 0 and N (0) � 1. Theorem

1 implies that the posterior distribution of the virtual econometrician�s beliefs at any time

t � 0, is given by,

Pr (� j Ft) = f(N(t) ; [T (0)+t]�1) (�) =

8><>: [T (0) + t] e�[T (0)+t]� f[T (0)+t]�g
N(t)�1

�(N(t))

0

, if � � 0

, if � < 0
,

(9)

in which � (a) �
R1
0
e�vva�1dv is the Gamma function, and Ft is the �ltration at time

t � 0.17 Equation (9) demonstrates the well-known result that the posterior distribution of
16See, e.g. Kerman (2011, pp. 1455-6).
17For a formal de�nition of �ltration see, for example, Stokey (2008, pp. 17-18).
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a Gamma prior is also Gamma.18 Based on standard results about the moments of Gamma-

distributed variables, the mean and variance of the posterior distribution for all t � 0 are,19

E
h
~� (t) j N (t) = N (0) + n

i
=
N (0) + n

T (0) + t
, (10)

and

V ar
h
~� (t) j N (t) = N (0) + n

i
=
N (0) + n

[T (0) + t]2
, (11)

for all n 2 f0; 1; :::g.

In the context of optimization through HJB equations, the key result to use is the mean

jump-frequency belief. In the related formula given by (10), the denominator is a contin-

uously and linearly growing variable, while the numerator is a discrete point process. The

point process in the numerator means that once a jump occurs, average jump frequency

beliefs jump upwards to a pessimistic level. After a period without further busts, average

jump frequency beliefs decay, implying that the learning agents become more optimistic. In

brief, the trajectory of average jump-frequency beliefs will exhibit spikes which coincide with

the occurrence of busts.

In Appendix B, we show that, in the long run, beliefs converge to rational expectations.

Speci�cally, as time passes and more jumps are revealed, a learning agent gradually acquires

more con�dence in E
h
~� (t) j N (t) = N (0) + n

i
. The spiky trajectory of average beliefs

implied by equation (10) is characterized by dampened spikes over time, which eventually

disappear as average beliefs converge to the true parameter �� with in�nite con�dence as-

ymptotically.

18See, for example, Gelman et al. (2004, p. 53).
19See, for example, Papoulis and Pillai (2002, p. 154) for the moment-generating function of the Gamma
distribution.
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3. Model and Optimal Policy under Rational Learning

The model extends Xie�s (1997, pp. 416-9) parametric example in which optimal �scal policy

is time-consistent. Our extensions are two: (a) the inclusion of shocks to capital value and

the study of the role of rational-expectations uncertainty on optimal �scal policy, studied

in this section, and (b) the introduction of model-parameter uncertainty (uncertainty about

jump frequencies), and the study of optimal �scal policy, studied in the next section.

The key reason for building on Xie�s (1997, pp. 416-9) parametric example is that it

delivers optimal �scal policy which, technically, does not su¤er from the time-inconsistency

problem.20 So, this setup allows us to study optimal �scal policy using optimal-control

techniques. This facility allows us to retain an intuitive state-space representation of the

optimal control problem, to obtain analytical solutions, and to identify how shocks and model

parameters a¤ect optimal policies. In turn, identifying such analytical interconnections

between parameters and optimal policies allows us to identify how subjective perceptions of

parameter uncertainty a¤ect optimal policies in the context of rational learning. We can go

this far, because the state-space representation we obtain in the rational-expectations setup

allows for the introduction of rational learning in the open-loop di¤erential Stackelberg game

of optimal-�scal policy setting.

3.1 Description of the benchmark model

3.1.1 Production

Time is continuous. A �nal consumable good is produced under perfect competition, by a

large number of identical �rms of total mass equal to one. Production uses only (a composite

form of) capital. The production function is linear, and the aggregate production function

20Xie (1997) fully explains why the time-inconsistency problem can be avoided in some cases, using insights
from the theory of di¤erential Stackelberg games.
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is,

Y (t) = A �K (t) , (12)

for all t � 0, with A > 0. Capital is rented by �rms in perfectly competitive markets. So,

the rental rate of capital equals capital�s marginal product, A. With � being the capital

depreciation rate, the interest rate is constant over time, i.e.,

r (t) = R � A� � , for all t � 0 . (13)

3.1.2 Government

The government continuously provides a single public-consumption good, G, levying marginal-

income taxes and using a balanced �scal budget. Capital depreciation is tax-exempt, so for

all t � 0,

G (t) = � (t) (A� �)K (t) = � (t)RK (t) , (14)

in which � (t) is the marginal tax rate on income. The government is a benevolent social

planner who maximizes social welfare (the social-welfare function is provided below), subject

to levying marginal-income taxes and to the balanced-�scal budget rule given by (14).

