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1 Introduction

Economists have long understood that private information can lead to adverse-selection-driven

pathologies in many markets. One of the most well known and well-studied examples of such

pathologies is the seminal non-existence result of Rothschild and Stiglitz (1976). Their paper

demonstrated how private information-driven adverse selection can undermine the very existence

of a (static Nash) equilibrium. This non-existence result spawned a wave of research considering

alternative equilibrium concepts which would make predictions about outcomes in adversely selected

and competitive markets in those cases when the Rothschild-Stiglitz candidate equilibrium fails to

exist.

Two distinct concepts emerged and have endured. On the one hand, Riley (1979)’s so-called

“reactive” equilibrium (henceforth Rothschild-Stiglitz-Riley or “RSR”) always coincides with the

Rothschild-Stiglitz equilibrium candidate, and is justified by a quasi-dynamic assumption about

firms’ reactions to entry. The “foresight” equilibrium attributed to Miyazaki (1977), Wilson

(1977), and Spence (1978) (henceforth the “MWS” equilibrium), on the other hand, diverges from

the Rothschild-Stiglitz candidate whenever that candidate is not an equilibrium in the sense of

Rothschild and Stiglitz. In particular, the MWS equilibrium concept predicts that the market

will implement Pareto-improving cross-subsidies across different types’ contracts whenever such

cross-subsidies exist. This prediction is justified via a (different) quasi-dynamic assumption about

anticipated contract withdrawals by incumbents in response to entry or deviations.

Both concepts have been widely employed for studying competitive markets with adverse selec-

tion (including Hoy (1982), Crocker and Snow (1985), Puelz and Snow (1994) Crocker and Snow

(2008) Finkelstein et al. (2009), and Mimra and Wambach (2017) for the MWS concept, and Be-

sanko and Thakor (1987), Landers et al. (1996), Newhouse (1996), Inderst (2005), Handel et al.

(2015), Mimra and Wambach (2017), and Boyer and Peter (2018) for the RSR concept). There

has been a recent wave of the literature providing more formal foundations for both concepts (viz

Netzer and Scheuer (2014), Picard (2014), Picard (2018), Mimra and Wambach (2018), and Di-

asakos and Koufopoulos (2018) for the MWS concept, and Engers and Fernandez (1987), Inderst
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and Wambach (2001), Dubey and Geanakoplos (2002), Mimra and Wambach (2016), and Azevedo

and Gottlieb (2017) for the RSR concept).

In finite type models in the Rothschild and Stiglitz tradition, both the RSR and MWS equilibria

are known to exist (see Riley (1979) and Spence (1978), respectively). Existence of the RSR

equilibrium readily extends to a continuum of types model (Riley (1979)). This short essay shows

that the MWS equilibrium can also be extended to the continuum of types case.

This extension is of more than just technical interest. Models with continuous distributions

of types are common and natural in many contexts (see, for example Hendren (2013)’s important

study of private information as a cause of insurance market rejections). Moreover, when there is

a continuum of types, the sort of cross-subsidies implemented in the MWS equilibrium is typically

required for insurance market outcomes to be non-trivial: as Hendren (2014) observes, whenever

the distribution of risk types has full support (specifically, full support near a p = 100% risk of

loss), the only possible outcome in the absence of cross-subsidies across types involves no insurance

trade at all. The RSR equilibrium concept therefore implies no trade whenever the distribution of

types has full support, even when the mass of very high risk types is vanishingly small. Indeed, the

RSR equilibrium is typically discontinuous with respect to the introduction of an arbitrarily small

measure of types at or near p = 100%. In contrast, precisely because it allows Pareto-improving

cross-subsidies, the MWS equilibrium is continuous in the distribution of types: when a small

measure of very high risk types is introduced, the lower risk types simply cross-subsidize them and

(because there are few of them) the equilibrium predictions for the lower risk types are essentially

unaffected. Unless one can rule out the presence of very high risks with absolute certainty, then,

the MWS equilibrium is both the less trivial and the more robust concept for competitive market

equilibria with adverse selection in continuous type settings.

To extend the MWS equilibrium concept to the continuum of types case, we lean on Spence

(1978)’s construction for the finite types case. Because Spence’s construction is recursive, it does not

directly extend to continuous type setting. Our first step (Section 2) is to reformulate Spence’s con-

struction in a non-recursive manner. Specifically, we show that Spence’s construction is equivalent

to establishing the existence of a “reservation utilities” function V̄ (p) (on the space of types p). V̄ (p)

satisfies the property that the solutions to a particular family of constrained profit-maximization

problems–specifically the family of problems which are dual to the ones used by Spence (1978)’s–
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yield exactly zero profits and give at least utility V̄ (p) to type p. This reformulation readily extends

to a continuum of types. In Section 3, we then use a limit-of-finite-approximations argument akin

to the one in Hellwig (2007) to show that there indeed exists a function V̄ (p) defined on a contin-

uum of types satisfying this zero-profit property, thereby showing that an MWS equilibrium exists.

In Section 4, we argue, moreover, that our formulation of the MWS equilibrium in the continuum

of types case can be justified by the same “anticipatory” logic used in Wilson (1977) and Spence

(1978). Section 5 offers some brief conclusions.

