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Abstract 
 
This paper considers the problem of model uncertainty in the case of multi-asset volatility 
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1 Introduction
Multivariate models of conditional volatility are of crucial importance for
optimal asset allocation, risk management, derivative pricing and dynamic
hedging. Yet there are few published empirical studies of the performance
of multivariate volatility models as applied to portfolios with a relatively
large number of assets. Although many alternative parametric and semi-
parametric multivariate volatility models have been advanced in academic
literature, until recently most have been limited in the number of assets that
they can handle. In an attempt to provide operationally feasible volatility
models for the analysis of portfolios with a large number of assets, many
investigators (in financial markets as well as in academia) have focused on
highly restricted versions of multivariate generalized autoregressive condi-
tional heteroscedastic (GARCH) specification. These include the condition-
ally constant correlation (CCC) model of Bollerslev (1990), the Riskmetrics
specifications popularized by J.P.Morgan/Reuters (1996), and used predom-
inantly by practitioners, the orthogonal GARCH model of Alexander (2001),
and more recently the dynamic conditional correlation (DCC) model ad-
vanced by Engle (2002). Bauwens, Laurent, and Rombouts (2003) provides
a survey of this literature. Multivariate stochastic volatility (SV) models
have also been considered in literature, with excellent reviews by Ghysels,
Harvey, and Renault (1995) and Shephard (2004). So far the focus of the
SV literature has been on univariate and multivariate models with a small
number of assets, with the notable exceptions of Diebold and Nerlove (1989),
Engle, Ng, and Rothschild (1990), King, Sentana, and Wadhwani (1994) and
Harvey, Ruiz, and Shephard (1994), that are similar in structure to the class
of factor GARCH models that we do consider below.
The highly restricted nature of the multivariate volatility models could

present a high degree of model uncertainty which ought to be recognized
at the outset. This is particularly important since due to data limitations
and operational considerations it is not possible to subject these models to
rigorous statistical testing either. Application of model selection procedures
also involves additional risks when the number of assets is moderately large,
and might very well be that no single model choice would be satisfactory
in practice and could carry risks that are difficult to asses a priori. This
paper considers model averaging as a risk diversification strategy in dealing
with model uncertainty, and provides a detailed application of recent devel-
opments in model evaluation and model averaging techniques to multi-asset
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volatility models, in the case where the number of assets under considera-
tion is relatively large. As a part of this research strategy we also develop a
simple criterion for evaluation of alternative volatility forecasts by examin-
ing the Value-at-Risk (VaR) performance of their associated portfolios. The
VaR based diagnostic tests developed in this paper can be used both for risk
monitoring of given portfolios as well as for construction of new portfolios.
From amethodological perspective, following Granger and Pesaran (2000b),

our approach aims to represent a more unified treatment of the empirical
portfolio analysis from a decision-theoretic perspective rather than from a
merely statistical one. Granger and Pesaran (2000a) clarify the importance
of concentrating on probability forecasts rather than on just event forecasts.
Within a risk-management perspective the motivations for doing so appear
even stronger since the ultimate goal is not simply finding the best approx-
imating volatility model but how to best approximate the entire predictive
density of asset returns, or at least its tail behavior. The standard fore-
cast evaluation techniques that focus on standard metrics such as root mean
square forecast errors (RMSFE), also run into difficulties when considering
volatility models. Since volatility is not directly observable, it is often proxied
by square of daily returns or more recently by the standard error of intra-daily
returns, known as realized volatility (see, for example, Andersen, Bollerslev,
Diebold, and Labys (2003)). In multi-asset contexts the use of standard met-
rics such as RMSFE is further complicated by the need to select weights to
be attached to different types of errors in forecasts of individual asset volatil-
ities and their cross-volatility correlations and choice of such weights is not
innocuous in a multivariate framework (see Pesaran and Skouras (2002)).
The probability forecast combination approach also attempts to avoid

the pre-testing problem associated with the standard two-stage procedure
where the decision problem is based on a probability model selected as the
‘best’ from a given set of candidate models according to a suitable criteria.
Frequently used selection criteria are Akaike Information Criterion (AIC) and
the Schwartz Bayesian Information Criterion (SBC). However, such a two-
step procedure is subject to the pre-test (selection) bias problem and tends to
under-estimate the uncertainty that surrounds the forecasts. Of course, the
use of model averaging techniques in econometrics is not new and dates back
to the seminal work of Granger and Newbold (1977) on forecast combination.1

1For reviews of the forecast combination literature see Clemen (1989), Granger (1989),
Diebold and Lopez (1996) and Hendry and Clements (2002).
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However, this literature focusses on combining point forecasts and does not
address the problem of combining forecast probability distribution functions
which is relevant in risk management.
The remainder of the paper is organized as follows: the decision problem

that underlies the VaR analysis and the associated diagnostic tests is set out
in Section 2. Section 3 provides a brief outline of the different types of multi-
variate volatility models considered in the paper. Bayesian and non-Bayesian
approaches to model averaging are reviewed and discussed in Section 4. Sec-
tion 5 introduces a simple Value-at-Risk (VaR) diagnostic test and establishes
its distribution. Section 6 provides a detailed empirical analysis using daily
returns on twenty two of Standard and Poor’s 500 industry indices over the
period January 2 1995 to October 13 2003. Section 7 concludes with a sum-
mary of the main results and provides suggestions for future research. The
mathematical proofs are collected in the Appendix.

2 The Decision Problem
At the heart of all econometric analysis lies a decision problem. In this
paper we are concerned with the decision of an individual fund manager who
is interested in controlling the risk of his/her portfolio over a given trading
day. Denote the fund manager’s asset positions at the close of business on
day t − 1 by the N × 1 vector, at−1 = (a1,t−1, a2,t−1, ..., aN,t−1)0. The change
in the value of this portfolio is given by

∆Vt =
NX
j=1

(Pjt − Pj,t−1) aj,t−1 =
NX
j=1

aj,t−1Pj,t−1rjt, (1)

where Pjt is the price of the jth asset at time t and rjt = (Pjt − Pj,t−1) /Pj,t−1
is the associated daily rate of return.2 The rate of return of the portfolio can
now be written as

ρt =
∆Vt
Vt−1

= ω0t−1rt, (2)

where rt = (r1t, r2t, ..., rNt)0, and ωt = (ω1t,ω2t, ...,ωNt)
0, with

ωit = aitPit/
NX
j=1

ajtPjt.

2We are assuming dividend payments are negligible and can be ignored, although the
analysis can be readily extended to allow for dividends.
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By construction τ 0ωt−1 = 1 where τ is an N × 1 vector of unity. In the
case of a fund manager who has been given the task of allocating a given
sum, Vt−1 on the N assets without the possibility of shorting, we have the
additional non-negativity restrictions, ωit ≥ 0, for all i.
The fund manager faces two different but closely related tasks, which

we refer to as ‘passive’ and ‘active’ risk management problems. Under the
latter the portfolio weights are treated as unknown and are determined by
maximizing the expected utility of the portfolio, derived with respect to
the conditional multivariate distribution of rt, subject to the non-negativity
constraints (if applicable) and the following VaR constraint

Pr
¡
ρt < −ρ̄t−1 |Ft−1

¢
≤ α, (3)

where Ft−1 is the available information, ρ̄t−1 > 0 is a pre-specified rate of
return and α is a probability value (typically taken to be 1%) which captures
the trader’s attitude to risk in the case of large losses. Under passive risk
management, which might also be viewed as a risk monitoring activity, ωt−1
and α are assumed as given and the aim would to solve for ρ̄t−1 (ωt−1,α)
using

Pr
¡
ρt < −ρ̄t−1 (ωt−1,α) |Ft−1

¢
≤ α.

The capital at risk of the portfolio would then be given by Lt−1 (ωt−1,α) =
Vt−1ρ̄t−1 (ωt−1,α), namely the maximum loss tolerated over day t − 1 to t
with probability α.

3 Multivariate Models of Asset Returns
It is clear that for active risk management a complete knowledge of the joint
probability distribution of the vector of returns, rt conditional on available
information, denoted by Pr (rt |Ft−1 ), would be needed.3 But for passive risk
management it is clearly possible to work directly with the conditional dis-
tribution of ρt, the portfolio return, with no apparent need for multivariate
volatility modeling. Such a startegy is relatively simple to implement, but
will be portfolio specific and could lead to contradictory outcomes if differ-
ent portfolios are considered. In comparing the risk of different portfolios

3Here we are ruling out the possibility of feedbacks from portfolio decisions to the ‘true’
probability distribution of the returns, by assuming that the value of the portfolio under
management is small relative to the market (in the case of all assets).
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it is important that the distribution of all portfolio returns are based on
the same underlying multivariate model of rt. Also our primary concern in
this paper is on modeling and evaluation of alternative multivariate volatility
models in a wider context that nests both passive and active risk manage-
ment problems. Therefore, in what follows we shall focus on alternative
specifications of Pr (rt |Ft−1 ). For this purpose it is convenient to work with
the de-volatized returns, zt, defined by

zt = Σ
−1
2

t rt.

where Σt = V ar (rt |Ft−1 ) is the conditional variance-covariance matrix of
the returns assumed to be positive definite. Typically one would also need
to model the conditional mean, E (rt |Ft−1 ) = µt, although given the focus
of the present paper on multivariate volatility models and the daily nature
of the returns data that we shall be using to illustrate our approach we shall
maintain that µt = 0, throughout. This assumption can be readily relaxed in
our mathematical exposition, but its relaxation in the empirical application
would involve considerable additional computations and data requirements.
Past returns are unlikely to be sufficient for modelling of µt, and data sets on
other industry-specific and macro indicators such as size, book value, interest
rates and exchange rates would be needed.
Therefore, a complete specification of Pr (rt |Ft−1 ) can be achieved by

a non-singular choice of Σt, and by specification of the distribution of de-
volatized values, zt. As far as the latter is concerned, we focus on distribu-
tions that are closed under linear transformations. This includes the case of
standard multivariate Gaussian, and the multivariate Student t with v de-
grees of freedom. These are the two specifications that are most commonly
encountered in practice. With respect to the specification of Σt, we focus on
parametric volatility models, the classical example of which is represented by
the multivariate generalized autoregressive heteroskedasticity model of order
1, 1 (multivariate GARCH(1, 1)), which in its most general specification (see
Bollerslev, Engle, and Wooldridge (1988, eq. 4)) is

vech(ΣMGARCH,t) = Ω0+A0vech(ΣMGARCH,t−1) +B0vech
¡
rt−1r

0
t−1
¢

(4)

where vech(.) denotes the column stacking operator of the lower portion of a
symmetric matrix. Concerning model parameters, Ω0 is an N(N + 1)/2× 1
vector andA0, B0 are N(N+1)/2×N(N+1)/2 matrices of coefficients. It is
evident that even such a low-order model already contains a large number of
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parameters even for moderate values of N which makes model (4) effectively
unfeasible for practical applications.
Many alternative multivariate models have been proposed, all of which

entails some simplification of the multivariate GARCH specification given
by (4). Denote by Σit the Σt implied by model Mi with i = 1, 2, ..,m. Let
θi0 be the ki × 1 vector of true parameters characterizing model Mi yielding
Σit= Σit(θi0). For estimation of the models we shall be using the Gaussian
pseudo maximum likelihood estimator (PMLE), defined by