3.1.3 Households

A continuum of identical in�nitely-lived households with total mass equal to one maximizes

lifetime expected utility derived by the stochastic �ows of private and public consumption,

namely

E0

�Z 1

0

e��t fln [c (t)] + � ln [G (t)]g dt
�
, (15)

in which � > 0 is the rate of time preference and � > 0. We denote all variables referring to

individual households by lowercase symbols, while we use uppercase symbols for aggregate

variables. Each household has an initial endowment k (0) > 0 of private capital holdings that
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it rents to �rms which produce. Capital is of the same type across all individual households.

Capital value (and its production e¢ ciency) is subject to shocks which are revealed right

after the consumption/investment decision has been made. To make the timing of events

clearer, consider the discrete-time version of the household�s budget constraint, which is,

k̂t = [1 + (1� � t)R] (1 + xt) k̂t�1| {z }
q
kt

� ct , (16)

in which xt is some shock to the value of capital, which is realized after the consumption

decision, ct, has been made. The symbol k̂t�1 denotes the units of capital inherited from

period t� 1, before the shock xt has been realized and embodied in the productive capacity

of capital. After the embodiment of xt takes place, the value of capital units in terms of

consumer baskets in period t is kt = (1 + xt) k̂t�1. It is this new, ex-post capital value,

kt, that determines the after-tax income of the household, (1� � t) kt, and also the capital

units of next period, k̂t, measured in embodied e¢ ciency according to the latest shock xt. In

addition, the value of the provided public good, Gt, is determined according to the aggregate

ex-post value of capital,Kt = (1 + xt) K̂t�1. So, in discrete time, ct is chosen in the beginning

of a period, while Gt is determined in the end of the same period. Re-arranging terms in

(16) gives,

�k̂t = k̂t � k̂t�1 = (1� � t)Rk̂t�1 � ct + [1 + (1� � t)R] k̂t�1xt . (17)

Equation (17) reveals the form of the continuous-time version of the household�s budget

constraint which corresponds to the timing of events explained above. We assume that the

value of capital is hit by two shocks, one di¤usion shock and one jump shock, namely,

dk (t) = f[1� � (t)]Rk (t)� c (t)g dt+ f1 + [1� � (t)]Rg k (t) [�dz (t) + dq (t)] , (18)

in which z (t) is a standard Brownian motion, i.e., dz (t) = " (t)
p
dt, with " (t) � N (0; 1), for

all t � 0 (so z (t) =
R t
0
dz (s) with

R
being the stochastic Itô integral), � > 0, while variable
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q (t) is a Poisson process driving random downward jumps in income of size � 2 (0; 1).

The random variable � has a given time-invariant distribution having compact support,

Z � (0; 1). In particular, the Poisson process q (t) is characterized by,

dq (t) =

8><>: ��

0

with Probability ��dt

with Probability 1� ��dt
, (19)

in which �� is the jump-frequency parameter. So, q (t) = �
P

i 1ft̂i�tg� in which t̂i =

ft � 0 j dq (t) 6= 0g, and 1ft̂i�tg =
�
1, if s = t̂i ; 0, if s 6= t̂i ; for all s � t

	
. The Brownian

motion, the Poisson process and � are all independent from each other.21 Finally, the analogy

between the discrete-time representation of the shock xt in equations (16) and (17) and the

presence of the stochastic processes z (t) and q (t) in (18) is given by 1+xt = e�"t+�t, in which

"t � N (0; 1) for all t 2 f0; 1; :::g, and �t = fln (1� �) , with Prob. �� ; 0 , with Prob. 1� ��g.

Switching from the discrete-time representation in (17) to the continuous-time repre-

sentation in (18), the distinction between discrete-time variables kt and k̂t�1 is suppressed

through the presence of the in�nitesimal in�uence of the stochastic processes z (t) and q (t)

on the capital stock. Yet, the timing of events is crucial for specifying the continuous-time

budget constraint appearing in (18). If consumption decisions were made after the realization

of shock xt in equation (16), then the last term of the budget constraint in (18) would have

been ff1 + [1� � (t)]Rg k (t)� c (t)g [�dz (t) + dq (t)] instead of the simpler term which now

appears in (18), i.e., f1 + [1� � (t)]Rg k (t) [�dz (t) + dq (t)].22 The timing-of-events choice
21The quadratic covariation of z (t) and q (t) is zero by construction, since q (t) is a pure jump process.
22If consumption decisions were made after the realization of the capital e¢ ciency shock, xt, then the
household�s uncertainty concerns would focus on next period�s shock, xt+1. To address concerns about
xt+1, equation (16) could be written as (1 + xt+1)

�1
kt+1 = [1 + (1� � t)R] kt � ct, in which we have

used (1 + xt+1)
�1
kt+1 = k̂t. This form of equation (16) becomes (1 + xt+1)

�1
[kt+1 � (1 + xt+1) kt] =

(1� � t)Rkt�ct, which leads to, kt+1�kt = (1� � t)Rkt�ct+f[1 + (1� � t)R] kt � ctgxt+1. This last expres-
sion corresponds to dk (t) = f[1� � (t)]Rk (t)� c (t)g dt + ff1 + [1� � (t)]Rg k (t)� c (t)g [�dz (t) + dq (t)]
in continuous time, which would be the expression to use if timing was di¤erent, i.e. if consumption decisions
were made after the instantaneous revelation of the shocks (notice also that 1 + xt+1 = e�"t+1+�t+1 in the
discrete-time version of our model).
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we make here slightly simpli�es paper-and pencil analysis but does not a¤ect any of the

model�s qualitative results.