2 Setup and definitions

We consider a natural extension of Rothschild and Stiglitz (1976)’s binary loss setting to one

with a continuum of types. Types differ only in the probability p of experiencing a loss of size

L from endowed wealth W > L. There is a continuous distribution F (p) of types p ∈ [p, p̄]

(possibly with p̄ = 1 or p = 0 or both), with a density f(p) satisfying f(p) ∈ [f, f̄ ], where

0 < f < f̄ < ∞.1 Absent insurance, consumers will consume cN = W if they experience no loss,

and cL = W − L if they experience a loss. If they purchase an insurance contract at a premium q

which provides an indemnity payment I, then they will instead have state-contingent consumption

(cN , cL) = (W − q,W − q − L + I). In line with previous literature, we assume that firms impose

an exclusivity condition, which requires customers to have no other insurance (see Jaynes (1978)

and Hellwig (1988) for an analysis of the case that exclusivity is part of strategic interaction among

firms). Preferences over state-contingent consumption vectors are given by (1− p)u(cN ) + pu(cL),

where u is a strictly concave utility function, which we normalize (without loss of generality), so

that u(W − L) = 0 and u(W ) = 1.2

2.1 Notation in utility space

Each consumption vector (cN , cL) (and hence each insurance contract (q, I)) is associated with

a unique utility vector ~U = (u(cN ), u(cL)). It will be more convenient to formulate contracts

1As Hellwig (1992) notes, an equilibrium a la Spence (1978) might not exist for an unbounded type space.
2We follow the classical von Neumann-Morgenstern binary loss setting as, e.g., Rothschild and Stiglitz (1976).

Many papers in the literature (e.g., Riley (1979) and Engers and Fernandez (1987)) use different and more general
preferences. Our results extend, readily so to quasi-linear-in-premium settings such as in Spence (1978) and Azevedo
and Gottlieb (2017).
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and equilibrium outcomes in terms of these utility vectors rather than consumptions or premium-

indemnity pairs. In this formulation, expected utility is linear (in ~U = (uN , uL) as well as p) and

we denote it as

V (~U ; p) ≡ V ((uN , uL); p) ≡ (1− p)uN + puL. (1)

Risk neutral firms earn expected profits q−pI from selling contracts (q, I) to a type p; equivalently,

a firm selling a contract yielding utility vector ~U = (uN , uL) has expected profits

Π(~U ; p) ≡ [W − pL]− (1− p)u−1(uN )− pu−1(uL), (2)

which are strictly concave in ~U .

2.2 MWS equilibrium

This section builds up to a definition of the MWS equilibrium in the continuum of types case,

as outlined above. To that end, we first provide an alternative formulation of the MWS equilibrium

in the finite type case considered in Spence (1978), adapted to our notation. Consider a discrete

set of types p1 > p2 > · · · > pn with probability masses f(pi) > 0,
∑n

i=1 f(pi) = 1. Spence

(1978)’s approach defines a set of reservation utilities V̄ (pi) for each i recursively. Specifically, let

V̄ (p1) ≡ u(W −p1L) the expected utility with full insurance for the highest risk type, and, for each

i > 1, define:

V̄ (pi) ≡ max
{~U(pj)}j≤i

V (~U(pi); pi) (3)

subject to

V (~U(pj); pj) ≥ V (~U(pk); pj) ∀ j, k ≤ i and (4)

i∑
j=1

Π(~U(pj); pj)f(pj) ≥ 0 and (5)

V (~U(pj); pj) ≥ V̄ (pj) ∀j < i. (6)
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The allocation {~U(pj)}nj=1 solving the lowest risk type’s sub-problem is called the MWS equilib-

rium allocation. Then, four properties of these programs are readily established. First, the same

program can also be used as an equivalent definition of V̄ (p1). Second, for each i = 1, · · · , n,

constraint (5) binds. Third, for each i, the program is dual to the problem of maximizing profits∑i
j=1 Π(~U(pj); pj)f(pj) subject to (4), (6), and V (~U(pi); pi) ≥ V̄ (pi), and, by the second point, the

solution to this dual problem yields∑i
j=1 Π(~U(pj); pj)f(pj) = 0. Fourth—as an implication of the preceding two points and the fact

that Π is concave and V a linear function of ~U—there is a unique solution to these dual programs

for each i. As such, describing the reservation utility function V̄ (·) fully (albeit implicitly) defines

an MWS allocation, i.e., the solution to the preceding program for type pn. These four observations

together imply that it is equivalent to define an MWS equilibrium, in dual terms, as a real-valued

function V̄ (·), on {pi}i=1,··· ,n, with the property that, for all i:

0 = max
{~U(pj)}j≤i

i∑
j=1

Π(~U(pj); pj)f(pj) (7)

subject to

V (~U(pj); pj) ≥ V (~U(pk); pj) ∀ j, k ≤ i and (8)

V (~U(pj); pj) ≥ V̄ (pj) ∀j ≤ i. (9)

Spence (1978)’s “primal” approach to the MWS equilibrium does not apply in the continuum of

types case (since the natural ordering of risk types is not a well-ordering and recursion is impossible).

The dual approach, on the other hand, generalizes naturally and as follows:

Definition 1. A MWS equilibrium is a function V̄ (p) such that for all p̂ ∈ [p, p̄]:

0 = sup
{~U(p)}p∈[p̂,p̄]

∫ p̄

p=p̂
Π(~U(p); p)dF (p) (10)

subject to

V (~U(p); p) ≥ V (~U(p′); p) ∀ p, p′ ≥ p̂ and (11)

V (~U(p); p) ≥ V̄ (p) ∀p ≥ p̂. (12)
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Note that V (~U ; p), and hence the constraints, are linear in ~U . The objective is concave. As such,

the supremum in the objective (10) is always achieved and has an (essentially) unique solution.

The following section proves that an MWS equilibrium, so defined, always exists. Before turning

to that section, we first provide a brief, non-technical summary of the key steps in the proof.

2.3 A non-technical summary of the proof

To prove the existence of an MWS equilibrium in the continuum of types case, we consider an

increasingly fine sequence of finite approximations to the distribution of types F . As in Spence

(1978), there is a well-defined MWS equilibrium set of utilities and corresponding allocations for

each such discretization. We adapt an argument used by Hellwig (2007) in order to show that

there is a subsequence of these allocations which converges on a dense set of types p. We use the

completion of this convergent subsequence to define a candidate MWS function V̄ (p), which we

show is continuous in p.

