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Abstract
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unique, and has a saddle-point property. All we need is to assume that the discount function is
strictly decreasing, strictly convex and has a uniformly bounded first-derivative.
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1 Introduction

Since the seminal papers of Koopmans (1960) and Uzawa (1968), economists
have broadened the class of dynamic preferences to include recursive utility
functions to tackle the problems! arising from the assumption of constant
discount rate. Lucas and Stokey (1984) assumed increasing marginal im-
patience to ensure stability. Epstein (1987, pp.73-74) gave three reasons
why employing the assumption of increasing marginal impatience is justified.
Most studies, including the phase diagram analyses of the optimal growth
models by Chang (1994, 2004) and Drugeon (1996), have focused on this
increasing marginal impatience case.

The problems with decreasing marginal impatience are, as noted in Ep-
stein (1983, p.140), that in deterministic models there exist many steady
states and that some of them are locally unstable. The finding of “division
of countries” by Magill and Nishimura (1984) is often cited as a reason to
assume increasing marginal impatience. Specifically, Magill and Nishimura

found that if the pure rate of time preference “decreases sufficiently rapidly”

' For example, Hicks (1965) argued that successive consumption units are supposed to
be complementary, but an additively separable utility function implies that the marginal
rate of substitution between lunch and supper is independent of the type of breakfast
one had that morning or expects to have the next morning. See Wan (1970, p.274). In
models with uncertainty, additive separability blurs the distinction between risk aversion
and intertemporal substitution. See, for example, Epstein and Zin (1989) and Duffie
and Epstein (1992). With additive separability, one would not care about the way in
which consumption uncertainty resolves over time; whereas recursive utility permits non-
indifference to the temporal resolution of uncertainty. See, Epstein and Zin (1989). Finally,
additive separability has a peculiar long-run implication. Specifically, when there are
heterogeneous agents, then, in the long run, the most patient consumer would own all
the capital, while all other agents consume nothing and pay back their debts with all
their labor income. See Becker (1980). For a comprehensive treatment on discrete time
recursive utility theory, the reader is referred to Becker and Boyd (1997).



(p.281), then there exists a critical level of capital that separates the rich
countries from the poor countries in such a way that the poor countries re-
main at subsistence, while the rich countries have permanent development.
This finding, however, raises a question: What would happen to growth
theory if the decrement in the pure rate of time preference were uniformly
bounded?

As pointed out in Lucas and Stokey (1984, p.169), the purpose of studying
recursive utility is to see how far we can relax the assumption of convenience,
namely the assumption of constant discount rate, without losing tractabil-
ity. The question we shall address is this: Can we prove the existence, the
uniqueness, and the saddle-point property of one-sector optimal growth with
decreasing marginal impatience if the decrement in the discount function is
uniformly bounded?

To this end, we assume that the discount function is strictly decreasing,
strictly convex and that the slope of the discount function at zero consump-
tion is bounded from below. Henceforth, the latter condition is referred to
as the “bounded slope” assumption. Under this bounded slope assumption,
while keeping the usual assumptions of preferences and technologies employed
in the constant discount rate case, we show that the steady state of optimal
growth with decreasing marginal impatience exists, is unique and the steady
state has the usual saddle-point property.

The phase diagram analysis of the model can be summarized as follows.
In the constant discount rate case, the curve corresponding to the steady
state of consumption is a vertical line in the phase plane. In the decreasing

marginal impatience case, the curve corresponding to the steady state of



consumption is obtained from “bending” a vertical line into a smooth curve
so that the upper part of the curve (relative to the steady state) is upward
sloping and the lower part is downward sloping. The upper part of the
curve is more like a bell-shaped curve than a C-shaped curve because it is
asymptotic to another vertical line. This steady state retains all qualitative
properties of the steady state in the constant discount rate case.