3.2 Policy setting under rational expectations

Given the presence of marginal taxes, the �rst welfare theorem fails, and we need to solve

for the decentralized equilibrium. Individual households maximize lifetime utility given by

equation (15), subject to the budget constraint (18), given a sequence of variables they do

not control: taxes, � , the level of publicly provided goods, G, as well as aggregate capital,

K. But in order to solve an individual household�s problem, we also need to keep track of

the motion of aggregate capital, K, since K a¤ects the level of the publicly provided good

G.23

Since the �scal budget is continuously balanced, the level of K (t) and the marginal-

tax level, � (t), jointly determine the motion of G (t) at all times, t � 0, through equation

(14). So, henceforth, let (G (s))s�t comply with (� (s) ; K (s))s�t and the balanced �scal

rule (14). In addition, the path (K (s))s�t must comply with optimal investment decisions

of individual households, subject to a policy stream (� (s) ; G (s))s�t for all t � 0, and the

aggregate version of the resource constraint given by (18). These features allow us to use

a simple recursive representation of the individual household�s problem which discards the

sequence (G (s))s�t, and focuses on the impact of the sequence (� (s))s�t (subject to (14))

on investment decisions. In turn, optimal-policy setting focuses on the determination of

the marginal-tax sequence (� (s))s�t. The following section provides the problem�s recursive

formulation.
23If utility was not linear, then aggregate capital, K, would a¤ect the formation of the return to capital,
too. With linear production, (13) shows that the return to capital is idependent from the level of K.
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3.2.1 Optimization problem of an individual household and its
solution

Let the decision rule cRE (t) = CRE
�
k;K; t j (� (s))s�t

�
, denote the solution to the individ-

ual household�s problem, in which the superscript �RE�denotes a �rational-expectations�

equilibrium. Market clearing implies that equilibrium aggregate consumption is CRE (t) =

CRE
�
K;K; t j (� (s))s�t

�
. Substituting the rule CRE

�
k;K; t j (� (s))s�t

�
into the objective

function (15), with variables k and K evolving according to the resource constraint given

by (18) and its aggregate version, the value function of an individual household, denoted by

JRE
�
k;K; t j (� (s))s�t

�
, for all t � 0, satis�es the Hamilton-Jacobi-Bellman (HJB) equa-

tion,

�JRE
�
k;K; t j (� (s))s�t

�
= max

c(t)�0

8><>:ln (c) + � ln [� (t)RK] +
+ f[1� � (t)]Rk � cg � JREk

�
k;K; t j (� (s))s�t

�
+

+
(�k)2

2
B (� (t))2 � JREkk

�
k;K; t j (� (s))s�t

�
+

+
�
[1� � (t)]RK � CRE

�
K;K; t j (� (s))s�t

�	
� JREK

�
k;K; t j (� (s))s�t

�
+

+
(�K)2

2
B (� (t))2 � JREKK

�
k;K; t j (� (s))s�t

�
+

+�2kKB (� (t))2 � JREkK
�
k;K; t j (� (s))s�t

�
+

+JREt
�
k;K; t j (� (s))s�t

�
+

+��

(
E�
�
JRE

�
k � [1� �B (� (t))] ; K � f1� �B (� (t))g ; t j (� (s))s�t

��
�

�JRE
�
k;K; t j (� (s))s�t

�)9>=>; , (20)
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in which B (� (t)) � 1 + [1� � (t)]R and with E� being the expectations operator focusing

on the uncertainty of variable � alone. In order that the HJB equation (20) be well-de�ned

we need to ensure that 1 � �B (�) > 0 for all � 2 Z, and all � � 0.24 So, throughout the

rest of the paper we assume that Z and R are such that,

sup (Z) < 1

1 +R
. (21)

For ensuring that JRE
�
k;K; t j (� (s))s�t

�
be well-de�ned we also assume that

0 � � (t) � 1 , for all t � 0 . (22)

In Appendix B we show that, under the parametric constraint given by (21) and a tax

pro�le (� (t))t�0 restricted by (22), the solution to the maximization problem expressed by

the HJB equation (20) is,

c� (t) = CRE
�
k;K; t j (� (s))s�t

�
= �k for all t � 0 , (23)

and the value function is given by,

JRE
�
k;K; t j (� (s))s�t

�
=
1

�

�
ln (�) +

1 + �

�
(R� �) + � ln (R) + ln (k) + � ln (K)