We then verify, in two steps, that this candidate is indeed an MWS equilibrium in the sense

of Definition 1. The first step involves a simple continuity argument which establishes that the

appropriately-taken limits of allocations in the discrete MWS problems are feasible in the continuous

problem (i.e., satisfy constraints (11) and (12)) and, moreover, yield zero profits at the limit. In

the second step, we show that no other feasible allocation can yield positive profits in the limit

problems. This second step is done by contradiction: if a feasible allocation did yield positive

profits, then the continuity of V̄ (p) could be used to construct a feasible allocation that would yield

positive profits in some (sufficiently fine) discretization.

3 Equilibrium construction

In this section we formalize the non-technical proof summary described in the preceding section

in order to construct an MWS equilibrium.
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3.1 Discretizing the risk type distribution F

For each n ∈ N, define the set of types Pn

Pn = {pn0 , pn1 , · · · , pnk , · · · , pn2n+1} (13)

=

{
p, p+

(p̄− p)
2n

, · · · , p+ k
(p̄− p)

2n
, · · · , p̄

}
(14)

and the corresponding cdf Fn via:

Fn(p) = min
p′∈Pn,p′≥p

F (p).

The distribution Fn thus effectively collapses all types in the interval [pnk , p
n
k+1) under F onto the

point pnk , so that the probability mass at pnk is (for each 0 ≤ k ≤ 2n) given by:

fn(pnk) = F (pnk+1)− F (pnk).

We define

P =
⋃
n∈N

Pn (15)

as the set of all types which appear in any discretization.

As in Spence (1978), for each discretization Fn, n ∈ N, an MWS equilibrium exists. In particu-

lar, the MWS equilibrium gives a well-defined and unique set of reservation utilities {V̄ n(pnk)}k=0,··· ,2n+1

that solves the MWS programs defined in (7)-(9) for each p̂ ∈ Pn. We refer to this program for

type p̂ ∈ Pn as “the MWS sub-problem for type p̂”.

Define ~Un(p; p̂) = (unN (p; p̂), unL(p; p̂)) as the allocation of the p type in the solution to the MWS

sub-problem for type p̂ ≤ p in discretization n (which is defined only if p, p̂ ∈ Pn).

3.2 Convergence of discretized allocations

The following lemma shows that there is a subsequence of discretizations that converges for all

p ∈ P.
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Lemma 1. There exists a sequence {nm}m∈N such that limm→∞ ~Unm(p; p̂) ≡ U∞(p; p̂) exists for

all p, p̂ ∈ P.

Proof. The argument is the same as for Helly (1921)’s Selection Theorem and as in Hellwig (2007)’s

proof of Lemma B.3 (viz p. 812, where Hellwig cites Billingsley (1968)). Fix any p, p̂ ∈ P, p ≥ p̂.

Since the MWS equilibrium always features a consumption allocation with W −L ≤ cL ≤ cN ≤W

(i.e., each type buys non-negative insurance and does not overinsure) and since we have normalized

u(W − L) = 0 and u(W ) = 1, the components of ~Un(p; p̂) are uniformly bounded. Hence, there

exists a convergent subsequence {nm}. By a standard diagonalization argument, we can, in fact,

find a subsequence that converges for any countable set of such pairs p, p̂ ∈ P, p ≥ p̂. The lemma

follows from the fact that P × P is countable.

Define:

V̄ n(p) ≡ V (~Un(p; p); p) ∀p ∈ Pn (16)

and

V̄ ∗(p) ≡ V (~U∞(p; p); p) = lim
m→∞

V̄ nm(p) ∀p ∈ P, (17)

where ~U∞ is defined in Lemma 1. It is straightforward to show that V̄ n(p) decreases in p, so V̄ ∗(p)

is non-increasing, and

V̄ ∗(p) ≡ lim
p̃↗p,p̃∈P

V̄ ∗(p̃) (18)

is well-defined for all p ∈ (p, p̄]. In fact, V̄ ∗(p) so defined is continuous in p, per the following

Lemma.

Lemma 2. The function V̄ ∗(p), defined in (17) and (18), is continuous.

Proof. See Appendix A.1.

We are now ready to state and prove our main theorem.
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3.3 Statement and proof of main theorem

Theorem 1. The function V̄ ∗(p) defined in (17) and (18), solves the program (10)-(12) for all

p ∈ [p, p̄], i.e., is an MWS equilibrium.

Proof. The proof has two steps. In the first, we use a limiting argument for each type p̂ to construct

an allocation {~U∗(p; p̂)}p∈[p̂,p̄] that is incentive compatible, has V (~U∗(p; p̂); p) ≥ V̄ ∗(p) for all p ∈

[p̂, p̄], and yields zero total profits. Second, we use Lemma 2 to show that there cannot be any p̂

and any profitable, incentive compatible allocation {~U †(p)}p∈[p̂,p̄] satisfying V (~U †(p)) ≥ V̄ ∗(p) for

all p ∈ [p̂, p̄]. Together, these imply that V̄ ∗(·) is an MWS equilibrium per Definition 1.

Step 1: Constructing {~U∗(p; p̂)}p∈[p̂,p̄].

We make extensive use of Lemma 1, which defines ~U∞(p; p̂) as a limit of a sequence {nm}m∈N

of allocations ~Unm(p; p̂) for each p, p̂ ∈ P, p ≥ p̂.

