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Abstract 
 
This paper presents a new approach to estimation and inference in panel data models with a 
multifactor error structure where the unobserved common factors are (possibly) correlated 
with exogenously given individual-specific regressors, and the factor loadings differ over the 
cross section units. The basic idea behind the proposed estimation procedure is to filter the 
individual-specific regressors by means of (weighted) cross-section aggregates such that 
asymptotically as the cross-section dimension (N) tends to infinity the differential effects of 
unobserved common factors are eliminated. The estimation procedure has the advantage that 
it can be computed by OLS applied to an auxiliary regression where the observed regressors 
are augmented by (weighted) cross sectional averages of the dependent variable and the 
individual specific regressors. Two different but related problems are addressed: one that 
concerns the coefficients of the individual-specific regressors, and the other that focusses on 
the mean of the individual coefficients assumed random. In both cases appropriate estimators, 
referred to as common correlated effects (CCE) estimators, are proposed and their asymptotic 
distribution as N → ∞, with T (the time-series dimension) fixed or as N and T→ ∞ (jointly) 
are derived under different regularity conditions. One important feature of the proposed CCE 
mean group (CCEMG) estimator is its invariance to the (unknown but fixed) number of 
unobserved common factors as N and T→ ∞ (jointly). The small sample properties of the 
various pooled estimators are investigated by Monte Carlo experiments that confirm the 
theoretical derivations and show that the pooled estimators have generally satisfactory small 
sample properties even for relatively small values of N and T. 
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1 Introduction

A number of different approaches have been advanced for the analysis of cross section dependence.

In the case of spatial problems where a natural immutable distance measure is available the depen-

dence is captured through “spatial lags” using techniques familiar from time series literature. In

economic applications spatial techniques are often adapted using alternative measures of “economic

distance”. See, for example, Lee and Pesaran (1993), Conley and Topa (2002), Conley and Dupor

(2003), and Pesaran, Schuermann and Weiner (2004), as well as the literature on spatial economet-

rics recently surveyed by Anselin (2001). In the case of panel data models where the cross section

dimension (N) is small (typically N < 10) and the time series dimension (T ) is large the standard

approach is to treat the equations from the different cross section units as a system of seemingly

unrelated regression equations (SURE) and then estimate the system by the Generalized Least

Squares (GLS) techniques. This approach allows for general (time-invariant) correlation patterns

across the errors in the different cross section equations.

There are also a number of contributions in the literature that allow for time-varying individual

effects in the case of panels with homogeneous slopes where T is fixed as N → ∞. Holtz-Eakin,
Newey and Rosen (1988) use a quasi-differencing procedure to eliminate the time-varying effects

and then estimate the model by instrumental variables. This procedure eliminates the individual-

specific effects but yields regression equations with time-varying coefficients that are generally

difficult to estimate and is likely to work only when T is quite small. Ahn, Lee and Schmidt (2001),

building on the earlier contributions of Kiefer (1980) and Lee (1991) propose a number of different

generalized method of moments (GMM) estimators depending on whether first as well as second-

order moment restrictions are utilized. In the case where idiosyncratic errors are homoskedastic

and nonautocorrelated, they show that the GMM estimator that makes use of all the first and

second order moment restrictions dominates the maximum likelihood estimator (which is also the

generalized within estimator) originally proposed by Kiefer (1980). However, their analysis assumes

that the regressors are identically and independently distributed across the individuals, which may

not be valid in practice. In addition, none of these approaches are appropriate when both N and T

are large and of the same order of magnitude, as is often the case in cross-country (region) studies.

The application of an unrestricted SURE-GLS approach to large N and T panels involves nui-

sance parameters that increase at a quadratic rate as the cross section dimension of the panel is

allowed to rise. To deal with this problem a number of authors including Robertson and Symons

(2000), Coakley, Fuertes and Smith (2002), and Phillips and Sul (2003) propose restricting the co-

variance matrix of the errors using a common factor specification with a fixed number of unobserved

factors. Phillips and Sul (2003) adopt a GLS-SURE procedure for estimation of autoregressive mod-

els with heterogeneous slopes (but without exogenous regressors) using a single factor structure for

the residuals, but do not provide any largeN asymptotic results. Coakley, Fuertes and Smith (2002)
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propose a principal components approach that is arguably simpler to implement than Robertson

and Symons’s full maximum likelihood procedure.1 These authors also claim that their procedure

is valid even if the unobserved common factors and the observed individual effects are correlated,

possibly due to omitted global variables or common shocks that are correlated with the included

regressors.