�
+

+

Z 1

t

e��(s�t)M (� (s)) ds , (24)

in which

M (�) = � ln (�)� 1 + �
�

�
R� +

�2

2
B (�)2 � ��E� fln [1� �B (�)]g

�
. (25)

3.2.2 Maximizing social welfare under rational expectations

The social-welfare function at time 0 is derived through setting k = K and t = 0 in function

JRE. In particular, equation (24) implies that the social-welfare function is,

JRE
�
K;K; 0 j (� (t))t�0

�
=
1

�

�
ln (�) +

1 + �

�
(R� �) + � ln (R) + (1 + �) ln (K)

�
+

24Notice that � cannot be negative, as it only �nances a public good which satis�es G (t) � 0 for all t � 0.
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+

Z 1

0

e��tM (� (t)) dt . (26)

Setting the optimal-policy function of time
�
�RE (t)

�
t�0 is a task that can be performed

analytically since the social-welfare function given by (26) is time-separable. In particular,

optimal policy is determined by setting M 0 (�) = 0, which implies that

�RE (t) = �RE , for all t � 0 ,

with �RE solving the following equation,

1

�
= �RE (�) , (27)

in which

�RE (�) � 1 + �

��
R

�
1� �2 (1 +R) + �2R� � ��E�

�
�

1� � (1 +R) + �R�

��
. (28)

Equations (27) and (28) show that the optimal rational-expectations policy
�
�RE (t)

�
t�0 is

both time-consistent and time-invariant. Notice also that, under the parametric constraint
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given by (21), the policy �RE solving (27) is also the unique global optimum, sinceM 00 (�) < 0

for all � � 0.25 In the deterministic version of the model, which corresponds to the case

of � = �� = 0, the optimal tax rate, denoted by �DET (t) in which �DET� stands for

�deterministic�, is

�DET (t) = �DET =
��

(1 + �)R
, for all t � 0 ,

which corresponds to Xie�s (1997, eq. 23, p. 418) solution.26 The comparison between the

deterministic solution and the stochastic version under rational expectations (�; �� > 0)

is given by Figure 1.27 In the presence of uncertainty, as the values of � and �� increase,

function �RE (�) in Figure 1 shifts downwards, demonstrating that the optimal marginal

tax rate always increases (this is also why �RE > �DET if we de�ne �RE as corresponding to

the stochastic version of the model with �; �� > 0).28

One of the reasons contributing to higher taxation as the value of � increases is the

insurance e¤ect of marginal taxation. Higher marginal taxes reduce the e¤ective income

�uctuations caused by shocks, thus generating an insurance e¤ect. The insurance e¤ect of

marginal taxation has been theoretically suggested by Mirrlees (1974) and Varian (1980),

and has also been empirically demonstrated by Grant et al. (2008, 2010). Another reason

why marginal taxes increase as the value of �� increases is the fact that the average expected

25In particular,

M 00 (�) = � 1

�2
� 1 + �

��
R2

(
�2 + ��E�

(�
�

1� �B (�)

�2))
< 0 .

26Notice that in Xie�s (1997, pp. 416-418) example, � = 1.
27In Figure 1 we assumed that all parameters are such that �RE (1) > 1, namely

1 + �

��
R

�
1� �2 � ��E�

�
�

1� �

��
> 1 .

28The function �RE (�) shifts downwards as � increases if and only if R� < 1+R, i.e., with � < 1+1=R. As
we focus on parameterizations that imply � < 100% (as the case in Figure 1), equation (28) together with
Figure 1 imply that @�RE=@� > 0 for all � belonging to the interval [0; 1].
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return of capital decreases, making capital investment less attractive and tax distortions on

capital less severe. That taxes are perceived as being less distortionary when capital is

expected to have lower returns, is the cornerstone of the belief mechanism a¤ecting optimal

policy that we suggest in the rest of this paper.

4. Optimal Fiscal Policy under Rational Bayesian Learning

Here information is incomplete, and the policy game is a Stackelberg game with instanta-

neous precommitment, as in Cohen and Michel (1988). In the incomplete-information setup

the policymaker needs to re-evaluate priors before re-setting policy instantaneously. So there

is an additional set of state variables entering the rational-learning problem in order to de-

scribe the state of beliefs and model uncertainty related to this informational limitation. As

we have shown throughout Section 2, the pair (N (t) ; T (t)), with T (t) denoting the elapsed

sampling time up to time instant t � 0, and with N (t) denoting the cumulative count of

jumps up to T (t), is a su¢ cient-statistics set. Having (N (t) ; T (t)) as a su¢ cient-statistics

pair facilitates the incorporating of learning in a HJB equation through the introduction of

Nt as the only additional state variable to the set of state variables used in the rational-

expectations problem. Speci�cally, in the rational-expectations problem the set of state

variables for an individual household is
�
k;K; t j (� (s))s�t

�
, while in the rational-learning

problem the corresponding set of state variables is
�
k;K;N; T j (� (s))s�T�T0

�
, because the

time state variable is incorporated through the linear transformation t = T (t)� T0.