First, consider p̂ ∈ P, and define ~U∗(p; p̂) = ~U∞(p; p̂) for all p ∈ P ∩ [p̂, p̄]. Each component

of ~U∞(p; p̂) is monotonic in p (as higher risk types get weakly more insurance than lower risk

types), and they are uniformly bounded by [0, 1] (by our normalization of the utility function). So

limp̃↗p,p̃∈P ~U
∞(p̃; p̂) and limp̃↘p,p̃∈P ~U

∞(p̃; p̂) are both well-defined and coincide except possibly at

a countable number of points, which have measure 0 under the continuous distribution F . Extend

~U∗ to p /∈ P via

~U∗(p; p̂) ≡ lim
p̃↗p,p̃∈P

~U∞(p̃; p̂).

{~U∞(p; p̂)}p∈P∩[p̂,p̄] is incentive compatible for types p ∈ P ∩ [p̂, p̄], so {~U∗(p; p̂)}p∈[p̂,p̄] defined

in this way is incentive compatible for all types p ∈ [p̂, p̄]. Similarly,

V (~U∞(p; p̂); p) ≥ V̄ ∗(p) for all p ∈ P ∩ [p̂, p̄], so V (~U∗(p; p̂); p) ≥ V̄ ∗(p).

We will now show that
∫ p̄
p=p̂ Π(~U∗(p; p̂); p)dF (p) = 0, thereby establishing feasibility for the

p̂ ∈ P case. To that end, for each m, extend ~Unm(p; p̂) to all p ∈ [p̂, p̄] via

~Um∗(p; p̂) = ~Unm (max{p̃ ∈ Pnm ∩ [p̂, p]}; p̂) . (19)

That is, “assign” types p outside of Pnm to the allocation of the closest lower-risk type in Pnm . Ex-

actly as in Hellwig (2007)’s Lemma B.1, the (almost everywhere) pointwise convergence of ~Um∗(·; p̂)
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to ~U∗(·; p̂) and the setwise convergence (here, weak convergence) of Fnm to F implies

∫ p̄

p=p̂
Π(~U∗(p; p̂); p)dF (p) = lim

m→∞

∫ p̄

p=p̂
Π(~Um∗(p; p̂); p)dFnm(p) = lim

m→∞
0 = 0. (20)

Second, consider p̂ /∈ P, and take any sequence k = 1, · · · ,∞ of pk ∈ P with pk ↗ p̂. Use

the associated sequence of (sub) allocations {~U∗(p; pk)}p∈[pk,p̄] to construct (via a diagonalization

argument as in Lemma 1) a subsequence {km} that converges for each p ∈ P ∩ [p̂, p̄], and define

~U∗(p; p̂) as the limit for each such p. Complete the allocation by defining ~U∗(p; p̂) for p /∈ P in

terms of left-hand limits of ~U∗(p′; p̂) for p′ ∈ P. The resulting allocation is incentive compatible

and has V (~U∗(p; p̂); p) ≥ V̄ ∗(p) for all p ∈ [p̂, p̄]. Moreover, since

lim
m→∞

∫ p̂

p=pkm

Π(~U∗(p; pkm); p)dF (p) = 0,

we have

∫ p̄

p=p̂
Π(~U∗(p; p̂); p)dF (p)

=

∫ p̄

p=p̂
Π(~U∗(p; p̂); p)dF (p) + lim

m→∞

∫ p̂

p=pkm

Π(~U∗(p; pkm); p)dF (p)

= lim
m→∞

∫ p̄

p=p̂
Π(~U∗(p; pkm); p)dF (p) + lim

m→∞

∫ p̂

p=pkm

Π(~U∗(p; pkm); p)dF (p)

= lim
m→∞

∫ p̄

p=pkm

Π(~U∗(p; pkm); p)dF (p) = lim
m→∞

0 = 0, (21)

where the last line follows from Equation (20). For each p ∈ [p, p̄], then, we have identified a feasible

allocation {~U∗(p; p̂)}p∈[p̂,p̄] which satisfies (11) and (12) and yields zero profits.

Step 2: Showing that {~U∗(p; p̂)}p∈[p̂,p̄] is optimal.

Suppose, by way of contradiction, that there was some p̂ and some other allocation {~U †(p)}p∈[p̂,p̄]

satisfying (11) and (12) with
∫ p̄
p=p̂ Π(~U †(p); p̂)dF (p) = δ > 0 (in which case {~U∗(p; p̂)}p∈[p̂,p̄] would

not be optimal in the MWS program). Then, for some sufficiently small ε > 0 and some p̃ ∈ P

sufficiently close to and at least as large as p̂, the allocation {~U◦(p)}p∈[p̃,p̄] defined by

~U◦(p) ≡ ~U †(p) + (ε, ε) ∀p ∈ [p̃, p̄]
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has profits
∫ p̄
p=p̃ Π(~U◦(p); p)dF (p) > δ/2 > 0, is incentive compatible, and has

V (~U◦(p); p) ≥ V̄ ∗(p) + ε, (22)

i.e., minimum utility constraints are slack in the continuous problem.

Now consider the allocation {~U◦(p)}p∈Pn∩[p̃,p̄] (the restriction of the continuous allocation ~U◦ to

the types in the nth discretization). This allocation is obviously incentive compatible, i.e., satisfies

(8) in the nth discretization. Towards showing that it also satisfies minimum utility constraints

(9) in the nth discretization, observe that V̄ n(p) converges pointwise to V̄ ∗(p). Since V̄ ∗(p) is

monotonic and, per Lemma 2, continuous in p, V̄ n(p) in fact converges uniformly in n. That is,

we can find N large enough so that V̄ n(p) < V̄ ∗(p) + ε for all p ∈ Pn ∩ [p̃, p̄] and n ≥ N . It follows

from (22) that V (~U◦(p); p) > V̄ n(p) for n > N , and hence that {~U◦(p)}p∈Pn∩[p̃,p̄] is feasible in (the

dual for) the p̃ type’s MWS sub-program for the nth discretization for all n ≥ N . It must (by

definition of the MWS equilibrium utilities V̄ n) therefore have non-positive profits. But

lim
n→∞

∫ p̄

p=p̃
Π(~U◦(p); p)dFn(p) =

∫ p̄

p=p̃
Π(~U◦(p); p)dF (p) > δ/2 > 0,

so, in fact, ~U◦(p) is strictly profitable for sufficiently large n. This contradicts the optimality of

the original MWS allocation ~Un(p; p̃) in the nth discretization. We conclude, for any p̂, that any

feasible allocation {~U †(p)}p∈[p̂,p̄] satisfying (11) and (12) must have
∫ p̄
p=p̂ Π(~U †(p); p)dF (p) ≤ 0.