θ̂iT0 = arg max
θi∈Θi

(
−1
2

τX
t=τ−T0+1

¡
log | Σit(θi) | +r0tΣ−1it (θi)rt

¢)
, (5)

where Θi defines a suitable parameter space, τ is the end of the estimation
period, T0 is the size of the estimation period. Correspondingly, let Σ̂it =
Σit(θ̂iT0). We view Gaussian PMLE as a robust method, delivering consistent
and asymptotically normal estimates of θi under Mi even for non Gaussian
zt. In particular we shall assume that as T0 →∞,

θ̂iT0
p→ θi0 (6)

and p
T0
³
θ̂iT0 − θi0

´
|Mi

d→ N [0,Ωi (θi0)] , (7)

where Ωi (θi0) is a positive definite matrix,
p→ denotes convergence in prob-

ability and d→ convergence in distribution. The asymptotic properties of
the Gaussian PMLE have been established for certain classes of multivariate
GARCH-type volatility models (see Ling and McAleer (2003)) and it is rea-
sonable to expect that results such as (6) and (7) would hold for the more
general class of models considered in this paper, under suitable regularity
conditions.
In what follows we shall assume that under model Mi

Mi : rt = Σ
1
2
itzt, zt | F t−1 ∼ (Fit, 0, IN), (8)

meaning that E (zt | F t−1,Mi ) = 0, E (ztz
0
t | F t−1,Mi ) = IN , where IN is

the N ×N identity matrix, and Fit(.) is the the conditional joint probability
distribution function of the zt. Note that the above formulation allows the
higher order moments of zt to be time varying. This would be the case,
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for example, when zt is distributed as the multivariate Student t with time
varying degrees of freedom, vt.
Almost all the multivariate volatility models considered in the literature

can be cast in terms of the following decomposition of Σt, originally used in
the literature by Bollerslev (1990):

Σt= DtRtDt, (9)

whereRt is the one-step-ahead conditional correlation matrix with its (h, j)th
element given by ρhj,t, andDt is a diagonal matrix with

√
σhh,t on its (h, h)th

element. This is a convenient decomposition and allows separate specifica-
tion of the conditional volatilities and conditional cross-asset returns corre-
lations. The models used in our empirical applications also belong to the
class of models spanned by different specifications of

√
σhh,t and ρhj,t, which

are computationally feasible for estimation and forecasting in the case of
portfolios with a large number of assets (N = 22 in our applications).
As previously indicated, throughout the paper by ‘model’ we mean a

given specification of the multivariate conditional covariance matrix, Σit,
together with a particular distribution of scaled innovations, zt | F t−1. This
also applies to the equal and exponential weighted specifications set out in
Sections 3.1-3.5 where they are typically known as filters. However, in the
context of the present paper it seems reasonable to refer to them as models
since they will be considered in conjunction with particular distributions of
the scaled innovations.

3.1 Equal-Weighted Moving Average (EQMA(n0))

In the absence of reliable intra-daily observations on returns, a simple es-
timate of Σt can be obtained using the following rolling moment estimates
based on the last n0 observations:

Σ1t =
1

n0

n0X
s=1

rt−sr
0
t−s.

For Σ1t to be positive definite we must have n0 > N . In the empirical
applications we shall consider four variants of Σ1t, using n0 = 50, 75, 125,
and 250. Subject to n0 > N , care should be taken so that n0 is not set too
high; otherwise Σ1t could behave like the unconditional variance matrix of
the returns.
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3.2 Exponential-WeightedMoving Average (EWMA(n0, λ0))

This is the popular Riskmetrics estimate of Σt (see J.P.Morgan/Reuters
(1996)) which is defined by the following recursion

Σ2t = λ0Σ2,t−1 +
(1− λ0)

(1− λn0 )
rt−1r

0
t−1 −

(1− λ0)

(1− λn00 )
λn0−10 rt−n0−1r

0
t−n0−1, (10)

for a constant parameter 0 < λ0 < 1, and a window of size n0. Typically, the
initialization of the recursion in (10) is based on estimates of the uncondi-
tional variances using a pre-sample of data. For the (i, j)th entry of Σ2t we
have

σ2,ijt =
(1− λ0)

(1− λn00 )

n0X
s=1

λs−10 ri,t−srj,t−s.

The Riskmetrics model is characterized by the fact that n0 and λ0 is fixed a
priori.4 The value of λ0 = 0.94 is suggested in J.P.Morgan/Reuters (1996).
In our analysis we shall consider the values λ0 = 0.94, 0.95, and 0.96, and
set n0 = 250. We only consider one value for the window size since there
is an obvious trade-off between λ0 and n0, with a small λ0 yielding similar
results to a small n0. Note that for Σ2t to be non singular one requires n0 ≥
N . Nevertheless, the model does admit a well-defined forecasting function
and indeed Σ2,t+1 represents the one-step ahead forecast of the conditional
variance for period t+ 1, based on the information available up to time t.

3.3 Two-parameter Exponential-WeightedMoving Av-
erage (EWMA (n0, λ0, ν0))

Practitioners and academics have often pointed out that the effects of shocks
on conditional variances and conditional correlations could decay at different
rates, with correlations typically responding at a slower pace than volatil-
ities (see De Santis and Gerard (1997)). This suggests using two different
parameter values for the decay coefficients, one for volatilities and the other
for correlations (see De Santis, Litterman, Vesval, and Winkelmann (2003,
p.14)). Therefore, the diagonal elements of (10) define conditional variances
σ3,hht, h = 1, ..., N the square-root of which form the diagonal matrix D3t.

4Moreover, it has been recently pointed out that it is not possible to formally estimate
the model statistically, due to its asymptotic degenerateness. See Zaffaroni (2003).
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The covariances are based on the same recursion as (10) but using a smooth-
ing parameter ν0, generally different from λ0 (ν0 ≤ λ0) yielding

σ3,hjt =
(1− ν0)

(1− νn00 )

n0X
s=1

νs−10 rh,t−srj,t−s, for h 6= j.

We assume that the same window size, n0, applies to variance and covariance
recursions. The ratio

σ3,hjt/
√
σ3hh,t σ3jj,t (11)

represents the (h, j)th entry of the matrixR3t. Combining terms according to
(9) one gets Σ3t. The parameters ν0 and λ0 are not estimated but calibrated
a priori, as for the one-parameter EWMA model.

3.4 Mixed Moving Average (MMA(n0, ν0))

This is a generalization of the equal-weighted MA model discussed above.
Under this specification, the conditional variances are computed as in the
equal-weighted MA model, the square root of which yields the diagonal ma-
trix D4t. Then we estimate the conditional covariances using a Riskmetrics
type filter: σ4,hjt =

(1−ν0)
(1−νn00 )

Pn0
s=1 ν

s−1
0 rh,t−srj,t−s, which after normalization

according to (11) yields R4t. Re-combining the results according to (9) we
then obtain Σ4t.

3.5 Generalized Exponential-Weighted Moving Aver-
age (EWMA(n0, p, q, ν0))

This is a generalization of the two-parameter EWMA. In the first stageN dif-
ferent univariate GARCH(p, q) models are estimated for each rht by PMLE.
The conditional covariances are then obtained using the Riskmetrics filter
(10), with the parameters n0 and ν0 fixed a priori. The results are then nor-
malized using (11), with the resultant variances and correlations re-combined
according to (9), thus yielding Σ5t. The estimated number of parameters of
this model is k5 = N(1 + p + q), which will be used in the computation of
AIC and SBC.
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3.6 Constant Conditional Correlation (CCC(p, q))

Bollerslev (1990) introduced a multivariate GARCHmodel with the simplify-
ing assumption that the one-step ahead conditional correlations are constant.
Under this model, (9) takes the form Σ6t = D6tR6D6t, where D6t is a diago-
nal matrix containing the square-root of the σ6,hht, each of which follow the
GARCH(p, q) model of Bollerslev (1986)

σ6,hht = c0h +

qX
k=1

α0hkr
2
h,t−k +

pX
j=1

β0hjσ6,hht−j ,

for constant positive parameters c0h, α0h1, ...,α0hq,β0h1, ..., β0hp. Positivity of
these parameters is sufficient but not necessary to ensure σ6,hht > 0 a.s. (see
Nelson and Cao (1992)). The positive definite matrix R6, made by N(N −
1)/2 constant parameters, contains the (constant) conditional correlations of
the rht, h = 1, 2, ..., N.
Bollerslev (1990) proposed to estimate the model by the PMLE and not-

ing that (5) simplifies due to the constant correlation assumption. The esti-
mated number of parameters of this model is given by k6 = N(p + q + 1) +
N(N − 1)/2.

3.7 Orthogonal GARCH (O-GARCH(p, q))

This model is proposed by Alexander (2001) and uses a static principle com-
ponent decomposition of standardized returns defined by

r̃it =
rit − r̄iT
siT

, t = 1, 2, ..., T,

where r̄iT and siT are the sample mean and standard deviations of the returns.
Denote the sample covariance matrix of the standardized returns by

S̃T =

PT
t=1 r̃tr̃

0
t

T
, r̃t = (r̃1t, , ..., r̃Nt)

0 .

Then
S̃TWT =WTΛT , (12)

where andWT andΛT are the correspondingN×N matrices of eigenvectors
and eigenvalues, respectively. Then setting (see Alexander (2001))

Σ7t(u) = VW(u)Γt(u)W(u)0V,
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whereW(u) = (w1, ...,wu) denotes the N × u matrix of eigenvectors corre-
sponding to the first largest u eigenvalues, V is a diagonal matrix with the
sample standard deviation of rht on the (h, h)th entry and Γt(u) is a u× u
diagonal matrix whose (j, j)th entry, γjt, j = 1, ..., u, is assumed to satisfy
the following univariate GARCH(p, q) specification

γjt = c0j+α0j1s
2
jt−1+ ...+α0jps

2
jt−p+β0j1 γjt−1+ ...+β0jq γjt−q, j = 1, ..., u,

where sj = (r1, ..., rT )
0wj, j = 1, ..., N . Note that this method makes use

of the fact that the factors are unconditionally orthogonal, but there is no
guarantee that they will also be conditionally orthogonal. Also to ensure that
Σ7t(u) is non-singular we must have u = N , which is the value considered
here, yielding Σ7t = Σ7t(N). Hence for the O-GARCH(p, q) specification we
have k7 = N(p + q + 1).