Let the superscript �RL�denote a �rational-learning�equilibrium. Fix an initial condi-

tion T0 and let the decision rule cRL (t) = CRL
�
k;K;N; T j (� (s))s�T�T0

�
denote the solu-

tion to the individual household�s problem. Accordingly, equilibrium aggregate consumption

is given by CRL (t) = CRL
�
K;K;N; T j (� (s))s�T�T0

�
. The rational-learning HJB equation
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is,

�JRL
�
k;K;N; T j (� (s))s�T�T0

�
= max

c(t)�0

8><>:ln (c) + � ln [� (t)RK] +
+ f[1� � (t)]Rk � cg � JRLk

�
k;K;N; T j (� (s))s�T�T0

�
+

+
(�k)2

2
B (� (t))2 � JRLkk

�
k;K;N; T j (� (s))s�T�T0

�
+

+
�
[1� � (t)]RK � CRL

�
K;K;N; T j (� (s))s�T�T0

�	
� JRLK

�
k;K;N; T j (� (s))s�T�T0

�
+

+
(�K)2

2
B (� (t))2 � JRLKK

�
k;K;N; T j (� (s))s�T�T0

�
+

+�2kKB (� (t))2 � JRLkK
�
k;K;N; T j (� (s))s�T�T0

�
+

+JRLT
�
k;K;N; T j (� (s))s�T�T0

�
+

+
N

T

(
E�
�
JRL

�
k � [1� �B (� (t))] ; K � f1� �B (� (t))g ; N + 1; T j (� (s))s�T�T0

��
�

�JRL
�
k;K;N; T j (� (s))s�T�T0

�)9>=>; . (29)

In equation (29), the belief change over time is captured by two elements. First element

is the partial derivative JRLT , which takes into account the impact of a change in elapsed

sampling time on beliefs, since T is one of the two su¢ cient statistics for deriving posterior

beliefs. The second element is having �N +1�replacing �N�in the last term in brackets on

the right-hand side of equation (29), expressing that su¢ cient statistics will add up one more

jump in case a jump occurs within dt time from the present instant. These two elements

incorporate Bayes�rule in the HJB equation, making learning rational instead of adaptive

Bayesian learning.29

29For a distinction between rational learning and adaptive learning see, for example, Koulovatianos, Mirman,
and Santugini (2009), and Koulovatianos and Wieland (2011).
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We make the same assumptions as in the case of rational expectations, that the para-

metric constraint given by (21) holds, and that any tax pro�le (� (t))t�0 is restricted by

(22). Using similar techniques as in the case of rational expectations, but taking special care

of the belief evolution over time, in Appendix B we show that, under the solution to the

maximization problem expressed by the HJB equation (20) is,

c� (t) = CRL
�
k;K;N; T j (� (s))s�T�T0

�
= �k for all t � 0 , (30)

and the value function is given by,

JRL
�
k;K;N; T j (� (s))s�T�T0

�
=
1

�

�
ln (�) +

1 + �

�
(R� �) + � ln (R) + ln (k) + � ln (K)

�
+

+ET

�Z 1

T�T0
e��tm̂ (� (t)) dt

�
+
N

T

1 + �

�
E� fln [1� �B (� (T � T0))]g , (31)

in which

m̂ (� (t)) = � ln (�)� 1 + �
�

�
R� +

�2

2
B (�)2

��
R� +

�2

2
B (�)2 � N

T
E� fln [1� �B (�)]g

�
.

(32)

4.1 Maximizing social welfare under limited information

Since a benevolent planner does not have a di¤erent information set compared to all other

agents in the economy, the social-welfare function at time 0 is derived through setting k = K

and T = T0 in function JRL. So,

JRL
�
K;K;N; T j (� (t))t�T0

�
=
1

�

�
ln (�) +

1 + �

�
(R� �) + � ln (R) + (1 + �) ln (K)

�
+

+ E0

�Z 1

T0

e��tm̂ (� (t)) dt

�
+
N

T
E� fln [1� �B (� (T0))]g . (33)

In Appendix B we show that optimal policy is determined by setting M 0 (�) = 0, which

implies that

�RL (t) = �RL , for all t � 0 ,
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with �RL solving the following equation,

1

�
= �RL (�) = �̂RL (� j N; T ) , (34)

in which

�̂RL (� j N; T ) � 1 + �

��
R

�
1� �2 (1 +R) + �2R� � N

T
E�

�
�

1� � (1 +R) + �R�

��
. (35)

Equations (34) and (35) show that, under limited information,
�
�RL (t)

�
t�0 is not time-

invariant any more. Instead, the level �RL (t) varies with the su¢ cient statistics (N (t) ; T (t)),

depending on the history of past realizations. So, despite that we preserve rationality, under

limited information there is path dependence, driven by the evolution of the information set.