In this paper we first establish that in general the estimation procedure proposed by Coakley,

Fuertes and Smith (CFS) will not be consistent if the unobserved factors and the included regressors

are correlated. We also show that the satisfactory simulation results reported in the paper are due

to the paper’s special Monte Carlo design where the cross-section average of the included regressor

and the unobserved common effect become perfectly correlated as N →∞. We shall then propose
a new approach that yields consistent and asymptotically normal parameter estimates even in the

presence of correlated unobserved common effects both when T is fixed and N → ∞, and as
(N,T )→∞, jointly.

We consider a multifactor residual model and distinguish between individual-specific regressors,

as well as observed and unobserved common effects. We permit the common effects to have differ-

ential impacts on individual units, while at the same time allowing them to exhibit an arbitrary

degree of correlation amongst themselves and with the individual-specific regressors. We allow for

error variance heterogeneity and do not require the individual-specific regressors to be identically

and/or independently distributed over the cross-section units, which is particularly relevant to the

analysis of cross-country panels. However, in this paper we assume the individual-specific regres-

sors and the common factors to be stationary and exogenous. Allowing for unit roots and other

extensions is currently the subject of further research.

The basic idea behind the proposed estimation procedure is to filter the individual specific

regressors by means of cross section aggregates such that asymptotically (asN →∞) the differential
effects of unobserved common factors are eliminated. This is in contrast with the various approaches

adopted in the literature that focus on estimation of factor loadings as an input into the GLS

algorithm. The estimation approach has the added advantage that it can be computed by ordinary

least squares (OLS) applied to an auxiliary regression where the observed regressors are augmented

by cross section (weighted) averages of the dependent variable and the individual specific regressors.

Using this approach we consider two different but related estimation and inference problems; one

that concerns the coefficients of the individual-specific regressors, and the other that focusses on

the means of the individual coefficients assumed random as in Swamy (1970). We refer to these

as common correlated effects (CCE) estimators and derive their asymptotic distributions under

certain regularity conditions.

1Similar issues are also discussed in the analysis of (dynamic) factor models by Forni and Lippi (1997), Forni and

Reichlin (1998), Stock and Watson (1998), and Bai and Ng (2002), among others.
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We show that the CCE estimator of the individual-specific coefficients are asymptotically un-

biased as N → ∞ both for T fixed and T → ∞, so long as a certain rank condition concerning
the factor loadings is satisfied. In this case the asymptotic distribution of the CCE estimator

is shown to be free of nuisance parameters when T is fixed as N → ∞, or if √T/N → 0 , as

N,T → ∞, jointly. Building on these results we then show that the mean group estimator based
on the individual-specific CCE estimators (referred to as CCEMG) is also asymptotically unbiased

as N →∞ both for T fixed and T →∞, and derive its asymptotic distribution as N,T →∞, with
no particular restrictions on the convergence rates of N and T . The CCEMG estimator continues to

hold under slope homogeneity. Remarkably, these results hold for any fixed number of unobserved

common effects, which is an important consideration in practice where in general little is known

about the unobserved common effects.

Similar results are also obtained for a standard pooled version of the CCE estimator (referred

to as CCEP). The CCEP estimator is asymptotically unbiased as N → ∞ both for T fixed and

as T → ∞, but under slope homogeneity the derivation of its asymptotic distribution requires
T/N → 0 as N and T →∞. This requirement, however, is not unduly restrictive in micro panels
where T is typically small and N relatively large.