3.8 Factor GARCH of Harvey, Ruiz and Sentana
(Factor HRS (p, q, 1, 1))

We consider the one factor model

rt = b0ft + vt, (13)

where b0 is a N × 1 vector andµ
ft
vt

¶
| Ft−1 ∼

µ
0
0

¶
,

µ
λt 0
0 Γt

¶
where Γt is a diagonal matrix, and ft and vt are mutually independent. It
easily follows that

Σ8t = (b0b
0
0)λt + Γt. (14)

With respect to the standard formulation of factor models, Harvey, Ruiz,
and Sentana (1992) assume that the conditional variance λt is a function of
past observations, not of past ft, yielding

λt = c0+α01(f̂
2
t−1|t−1+gt−1|t−1)+...+α0q(f̂

2
t−q|t−q+gt−q|t−q)+β01λt−1+...+β0p λt−p,

(15)
for

f̂t|t = λtb
0
0Σ

−1
8t rt, gt|t = λt

¡
1/λt + b

0
0Σ

−1
8t b0

¢
λt.

Similarly, the (i, i)th entry of Γt is specified as a GARCH(1, 1) with γit being
a function of γi,t−1 and v̂

2
i,t−1 where v̂t = (v̂1,t, ..., v̂N,t)

0 = rt − b0f̂t|t. The
model, estimated by PMLE, has k8 = N+(p+q+1)+N(1+1+1) parameters.
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3.9 Dynamic Conditional Correlation (DCC(p, q, 1, 1))

Engle (2002) relaxed the assumption of constant conditional correlation of
the CCC model of Bollerslev (1990). The conditional variances of individ-
ual returns are estimated as univariate GARCH(p, q) specifications, and the
diagonal matrix, D9t, is formed with their square roots. Unlike the CCC,
the conditional correlations are now allowed to be time-varying and are ob-
tained as follows. Starting with the standardized residuals, r̃9t = (D9t)

−1 rt,
the DCC model assumes that the (h, j)th entry of the conditional covariance
matrix of r̃9t, namelyR9t, is given by qhjt/

√
qhht qjjt, where qhjt is the (h, j)th

element of matrix Qt defined by

Qt = Q (1− γ01 − δ01) + γ01r̃9,t−1r̃
0
9,t−1 + δ01Qt−1.

for a fixed positive definite matrix Q, and positive parameters satisfying
γ01 + δ01 < 1. Finally, Σ9t is obtained re-combining D9t and R9t based on
(9). The estimation of the parameters of the DCCmodel is carried out using a
two-stage Gaussian PMLE procedure. The log-likelihood function (5) is first
optimized with respect to the parameters driving the individual conditional
variances. Conditional on these parameter estimates, in the second step the
log-likelihood function is maximized with respect to the parameters driving
conditional correlations. See Engle (2002, Section 4) for details. For this
model we have k9 = N(p+ q + 1) +N(N + 1)/2 + 2.

3.10 Asymmetric Dynamic Conditional Correlation
(ADCC(p, q, 1, 1))

Cappiello, Engle, and Sheppard (2002) generalized the DCC allowing for the
possibility of asymmetric effects on conditional variances and correlations.
The conditional variances of the individual returns are specified using the
specification advanced by Glosten, Jagannathan, and Runkle (1993) given
by:

σ10,hht = c0h+

qX
k=1

α0hkr
2
h,t−k+

qX
k=1

ϑ0hkI(rh,t−k < 0)r
2
h,t−k +

pX
j=1

β0hjσ10,hh,t−j ,

where I(A) denotes the indicator function which takes the value of unity if
A > 0, and zero otherwise. Let r̃10t = (D10t)

−1 rt, where D10t is the diagonal
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matrix formed with the square roots of σ10,hht. The ADCC model assumes
that the (h, j)th entry of the conditional covariance matrix of r̃10t, namely
R10t, is given by qhjt/

√
qhht qjjt where qhjt is the (h, j)th element of matrix

Qt defined by

Qt = Q (1− γ01 − δ01 − ϑ01) + γ01r̃10,t−1r̃
0
10,t−1 + δ01Qt−1 + ϑ01r10,t−1r

0
10,t−1

where r10t = r̃10t ¯ I(r10,t−1 < 0) (here ¯ denotes the Hadamard prod-
uct), Q is a fixed positive definite matrix, and γ01, δ01, and ϑ01 are posi-
tive parameters satisfying γ01 + δ01 + ϑ01 < 1. Finally, Σ10t is constructed
using D10t and R10t as in (9). The estimation of the parameters of the
ADCC model is carried out as for the DCC, where now we have k10 =
N(p+ 2q + 1) +N(N + 1)/2 + 3.

3.11 Factor GARCH of Diebold and Pesaran
(Factor DP (p, q, 1, 1))

This procedure starts with the one factor model, (13), but relaxes the condi-
tion that λt does not directly depend on past values of the factors, replacing
(15) with

λt = c0 + α01f
2
t−1 + ...+ α0qf

2
t−q + β01λt−1 + ...+ β0p λt−p. (16)

The estimation of this more general factor model by the maximum likeli-
hood method poses significant computational problems and so far recent
advances on efficient estimation of such models have been simulation-based;
see Fiorentini, Sentana, and Shephard (2004). We adopt here the estima-
tion approach proposed by Diebold and Pesaran (1999) which is relatively
simple to compute and can be implemented in the following manner. For
N sufficiently large, ft is estimated (up to a linear transformation) consis-
tently by f̂t = N−1PN

i=1 rit. Then each rit is regressed on f̂t yielding the
factor loadings, b̂0 = (b̂01, b̂02, ..., b̂0N )

0 as in (13).5 Finally, a univariate
GARCH(p, q) models is fitted by PMLE to f̂t, and GARCH(1, 1) models
are estimated for the individual residuals v̂it = rit − b̂0if̂t. The model has
k11 = N − 1 + (N + 1)(p+ q + 1) unknown parameters.

5Note that by construction
PN
i=1 b̂0i = 1, and in effect only N − 1 factor loadings are

estimated.
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4 Average Volatility Models
Considering the restrictive nature of the multivariate volatility models dis-
cussed in the previous section, model averaging techniques that explicitly
allow for parameter and model uncertainty could be particularly important
in risk management. An important example is the Bayesian Model Averaging
(BMA) that combines the models under consideration using their respective
posterior probabilities.6 Let Pr(Mi |Ft−1 ) be the posterior probability of
model Mi, and let Pr(rt |Ft−1 ,Mi), be the predictive density of rt condi-
tional on model Mi and the in-sample information available, namely Ft−1.
Finally, let the space of the models under consideration beM =

Sm
i=1 {Mi}..

Then the predictive density of rt conditional on Ft−1 is given by the so-called
BMA formula

Pr(rt |Ft−1,M) =

mX
i=1

Pr(Mi |Ft−1 ) Pr(rt |Ft−1 ,Mi).

where Pr (Mi |Ft−1 ) is the posterior probability of model Mi, given by

Pr (Mi |Ft−1 ) = (17)
Pr (Mi)

R
Θi
Pr (θi |Mi )Li(r1, r2, ..., rt−1 |r0, ..., r−si+1,θi )dθiPm

j=1 Pr (Mj)
R
Θj
Pr (θj |Mi )Lj(r1, r2, ..., rt−1

¯̄
r0, ..., r−sj+1,θj )dθj

,

Pr (Mi) is the prior probability of modelMi, Li(r1, r2, ..., rt−1 |r0, ..., r−si+1,θi )
is the joint probability distribution of the observations r1, r2, ..., rt−1 condi-
tional on the given initial values r0, ..., r−si+1, and Pr (θi |Mi ) is the prior on
θi conditional onMi. The Bayesian approach requires a priori specifications
of Pr (Mi) and Pr (θi |Mi ) for i = 1, 2, ...,m, and can be quite demanding
computationally, particularly in the case of multi-variate volatility models
with many unknown parameters. As a result other approaches to the deter-
mination of the model weights, λi,t−1 = Pr(Mi |Ft−1 ), have been proposed in
the literature. For example, in the case of the univariate models it is sug-
gested that the model weights are based on the relative past forecast accuracy
of the models under consideration. Alternatively, λi,t−1 are approximated by

6A formal Bayesian solution to the problem of model uncertainty is reviewed, for ex-
ample, in Draper (1995) and Hoeting, Madigan, Raftery, and Volinsky (1999). Recent
applications to time series econometrics are provided in Fernandez et al. (2001a,b), Gar-
ratt, Lee, Pesaran, and Shin (2003) and Godsill, Stone, and Weeks (2004).
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the Akiake weights (discussed in Chapter 4 of Burnham and Anderson (1998))
or the Schwartz weights - the latter gives a Bayesian approximation with t
the estimator sample sufficiently large. In the present applications, due to
large time series data being available, parameter uncertainty is likely to be
of second order importance in the case of volatility models where the para-
meters can be estimated consistently under each model. See, for example,
Burnham and Anderson (1998). In particular, we have

Pr(rt |Ft−1,M) ≈
mX
i=1

λi,t−1 Pr(rt |Ft−1 ,Mi), (18)

with the pre-determined weights

λi,t−1 =
exp (∆i,t−1)Pm
j=1 exp(∆j,t−1)

. (19)

Note that the model weights λi,t−1, i = 1, 2, ...,m are pre-determined when
the decision over the the portfolio weights, ωj,t−1, j = 1, 2, ..., N , is taken.
This is possible since it is assumed that there are no feedbacks from trade
decisions to the probability models being considered. In the case of AIC and
SBC we have, respectively,

∆AIC
i,t−1 = AICi,t−1 −Maxj (AICj,t−1) , AICi,t−1 = LLi,t−1 − ki, (20)

∆SBC
i,t−1 = SBCi,t−1−Maxj (SBCj,t−1) , SBCi,t−1 = LLi,t−1−

µ
ki
2

¶
ln(t−1).

(21)
We do, however, recognize that for the small to moderate sample sizes used
in macro-economic applications the choice of priors could be important, par-
ticularly if the object of exercise is the estimation of the marginal probability
densities.
The Bayesian model averaging formula also provides a simple ‘optimal’

solution to the problem of pooling of the point forecasts, namely

E (rt |Ft−1,M) =
mX
i=1

λi,t−1E(rt |Ft−1,Mi ),
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with the pooled variance matrix given by

V (rt |Ft−1,M) =
mX
i=1

λi,t−1V (rt |FT−1,Mi ) (22)

+
mX
i=1

λi,t−1 [E(rt |Ft−1,Mi )− E (rt |Ft−1,M)]2

It is also worth noting that the combined model, Pr(rt |Ft−1,M), will not
belong to the class of multivariate normal distribution even if all the under-
lying models, Mi, i = 1, 2, ...,m, belong to that class, so long as the models
being considered are not the same and none of the underlying models are
assigned a weight of unity. This means that under model averaging it is not
sufficient to combine point and volatility forecasts. Combining of probability
models also affect the shape of the resultant probability distribution, which
can not be easily inferred from those of the constituent models averaging.
Finally, a number of non-Bayesian model averaging procedures have also

been considered in the literature, the most recent example being the so-
called ‘thick’ modeling discussed in Granger and Jeon (2004) and applied
to point forecasts of excess returns across different models by Aiolfi, Favero,
and Primiceri (2001) and Aiolfi and Favero (2002). This procedure typically
involves averaging the top 10%, 20% or 50% of point forecasts from models
ranked by model selection criteria such as AIC or SBC. In our empirical
analysis we shall extend the application of these techniques to multivariate
volatility models.