It is instructive to compare the stability analysis of the case of decreasing
marginal impatience with that of increasing marginal impatience because the
modeling differences between the two are in the discount function’s deriva-
tives. Borrowing the results from Chang (1994), we show that the phase
diagram analyses of stability results in those two cases are “mirror images”
of each other.

Given that the phase diagram analyses of two cases are “mirror images” of
each other and that the constant discount rate case is the limit of either case,
we present a diagram that contains all three cases. It makes clear the effects
of the monotonicity of marginal impatience on the steady state consumption
and steady state capital, in comparison with a constant discount rate. It also
makes a clear statement about the stability analysis of monotonic marginal
impatience and its saddle point property.

It should be mentioned that a phase diagram analysis of one-sector op-
timal growth model with decreasing marginal impatience has been made by
Das (2003). She showed the existence and uniqueness of the steady state
under a different stability condition. She also showed that the steady state is
locally a saddle point by examining the characteristic roots of the dynamic

system. Unfortunately, her phase diagram analysis contains an error and is



incomplete; her stability assumption would actually impose some additional
restrictions for the growth model. Comments on Das (2003) are presented in

Section 3.4.

2 The Model

The model of optimal growth with decreasing marginal impatience is similar
to the model with increasing marginal impatience of Chang (1994). We shall
follow its framework and notation as closely as possible for easy reference
and comparison of these two cases.

The law of motion is the standard Solow equation
k= f(k)—c—nk. (1)

The per capita production function f (k) is assumed to be of class C? (twice
continuously differentiable), strictly increasing, strictly concave, satisfying

the Inada conditions:
J(0)=0, lim f (k) = oo, and lim f' (k) =0.
The objective function is
/000 D (t)U () dt, (2)

where U (c) is the instantaneous utility function, which is of class C?, strictly

increasing and strictly concave in ¢, and

D (t) = exp {— /Ota (c) ds} L8 (cy) > 0, (3)

is the discount factor at time ¢. We shall refer to § (¢) as the (instantaneous)

discount function, which is also of class C?.
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Clearly, D (t) assumes values in (0, 1], depends on the underlying con-

sumption path {c, : s < t}, and is decreasing in time because

!

D (t) = -D (1) (c) < 0.

By definition, D (0) = 1 and D' (0) = —6 (co) < 0. In the classic case of
a constant discount rate, i.e., d(¢;) = §, where § is a constant, we have
D (t) = e~ with D' (t) = —D (t) 6.

What distinguishes the case of increasing marginal impatience from the
case of decreasing marginal impatience is the functional structure of § (¢).
By increasing marginal impatience we mean o (¢) > 0, and by decreasing
marginal impatience we mean ¢’ (c) < 0. In the case of decreasing marginal
impatience, we also assume 6 (0) = b > 0 and § (¢) > 0. That is, d (¢) is
strictly decreasing and strictly convex in ¢ > 0. We also assume that § (c) is

asymptotic to the horizontal axis § = 0 so that
0<d(c) <hb. 4)

Then the optimal growth problem with decreasing marginal impatience is
formulated as

I?C&g{ (2),s.t. (1). (5)

It is standard to verify that the value function of (5), in current value

form, is independent of the initial time, and depends only on the initial

capital-labor ratio. Henceforth, we denote it by J (k). For the moment, we

assume U (¢) > 0 so that J (k) > 0; the case U (c) < 0 will be discussed

later. The Bellman equation for problem (5) is?

c

Ozmax{U(c)—5(0)J(k)+[f(k)—c—nk:]f (k)}. (6)

2The method of deriving the Bellman equation, the costate equation, and the Euler

6



The first-order condition of (6) is

U (¢) — 8" (¢) J (k) < 0. (8)

The second order condition (8) is clearly satisfied because J (k) > 0. It
follows that the optimal consumption ¢ = ¢ (k) is a function of k& by the
implicit function theorem.

Let the costate variable be p = J' (k) , which is the shadow price of k.