The above theoretical results are confirmed by a number of Monte Carlo experiments some of

which are summarized in Section 8. Tests based on the CCEMG estimator is shown to have the

correct size even for samples as small asN = 30 and T = 20, with the empirical size being controlled

as (N,T )→∞, jointly. The CCEP estimator behaves similarly, although under slope homogeneity
there is evidence of size distortions when T > N (as predicted by the theory). A modified test

based on the CCEP estimator is proposed where the variance formula for the heterogeneous slope

case is used even if it is believed that the slope coefficients are homogeneous.2 The resultant test,

denoted by CCEP(hetro), shows little size distortions for N,T ≥ 20, and has better small sample
properties than the CCEMG estimator. Both estimators also perform well relative to the infeasible

estimator that uses data on the unobserved common effects and assumes a complete knowledge of

the residual factor structure. The CCE type estimators come close to replicating the properties of

the infeasible estimators without knowledge of the residual factor structure and/or the realizations

of the unobserved effects. The Monte Carlo results also illustrate the substantial bias and size

distortions that results if error cross section dependence is ignored, which in turn highlight the

importance of testing for error cross section dependence in panel data models.3

The plan of the paper is as follows: Section 2 sets out the multifactor residual model and

its assumptions. Section 3 shows the general inconsistency of the principal components estimator

proposed by Coakley, Fuertes and Smith (2002). Section 4 motivates the idea of approximating the

2In reality one is, of course, never sure of the validity of the slope homogeneity assumption.
3General tests of error cross section dependence are discussed in Pesaran (2004).
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unobserved common factor by linear combination of the cross section averages of the dependent and

the individual-specific regressors. The CCE estimators of the coefficients of the individual-specific

regressors are presented in Section 5, and their pooled counterpart in Section 6. The mean group

estimator based on the individual CCE estimators (i.e. CCEMG) is discussed in sub-section (6.1),

and the pooled version (i.e. CCEP) in sub-section (6.2). The problems of how best to choose

the weights for the construction of the cross-section aggregates and in the formation of the pooled

estimator are discussed in Section 7. Section 8 reports the results of the Monte Carlo experiments.

Section 9 concludes by identifying important areas for extensions and further developments.

Notations: K stands for a finite positive constant, kAk = [Tr(AA0)]1/2 is the Euclidean norm of
them×nmatrixA, andA− denotes a generalized inverse ofA. an = O(bn) states the deterministic
sequence {an} is at most of order bn, xn = Op(yn) states the vector of random variables, xn, is

at most of order yn in probability, and xn = op(yn) is of smaller order in probability than yn,
q.m.→ denotes convergence in quadratic mean (or mean square error),

p→ convergence in probability,
d→ convergence in distribution, and

d∼ asymptotic equivalence of probability distributions. All

asymptotics are carried out under N → ∞, either with a fixed T , or jointly with T → ∞. Joint
convergence of N and T will be denoted by (N,T )

j→∞. Restrictions (if any) on the relative rates
of convergence of N and T will be specified separately.

2 A Multifactor Residual Model

Let yit be the observation on the i
th cross section unit at time t for i = 1, 2, ..., N ; t = 1, 2, ..., T,

and suppose that it is generated according to the following linear heterogeneous panel data model

yit = α0idt + β0ixit + eit, (2.1)

where dt is a n× 1 vector of observed common effects (including deterministics such as intercepts
or seasonals dummies), xit is a k × 1 vector of observed individual-specific regressors on the ith
cross section unit at time t, and the errors have the multifactor structure

eit = γ 0ift + εit, (2.2)

in which ft is the m × 1 vector of unobserved common effects, and εit are the individual-specific

(idiosyncratic) errors assumed to be independently distributed of (dt,xit). In general, however,

the unobserved factors, ft, could be correlated with (dt,xit), and to allow for such a possibility we

adopt the following fairly general model for the individual specific regressors

xit = A
0
idt + Γ

0
ift + vit, (2.3)

where Ai and Γi are n × k and m × k, factor loading matrices with fixed components, vit are
the specific components of xit distributed independently of the common effects and across i, but
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assumed to follow general covariance stationary processes. Unit roots and deterministic trends can

be considered in xit and yit by allowing one or more of the the common effects in dt or ft to have

unit roots and/or deterministic trends. In what follows, however, we focus on the case where dt

and ft are covariance stationary.