5 Value-at-Risk Based Diagnostic Tests
This section considers how the different modeling strategies set out above
can be evaluated from the perspective of their use in risk management. At
first we describe approaches suitable for assessing the validity of any given
individual modelMi. Next, we describe how to extend the analysis to models
obtained by application of Bayesian-type model averaging techniques.

5.1 VaR Diagnostics for Individual Models

In the econometric literature models are often evaluated by their out-of-
sample forecast performance using standard metrics such as the RMSFE but,
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as discussed in Section 2, the application of this approach to volatility models
is subject to a number of difficulties. An alternative approach would be to
employ decision-based evaluation techniques and compare different volatility
models in terms of their performance in trading and risk management.7 In
this section we propose simple examples of such a procedure based on the
VaR problem set out in Section 2.8

Consider first the VaR constraint (3) associated with the passive version
of the risk management problem where the portfolio weights, ωt−1, are given,
and suppose that the analysis is carried out conditional on modelMi. In this
setting the VaR constraint will be given by

Pr
¡
ρt < −ρ̄i,t−1 |Ft−1,Mi

¢
≤ α, (23)

and ρ̄i,t−1 will be a function of α and the assumed volatility model, Mi.
To fully specify the model, assume that the de-volatized returns, zt, have
a joint cumulative distribution function Fit(·) which is closed under linear
combinations so that c0zt also has (univariate) distribution Fit(·) for any N-
dimensional vector c. A special case of our results is obtained if zt is assumed
to follow the multivariate normal or the Student t distribution, since both
distributions are closed under linear transformations. Conditional on Ft−1
and model Mi being true, ρt will have mean zero and variance

σ2ρt(Mi) = ω0t−1Σitωt−1.

Therefore, under (8) we have

zρ t(Mi) =
ω0t−1rt
σρ t(Mi)

|Ft−1,Mi ∼ (Fit, 0, 1), (24)

which implies that under Mi, zρ t(Mi) is a martingale difference sequence
with a unit variance. Note, however, that zρ t(Mi) need not be independent
across time. Temporal dependence in zρ t(Mi) could arise not only due to
possible higher-order moment dependence of the underlying innovations zt,
but also because of possible serial dependence of portfolio weights and the
temporal dependence of Σit.

7For a general discussion of decision-based evaluation techniques see Granger and Pe-
saran (2000a,b) and Pesaran and Skouras (2002).

8For a review of existing approaches to the evaluation of the VaR estimates see Lopez
(1999). These procedures tend to be purely statistical in nature and are not explicitly
related to particular multivariate volatility models.
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Denoting the value of , ρ̄i,t−1that satisfies (23) by ρ̄i,t−1(ωt−1,α) and as-
suming that (24) holds, then

Fit

µ
−
ρ̄i,t−1(ωt−1,α)

σρ t(Mi)

¶
≤ α.

But since Fit(·) is a continuous andmonotonically non-decreasing function
we have

−
ρ̄i,t−1(ωt−1,α)

σρ t(Mi)
= F−1it (α) = −cit(α),

or
ρ̄i,t−1(ωt−1,α) =cit(α) σρ t(Mi), (25)

where −cit(α) is the α% critical value of the distribution of zρt(Mi) condi-
tional on Ft−1, and model Mi. Note that cit(α) and σρ t(Mi) are based on
observations available at time t − 1, and this is highlighted in the notation
used for ρ̄i,t−1(ωt−1,α).. For certain choice of the joint distribution of the
Fit(·) of the devolatized returns zt, however, Fit(·) = Fi(·), meaning that
the conditional distribution is independent of t. This is the case when Fit
is the multivariate normal or the multivariate Student t distribution with a
time invariant degrees of freedom. The above derivations hold even if the
portfolio weights, ωt−1, are derived conditional on model Mi. In that case
the portfolio weights should be denoted by ωi,t−1 to highlight their depen-
dence on the choice of the volatility model. But to simplify the notations
we continue to represent the portfolio weights without the subscript i.
The evaluation of model Mi can now proceed in the following manner.

Suppose that the evaluation exercise starts on day t = τ + 1 with the avail-
able sample of T observations split at this date into T = T0 + (T − T0) for
some 0 < T0 < T . Further suppose that the first T0 observations before
day τ + 1 are used for estimation whereas the last T1 = T − T0 observa-
tions are used for evaluation purposes. Accordingly, we define the sets of
estimation and evaluation dates by T0 = {τ − T0 + 1, τ − T0 + 2, ..., τ}, and
T1 = {τ + 1, τ + 2, ..., τ + T1}, respectively.
A simple test of the validity of modelMi from the perspective of the VaR

can then be based on the proportion of days in the evaluation sample where
the VaR is violated:

π̂i =
1

T1

X
t∈T1

dit

³
θ̂iT0

´
,
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where
dit
³
θ̂iT0

´
= I[−ρt − cit(α) σ̂ρ t (Mi)],

and

σ̂ρ t(Mi) =
³
ω0t−1Σ̂itωt−1

´ 1
2
, Σ̂it = Σit(θ̂iT0),

Recall that θ̂iT0 is the PMLE of the unknown parameters (if any) of Σit

under model Mi (see (5)), and I (·) as an indicator function.
We now present two Theorems. The first establishes the distribution of

T1π̂i under the null hypothesis defined by

Hi0 : Σt = Σit and zt | Ft−1,Mi ∼ (Fit, 0, IN). (26)

for T1 <∞ and as T0 →∞. The second Theorem establishes the asymptotic
distribution of the following standardized test statistic based on π̂i

zπ̂i =

√
T1(π̂i − α)p
α(1− α)

(27)

under Hi0, and as T1/T0 + 1/T1 → 0. The proofs of both theorems are
provided in the Appendix.

Theorem 1 (finite-T1 distribution) Assume that Σit(θi) is continuous in θi
and that (7) holds. Let Bi(T1,α) define a Binomial distribution with para-
meters T1 and α. Then under Hi0,

T1π̂i
d→ Bi(T1,α) as T0 →∞, (28)

for any finite T1, 0 < α < 1, and any sequence of portfolio weights, ωt−1, t =
0,±1..., satisfying kωt−1k> 0.

Remark. This result is important for cases when T1 is small or, alternatively,
when one is interested in testing VaR performance of a given set of portfo-
lios for small values of α. In such cases the asymptotic normal distribution
presented below might not provide a sufficiently accurate approximation.

Theorem 2 (asymptotic distribution) Assume that (i) fit(·) = F 0it(·) exists
and f̄it = supx fit(x) < ∞ for any t; (ii) condition (7) holds and θi0 be-
longs to the interior of the compact set Θi; (iii) Σit(θi) is twice continuously
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differentiable in θi such that for some δ > 1

inf
θi∈Θi

λit(θi) > 0 a.s.,

E

(
sup
θ∈Θi

k ∂λ̄it(θ)/∂θ k
λ
1
2
it(θ)λ

1
2
it(θi0)

)δ

= µit,
1

T1

TX
t∈T1

f̄itµ
1/δ
it = O(1), (29)

where λ̄it(θi) and λit(θi) define, respectively, the maximum and the mini-
mum eigenvalues of Σit(θi), with k · k being the Euclidean norm; (iv) for T0
sufficiently large

E k θ̂iT0 − θi0 k
δ

δ−1= O(T
−δ/(2(δ−1))
0 ). (30)

Then under Hi0, any 0 < α < 1,

zπ̂i
d→ N(0, 1) as

T1
T0
+
1

T1
→ 0,

for any sequence of portfolios ωt−1, t = 0,±1..., satisfying kωt−1 k> 0.

Remarks.
(i) It is important to note that the null distribution of zπ̂i does not depend
on the portfolio weights, ωt−1, although the power of the test typically does
depend on ωt−1.
(ii) The mild condition for consistency of the test is that π̂i does not converge
in probability to α as T1/T0+1/T1 → 0. This can happen if either we use the
wrong conditional covariance matrix or the wrong innovation distribution, or
both. For example, in the first case, under Mj : Σjt 6= Σit we have

E (π̂i |Mj ) =
1

T1

X
t∈T1

E [Fit (−citαqij,t)] ,

where

qij,t =

Ã
ω0t−1Σ̂itωt−1
ω0t−1Σjtωt−1

!1/2
, for t ∈ T1.

It is clear that underMj, qij,t does not tend to unity and in general E (π̂i |Mj )
will diverge from its hypothesized value of α, and the power of the test tends
to unity with T1.
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(iii) Most likely, the assumptions required for (6) and (7) will imply (29) but
we felt it is necessary to make the additional explicit assumptions since the
former have been formally established only for a sub-class of multivariate
volatility models considered in this paper.
(iv) When model Mi is not subjected to estimation, such as for some of the
models we consider, then the theorem applies by setting θ̂i = θi0 and the con-
ditions (29) and (30) are no longer needed. In particular, the non-singularity
condition of the model conditional covariance matrix is not required.
(v) Under the null hypothesis Hi0 : E(zρ t(Mi) | Ft−1) = 0. This is a key
property since it implies that I(−zρ t(Mi) − citα) − α is also a martingale
difference process. Strict stationarity of the asset returns is not required.
(vi) It is likely that (29) holds for a relatively large δ implying a weaker
moment condition in (30). Obviously the limit of

√
T0 k θ̂iT0 − θi0 k has

all the moments by asymptotic normality but we require a stronger moment
condition.
(vii) The importance of the condition T1/T0 → 0 in cross validation of fore-
casts was put forward by West (1996). McCracken (2000) extends West’s
framework to allow for non-differentiable loss functions in a regression set-
up.

5.2 VaR-Based Diagnostics for Average Models

Suppose that set of m models is described by

rt |Ft−1,Mi ∼ (Fit,0,Σit), i = 1, 2, ...,m.

Therefore, Fit(·) defines the conditional distribution of the observed return
rt, given Ft−1 and model Mi.
The probability distribution function of portfolio return, ρt, based on the

average model obtained with respect to these models using the weights, λi,t−1,
is then given by

Pr(ρt < a |Ft−1,M) =
mX
i=1

λi,t−1Fit

µ
a

σρ t(Mi)

¶
.