This shadow price

/

p=U (c)=6 () ] (k) (9)
is clearly positive since J (k) > 0. Then, the costate equation is

!

p=—p|f (k) =n—3(c)]. (10)

Substituting (9) into (10), we have the Euler equation

!/ !

o(k,e)ec=f (k)=n—=0(c) =9 (c)[f (k) — c—nk], (11)

where

/1

U (0) = 8" () ] (k)
U () — & (¢) ] (k)

The numerator of o (k, ¢) is negative by the second order sufficient condi-

o(k,c)=—

tion (8). The denominator of o (k, ¢) is the shadow price p, which is positive.
Therefore, o (k,c¢) > 0 for all (k,c) and the Euler equation (11) is nonde-
generate. Notice that the sign of ¢ is independent of the utility function

U (c).

equation is standard in the literature. See, for example, Chang (1994, 2004). The stochas-
tic version of the Bellman equation for this class of objective functions is derived in Krylov
(1980, p.25) and Chang (2004).



3 Stability Analysis

= nk. We
}. Let

Let k be the maximal sustainable capital-labor ratio, i.e., f (k&

N N—

can therefore restrict our discussion to the compact interval [0,

b= (1) 0= (1) s ),

and

s — (f')_l (n) = (f')_l (n+ im 5 (0))

Since b > 0, we have k; < k.
Bounded slope assumption. Assume
0< -5 (0) < (1) min [~ (b))
b ) kelki k2]

The interval [ky, ko] is a compact set and therefore the minimum exists
and is finite. From the definitions of k; and k; we note that the upper
bound of —§ (0) is given by the exogenous parameters such as population
growth rate n, a preference condition (§ (0) = b), the production technol-
ogy f(k), and nothing else. In other words, the upper bound of 5 (0)
is the joint restriction on preferences and technology. If f” (k) is mono-
tonic (f” (k) > 0 or f” (k) < 0), then mingep, ) [—f (k)] is simplified to
min {—f” (k1) —f" (k‘2)}

The economic intuition of the bounded slope assumption is quite obvi-

"

ous. While going from zero consumption to a positive consumption would
decrease the discount function, the decrement would not be unduly steep. In
particular, it rules out the possibility of § (0) = —oo. Since 6 (c) is strictly
decreasing and strictly convex in ¢, the same upper bound applies to all

—0' (¢), and hence & (¢) is uniformly bounded. In other words, the discount
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function can never decrease “sufficiently rapidly” at any consumption level c.

3.1 Steady State

The steady state of the pair of equations (1) and (11), if it exists, is denoted
by (kq,cq). By definition, (kq, ¢q) satisfies k = ¢ = 0, i.e.,

f(k)—c—nk=0, (12)

and

!/

f(k)—mn—=05(c)=0. (13)

The curve defined by (12), denoted by L;, is of inverted “U” shape with
k-axis intercepts 0 and k, which is the same as the constant discount rate
case (and increasing marginal impatience case as well).

The curve defined by (13), denoted by Lo, is upward sloping, i.e.,

"

de _ [ (k)
dk 5 (c)

because f* (k) < 0 and 6 (¢) < 0. The k-axis intercept (¢ = 0) of the curve

> 0,

Lo is ky. This means that Lo is not defined for k£ < k; because § (¢) < b.
For k > ky, we have f (k) —n < 0, which implies that 0 (¢) < 0 if (13) is
satisfied. In other words, L, is not defined on k > k; either. In summary, L,
is defined only on [k, ks), and on which 0 < f (k) —n < b.

As k approaches ky from the left, f* (k) — n. Along the curve L, 6 (c) =
f (k) = n — 0, and therefore, ¢ — oo. This observation says that L, is
asymptotic to the vertical line & = ky. This asymptotic property implies
that the curve L, must cross L; at least once, i.e., a steady state always

exists.



To show the uniqueness of the steady state, it suffices to show that the
two curves L; and L, cross each other only once. Since 0 < f (k) —n < b
on [k1, k2), we have, for any c,

/

5 (¢) [f’ (k) — n} < 5 ()b, for all k € [ky, k).