Based on equations (28) and (35) Figure 2 shows how optimal tax rates relate to rational-

expectations taxes. Whenever there is optimism (N (t) =T (t) < ��), optimal tax rates are

lower than �RE. Since agents in the model think that capital accumulation is not disrupted

frequently by capital busts they wish to have a higher investment rate. This vivid propensity

to invest comes from the tendency of agents in this economy to smooth consumption irre-
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spective of tax rates and pessimistic/optimistic beliefs, by keeping a pre-tax consumption

rate to c (t) =y (t) = (�=A) k (t) for all t � 0. The social planner, who has the same level of

optimism, understands that under optimism the economy is more responsive to investment

stimulus and encourages this high propensity to invest by taxing less. On the contrary, if

there is pessimism, (N (t) =T (t) > ��), then optimal tax rates are higher than �RE. In this

case, the social planner understands that the economy is not responsive to tax incentives

for investment because everyone�s belief is that capital busts occur too often. So, at times

of pessimism the planner �nds it optimal to provide more public goods by immediately

�nancing those goods with higher taxes.

So, beliefs about the frequency of capital busts act as a taste shifter for the social welfare

function. Even if the �scal balance was not balanced, every time that a government provides

a higher ratio of public goods marginal taxes have to increase soon thereafter. Apart from

the standard argument that, after a massive capital-value bust a government provides more

public goods in order to alleviate poverty, we believe we have captured another aspect of

post-crisis policy setting. In a model which has abstracted from income heterogeneity and

poverty-line considerations, we have shown that the responsiveness of the economy to tax

incentives for investment matters as well. This is a closed-economy model, not allowing for

capital �ight. Certainly extensions in open-economy models may shed more light on why

public consumption rises so much after capital-value busts.

5. Conclusion

In a deterministic �AK�endogenous growth model a tax cut has permanent positive e¤ects,

as it can boost future growth opportunities and welfare. The reason is, taxes discourage

investment, and investment builds capital, which is the productive backbone of the economy.
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Importantly, in the �AK�endogenous growth model, past distortions are not wiped out with

time, they leave a permanent negative mark. We have shown that all above responses of

the �AK�endogenous growth model to marginal-tax increases are retained after introducing

uncertainty, even if this uncertainty involves rare capital-value busts. Yet, we have shown

that everything changes once we introduce a natural feature: due to the inherently infrequent

occurrence of rare capital-value busts, markets, market analysts, and policy makers may

not be con�dent about the key parameter, the disaster-frequency parameter. So, all form

subjective beliefs about the disaster-frequency parameter.

It turns out that the average subjective belief about the disaster-frequency parameter

plays a critical role for all investment decisions. Most importantly, it plays a key role in de-

termining the responsiveness of investment to marginal taxes. Before a massive capital loss,

markets and policymakers have optimistic beliefs about investment-bene�t prospects: they

think of an economy as a race horse. Policymakers do not tax as much, because chopping o¤

a leg from a race horse is an enormous waste. On the contrary, after a massive capital loss,

rational/informationally-e¢ cient revision of beliefs by both markets and policymakers dic-

tates that the economy is not a race horse, but a sick horse, prone to such pathological events

in the future. Here is what brings the policy-regime switch: you can beat a sick horse in

order to stand up, but you will not do much; so, no major harm is done by taxing more after

a major capital bust, because nobody wants to invest in an economy where capital frequently

gets busts. Yet, after a long period without disasters, rational/informationally-e¢ cient re-

vision of beliefs about the frequency of capital busts by both markets and policymakers

dictates that optimism is reasonable to return: everyone thinks that capital busts are more

rare events than before, and so optimal �scal policy returns to a lower marginal taxation on

capital.
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We believe our study contributes to the understanding of optimal or actual policymaking

in periods shortly after rare capital busts. We have emphasized the role of Bayesian updating

of beliefs about the frequency of jumps, and we have demonstrated that any future studies

that can incorporate our analysis will, (a) retain rationality and a rationalization of common

priors despite the limited information, (b) retain a solid welfare criterion for understanding

�rst-best and second-best policy, and (c) use the same dynamic-programming tools in order

to model markets in such forward-looking dynamic environments with or without endogenous

�scal policy.
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6. Appendix A - More detailed evidence on �G and busts

21 OECD countries from 1960-2007

Events % Change in Government Consumption

Recessions 1.79

Severe recessions 2.16

Credit contractions 2.83

Credit crunches 5.98���

House-price declines 3.39

House-price busts 8.75���

Equity-price declines 3.59

Equity-price busts 7.48���

Recessions without credit crunches 1.57

Recessions with credit crunches 3.23���

Recessions with severe credit crunches 4.57���

Recessions without house-price busts 1.73

Recessions with house-price busts 1.82

Recessions with severe house-price busts 2.12

Recessions without equity-price busts 1.62

Recessions with house-price busts 2.14

Recessions with severe house-price busts 2.16

Table A.1 �Selected numbers from Claessen et al. (2009, Table 9, p. 685). The reported

numbers are medians of peak-to-trough changes in government consumption corresponding to each

event. �Severe� events are those in the top quartile of the Claessen et al. (2009) sample of

crunches/busts/shocks. Symbol �***�indicates signi�cance at the 1% level.
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7. Appendix B - Proofs