In cases where Pr(ρt < a |Ft−1 ,Mi) does not have a closed form it needs to
be computed by stochastic simulations, noting that conditional on modelMi
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we have, as J →∞,

1

J

JX
j=1

I(−ω0t−1r
(i)
jt + a)→ Pr(ρt < a |Ft−1 ,Mi) almost surely,

where J is the number of replications and r(i)jt is the j
th draw from the as-

sumed distribution of rt under Mi. On the other hand, when the probability
distribution of rt under Mi are closed under linear transformations, as with
Gaussian or multivariate t distribution, the computations can be simplified
considerably by drawing from the distribution of ρt = ω0t−1rt under Mi di-
rectly or using the closed-form expression when the latter exists.
It is now easy to generalize the diagnostic test statistics given by (27) for

an individual model Mi, to the case of an average model. For a given α we
need to find the value for ρ̄b,t−1(ωt−1,α), the VaR associated with the BMA
forecast probabilities, for which

mX
i=1

λi,t−1Fit

µ
−
ρ̄b,t−1(ωt−1,α)

σρ t(Mi)

¶
≤ α.

To solve for ρ̄b,t−1(ωt−1,α), let

g(κ) =
mX
i=1

λi,t−1Fit

µ
− κ

σρ t(Mi)

¶
− α = 0, (31)

and note that g(κ) = 0 has a unique positive solution under the addi-
tional assumption that all the model densities fit(·) = F 0it(·) are differen-
tiable and have a unique maximum at zero. In the case of such distributions
ρ̄b,t−1(ωt−1,α) can be easily computed using numerical techniques such as the
Newton-Raphson iterative procedure. The VaR diagnostic statistic, given by
(27), can then be computed for the average model using

d̂bt = I
¡
−ρt − ρ̄b,t−1(ωt−1,α)

¢
,

in place of dit
³
θ̂iT0

´
.

5.3 Tail Behavior of Average Volatility Models

It is well known that linear combinations of normal distributions is not nor-
mal, although the moments of the mixture distribution are effectively linear
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combinations of the corresponding moments of the individual normal distri-
butions, with the same weights. For instance we have seen that the pooled
volatility forecast of portfolio return, with zero conditional mean, is given by
(see (22))

V (ρt |Ft−1,M) =
mX
i=1

λit−1σ
2
ρ t(Mi).

However

mX
i=1

λit−1Φ

µ
a

σρ t(Mi)

¶
6= Φ

 aqPm
i=1 λit−1σ

2
ρ t(Mi)

 , (32)

unless Σit = Σt for all i, where Φ(·) defines the normal cumulative distribu-
tion function. The following Theorem, whose proof is reported in the Appen-
dix, characterizes the direction of the bias. In risk management applications
where a < 0 and one is interested in tail probabilities, it is easily seen that the
correctly combined model, on the left hand side of (32), will be more fat-tailed
than the associated Gaussian model with the same average volatility mea-
sure, on the right hand side of (32), whenever a < −

√
3σρ t(Mi), i = 1, ...,m.

As we shall see this result has direct bearing on some of the empirical results
that we shall be reporting.

Theorem 3 Let f(x) be a differentiable real function, with f 0 denoting its
first-derivative, with

R∞
−∞ | f(u) | du < ∞. Let F (z) =

R z
−∞ f(u)du. Then,

for any constant a and any finite sequence b1, ..., bN of strictly positive con-
stants satisfying

a

·µ
a√
bi

¶
f 0(

a√
bi
) + 3f(

a√
bi
)

¸
> 0, i = 1, ...,N, (33)

it follows that
NX
i=1

λiF (
a√
bi
) > F

 aqPN
i=1 λibi

 , (34)

for any finite sequence λ1, ...,λN of non-negative constants such that λ1 +
λ2 + ...+ λN = 1, λi < 1 , i = 1, 2, ..., N .

Remarks.
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(i) When f(u) is the standard normal density, for a < 0 condition (33) is

a√
bi
< −
√
3, i = 1, ..., n. (35)

When a > 0 condition (33) is instead

0 <
a√
bi
<
√
3, i = 1, ..., n.

although note that when a > 0 (34) expresses the case where the tail prob-
ability of the average model is smaller than for the model with the average
parameter

Pn
i=1 λibi.

(ii) When f(u) is the standardized Student t with ν > 2 degrees of freedom,
for a < 0 the same condition (35) applies, independently from ν.

6 An Empirical Application

6.1 Data and Some Preliminary Analysis

The approach developed in this paper (the model averaging and the as-
sociated VaR evaluation tests) can be applied to a variety of problems in
finance. Here we shall consider the daily VaR of portfolios constructed
from 22 main industry indices of the Standard & Poor’s 500. The source
of our data is Datastream, which provides twenty four S&P 500 industry
price indices according to the Global Industry Classification Standard. To
ensure a sufficiently long span of daily prices we have excluded the ‘Semicon-
ductors & Semiconductor Equipment’ and ‘Real Estates’ from our analysis.
The list of the N = 22 industries included in our analysis is given in Ta-
ble 1. Our data set covers the industry indices from 2nd January 1995 to
13th October 2003 (T = 2291 observation). Daily returns are computed as
rjt = 100 ∗ ln (Pjt/Pjt−1) , j = 1, ..., 22, where Pjt is the jth price index. The
realized returns rt = (r1t, r2t, ..., r22,t)0 exhibit all the familiar stylized features
over our sample period. They are highly cross-correlated, with an average
pair-wise cross-correlation coefficient of 0.5. A standard factor analysis yields
that the two largest estimated eigenvalues are equal to 11.5 and 1.7, with the
remaining being all smaller than unity. The unconditional daily volatility
differs significantly across industries and lie in range of 1.13% (Food, Bever-
age & Tobacco) to 2.39% (Technology Hardware & Equipment). See Table

25



2. The first-order autocorrelation coefficients of the individual returns are
quantitatively very small (ranging from −0.049 to 0.054) and are statistically
significant only in the case of four out of the twenty two industries (Auto-
mobiles & Components, Health Care Equipment & Services, Diversified Fi-
nancial, and Utilities). We decided not to filter out any serial correlation in
the data since this would have probably induced a sizeable amount of noise,
probably more harmful than the small amount of serial correlation present
in the case of four of the assets. We derived non-parametric estimates of
the density functions for the standardized returns, confirming that the mar-
ginal distributions tend to be symmetric and slightly fat-tailed. These results
provide some support for our working assumption of zero mean returns, and
highlight the non-Gaussian and the highly cross correlated nature of the asset
returns by industries.
Estimates of univariate GARCH (1, 1) models for the returns summarized

in Table 3 also provide some support in favour of a Student t distribution with
a low degree of freedom for the conditional distribution of the asset returns.
The degrees of freedom estimated for the different assets lie in the relatively
narrow range of (5.2−11.7) with an average estimate of 7.3, and a mid-point
value of 8.5. Estimation of multivariate volatility models with non-Gaussian
distributions present considerable technical difficulties and are unlikely to
significantly affect the QMLE estimates. As an operational compromise it
seems justified to use the QMLE estimates with multivariate Student t dis-
tributions with low degrees of freedom. Based on the univariate estimates, 6
and 8 seem sensible choices and will be considered below.

6.2 Recursive Estimation of Multivariate VolatilityMod-
els

The types of volatility models included in the empirical analysis are set out
in sub-sections (3.1) to (3.11). For each of these types a number of vari-
ations were considered, depending on the choice of the window size (n0)
when applicable, the pre-specified parameters of the Riskmetrics specifica-
tions (λ0, ν0) and the orders of the multivariate GARCHmodels (p, q, r, s). In
particular, we considered the following parameter values n0 = 50, 75, 125, 250,
λ0 = 0.94, 0.95, 0.96, ν0 = 0.6, 0.8, 0.94, p, q ∈ {1, 2} and r = s = 1. In the
case of the factor models of section 3.8 and 3.11, we considered only one
factor.
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All models were estimated recursively using an expanding window start-
ing with 1784 observations as the first estimation sample, with the parameter
values (when applicable) updated at monthly intervals. Clearly, the parame-
ters of the volatility models could also have been updated daily. But it is
not clear if the extra computations that such daily updates entail would have
been worthwhile. Given the relatively large initial estimation sample of 1784,
the addition of one extra data point seems unlikely to have made that much
of a difference. On the other hand not updating the parameter estimates over
the whole of the evaluation sample of 507 observations would also have been
rather extreme and could have been favouring the models with pre-specified
parameter values such as the Riskmetrics models. The monthly updates
of the parameters can be viewed as a plausible and practical solution to a
highly computer intensive problem.9 Therefore, the models were estimated
twenty-four times over the evaluation sample.
Since for certain values of p, q the estimation algorithm did not converge

for all models and all data periods, we ended up with m = 63 different
(nested and non-nested) models with convergent estimates. However, for
some models the algorithm converged except for a few isolated time periods
. In such cases the estimation results for the model in question was ignored
by assigning a zero weight to it in the model averaging procedure in the
non-convergent periods.10

All the models (estimated or with pre-specified parameter values) were
then evaluated over the last two years of data (from November 2, 2001 to
October 13, 2003, inclusive), with T1 = 507, using one-day ahead forecasts of
Σt under Mi, denoted by Σ̂it, i = 1, ..., 63. The evaluations were carried out
using two different types of portfolio weights: an equal-weighted portfolio,
namely ωt−1 = ω = N−1(1, ..., 1)0, yielding the portfolio return ρt = ω0t−1rt =
r̄t, and a sequence of artificially generated random portfolios given by

ωt = U
−1
t (u1t, ..., uNt)

0, Ut = u1t + ...+ uNt,

9We also carried out a straightforward cross-validation test where all models (when
relevant) were estimated once using the first T0 = 1784 observations and then evaluated
using the last T1 = 507 observations. Perhaps not surprisingly, the results were generally
less satisfactory than those based on the recursively computed parameter updates. These
pure cross-validation results are available from the authors on request.
10All the computations have been carried out in MatLab and the codes are available

upon request. For estimation of CCC, DCC and O-GARCH we used the UCSD_GARCH
Toolbox developed by Sheppard (2002). All other codes are our own.
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where each N -dimensional vector (u1t, ..., uNt) is a random draw from a mul-
tivariate uniform distribution in (0, 1), with independent components. The
portfolio weights, ωt−1, are drawn independently across time.
It is also possible to use model-specific portfolio weights, ωi,t−1, where

the weights are determined recursively by a suitable expected utility maxi-
mization subject to the VaR constraint. Such an exercise would also involve
modelling of the conditional mean returns, which has not been addressed in
this paper.11 Choice of the multivariate volatility model is clearly essential
for this purpose, and the associated model-specific weights are likely to play
an important role in any evaluation exercise involving alternative multivari-
ate volatility models. However, such an exercise is well beyond the scope of
the present study and deserves serious consideration elsewhere.