The allocation {~U∗(p; p̂)}p∈[p̂,p̄] is therefore optimal in the MWS sub-problem (i.e., maximize (10)

subject to (11) and (12)) for each p̂ ∈ [p, p̄], and hence V̄ ∗(·) is an MWS equilibrium.

4 Justifying the MWS concept

In this subsection, we argue that V̄ (p) satisfying Definition 1 is a foresight equilibrium in the

sense of Wilson (1977) and Spence (1978). Specifically, we show that the allocation ~U∗ solving

the MWS program (10) for type p given V̄ (p) can be implemented in such a way that no entrant

(or deviating incumbent) firm can offer a menu of deviating contracts that will be profitable once

incumbent firms have withdrawn unprofitable contracts.
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Figure 1: Breakeven types and utilities in the MWS equilibrium.

To that end, observe first that for all types p,

∫ p̄

p′=p
Π(~U∗(p′); p′)dF (p′) ≤ 0, (23)

since, otherwise, the allocation {~U∗(p′)}p′∈[p,p̄] would be strictly profitable while satisfying (11) and

(12)—contradicting the definition of V̄ (p). Define the set of breakeven types by:

Ψ = {p|
∫ p̄

p′=p
Π(~U∗(p′); p′)dF (p′) = 0}. (24)

The breakeven types are illustrated, qualitatively, in Figure 1. The figure also qualitatively plots

the profit (23) for group [p, p̄] and the corresponding “slack” in the minimum utility constraints

(12), i.e., V (~U∗(p); p) − V̄ (p). As the figure indicates, the minimum utility constraints bind for a

type p if and only if p ∈ Ψ.3

3To see why, observe that only downward incentive constraints bind, and by single crossing, if p1 > p2 > p3

and if incentive compatibility is satisfied between the p1 and p2 and between the p2 and p3 types, then incentive
compatibility is also satisfied between the p1 and p3 types. Fixing any p, consider the possibility of cross-subsidizing
[p, p̄]. Such a cross subsidy costs resources, so it is only desirable if it eases incentive constraints—i.e., by the preceding
observations, only if it raises the utility of the p type. Consequently, if p /∈ Ψ—so that [p, p̄] is cross-subsidized—p
must receive a higher utility than V̄ (p).
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Because the objective (10) is concave and the constraints are linear, these observations imply

that the allocation ~U∗ in fact solves the problem of maximizing (10) subject to (11) and

V (~U(p); p) ≥ V̄ (p) ∀p ∈ Ψ. (25)

In other words, dropping the non-binding minimum utility constraints (i.e., for p /∈ Ψ) does not

change the solution to the mathematical program underlying the MWS equilibrium allocations. We

refer to the problem with the looser constraints (25) (in place of (12)) as the relaxed MWS problem.

For each p ∈ Ψ with p < p̄, define the associated breakeven group via

G(p) =
{
p′|p ≤ p′ ≤ inf{p̂|p̂ ∈ Ψ, p̂ > p}

}
.

If p̄ ∈ Ψ, further define G(p̄) = p̄. Now implement the allocation {~U∗(p)} by having any given firm

sell contracts to a single breakeven group (i.e., offer the menu of contracts {~U∗(p′)}p′∈G(p) for some

p), and by having multiple firms sell to each breakeven group.4

Suppose now that a competitor attacks the hypothesized equilibrium by offering some menu of

contracts. Without loss of generality, we can take this menu to be incentive compatible, describe

it by {~U †(p)}p∈[p,p̄], and assume that V (~U †(p); p) > V (~U∗(p); p) for some p. This attack will

attract some types away from their incumbent, potentially causing the incumbent to anticipate

becoming unprofitable. We assume, following Wilson (1977) and Spence (1978), that, in response,

incumbents drop unprofitable contracts, starting with the highest risks they serve, and continue to

drop until the remaining policies are profitable.5 We will now argue that, under this assumption

about responses, the final allocation {~U(p)}p∈[p,p̄] (after withdrawals) will have V (~U(p); p) ≥ V̄ (p)

for all p ∈ Ψ.

For each p ∈ Ψ, there are three mutually exclusive and collectively exhaustive cases:

1. V (~U †(p); p) ≥ V (~U∗(p); p)

2. V (~U †(p); p) < V (~U∗(p); p) and V (~U †(p′); p′) ≤ V (~U∗(p′); p′) for all p′ ∈ G(p)

3. V (~U †(p); p) < V (~U∗(p); p) and there exists a p′ ∈ G(p) with V (~U †(p′); p′) > V (~U∗(p′); p′).

4Note that this may require a continuum of firms.
5This concept of incumbents’ reaction is precisely the withdrawal concept described by (Spence, 1978, p. 437).
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We partition Ψ into three groups Ψ1, Ψ2, and Ψ3 according to these three cases. (Note that

singleton groups are in Ψ1 or Ψ2.) For p ∈ Ψ3, define

r(p) ≡ inf{p′ ∈ G(p)|V (~U †(p′); p′) > V (~U∗(p′); p′)}

as the smallest risk type that strictly benefits from ~U † relative to ~U∗. (Note that incentive compat-

ibility implies r(p) > p.) Now consider what would happen if all incumbent firms offering to groups

G(p) with p ∈ Ψ2 continued to offer their original menus (no withdrawal), and all incumbent firms

offering to groups G(p) with p ∈ Ψ3 continued to offer at least the contracts {~U∗(p′)}p′∈[p,r(p)]. Un-

der such a set of offers, each p ∈ Ψ1 will optimally choose ~U †(p), and each p ∈ Ψ2 ∪Ψ3 will choose

to remain with their incumbent; in either case, their expected utility will be at least V (~U∗(p); p).