Combining (2.1), (2.2) and (2.3) we now have the following system of equations

zit
(k+1)×1

=

Ã
yit

xit

!
= B0i
(k+1)×n

dt
n×1

+ C0i
(k+1)×m

ft
m×1

+ uit
(k+1)×1

, (2.4)

where

uit =

Ã
εit + β0ivit

vit

!
, (2.5)

Bi =
³
αi Ai

´Ã 1 0

βi Ik

!
, Ci =

³
γi Γi

´Ã 1 0

βi Ik

!
, (2.6)

Ik is an identity matrix of order k, and the rank of Ci is determined by the rank of the m× (k+1)
matrix of the unobserved factor loadings

Γ̃i =
³
γi Γi

´
. (2.7)

Throughout we shall assume that kBik and kCik or their expectations (if assumed random) are
bounded.

The above set up is sufficiently general and renders a variety of panel data models as special

cases. (i) The familiar fixed or random effects models correspond to the case where dt = 1, βi = β

and γi = 0, for all i. (ii) The time-varying effects models of Kiefer (1980), Lee (1991) and Ahn, Lee

and Schmidt (2001) allow for error cross section dependence through a single unobserved factor but,

in addition to assuming that dt = 1, βi = β, also require the individual specific regressors to be

cross sectionally independent, namelyAi = 0 and Γi = 0. In most applications of interest, however,

the individual specific regressors are likely to be cross sectionally dependent and a formulation such

as (2.3) will be far more widely applicable. (iii) The random coefficient model of Swamy (1970)

allows for slope heterogeneity but assumes γi = 0, for all i. (iv) In the special case where γi = γ,

the multifactor structure reduces to γt = γ 0ft, and (2.1) and (2.2) become the familiar panel data

model with time dummies. In this case the estimation of β can be achieved using standard panel

data estimators based on cross sectionally de-meaned observations. (v) The large N and T factor

models recently analyzed by Stock and Watson (1998) and Bai and Ng (2002) focus on consistent

estimation of ft (including its dimension m) and the factor loadings, γi, and are not concerned with

the estimation of the “structural” parameters βi, and in effect set them to zero.4

4Note that βi is unidentified if, as maintained in the factor models, the variance matrix of uit is unrestricted. The

assumption that vit and uit in (2.5) are uncorrelated provides the k restrictions needed for the exact identification

of βi.
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In the panel literature with T small and N large, the primary parameters of interest are the

means of the individual specific slope coefficients, βi, i = 1, 2, ...,N . The common factor loadings,

αi and γi, are generally treated as nuisance parameters. In cases where both N and T are large, it

is also possible to consider consistent estimation of the factor loadings. In this paper we shall focus

on the estimation and inference problems relating to E(βi) = β, and discuss the circumstances

under which the individual slope coefficients, βi, can also be consistently estimated and tested. To

this end we make the following assumptions:

Assumption 1 (common effects): The (n +m) × 1 vector of common effects, gt = (d0t, f 0t)0,

is covariance stationary with absolute summable autocovariances, distributed independently of the

individual-specific errors, εit0 and vit0 for all i, t and t
0.

Assumption 2 (individual-specific errors): The individual specific errors εit and vjt are dis-

tributed independently for all i, j and t. For each i, εit is serially uncorrelated with mean zero, a

finite variance σ2i < K, and a finite fourth-order cumulant. vit follows a linear stationary process

with absolute summable autocovariances given by

vit =
∞X
`=0

Si`νi,t−`, (2.8)

where νit are k × 1 vectors of identically, independently distributed (IID) random variables with

mean zero, the variance matrix, Ik, and finite fourth-order cumulants. In particular, the k × k
coefficient matrices Si` satisfy the condition

V ar (vit) =
∞X
`=0

Si`S
0
i` = Σi ≤K <∞, (2.9)

for all i and some constant matrix K, where Σi is a positive definite matrix.

Assumption 3 (factor loadings): The unobserved factor loadings, γi and Γi, are independently

and identically distributed across i, and of the individual specific errors, εjt and vjt, the common

factors, gt = (d
0
t, f

0
t), for all i, j and t with fixed means γ and Γ, respectively, and finite variances.