The above inequality remains valid for & = ky because f (k) = n. On the

other hand, for any ¢ > 0,
5 (¢)b< =6 (0)b,

because & (¢) < 0 and § (¢) > 0. Then the bounded slope assumption

implies that, for any ¢ > 0,
5 (e) [f’ (k) — n} < —f"(k), for all k € [ky, ko). (14)

Since (14) is valid for all ¢ > 0, it is valid when ¢ = 6 (f (k) —n) with

k € [k1, k2), i.e., as we move along L. In this case, we have

/ (k)
k)—n - )

This inequality says that the slope of the curve Ly, f (k) / § (c), is strictly

greater than the slope of the curve Ly, f (k) —n, at any point in the interval
[k1,k2). This makes the second crossing (including tangency) of the two
curves impossible.

The unique intersection of the two curves L; and L, defines the steady
state (kq, cq), where kg € (K1, k2). That is, the steady state is in the increasing

section of the L; curve. See Figure 1. In summary, we have

Proposition 1 Under the bounded slope assumption, the steady state of op-

timal growth with decreasing marginal impatience exists and is unique.

10



Cy [ : L1

Figure 1: Existence and uniqueness of the steady state

Some comparative dynamics can easily be obtained. A decrease in the
population growth rate, n, “expands” the curve L; and shifts the curve Lo
to the right as shown in Figure 2. Steady state consumption and capital
are unambiguously increased. This result is quite intuitive because there are
simply fewer people to feed and to share the existing capital. Similarly, an
increase in Hicks-neutral technical progress, i.e., a shift of the production
function from Af(k), A = 1, to Af(k), A > 1, would also expand the
curve L; and shifts the curve Lo to the right as shown in Figure 2. Again,
steady state consumption and capital are unambiguously increased. This is
also quite intuitive because such a technological change represents a scale
effect on production and hence on consumption. In both cases, the results

resemble the comparative dynamics of the optimal growth model with a

11



Figure 2: Comparative Dynamics
constant discount rate.

3.2 Phase Diagram

Let the curve defined by ¢ =0 be L3 : R (k,c) = 0, where

R(k,e)=f (k) —n—3(c) =6 (c)[f (k) — c — nk]. (15)
The location of the curve L3 can be determined as follows. First, we recognize
that L, and Ly divide the first quadrant of the (k, ¢)-plane into four sectors:
A, B, C, and D. See Figure 3. In sector B we have R (k,c) < 0, because it
is the region above the curve L; (i.e., f (k) — ¢ —nk < 0) and below (or to
the right of) the curve L, (i.e., f (k) —n — 6 (c) < 0). Therefore, the curve
Ls : R(k,c) = 0 cannot lie in this sector. Similarly, in sector C we have

R (k,c) > 0, because it is the region below the curve L; (i.e., f (k) —c—nk >

12



Figure 3: The curve L3 lies in region A and region D.

0) and above (or to the left of) the curve Ly (ie., f (k) —n —d(c) > 0).
Again, the curve L3 : R(k,c) = 0 cannot lie in this sector. Therefore, the
curve L3 : R (k,c) = 0 must be located in sector A (above L; and Ly) and
sector D (below L; and Ls). When Lj is in sector A, we have k < ko.
Similarly, when Ls is in sector D, we have k; < k < k.

Next, we examine the behavior of the curve Ls in the strip S defined by
S = {(k,C) ke [kl,kfg]}.

For all (k,c) € S, we have

" /

Ri(k,e) = £ () =8 (o) | £ (k) =n] <.

using (14). Applying the implicit function theorem to the curve L3 : R (k,c) =

13



0, k can be written as a function of ¢, which has a derivative

dk _ R _ 0 ([f(h)—c—nk] 16
de Ry f"(k)—=6 (c)[f (k) —n] 1o

Note that the implicit function theorem applies to all points of R (k,c) =0
in S. Inequality (14) implies that the denominator of (16) is negative on S.
Then the sign of dk/dc depends only on the sign of the numerator of (16).
Since §" (¢) > 0, dk/dc has a sign opposite of k.