6.3 Modelling Strategies

A number of different modelling strategies may now be considered. One pos-
sibility would be to follow the classical approach and select the ‘best’ model
from the set of models under consideration using model selection criteria such
as AIC or SBC. Alternatively, as argued in this paper, the model uncertainty
can be explicitly taken into account using Bayesian type model averaging
procedures. A third approach would be to follow the so-called ‘thick’ mod-
elling and average across a pre-specified fraction of top models ranked, for
example, by AIC or SBC. We refer to these as ‘best’, ‘Bayesian average’ and
‘thick average’ modelling strategies. See Section 4 for further details and
references to the literature.
When considering normal innovations, AIC selects the ADCC(1, 2, 1, 1)

throughout the evaluation period whereas SBC first selects the ADCC(1, 1, 1, 1),
then switches to ADCC(1, 2, 1, 1) from the middle of the sample onwards. In
the case of models under multivariate Student t with 6 and 8 degrees of
freedom, AIC selected the O-GARCH(2, 2) in the first three weeks of the
evaluation sample, switching to DCC(1, 2, 1, 1) up to the middle of the sam-
ple, with ADCC(1, 2, 1, 1) being selected thereafter. Similar results were also
obtained with SBC. With few exceptions, the DCC type models tended to
dominate the remaining specifications. This outcome is particularly inter-
esting since the evaluation sample includes the recent periods of large stock
11See Pesaran and Timmermann (2004) for a discussion of such an estimation strategy

in real time.
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market falls and contrast the outcome of recursive modelling applied to S&P
mean returns reported in Pesaran and Timmermann (1995) where the best
model selected for the monthly excess returns tend to change quite frequently
over time. This could be due to the relative stability of volatility models as
compared to models of mean returns that are known to be subject to struc-
tural breaks.
To provide some idea of the extent to which the DCC type models dom-

inate other specifications, in Table 4 we summarize selected values of the
AIC-penalized log-likelihood values, AICi,t−1, defined by (20), for all the 63
models computed using a multivariate Student t distribution with 8 degrees
of freedom. Table 4 reports AICi,t−1 at the beginning of the evaluation sam-
ple (2 November 2001), at the end of the evaluation sample (13 October 2003)
and its average value over the evaluation sample.12 As can be seen the DCC
(and CCC) type models systematically fit the data better than the other
models, and the differences in the AIC-penalized log-likelihood values for the
DCC and other models are sufficiently large for the model weights, λi,t−1, of
the DCC models defined by (19), to take the extreme value of unity for most
periods.13 It is also interesting to note that on average the simplest of the
data filters, namely the equal weighted moving average specification, EQMA,
with n0 = 125, or 250, do considerably better than the other filters and per-
form well even when compared to estimated models such as O-GARCH or
Factor GARCH models. Similar conclusions are also reached if one uses the
Gaussian innovations or the SBC criteria.
In implementing the thick modelling we used the top 25% and 50% of the

models selected according to AIC or SBC and constructed equal-weighted
average models. As an extreme benchmark we also considered an equal-
weighted average model using all the 63 specifications.

6.4 VaR Diagnostic Test Results

For the individual and average models we recursively computed the VaR
thresholds, ρ̄t−1(ωt−1,α), using (25) and (31), respectively, for equal-weighted
and random portfolio weights, ωt−1, assuming Gaussian and Student t dis-
12Recall that all estimations are carried out recursively using an expanding window

starting in 2, January 1995.
13Notice that the model weights are obtained by exponentiation of the AIC-penalized

log-likelihood values and even seemingly small differences in the average fit of the models
can translate into major differences in model weights for sufficiently large sample sizes.
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tributed devolatized returns with 6 and 8 degrees of freedom and two different
values of α, namely α = 1% and α = 5%. Using these threshold estimates we
then computed, π̂, the percentage of times (out of the 507 portfolio returns
observed over the evaluation sample) that the VaR constraint were violated,
and hence the VaR diagnostic statistic, zπ̂, defined by (27). The results are
summarized in Tables 5a and 5b for α = 1% and α = 5%, respectively14.
In view of the model selection results discussed above the test outcomes are
very similar, and in many instances are identical for the AIC and SBC se-
lection criteria. Furthermore, as predicted by the theory, the VaR diagnostic
test results are insensitive to the choice of the portfolio weights. In contrast,
choice of the distribution of the devolatized returns appears important. For
example, the ‘best’ modelling strategy is rejected by the VaR test when the
underlying distribution is assumed to be Gaussian but not if the Student t
is used.
Also in the present application there are no differences in the test results

for the average ‘Bayesian’ and the ‘best’ modelling strategies. As noted
earlier, this is due to the fact that for most periods in the evaluation sample
the ‘best’ model happen to totally dominate all other models, and as a result
the average ‘Bayesian’ and the best models end up being the same for all
practical purposes.
Comparing across strategies, the best outcome is found with respect to

the thick modeling strategy when averaging across the best 15 models (best
25% percentile). The test results are quite robust with respect to the choice
of the conditional distribution of the innovations, although they deteriorate
as we move from the normal distribution towards Student t with 6 degrees of
freedom. This is in line with the theoretical result discussed in Section 5.3,
where it was shown that the average model will be more fat-tailed than the
underlying Gaussian or Student t models with the same average volatility. In
cases where the underlying models are already fat tailed, the model averaging
(without any single model dominating) can induce an excessive degree of fat-
tailness. As can be seen from the results in Tables 5a and 5b, this tendency
is accentuated as the coverage of thick modeling is increased, and is most
acute when all the 63 models are included.
14We also computed the exact version of the VaR test defined by (28) and, not surpris-

ingly given the size of the evaluation sample, we obtained very similar results.
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6.5 Statistical Diagnostic Test Results

The different modelling strategies can also be evaluated using purely statisti-
cal techniques, in contrast to the decision-theoretic approach of the previous
section. A statistical procedure, which is closer to ours, focuses on the proba-
bility density forecasts of a given portfolio return, ρt = ω0t−1rt, and considers
the following probability integral transforms

v̂it =

Z ρt

−∞
f̂(x |Ft−1,Mi )dx, for t = τ + 1, ..., τ + T1,

where f̂(x |Ft−1,Mi ) is the estimated probability density of ρt under model
Mi and conditional on the information available at time t−1. Making use of
a well-known result due to Rosenblatt (1952) it is now easily seen that the
sequence {v̂it, t ∈ T1} will be i.i.d. uniformly distributed on the interval [0, 1]
if f̂(x |Ft−1,Mi ) coincides with the ‘true’ but unknown conditional predictive
density of ρt. See Diebold, Gunther, and Tay (1998) and Diebold, Hahn, and
Tay (1999) for further development of this idea in econometrics.
To test the hypothesis that v̂it are random draws from the uniform [0, 1]

distribution, we consider the standard Kolmogorov-Smirnov (KS) test

KS = max
1≤j≤T1

¯̄̄̄
j

T1
− v̂∗j

¯̄̄̄
, (36)

as well as the Kuiper test

Ku = max
1≤j≤T1

(
j

T1
− v̂∗j ) + max

1≤j≤T1
(v̂∗j −

j

T1
), (37)

where v̂∗1 ≤ v̂∗2 ≤ ... ≤ v̂∗T1 represent the ordered values of the v̂iτ+1, ..., v̂iτ+T1 .
The Kuiper test has the added advantage of placing greater emphasis on the
tail behavior of the distribution.
Table 6 reports the p-values of these tests, computed using the analytic

approximations provided in Stephens (1970), for the three modelling strate-
gies and the two portfolios. The test results for the ‘best’ and the ‘average’
modelling strategies are identical, for the same reasons as noted above, and
indicate a mild rejection (between 7 and 9 per cent level) of the models with
Gaussian de-volatilized returns if the Kuiper test is used, but strongly in
favor of the Student t distribution especially for 8 degrees of freedom. None
of the specifications are rejected by the KS test. The Student t distribution

31



is favored when considering the ‘thick’ modelling approach which includes
the best 15 models but tend to be rejected when the average include a larger
number of models. The opposite is observed with respect to the normal dis-
tribution. These conclusions tend to be robust to the choice of the portfolio
weights.
Overall, the above statistical tests support the main conclusions reached

using the VaR based diagnostics, although they appear to be less informa-
tive and less clear cut as far as the tail properties of the portfolio return
distributions are concerned.

7 Summary and Conclusions
This paper focusses on the problem of model uncertainty in the case of large
multivariate volatility models for use in asset management and risk monitor-
ing. The problem is particularly important considering the highly restrictive
nature of the multivariate volatility models that are used in practice. To deal
with model uncertainty we advocate the use of model averaging techniques
where an ‘average’ model is constructed by combining the predictive densi-
ties of the models under consideration, using a set of weights that reflect the
models’ relative in-sample performance. In a formal Bayesian framework the
model weights would be set at their posterior probabilities, but as argued
by Burnham and Anderson (1998), other weights based on model selection
criteria could also be considered.
The paper also proposes a simple decision-based model evaluation tech-

nique that compares the volatility models in terms of their Value-at-Risk
performance. The proposed test is applicable to individual as well as to
average models, and can be used in a variety of contexts. Under certain
regularity conditions, the test is shown to have a Binomial distribution when
evaluation sample (T1) is finite and T0 (the estimation sample) is sufficiently
large. The proposed test converges to a standard Normal variate provided
T1/T0 + 1/T1 → 0, a condition encountered in forecast evaluation literature,
as discussed in West (1996). The proposed VaR test is also invariant to the
portfolio weights and is shown to be consistent under departures from the
null hypothesis. The Binomial version of the VaR test could have impor-
tant applications in credit risk literature where the evaluation samples are
typically short.
In the empirical application we experimented with AIC and SBC weights
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and found that, due to the large sample sizes available, they led to very
similar results with the selected models often totally dominating the rest. The
model most often selected by both criteria turned out to be the Asymmetric
Dynamic Conditional Correlation (ADCC) model of Cappiello, Engle and
Sheppard (2002). In the out of sample evaluation tests, only the multivariate
Student t version of the ADCC model with 8 degrees of freedom managed
to pass the VaR diagnostic tests. Interesting enough, the simplest of all
data filters used in this paper, namely the Equal Weighted Moving Average
filter also performed well; doing better than other data filters as well as
the remaining estimated models, namely O-GARCH and Factor GARCH
specifications.
We also considered other model averaging techniques, such as the so-called

‘thick’ modelling, and found strong evidence in their favor in our empirical
applications, especially when averaging across a small number of models. Our
empirical analysis clearly shows the relevance of the proposed VaR test for
the evaluation of the multivariate volatility models from a decision making
perspective. It also shows the potential importance of model averaging for
risk management.
Finally, it is important to note that while model averaging provides a

useful alternative to the two-step model selection strategy, it is nevertheless
subject to its own form of uncertainty, namely the choice of the space of mod-
els to be considered and their respective weights. It is therefore important
that applications of model averaging techniques are investigated for their ro-
bustness to such choices. In the case of our application it is clearly desirable
that other forms of multivariate volatility models are also considered, which
could be the subject of future research.
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Mathematical Appendix

Proof of Theorem 1. Clearly as T0 →∞

π̂i →p πi =
1

T1

X
t∈T1

dit, dit = I (−ρt − citασρ t(Mi)) .

Consider now the moments of T1πi and note that for any integer n ≥ 1,

E (T1πi)
n
=

X
t1,t2,...,tn∈T1

{E (dit1dit2 ...ditn)} . (38)

However, for any δ > 0 we have

E(dδit | Ft−1,Mi) = α,

or unconditionally
E(dδit |Mi) = α.