In particular,

γi = γ + ηi, ηi v IID (0,Ωη), for i = 1, 2, ..., N, (2.10)

where Ωη is a m × m symmetric non-negative definite matrix, and kγk < K, kΓk < K, and

kΩηk < K.
Assumption 4 (random slope coefficients): The slope coefficients, βi, follow the random

coefficient model

βi = β + υi, υi v IID (0,Ωυ), for i = 1, 2, ...,N, (2.11)

where kβk < K, kΩυk < K, Ωυ is a k×k symmetric non-negative definite matrix, and the random
deviations, υi, are distributed independently of γj,Γj ,εjt, vjt, and gt for all i, j and t.
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Assumption 5: (identification of βi and β): Consider the cross section averages of the indi-

vidual specific variables, zit, defined by z̄wt =
PN
j=1wjzjt, with the weights {wj} satisfying the

conditions5

(i): wi = O

µ
1

N

¶
, (ii):

NX
i=1

|wi| < K, (2.12)

and let

M̄w = IT − H̄w

¡
H̄0
wH̄w

¢−
H̄0
w, (2.13)

and

Mg = IT −G
¡
G0G

¢−
G0, (2.14)

where H̄w = (D, Z̄w), G = (D,F), D =(d1,d2, ...,dT )
0, F =(f1, f2, ..., fT )0 are T × n and T ×m

data matrices on observed and unobserved common factors, respectively, Z̄w = (z̄w1, z̄w2, ..., z̄wT )
0

is the T × (k+1) matrix of observations on the cross section averages, and ¡H̄0
wH̄w

¢−
and (G0G)−

denote the generalized inverses of H̄0
wH̄w andG0G, respectively. Also denote the T ×k observation

matrix on individual specific regressors by Xi = (xi1,xi2, ...,xiT )
0.

5a: (identification of βi): The k×k matrices Ψ̂iT = T−1
¡
X0iM̄wXi

¢
and Ψig = T

−1 (X0iMgXi)

are non-singular and Ψ̂−1iT and Ψ−1ig have finite second order moments, for all i.

5b: (identification of β): The k × k pooled observation matrix Ψ̂NT defined by

Ψ̂NT =
NX
i=1

θi

µ
X0iM̄wXi

T

¶
(2.15)

is non-singular for the scaler weights, θi satisfying the conditions

(i): θi = O

µ
1

N

¶
, (ii):

NX
i=1

|θi| < K. (2.16)

Remark 2.1 The residual factor model specified by (2.1), (2.2) and (2.3) is quite general and

allows the unobserved common factors, ft, to be correlated with the individual specific regressors,

xit, and permits a general degree of error cross section dependence by considering a multifactor

structure with differential factor loadings over the cross section units.

Remark 2.2 In addition to intercepts, seasonal dummies, and observed stationary variables such

as asset returns or oil price changes, it is also possible to include deterministic trends in dt, by

suitable scaling of the trend variables.. For example, to include a linear deterministic trend in the

model, one of the elements of dt, say its s
th element could be specified as dst = t/T , with appropriate

5Note that the conditions in (2.12) also imply that
PN

i=1w
2
i = O

¡
N−1

¢
.
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adjustments to the rate of convergence of the CCE estimator of the associated trend coefficient. The

main results of the paper also hold if there are unit root processes amongst the elements of dt and/or

ft, which in turn would introduce unit roots in the individual specific regressors, xit. The technical

details of this case can be found in Kapetanios, Pesaran and Yamagata (2004), which is currently

under preparation.

Remark 2.3 The weights, wi, are not unique and, as it turns out, do not affect the asymptotic

distribution of the estimators advanced in this paper. In small samples, however, they might be

important, a topic which we do not address here. In practice, when N is reasonably large one could

use the equal weights wi = 1/N . Otherwise, measures of economic distance such as output shares

or trade weights could be considered, as in Pesaran, Schuermann and Weiner (2004), for example.