If (k,c) lies above Ly, ie., f(k) —c¢—nk < 0, then k& < 0 and hence
k is increasing in c. Similarly, if (k,c) lies below L;, k is decreasing in c.
At (kq4,cq), dk/dc equals zero. Thus, the curve Lz in the strip S can be
obtained from “bending” the vertical line & = k,; into a smooth curve so
that the upper part of the curve (above (kq4,cq)) is upward sloping and the
lower part is downward sloping. See Figure 4. Using the expression of a
“C-shaped” curve for L3 would be misleading because the upper part of Ls
is asymptotic to another vertical line k = ko; a bell-shaped curve would be
a better description of the upper part of L3. Moreover, the upper part of Ls
stays in the strip {(k,¢) : kg < k < ky}, which is smaller than S.

If the lower portion of L3 staysin .S, then the description of Ls is complete.
If it extends to the region [kg, %} , the curve is still downward sloping. This
is because in this region, f (k) < n, which implies Ry (k,¢) < 0, and the
implicit function theorem is still applicable. In any event, the lower part of
L3 stays in the strip {(k,c) kg <k < %}

Now we are ready to determine the vertical arrows of the phase diagram.
Since Ry, (k,c) < 0 on [k, k], R(k,c) > 0 in the region to the left of Ls.

Hence, ¢ > 0 in the region to the left of Ls. Similarly, ¢ < 0 in the region to

14
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Figure 4: The steady state is a saddle point

the right of L3. In summary, the vertical arrows are as follows:

¢ < 0if (k,c) is to the right of Ls;

¢ > 0if (k,c) is to the left of Ls.
The horizontal arrows are the same as the constant discount rate case, i.e.,

k< 0if (k,c) is above the curve Li;

k> 0if (k,c) is below the curve L.

Combining all arrows, a complete phase diagram is shown in Figure 4.
The linearized system of equations of the nonlinear system (1) and (11),

using the facts that f' (kg) —n = 6 (cq) and R, (kq,cq) = 0, is
i{? . 5 (Cd) —1 k — kd
¢ N ¢ (kd, Cd) 0 C—Cq ’

15



where

I (ka) = & (ca) [ (ka) =]

o (k?d, Cd)

¢ (kda Cd) -

(The method of linearization in stability analysis is standard. See, for exam-
ple, Brock and Malliaris (1989).) The characteristic equation of the linearized
system is

)\2 — 5(Cd) )\ + gb(k‘d,cd) = 0

Since Ry (k,c) < 0 on the strip S, and o (k,c) > 0, we have ¢ (kq,cq) < 0.
It implies that the discriminant of the characteristic equation is positive
([6 (ca)]* — 46 (kg,cq) > 0) and the product of the characteristic roots is
negative. Thus, the two characteristic roots are real and opposite in sign,
and the steady state is a saddle point. Such a steady state is unstable;
however, as shown in Figure 4, there is a stable branch converging to (k4, cg)

and an unstable branch diverging from it.

Proposition 2 The steady state of the optimal growth model with decreasing

marginal impatience is a saddle point.

3.3 The case of U (¢) <0

If U (¢) <0, then J (k) < 0. In this case we need to assume that the second

order sufficient condition (8) is valid and that

1

0 (o) _U” (c)
- T (17)

The inequality (17) says that the degree of convexity of § (¢) is greater than
the degree of concavity of U (¢). Then the shadow price of capital-labor ratio

16



satisfies

p = U)-6Jk=U () 1—3,((00))J(k)]
> U'(c) |1- g,,((cc))J (k) g((cc)) [U” (c)—d" (C)J(k)} >0,

the last inequality is obtained from (8). It is then straightforward to verify
that the properties such as the existence, the uniqueness, and the saddle
point property of the steady state remain valid.