In principle, an incumbent serving group G(p) could end up attracting types who originally (before

the attacker’s deviation) were going to purchase from a different group. But, by single crossing, all

higher risk types p′ > p will at least weakly prefer what p̃ prefers to ~U∗(p) for any p′ > p̃ > p, so

the G(p) incumbent will not attract types from any other higher risk group. Since attracting lower

risk types than p will be strictly profitable for G(p)-incumbents, this immediately implies that

incumbents serving groups in Ψ1 and Ψ2 will be at least weakly profitable. Similarly, an incumbent

who was serving any group G(p) with p ∈ Ψ3 and offers only the contracts {~U∗(p′)}p′∈[p,r(p)] will

retain all types in [p, r(p)) and no types p′ > r(p). Since
∫ r(p)
p′=p Π(~U∗(p′); p′)dF (p′) > 0, she will be

strictly profitable.

Taken together, these observations imply that, after incumbent withdrawal, all incumbents

serving groups in Ψ2 will continue to sell to all types in their group, all incumbents serving groups

in Ψ3 will continue to sell to at least p′ ∈ [p, r(p)). Hence, for p ∈ Ψ2 ∪ Ψ3, ~U(p) = ~U∗(p). For

p ∈ Ψ1, ~U(p) = ~U †(p). In either case, V (~U(p); p) ≥ V (~U∗(p); p). In words: for any attack, the final

allocation {~U(p)}p∈[p,p̄] after all incumbent withdrawals will feature V (~U(p); p) ≥ V (~U∗(p); p) ≥

V̄ (p). It will (trivially) be incentive compatible, and it will have ~U(p) 6= ~U∗(p) for some p ∈ [p, p̄].

Since ~U∗(·) solves the relaxed MWS problem and yields zero profits, it must be that

∫ p̄

p
Π(~U(p′); p′)dF (p′) < 0.
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Since each incumbent remains at least weakly profitable, it must therefore be that the entrant loses

money. We conclude that there is no scope for a deviator (or entrant) to offer contracts that will

remain profitable after the anticipated withdrawal by incumbent firms.

5 Conclusions

We have shown how to extend the MWS equilibrium concept to models with a continuum of

risk types, and we have shown that such an equilibrium always exists. The underlying argument

and conclusions readily extend mixed-distribution models with a continuum of risks and a finite

number of mass points. A natural example is models with a mass of zero-risk types in addition to

a continuously distributed measure of positive-risk types.
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A Appendix: Proofs

A.1 Proof of Lemma 2

We will show that continuity of V̄ ∗ holds at any p̃ < p̄. We omit the straightforward proof

of continuity at p̄.6 To that end, we will show that for any δ, there exists a p1 < p̃ and a

p2 > p̃ such that V̄ ∗(p1) − V̄ ∗(p2) < δ. Since V̄ ∗(p) is non-increasing in p, it will follow that

|p− p̃| < min{p̃− p1, p2 − p̃} ≡ ε implies |V̄ ∗(p)− V̄ ∗(p̃)| < δ, whence V̄ ∗ is continuous at p̃.

In constructing such a p1 and p2 we will use the following definition extensively:

Definition 2. For p̂ ∈ Pn and any T ≥ 0, define

Ṽ n(p̂, T ) ≡ max
{~U(p)}p≥p̂,p∈Pn

V (~U(p); p) (26)

subject to

V (~U(p); p) ≥ V (~U(p′); p) ∀ p, p′ ≥ p̂ with p, p′ ∈ Pn and (27)

V (~U(p); p) ≥ V̄ n(p) ∀p ≥ p̂, p ∈ Pn and (28)∑
p′∈Pn∩[p̂,p̄]

Π(~U(p); p)fn(p) ≥ −T. (29)

This is the (primal) MWS program for the nth discretization, but with the budget constraint

relaxed by T . In other words, Ṽ n(p̂, T ) is the maximum utility of type p̂ in its sub-problem if

there is a subsidy of size T > 0 available to the interval of types p ∈ [p̂, p̄] ∩ Pn. By definition,

V̄ n(p) = Ṽ n(p, 0). For any p1, p2 ∈ Pn with p1 ≤ p2 we define

Tn(p2; p1) ≡
∑

p∈Pn∩[p1,p2)

fn(p)Π(~Un(p; p1); p) (30)

6In fact, it is easy to show by a limiting argument that V̄ ∗(p) is left-continuous.
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as the profit of types [p1, p2) in the original solution {~Un(p; p1)}p∈Pn∩[p1,p̄] to the p1 sub-problem.

Since the sum of profits over all types [p1, p̄] ∩ Pn is zero in the p1 type’s MWS sub-problem

for the nth discretization, Tn(p2; p1) is the cross subsidy to the group [p2, p̄] in the solution to

that sub-problem. It follows that the sub-allocation for the group [p2, p̄] ∩ Pn in the p1 type’s

MWS sub-problem in the nth discretization coincides with the solution to the program defining

Ṽ n(p2, T
n(p2; p1)). Hence:

V (~Un(p2; p1); p2) = Ṽ n(p2, T
n(p2; p1)).