Hence, all the terms E (dit1dit2 ...ditn) in (38) coincide with the case when the ditj , j =
1, .., n, are i.i.d Bernoulli distributed random variables with parameter α, for any choice

of t1, ..., tn. Also, since T1 <∞, the support of the distribution of T1πi is bounded and as
a consequence its moment generating function exists and is the same as that of a Binomial

distribution with parameters T1 and α. Therefore, by method of moments (see Billingsley
(1986, Theorem 30.1)), T1πi will also have a Binomial distribution. ¥
Proof of Theorem 2. Assume Hi0 defined by (26) holds. Set

qit = qit
³
θ̂iT0 ,θi0

´
=

µ
σ̂ρ t(Mi)

σρ t(Mi)

¶
=

Ã
ω0t−1Σ̂itωt−1
ω0t−1Σitωt−1

!1/2
.

Then
E
h
dit

³
θ̂iT0

´
|Ft−1,Mi

i
= Fit(−citαqit)

and
E [π̂i |Mi ] =

1

T1

X
t∈T1

E {Fit (−citαqit)} .

As T0 → ∞, θ̂iT0
p→ θi0 and since Σit(θi) is a continuous function of θi it also follows

that qit
³
θ̂iT0 ,θi0

´
p→ 1, for all values of t ∈ T 1. Hence, for any given finite evaluation

sample size, T1, and as T0 →∞,

E [π̂i |Mi ] =
1

T1

X
t∈T1

E {Fit (−citαqit)}
p→ Fit (−citα) = α..
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Consider now the statistic
√
T1(π̂i − α) and write it asp

T1(π̂i − α) =
p
T1(πi − α) +

p
T1(π̂i − πi), (39)

where
πi =

1

T1

X
t∈T1

dit (θi0) .

Also note that p
T1(π̂i − πi) =

r
T1
T0

µP
t∈T1 Xit,T0
T1

¶
,

where
Xit,T0 =

p
T0

h
dit(θ̂iT0)− dit (θi0)

i
.

But it is easily seen that,

|Xit,T0 | =
½ √

T0 if (ρt + ciασ̂ρ t(Mi))(ρt + ciασρ t(Mi)) < 0,
0 otherwise.

Hence, for all t ∈ T1

Pr
³
|Xit,T0 | =

p
T0 |Ft−1,Mi

´
≤
¯̄̄
Fit

³
−ciαqit

³
θ̂iT0 ,θi0

´´
− Fit (−citα)

¯̄̄
,

and consequently

E (|Xit,T0 | |Ft−1,Mi ) ≤
p
T0

¯̄̄
Fit

³
−citαqit

³
θ̂iT0 ,θi0

´´
− Fit (−citα)

¯̄̄
.

Using the mean-value expansion of Fit(−citαqit
³
θ̂iT0 ,θi0

´
) around θ̂iT0

Fit
³
−citαqit

³
θ̂iT0 ,θi0

´´
= Fit (−citα)− citαfit

¡
−citαqit

¡
θ̄i,θi0

¢¢
×

∂qit
¡
θ̄i,θi0

¢
∂θ̂

0
iT0

³
θ̂iT0 − θi0

´
,

where the elements of θ̄i are convex combinations of the corresponding elements of θ̂iT0
and θi0. By the Holder’s inequality for norm of matrices, since kωt k> 0, we have

E (|Xit,T0 | |Ft−1,Mi ) ≤ citαfit
¡
−citαqit

¡
θ̄i,θi0

¢¢
×

k
∂qit

¡
θ̄i, θi0

¢
∂θ̂iT0

k
p
T0 k θ̂iT0 − θi0 k

≤ citαfit
¡
−citαqit

¡
θ̄i,θi0

¢¢(
sup
θ∈Θi

k ∂λ̄it(θ)/∂θ k
λ
1
2
it(θ)λ

1
2
it(θ0)

)
×p

T0 k θ̂iT0 − θi0k .
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Taking the unconditional mean and using the Holder inequality again yields

E (|Xit,T0 | |Mi )

≤ citα sup
x
fit (x)

E ¯̄̄̄¯ supθ∈Θi

k ∂λ̄it(θ)/∂θ k
λ
1
2
it(θ)λ

1
2
it(θ0)

¯̄̄̄
¯
δ
 1

δ p
T0

³
E k θ̂iT0 − θi0 k

δ
δ−1
´1−1/δ

.

Therefore, T−11
P
t∈T1 Xit,T0 = Op(1) and the second term in (39) vanishes as T1/T0 +

1/T1 → 0. Hence p
T1(π̂i − α)−

p
T1(πi − α) = op(1),

where p
T1(πi − α) =

1√
T1

X
t∈T1

git, git = I (−ρt − citασρ t(Mi))− α.

Therefore, it remains to establish the asymptotic distribution of
√
T1(πi −α). This easily

follows by the martingale central limit theorem of Brown (1971, Theorem 2) since the git
are a bounded, martingale difference sequence with the constant variance α(1− α). ¥
Proof of Theorem 3. Inequality (34) can be expressed as

NX
i=1

λig(bi) > g

Ã
NX
i=1

λibi

!
,

for the function g(x) ≡ F ( a√
x
). Jensens’s inequality ensures that the latter inequality is

satisfied whenever g(·) is strictly convex. Since g(·) is twice differentiable by construction,
we just need to check the conditions such that the second derivative of g(x) satisfies
g00(x) > 0. Straightforward calculations yield the required condition (33).¥
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Table 1: Standard & Poor 500 Industry Groups

Codes Industries

1 EN Energy
2 MA Materials
3 IC Capital Goods
4 CS Commercial Services & Supplies
5 TRN Transportation
6 AU Automobiles & Components
7 LP Consumer Durables & Apparel
8 HR Hotels, Restaurants & Leisure
9 ME Media
10 MS Retailing
11 FD Food & Staples Retailing
12 FBT Food, Beverage & Tobacco
13 HHPE Household & Personal Products
14 HC Health Care Equipment & Services
15 PHB Pharmaceuticals & Biotechnology
16 BK Banks
17 DF Diversified Financials
18 INSC Insurance
19 IS Software & Services
20 TEHW Technology Hardware & Equipment
21 TS Telecommunication Services
22 UL Utilities

Note: The codes in the second column are taken from REUTERS
for the S & P 500 industry groups according to the Global Industry
Classification Standard. ‘Real States’ and ‘Semiconductors &
Semiconductor Equipment’ industries are excluded.
Source: Datastream.



Table 2: Summary statistics

Sector Mean St.Dev. Skewness Kurtosis Ljung-Box(20)

EN 0.031 1.386 0.049 5.435 40.3
MA 0.015 1.367 0.141 6.347 22.1
IC 0.040 1.395 -0.156 6.784 33.1
CS 0.022 1.318 -0.466 8.777 18.7
TRN 0.027 1.407 -0.501 10.644 28.4
AU 0.011 1.628 -0.172 7.017 36.3
LP 0.015 1.194 -0.099 6.750 25.1
HR 0.034 1.422 -0.393 9.241 16.4
ME 0.030 1.660 -0.056 8.168 37.2
MS 0.057 1.739 0.017 6.120 48.5
FD 0.028 1.328 -0.217 6.597 30.8
FBT 0.032 1.132 0.008 6.312 32.4
HHPE 0.042 1.445 -1.581 30.256 55.1
HC 0.039 1.274 -0.295 7.008 57.4
PHB 0.054 1.472 -0.172 5.821 53.1
BK 0.051 1.590 0.045 5.324 37.0
DF 0.075 1.840 0.036 5.013 47.4
INSC 0.044 1.549 0.415 11.045 38.8
IS 0.062 2.246 0.060 5.019 32.6
TEHW 0.043 2.393 0.165 5.719 30.6
TS 0.000 1.605 -0.072 5.969 22.7
UL 0.005 1.197 -0.363 9.881 25.8

Note: Columns 2 to 4 report the sample mean, standard deviation,
skewness and kurtosis. Column 5 reports the Ljung-Box statistic
of order 20 for testing autocorrelations in individual asset returns.
The critical value of χ220 at the 1% significance level is 37.56.
The sample period is 2nd January 1995 - 13th October 2003.



Table 3: Estimation Results for Univariate GARCH(1, 1) Models

Normal innovations Student t innovations
Sector ĉi α̂i β̂i ĉi α̂i β̂i ν̂i

EN 0.0241 0.0620 0.9276 0.0287 0.0665 0.9210 10.25
MA 0.0246 0.1016 0.8932 0.0101 0.0625 0.9355 6.71
IC 0.0222 0.0710 0.9216 0.0201 0.0590 0.9329 6.96
CS 0.1265 0.0759 0.8566 0.0559 0.0755 0.8967 5.20
TRN 0.0163 0.0563 0.9399 0.0282 0.0756 0.9135 6.99
AU 0.0352 0.0604 0.9289 0.0371 0.0635 0.9251 6.51
LP 0.0517 0.0697 0.8975 0.0316 0.0586 0.9212 6.51
HR 0.0841 0.0696 0.8943 0.0327 0.0443 0.9402 6.03
ME 0.0328 0.0854 0.9090 0.0199 0.0617 0.9335 6.17
MS 0.0337 0.0560 0.9346 0.0250 0.0470 0.9459 7.29
FD 0.0474 0.0768 0.8996 0.0300 0.0681 0.9179 7.41
FBT 0.0232 0.0693 0.9150 0.0178 0.0568 0.9311 7.06
HHPE 0.0133 0.0741 0.9259 0.0360 0.0678 0.9147 6.70
HC 0.0950 0.1431 0.8086 0.0911 0.1035 0.8443 6.45
PHB 0.0640 0.0701 0.9032 0.0587 0.0736 0.9030 6.95
BK 0.0557 0.0801 0.8998 0.0457 0.0843 0.9008 8.66
DF 0.1033 0.0686 0.9030 0.0890 0.0732 0.9034 8.53
INSC 0.0375 0.0852 0.9044 0.0344 0.0750 0.9149 5.49
IS 0.0915 0.0647 0.9187 0.0639 0.0587 0.9303 10.14
TEHW 0.0730 0.0730 0.9159 0.0532 0.0608 0.9309 11.73
TS 0.0255 0.0478 0.9437 0.0231 0.0438 0.9484 7.09
UL 0.0213 0.1162 0.8735 0.0183 0.1105 0.8838 6.42

average 0.0501 0.0762 0.9052 0.0387 0.0677 0.9177 7.34

Note: Columns 2-4 report the PMLE estimates of the univariate GARCH(1, 1)
model for each sector i = 1, ..., 22 assuming Gaussian innovations :

σii,t = c0i + α0ir
2
i,t−1 + β0iσii,t−1.

Columns 5-8 report the PMLE estimates of the univariate GARCH(1, 1) model
for each sector i = 1, ..., 22 assuming Student t innovations with νi degrees
of freedom. All the estimates reported for ci, αi, and βi are statistically significant
at 5% or less. The estimation period is 2nd January 1995 - 13th October 2003.