It is interesting to point out that, in the case of increasing marginal
impatience, (8) and p > 0 are automatic if U (¢) < 0. But assumptions (8)
and (17) are required for p > 0 if U (¢) > 0. In that case, assumption (17)
simply says that d (c¢) is more concave than U (¢). See Chang (1994) and
Drugeon (1996) for details.

3.4 Comments on Das (2003)

As mentioned before, Das (2003) has made great stride in analyzing the op-
timal growth with decreasing marginal impatience. She showed the existence

and uniqueness of the steady state under the following inequality

—f (k) > =8 (f (k) — nk) [f’ (k) — n} Cforallke (0,k).  (18)
She also showed that the steady state is locally a saddle point by verifying the
two characteristic roots are opposite in sign. Many equations in Das (2003)
bear a close resemblance to our equations. For example, the costate equation
(10) corresponds to her equation (12). Euler equation (11) corresponds to

her equation (15) [after applying her equation (23)]. Equation (16) that

17



determines the steady state consumption curve ¢ = 0 is the reciprocal of her
equation (A.23).

But there are problems in her analysis. The domain of (18) is (0, ko).
As k — 0, we have f (k) — oo and inequality (18) may fail. Similarly,
inequality (18) may fail if §' (0) is unbounded. Imposing conditions on f” (k),
as k — 0, to tackle the aforementioned problems would not relax assumptions
imposed for analytical convenience. In contrast, we do not have this problem
because our bounded slope assumption is defined on an interval [k, k2] away
from k£ = 0. We also think that our bounded slope condition is intuitively
appealing.

More importantly, there is an error in Das’s (2003) stability analysis. To

elaborate, let

!

g(koc) = f" (k) =& (c) | (k) =] . (19)

Inequality (18) is obtained by substituting ¢ = ¢ (k) = f (k) — nk into (19)
so that (18) can be written as g (k,c(k)) < 0. In so doing, the inequality
(18) is a condition along the curve L; : ¢ = f (k) — nk, in the (k, c)-plane.

Assumption (18) ensures

g (kasea) = " (ka) = 8" (ca) |f' (ka) =n] <0 (20)

so that dk/dc is zero at (kq,cq). What Professor Das failed to recognize is
that the function g (k, ¢) is continuous in the (k, ¢)-plane because f (k) and
d (c) are of class C?. By continuity, if g (k4,cq) < 0, then we must have
g(k,c) <0, ie.,

£ (k) =8 (@) £ (k) =n] <0

in some neighborhood of (k,, c¢s). Therefore it is impossible for the denomi-

18



nator of (16) to change signs in that same neighborhood of (kq4, ¢4). Instead,
Professor Das argued that the sign of the denominator of (16) is ambiguous.
This error led Professor Das to draw the conclusion that the curve L3 may
be of “S” shape as represented by her Figure 3. Professor Das’s descrip-
tion of the L3 curve, and therefore the corresponding stability analysis, is
incomplete.

In addition, Das (2003) studied only the case with U (¢) > 0; our sta-
bility results, however, apply to growth models with decreasing marginal
impatience whether U (¢) > 0 or U (¢) < 0. We are able to do this because
we take the dynamic programming approach. As pointed out by Drugeon
(1996, p.284), dynamic programming method is appealing because “it allows

for a simplified analysis of the optimal path over the plane.”

4 All Cases Considered

It would be useful and instructive to compare all cases (decreasing marginal
impatience, constant marginal impatience, and increasing marginal impa-
tience) in a single framework and in the same diagram. To this end, we
borrow from Chang (1994) the results of the case of increasing marginal
impatience in which & (¢) > 0,6 (¢) >0 and 8 (c) < 0.

The curve defined by (13), denoted by Ly, is downward sloping, dc/dk <
0, due to f" (k) <0 and & (c) > 0. Its k-axis intercept is

iy — (f')_l (n+6(0) < (f')_l (n) = hs.