For any p1, p2 ∈ Pn with p2 ≥ p1, we have:

|V̄ n(p1)− V̄ n(p2)| = |V̄ n(p1)− Ṽ n(p2, T
n(p2; p1)) + Ṽ n(p2, T

n(p2; p1))− Ṽ n(p2, 0)|

≤ |V̄ n(p1)− Ṽ n(p2, T
n(p2; p1))|+ |Ṽ n(p2, T

n(p2; p1))− Ṽ n(p2, 0)|. (31)

By incentive compatibility in the p1 MWS sub-problem in the nth discretization, p2 types weakly

prefer ~U(p2; p1) to ~U(p1; p1), implying that

V (~Un(p1; p1); p2) ≤ V (~Un(p2; p1); p2) = Ṽ n(p2, T
n(p2; p1)). (32)

Hence, for the first summand in Equation (31) it is

∣∣∣V̄ n(p1)− Ṽ n(p2, T
n(p2; p1))

∣∣∣ ≤ V̄ n(p1)− V (~Un(p1; p1); p2)

= V (~Un(p1; p1); p1)− V (~Un(p1; p1); p2)

= (p2 − p1)unN (p1; p1)− (p2 − p1)unL(p1; p1)

≤ p2 − p1, (33)

where the last inequality follows from 0 ≡ u(W − L) ≤ unL ≤ unN ≤ u(W ) ≡ 1. This gives us an

upper bound that is independent of the discretization n.
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Towards bounding the second summand in the last line of Equation (31), note that

Tn(p2; p1) =
∑
p∈Pn

p∈[p1,p2)

fn(p)Π(~Un(p; p1); p) ≤ (p2 − p1)f̄W. (34)

Since the program defining Ṽ n(p, T ) has linear constraints and a concave objective function, it

follows that Ṽ n(p, T ) is concave in T and hence that

Ṽ n(p2, T
n)− Ṽ n(p2, 0) ≤ Tn∂V

n(p2, 0)

∂T
≤ (p2 − p1)Wf̄

∂V n(p2, 0)

∂T
. (35)

The following Lemma (proved in Appendix A.2) allows us to bound ∂V n(p,0)
∂T by some K uni-

formly in p and n (for n > N for some sufficiently large N):

Lemma 3. For any p∗ < p̄ there exists an N and a K such that ∂Ṽ n(p,0)
∂T ≤ K for all p in[p, p∗]∩Pn

and n > N .

By Lemma 3, for sufficiently large N , n > N implies:

Ṽ n(p2, T
n)− Ṽ n(p2, 0) ≤ (p2 − p1)Wf̄K. (36)

Putting together (31), (33), and (36) and taking p2 − p1 <
δ

2(Wf̄K+1)
(with p1, p2 ∈ P) shows that

|V̄ n(p1)− V̄ n(p2)| < δ/2 (37)

for all n > N , and hence that |V̄ (p1)− V̄ (p2)| ≤ δ/2 < δ, completing the proof.

A.2 Proof of Lemma 3

We start by proving the following auxiliary lemma:

Lemma 4. For any p∗ < p̄, there exists a D̄ > 0 and an N such that, for all p ≤ p∗ and all n ≥ N

either

1. u−1(unN (p, p))− u−1(unL(p, p)) > D̄ or

2.
∑
{p′∈[p̂,p̄]∩Pn} f

n(p′)Π(~Un(p′, p); p′) < 0 ∀p̂ > p.
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Figure 2: Constructing D for Lemma 4

In other words, for large enough n, either p ≤ p∗ types face a deductible of at least D̄ or the

allocation for p ≤ p∗-types’ MWS sub-problem involves positive cross-subsidies for all subgroups

[p̂, p̄] (and hence non-binding minimum utility constraints).

Proof of Lemma 4. Let p∗ < p̄ and assume that type p ≤ p∗, p ∈ P faces a deductible D > 0. The

proof makes extensive use of Figure 2, which depicts a standard insurance diagram, in consumption

space. If type p’s allocation for her MWS sub-problem (for some n) is located at (x, x−D), as shown

in the diagram, then incentive compatibility implies that the allocations for all higher risk types

p′ ∈ (p, p̄] lie within the shaded area, depicted in Figure 2, with “corners” at (B,B), (x, x − D),

and (A,A), where A ≡ x − pD (and thus is on the p type iso-profit line through (x, x − D))

and B ≡ u−1((1 − p̄)u(x) + p̄u(x − D)) (and thus lies on the p̄ type’s indifference curve through

(x, x−D)).

For each type p′ ∈ [p, p̄], the least profitable contract in the area is (A,A) and the most profitable

is (B,B). Since the MWS sub-problem has exactly zero profits overall, this implies that B is below
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and A is above the joint pooling line

B ≤W − pnM (p)L ≤ A

where

pnM (p) ≡ EFn [p′|p′ ∈ [p, p̄] ∩ Pn]

is the expected risk in p’s sub-problem. Thus, pnM (p)L is the cost of a pooling contract for types

[p, p̄] ∩ Pn. It follows directly from the definition of A that

x ≥W − pnM (p)L+ pD. (38)

Similarly, from the definition of B:

u(W − pnM (p)L) ≥ (1− p̄)u(x) + p̄u(x−D) ≥ u(x−D)

and hence

x ≤W − pnM (p)L+D. (39)

The preceding formalizes the simple observation that if D is small then x must be close to the

pooled fair full insurance allocation W − pnML. At full insurance, it is obvious that all subgroups

[p̂, p̄] receive cross-subsidies from the lower risk types [p, p̂). We will now show that the same is

true for sufficiently large N and for sufficiently small D.