Table 4: AIC-penalized likelihood values with Student (8) distribution

Model 2 Nov’01 13 Oct’03 Average Model 2 Nov’01 13 Oct’03 Average

EWMA (n0)
(50) -52921 -69477 -61666 DCC (p, q, r, s)
(75) -50167 -65931 -58500 (1,1,1,1) -47851 -61964 -55310

(125) -48815 -64185 -56943 (2,1,1,1) -47849 -61998 -55326

(250) -48096 -63437 -56182 (1,2,1,1) -47843 -61895 -55272

(2,2,1,1) -47876 -62044 -55371

EWMA (λ0, ν0)
(0.96,0.94) -53681 -70350 -62493 ADCC (p, q, r, s)
(0.96,0.80) -87212 -114517 -101336 (1,1,1,1) -48126 -61856 -55356

(0.96,0.60) -167254 -220654 -194364 (2,1,1,1) -48199 -62141 -55521

(0.95,0.94) -53696 -70367 -62505 (1,2,1,1) -48099 -61737 -55282

(0.95,0.80) -87180 -114515 -101309 (2,2,1,1) -48194 -62018 -55462

(0.95,0.60) -167207 -220659 -194334

(0.94,0.94) -53726 -70406 -62537 CCC (p, q)
(0.94,0.80) -87142 -114495 -101274 (1,1) -48299 -62847 -55980

(0.94,0.60) -167143 -220626 -194279 (2,1) -48298 -62881 -55997

(0.95,0.95) -52279 -68510 -60868 (1,2) -48293 -62780 -55944

(0.96,0.96) -50970 -66802 -59361 (2,2) -48069 -62698 -55785

MMA (n0, ν0) O-GARCH (p, q, r, s)
(50,0.60) -169511 -221486 -195659 (1,1,1,1) -47899 -66423 -57518

(75,0.60) -169503 -221370 -195615 (2,1,1,1) -47926 -66529 -57670

(125,0.60) -169533 -221210 -195607 (1,2,1,1) -47909 -66818 -57588

(250,0.60) -169754 -221114 -195832 (2,2,1,1) -47703 -66180 -57271

(50,0.80) -90156 -116706 -103702

(75,0.80) -90089 -116523 -103586 Factor HRS (p, q, r, s)
(125,0.80) -90130 -116411 -103591 (1,1,1,1) -50625 -66506 -59004

(250,0.60) -90317 -116311 -103764 (2,1,1,1) -50119 -65747 -58411

(50,0.94) -58962 -76663 -68266 (1,2,1,1) -50102 -65698 -58382

(75,0.94) -57016 -74134 -66038 (2,2,1,1) -50116 -65733 -58403

(125,0.94) -56667 -73624 -65604

(250,0.94) -58962 -76663 -68266 Factor DP (p, q, r, s)
(1,1,1,1) -50180 -65722 -58445

Gen.EWMA (n0, ν0) (2,1,1,1) -50207 -65759 -58479

(2,2,0.94) -53821 -63768 -59212 (1,2,1,1) -50183 -65726 -58449

(2,2,0.80) -86819 -94612 -91299 (2,2,1,1) -50190 -65735 -58457

(2,2,0.60) -167006 -202297 -185255

(1,2,0.94) -53767 -63550 -59072

(1,2,0.80) -86705 -93863 -90911

(1,2,0.60) -166798 -201250 -184666

(2,1,0.94) -53751 -63638 -59108

(2,1,0.80) -86708 -94096 -91028

(2,1,0.60) -166863 -201696 -184932

(1,1,0.94) -53773 -63607 -59102

(1,1,0.80) -86782 -94010 -91036

(1,1,0.60) -166953 -201546 -184936

Note: The figures report the maximized values of the Student t (8) log likelihoods, penalized by the AIC criterion: AICi,t−1= LLi,t−1−ki,
as defined by (cf. (20)) where LLt−1,i is the maximized log likelihood at time t for model i and ki is the number of parameters
of model i. Columns 2 and 6 report the AIC-penalized log likelihood at the initial date of the evaluation period (2 Nov ’01),
columns 3 and 7 report the AIC-penalized log likelihood at the final date of the evaluation period (13 Oct ’03),
and columns 4 and 8 report the average AIC-penalized log likelihood values over the days between these two dates.



Table 5a: VaR Diagnostic Tests for α = 1%
(Recursive Estimation With Expanding Window)

Panel A: Portfolio weights: ωt = (1/22, 1/22, ..., 1/22)
0

Normal Student (8) Student (6)
π̂ zπ̂ π̂ zπ̂ π̂ zπ̂

Modelling Strategies
Best
AIC 1.972 2.200 0.592 -0.924 0.394 -1.370
SBC 1.972 2.200 0.592 -0.924 0.197 -1.817

‘Bayesian’ Average
AIC 1.972 2.200 0.592 -0.924 0.394 -1.370
SBC 1.972 2.200 0.592 -0.924 0.197 -1.817

Thick Average
AIC best 15 (25%) 0.394 -1.370 0.197 -1.817 0 -2.263
SBC best 15 (25%) 0.394 -1.370 0.197 -1.817 0 -2.263

AIC best 32 (50%) 0.592 -0.924 0.197 -1.817 0 -2.263
SBC best 32 (50%) 0.592 -0.924 0.197 -1.817 0 -2.263

All (100%) 0.197 -1.817 0 -2.263 0 -2.263

Panel B : Portfolio weights: ωt =
³P22

j=1 ujt

´−1
(u1t, u2t, ..., u22t)

0, uit ∼ Uniform(0, 1)

Normal Student (8) Student (6)
π̂ zπ̂ π̂ zπ̂ π̂ zπ̂

Modelling Strategies
Best
AIC 2.167 2.647 0.789 -0.477 0 -2.263
SBC 2.167 2.647 0.789 -0.477 0 -2.263

‘Bayesian’ Average
AIC 2.167 2.647 0.789 -0.477 0 -2.263
SBC 2.167 2.647 0.789 -0.477 0 -2.263

Thick Average
AIC best 15 (25%) 0.394 -1.370 0.197 -1.817 0 -2.263
SBC best 15 (25%) 0.394 -1.370 0.197 -1.817 0 -2.263

AIC best 32 (50%) 0.592 -0.924 0.197 -1.817 0 -2.263
SBC best 32 (50%) 0.592 -0.924 0.197 -1.817 0 -2.263

All (100%) 0 -2.263 0 -2.263 0 -2.263



Table 5b: VaR Diagnostic Tests for α = 5%
(Recursive Estimation With Expanding Window)

Panel A: Portfolio weights: ωt = (1/22, 1/22, ..., 1/22)
0

Normal Student (8) Student (6)
π̂ zπ̂ π̂ zπ̂ π̂ zπ̂

Modelling Strategies
Best Models
AIC 7.100 2.170 4.733 -0.275 3.550 -1.497
SBC 6.903 1.966 4.733 -0.275 3.353 -1.701

‘Bayesian’ Average Models
AIC 7.100 2.170 4.733 -0.275 3.550 -1.497
SBC 6.903 1.966 4.733 -0.275 3.353 -1.701

Thick Average Models
AIC best 15 (25%) 4.536 -0.478 4.142 -0.886 3.155 -1.905
SBC best 15 (25%) 4.536 -0.478 4.142 -0.886 2.958 -2.109

AIC best 32 (50%) 4.733 -0.275 2.761 -2.312 2.169 -2.924
SBC best 32 (50%) 4.733 -0.275 2.761 -2.312 2.169 -2.924

All (100%) 3.155 -1.905 1.577 -3.535 1.577 -3.535

Panel B : Portfolio weights: ωt =
³P22

j=1 ujt

´−1
(u1t, u2t, ..., u22t)

0, uit ∼ Uniform(0, 1)

Normal Student (8) Student (6)
π̂ zπ̂ π̂ zπ̂ π̂ zπ̂

Modelling Strategies
Best
AIC 7.100 2.170 4.536 -0.478 3.944 -1.090
SBC 7.100 2.170 4.339 -0.682 3.747 -1.294

‘Bayesian’ Average
AIC 7.100 2.170 4.536 -0.478 3.944 -1.090
SBC 7.100 2.170 4.339 -0.682 3.747 -1.294

Thick Average
AIC best 15 (25%) 4.142 -0.886 4.142 -0.886 3.944 -1.090
SBC best 15 (25%) 4.142 -0.886 4.142 -0.886 3.550 -1.497

AIC best 32 (50%) 4.536 -0.478 2.761 -2.312 2.169 -2.924
SBC best 32 (50%) 4.536 -0.478 2.761 -2.312 2.169 -2.924

All (100%) 2.958 -2.109 1.972 -3.127 1.577 -3.535



Table 6: Probability Values for Kupier and Kolmogorov-Smirnov Tests
(Recursive Estimation With Expanding Window)

Panel A: Portfolio weights ωt = (1/22, 1/22, ..., 1/22)
0

Normal Student (8) Student (6)
Modelling Strategy Ku KS Ku KS Ku KS

Best
AIC 0.091 0.158 0.485 0.303 0.179 0.174
SBC 0.091 0.181 0.362 0.247 0.292 0.279

‘Bayesian’ Average
AIC 0.091 0.158 0.485 0.303 0.179 0.174
SBC 0.091 0.181 0.362 0.247 0.292 0.279

Thick Average
AIC (25%) 0.003 0.004 0.154 0.187 0.052 0.107
SBC (25%) 0.003 0.004 0.148 0.163 0.025 0.080

AIC (50%) 0.143 0.066 0.005 0.003 0.000 0.016
SBC (50%) 0.143 0.066 0.006 0.003 0.000 0.016

All (100%) 0.016 0.049 0.000 0.002 0.000 0.014

Panel B : Portfolio weights: ωt =
³P22

j=1 ujt

´−1
(u1t, u2t, ..., u22t)

0, uit ∼ Uniform(0, 1)

Normal Student (8) Student (6)
Modelling Strategy Ku KS Ku KS Ku KS

Best
AIC 0.079 0.148 0.767 0.607 0.410 0.421
SBC 0.075 0.141 0.754 0.679 0.567 0.610

‘Bayesian’ Average
AIC 0.079 0.148 0.767 0.607 0.410 0.421
SBC 0.075 0.141 0.754 0.679 0.567 0.610

Thick Average
AIC (25%) 0.006 0.012 0.284 0.355 0.114 0.249
SBC (25%) 0.006 0.012 0.163 0.212 0.026 0.093

AIC (50%) 0.224 0.144 0.004 0.035 0.000 0.017
SBC (50%) 0.224 0.144 0.006 0.044 0.000 0.017

All (100%) 0.052 0.115 0.000 0.031 0.000 0.016

Note: The columns indicated by KS report the p-values of the Kolmogorov-Smirnov
test (36) and the columns indicated by Ku reports the p-values of the Kupier test (37).
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