Therefore, the curve L, intersects the curve L; at its upward sloping portion

and the intersection is unique. Denote it by (k;,¢;). See Figure 5. Notice
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Figure 5: Existence and uniqueness of the steady state (increasing marginal
impatience)

that, unlike the decreasing marginal impatience case, the steady state (k;, ¢;)
is uniquely determined without a bounded slope assumption.

The curves L; and L4 partition the first quadrant of the (k, ¢)-plane into
four sectors. It can be verified that the curve Ls : R (k,c¢) = 0 is located in
sector B that is above the curve L; and to the right of L4, and in sector C
that is below the curve L; and to the left of the curve L4. See Figure 6.

The phase diagram can be obtained similarly. Let the curve defined by
¢ =0be Ls: R(k,c) =0, where R (k,c) is defined in (15). It is shown in
Chang (1994), using the strict concavity of d (¢), that R (k,c¢) < 0 on [kg, E}

for any c. Therefore, the location of the curve Ls is in the strip

{(k,c): k€]0,ks]}.
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Figure 6: The curve Lj lies in sector B and C

In this strip, f* (k) — 0 (c) [f’ (k) —n] < 0, ie., (14) is always satisfied.
Notice that we do not need to assume a bounded slope condition in this case.
The phase diagram of optimal growth with increasing marginal impatience
is drawn in Figure 7.

The case of constant impatience § (¢) = ¢ is well-known. See, for example,
Intriligator (1971). In that case, the curve associated with ¢ = 0 (or f (k) —

n — 0 = 0) is a vertical line, k = kg, where
ko= f1(n+6).

The phase diagram is reproduced in Figure 8.
To make meaningful connections among the three cases, we have to relate
the constant § in the constant discount rate case to 0 (0) in the other two

cases. In the increasing marginal impatience case, we assume d (0) =9 (i.e.,
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Figure 7: The steady state is a saddle point (increasing marginal impatience)

Figure 8: The phase diagram of constant discount rate case
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fidc)=n+*

Figure 9: Comparison of the location of the steady states

ko = k3) so that § (c¢) > ¢ for all ¢ > 0. In the decreasing marginal impatience
case, we assume 0 (0) = b =6 (i.e., ko = k1) so that § (¢) < ¢ for all ¢ > 0.
Treated this way, the constant discount rate becomes the limiting case of
both decreasing and increasing marginal impatience growth models. Figure
9 shows the relative position of the steady states among the three cases.
Figure 10 shows that the effect of changing from constant marginal im-
patience to monotonic marginal impatience is simply to “shift and bend”
the vertical line k£ = kg; the rest of the stability analysis essentially remains

unchanged.
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Figure 10: To change from constant marginal impatience to non-constant
one is to bend the vertical line k£ = kg

5 Concluding Remarks

In this paper we show that we can replace the assumption of constant dis-
count rate in the one-sector growth model with decreasing marginal impa-
tience without losing any major properties of the model. In particular, the
major properties such as the existence, the uniqueness, and the saddle point
property of the steady state remain valid. All we need is to assume that the
discount function is convex and has a uniformly bounded first-derivative.
We also show that the phase diagram analysis of the optimal growth with
decreasing marginal impatience is a “mirror image” of the phase diagram
analysis of the optimal growth with increasing marginal impatience, and

that the constant discount rate case can be regarded as the limiting case of
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either model. All three cases are qualitatively equivalent under reasonable
assumptions. From this perspective, the assumption of constant discount
rate is more of a restriction than convenience, at least for the continuous-
time one-sector optimal growth model.

The bounded slope assumption is closely related to the work of Magill and
Nishimura (1984). However, it is not always true that continuous-time results
would automatically imply discrete-time ones, nor the converse. See Chang
(1988, 2004) for discussion. The effects of the bounded slope assumption
on the discrete time models remain to be investigated. This is for future

research.
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