To that end, define:

pM (p) ≡ lim
n→∞

pnM (p),

pnH(p) ≡ E[p′|p′ ∈ [pM (p), p̄], Fn], and pH(p) ≡ lim
n→∞

pnH(p)

pnL(p) ≡ E[p′|p′ ∈ [p, pH(p)], Fn], and pL(p) ≡ lim
n→∞

pnL(p),

and

Z ≡ min
{

min{pH(p′)− pM (p′), pM (p′)− pL(p′)}|p′ ∈ [p, p∗]
}
> 0,
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where Z > 0 follows from p∗ < p̄.

The fact that the CDF Fn converges uniformly to the continuous distribution F implies that

pni (p) converges uniformly for each i ∈ {L,M,H}. Hence, one can choose N such that, for all p,

and i ∈ {L,M,H}, n > N implies |pni (p) − pi(p)| < Z/3. For such n, then, pnH(p) − pnM (p) > Z/3

and pnM (p)− pnL(p) > Z/3.

For n > N and any p, the total profits accruing to the set of types below any given p̂ ∈ Pn in

the MWS-sub-problem for type p are:

Π∗(p̂; p) =
∑

p′∈[p,min{p̂,pnA})∩Pn

fn(p′)Π(~Un(p′, p); p′)

+
∑

p′∈[pnA,min{p̂,pnB}]∩Pn

fn(p′)Π(~Un(p′, p); p′)

+
∑

p′∈(pnB ,p̂]∩Pn

fn(p′)Π(~Un(p′, p); p′) (40)

where pnA ≡
W−A
L and pnB ≡

W−B
L , and A and B are as in Figure 2 (and where we use the convention

that the sum over an “interval” of the form [x, y] with y < x is zero). By definition, total profits

in the p sub-problem are zero, Π∗(p; p) = 0. Thus, showing that Π∗(p̂; p) > 0 for all p̂ > p implies

that profits of (p̂, p̄] are negative which is equivalent to statement 2 in the lemma and will thus

complete the proof. To that end, note first that all types p′ ∈ [p, pnA) have Π(~Un(p′, p); p′) > 0 since

all contracts in the shaded are with corners at (A,A), (B,B), (x, x−D) are below the zero-profit

lines for types p′ < pnA. So Π∗(p̂; p) > 0 for all p̂ ≤ pnA. Similarly, all types p′ ∈ (pnB, p̄] have

Π(~Un(p′, p); p′) < 0, since contracts in the shaded area are above p′ types’ zero-profit line. Hence,

profits for the sub-group (pnB, p̄] are negative and that for [p, pnB] positive. Thus, Π∗(p̂; p) > 0 for

all p̂ ≥ pnB. It remains to establish Π∗(p̂, p) > 0 for p̂ ∈ [pnA, p
n
B].

Observe that for each type,

Π(~Un(p′, p); p′) ≥W − p′L−A ≥ pnM (p)L− p′L− (1− p)D, (41)

where we use the bounds on A derived above (and the fact that A is the least profitable allocation

in the shaded area of Figure 2 for all types). Taking D < ZL/3, and taking an fn(p′)-weighted

sum of expression (41) we have (using Equation (38), the definition of pnB and B, and the bound
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B ≥ x−D to show pnB ≤ pnM + (1− p)D/L < pnM + Z/3 ≤ pH):

Π∗(p̂, p) ≥ (Fn(p̂)− Fn(p))L
(
pnM (p)− EFn [p′|p′ ∈ [p, p̂]]− (1− p)D/L

)
> (Fn(p̂)− Fn(p))L

[
(pM − Z/3)− EFn [p′|p′ ∈ [p, pnB]]− Z/3

]
≥ (Fn(p̂)− Fn(p))L

[
pM − EFn [p′|p′ ∈ [p, pH ]]− 2Z/3

]
= (Fn(p̂)− Fn(p))L [pM − pnL − 2Z/3]

≥ (Fn(p̂)− Fn(p))L [pM − pL − Z]

≥ (Fn(p̂)− Fn(p))L [pM − pL − Z] ≥ 0 (42)

which completes the proof.

We can now prove the main lemma 3.

Choose N and D as in Lemma 4 and consider any p ≤ p∗ and any n > N . If case 2. of that

Lemma holds for this p and n, then none of the minimum utility constraints bind in the MWS

sub-problem for type p in the nth discretization. By the envelope theorem, we can compute the

welfare effects of a small increase in T via a uniform marginal increase ∆ > 0 in utility across all

types and both states, so:

∂Ṽ n(p, 0)

∂T
=

∆∑
p′∈Pn,p′≥p f

n(p′)∆
[

1−p′
u′(u−1(unN (p′,p))) + p′

u′(u−1(unN (p′,p)))

] (43)

≤ u′(W − L)

1− Fn(p)
≤ u′(W − L)

1− Fn(p∗)
≤ u′(W − L)

1− F (p∗)
≡ K1, (44)

where the denominator of (43) is the total resource cost of marginally increasing everyone’s utility

by ∆ in both states.

If case 1. of that Lemma holds, on the other hand, we can compute the welfare consequences

of a small increase in T by using that transfer to slide the p type down and to the right along the

pn+ ≡ p+ 1
2n type’s (the next lowest type’s) indifference curve. A straightforward computation of
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this welfare consequences of this marginal increase yields:

∂Ṽ n(p, 0)

∂T
=

(1− p)/(1− pn+)− p/pn+

fn(p)
(

p
u′(u−1(unL(p)))

(−1/pn+) + 1−p
u′(u−1(unN (p)))

/(1− pn+)
) (45)

≤ 1

f(1− p)p
(

1
u′(u−1(unN (p)))

− 1
u′(u−1(unL(p)))

) (46)

≤ 1

f minp′∈[p,p̄](1− p′)p′
1

minC∈[W−L,W ]

[
1

u′(C+D) −
1

u′(C)

] (47)

≡ K2 (48)

Taking K = max{K1,K2} completes the proof.
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