7.1 Proof of the long-run convergence to rational expectations

From a modeler�s perspective, the expected value of N (t) in (3) is �� � t (denote the expected

realization from a modeler�s perspective by Em [N (t)] = �
� � t). After applying the law of

iterated expectations on equations (10) and (11) it is,

Em

h
~� (t)

i
=
N (0) + �� � t
T (0) + t

, (36)

and

V arm

h
~� (t)

i
=
N (0) + �� � t
[T (0) + t]2

. (37)

The asymptotic distribution is directly characterized from (36) and (37) which imply,

lim
t!1

Em

h
~� (t)

i
= �� , (38)

and

lim
t!1

V arm

h
~� (t)

i
= 0 . (39)

Equation (39) implies in�nite con�dence asymptotically, and together with the unbiasedness

implied by (36) the result is proved. �

7.2 Finding the solution to the RE problem given by the HJB
equation (20)

We start with the guess that JRE
�
k;K; t j (� (s))s�t

�
takes the form,

JRE
�
k;K; t j (� (s))s�t

�
= �+

Z 1

t

e��(s�t)m (� (s)) ds+ a ln (k) + b ln (K) , (40)

for all t � 0, in which �, a, and b are undetermined coe¢ cients, while m (� (s)) is an un-

known function. The guess given by (40) declares that JRE
�
k;K; t j (� (s))s�t

�
depends
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on time t and also on the current and future policies (� (s))s�t. The �rst-order condi-

tions of the problem given by (20) are c�1 = JREk
�
k;K; t j (� (s))s�t

�
, while (40) implies

JREk
�
k;K; t j (� (s))s�t

�
= ak�1, so,

CRE
�
k;K; t j (� (s))s�t

�
= a�1k . (41)

Based on (41) it is straightforward to linearly aggregate individual consumption rules and

obtain,

CRE
�
K;K; t j (� (s))s�t

�
= a�1K . (42)

Substituting the guess (40) and its derivatives, together with (41) and (42) into (20) we

obtain,

��+�h
�
t j (� (s))s�t

�
+�a ln (k)+�b ln (K) = ln (k)+� ln (K)+ln

�
a�1
�
+� ln (R)+

+� ln [� (t)] + (a+ b)

�
[1� � (t)]R� a�1 � �

2

2
B (� (t))2 + ��E� fln [1� �B (� (t))]g

�
+

+ht
�
t j (� (s))s�t

�
, (43)

in which

h
�
t j (� (s))s�t

�
�
Z 1

t

e��(s�t)m (� (s)) ds . (44)

In order that the terms ln (k) and ln (K) in equation (43) be eliminated, it is necessary and

su¢ cient to set,

a = ��1 and b = ���1 . (45)

Substituting the coe¢ cients for a and b implied by (45) into (43), and after setting

� =
1

�

�
ln (�) +

1 + �

�
(R� �) + � ln (R)

�
, (46)

in order to eliminate the constants from (43), equation (43) reduces to,

�h
�
t j (� (s))s�t

�
� ht

�
t j (� (s))s�t

�
=M (� (t)) . (47)
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According to the de�nition of h
�
t j (� (s))s�t

�
, which is given by (44), equation (47) implies,

m (� (t))�
Z 1

t

e��(s�t)m0 (� (s)) _� (s) ds =M (� (t)) , (48)

in which _� (s) is the derivative of function � (s) with respect to time. According to Xie

(1997) we can have a solution with _� (t) = 0 for all t � 0, i.e., a constant tax over time. This

possibility is corroborated by equation (48). We can investigate whether setting _� (t) = 0

for all t � 0 leads to a contradiction. Speci�cally, �x, for the moment, an optimal plan such

that _� (t) = 0 for all t � 0. Under the _� (t) = 0 assumption, equation (48) implies that

m (� (t)) =M (� (t)) , (49)

with function M (� (t)) given by equation (25). After substituting (49) into (44), the tax

plan (� (s))s�t enters the value function J
RE
�
k;K; t j (� (s))s�t

�
additively, through the

time-separable term
R1
t
e��(s�t)M (� (s)) ds. This time separability of the tax-rate function

M (� (s)) in
R1
t
e��(s�t)M (� (s)) ds implies that optimal-tax setting is achieved through

solving M 0 (� (t)) = 0 for all t � 0 (it is veri�able that M 00 (� (t)) < 0). Since function

M (� (t)) is time-invariant, the original claim that _� (t) = 0 for all t � 0 is recon�rmed.30

After substituting (45), (46), (49), and (44) into (40) we obtain the value function given by

(24). Finally, substituting (45) into (41) we obtain the decision rule given by (23), proving

the result. �
30Xie (1997) provides an alternative argument proving that the optimal tax rate for this model is time-
consistent and constant. Xie (1997) derives a representative household�s Lagrange multipliers that pertain
to its optimization. Then Xie (1997) inserts these household Lagrange multipliers into the optimization
problem of the government and proves that the boundary conditions on the government Lagrange multipliers
determine whether a model has a time-consistent solution or not Xie (1997, Proposition 1, p. 416). Xie�s
(1997) solution approach is accommodated by the deterministic environment he analyzes, which allows for
using Hamiltonians. Extending Xie�s (1997) argument to a stochastic environment is possible, but it is
more cumbersome: it requires proving boundary-condition requirements for composite functions involving
partial derivatives of value functions characterized by HJB equations. The proof we use here is simpler and
straighforward for the purposes of the stochastic model of this paper.
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7.3 Finding the solution to the RL problem given by the HJB
equation (29)

Our guess about the functional form of JRL
�
k;K;N; T j (� (s))s�T�T0

�
is,

JRL
�
k;K;N; T j (� (s))s�T�T0

�
= �̂+

Z 1

t

e��(s�t)Et [m̂ (� (s))] ds

+â ln (k) + b̂ ln (K) +
N

T
�B̂ (� (t)) , (50)

in which t = T � T0,

B̂ (�) � E� fln [1� �B (�)]g , (51)

while �̂, â, and b̂ are undetermined coe¢ cients, and m̂ (� ;N; T ) is an unknown function.

The �rst-order conditions of the problem given by (29) imply,

c = �̂�1k and CRL
�
K;K;N; T j (� (s))s�T�T0

�
= �̂�1K . (52)

Using the guess given by (50) and (52), the HJB equation (29) becomes,

��̂+ �

Z 1

t

e��(s�t)Et [m̂ (� (s))] ds+ �â ln (k)

+�b̂ ln (K) + �
N

T
�B̂ (� (t)) =

= ln
�
â�1
�
+ ln (k) + � ln (R) + � ln [� (t)] + � ln (K)

+
�
[1� � (t)]R� a�1

	
kâk�1

+
(�k)2

2
B (� (t))2 (�â) k�2

+
�
[1� � (t)]R� a�1

	
Kb̂K�1

+
(�K)2

2
B (� (t))2

�
�b̂
�
K�2

+�2kKB (� (t))2 � 0
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+
d
R1
t
e��(s�t)Et [m̂ (� (s))] ds

dt

�N
T 2
�B̂ (� (t))

+
N

T

�
â+ b̂+

�
N + 1

T
� N
T

�
�

�
B̂ (� (t)) . (53)

After rearranging terms and simplifying (53) we obtain,

�

Z 1

t

e��(s�t)Et [m̂ (� (s))] ds�
d
R1
t
e��(s�t)Et [m̂ (� (s))] ds

dt

+(�â� 1) ln (k) +
�
�b̂� �

�
ln (K) +

h
�� �

�
â+ b̂

�i N
T
B̂ (� (t))

+��̂� ln
�
â�1
�
� � ln (R)�

�
R� a�1

� �
â+ b̂

�
= � ln [� (t)]�

�
â+ b̂

��
R� (t) +

�2

2
B (� (t))2

�
. (54)

In order to get rid of variables K, k, in equation (54) we can set,

â =
1

�
and b̂ =

�

�
. (55)

Combining (55) with the need to eliminate dependence on the ratio N=T in (54) implies,

� =
1 + �

�2
. (56)

In order to eliminate constant terms in (54), equations (55) and (56) further imply that

�̂ =
1

�

�
ln (�) + � ln (R) +

1 + �

�
(R� �)

�
. (57)

After imposing (55), (56), (57) into (54) the remaining terms are,

�

Z 1

t

e��(s�t)Et [m̂ (� (s))] ds�
d
R1
t
e��(s�t)Et [m̂ (� (s))] ds

dt

= � ln [� (t)]� 1 + �
�

�
R� (t) +

�2

2
B (� (t))2

�
,
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which implies,

m̂ (� (t)) = � ln [� (t)]�1 + �
�

�
R� (t) +

�2

2
B (� (t))2

�
+

Z 1

t

e��(s�t)Et [m̂ (� (s)) m̂
0 (� (s)) _� (s)] ds .

(58)

It remains to show that Et [m̂ (� (s)) m̂0 (� (s)) _� (s)] = 0 for all s � t in equilibrium. Speci�-

cally, we show that, at any time instant t � 0, future taxes are not expected to change from

the current level � (t), not even instantaneously, i.e., Et [ _� (s)] = 0 for all s > t.

Consider that Et [ _� (s)] = 0 for all s > t. Since all shocks in the model are independent

over time, Et [ _� (s)] = 0 for all s > t implies that Et [m̂ (� (s)) m̂0 (� (s)) _� (s)] = 0 for all

s � t as well. So, the integral on the right-hand side of (58) vanishes, and (58) implies,

m̂ (� (t)) = � ln [� (t)]� 1 + �
�

�
R� +

�2

2
B (� (t))2

�
. (59)
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