Remark 2.4 The number of observed factors, n, and the number of individual specific regressors,

k, are assumed fixed and known. The number of unobserved factors, m, is also assumed fixed, but

need not be known.

Remark 2.5 Finally, it is worth noting that the common feature dynamics across i are captured

through the serial correlation structure of the common effects. The assumption that the idiosyn-

cractic errors, εit, are serially uncorrelated can also be relaxed, although in this case the CCE type

estimators proposed in the paper continue to be consistent, but will no longer be efficient. Other

more general individual specific dynamics can be introduced by relaxing Assumptions 1 and 2 so

that lagged values of yit can also be included amongst xit. However, this is beyond the scope of the

present paper.

3 The Principal Components Estimator

To deal with the residual cross section dependence, Coakley, Fuertes and Smith (2002), hereafter

referred to as CFS, propose a principal components estimator by augmenting the regression of yit

on xit with one or more principal components of the estimated OLS residuals, êit, i = 1, 2, ..., N ,

t = 1, 2, ..., T obtained from the first stage regression of yit on xit for each i. By means of a simple

example we shall demonstrate that the CFS’s estimator will not be consistent, unless ft and x̄t

(the simple cross section average of xit) are uncorrelated or if they are perfectly correlated.

For this purpose we shall focus on the simple case of only one individual-specific regressor (k = 1)

and assume that all the coefficients of the underlying data generating process are homogeneous

across i, namely αi = 0, βi = β, γi = γ, and σ2i = σ2. This is the set up considered by CFS in

the analytical discussion of their estimator. In this case the first principal component is given by
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et = N
−1PN

i=1 eit. CFS suggest estimating et using the pooled estimator of β, given by

β̂PE =

PT
t=1

PN
i=1 yitxitPT

t=1

PN
i=1 x

2
it

. (3.1)

This yields êt = N
−1PN

i=1(yit − β̂PExit) = ȳt − β̂PE x̄t, for t = 1, 2, ..., T which are then used in

the augmented OLS regression of yiton xit and êt to obtain the principal components estimate of

β, which we denote by β̂PC .

To examine the asymptotic properties of β̂PC as T and N → ∞, using the following vector
notations:

yi = (yi1, yi2, ..., yiT )
0, xi = (xi1, xi2, ..., xiT )0, εi = (εi1, εi2, ..., εiT )0

ȳ = (ȳ1, ȳ2, ..., ȳT )
0, x̄ = (x̄1, x̄2, ..., x̄T )0, ε̄ = (ε̄1, ε̄2, ..., ε̄T )0

ê = (ê1, ê2, ..., êT )
0, f =(f1, f2, ...., fT )0,

we first note that

β̂PC =
N−1

PN
i=1(

x0iyi
T )− ( x̄0êT )( ê

0ê
T )

−1( ê
0ȳ
T )

DNT
, (3.2)

where

DNT = N
−1

NX
i=1

(
x0ixi
T
)− ( x̄

0ê
T
)(
ê0ê
T
)−1(

ê0x̄
T
)

In the present simple case, yi = βxi+ γf + εi, and averaging across i, ȳ =βx̄+γf + ε̄. Using these

in (3.2) we obtain

β̂PC − β = γ
( x̄

0f
T )−( x̄

0ê
T )(

ê0ê
T )

−1( ê
0f
T )

DNT
+
N−1

PN
i=1(

x0iεi
T )− ( x̄0êT )( ê

0ê
T )

−1( ê
0ε̄
T )

DNT
. (3.3)

To derive the probability limit of β̂PC , as N and T →∞, we first note that
ê0ε̄
T

= (β − β̂PE)(
x̄0ε̄
T
) + γ(

f 0ε̄
T
)+(

ε̄0ε̄
T
),

ê0x̄
T

= (β − β̂PE)(
x̄0x̄
T
) + γ(

x̄0f
T
)+(

x̄0ε̄
T
),

ê0f
T

= (β − β̂PE)(
x̄0f
T
) + γ(

f 0f
T
)+(

f 0ε̄
T
),

and finally

ê0ê
T

= (β − β̂PE)
2(
x̄0x̄
T
)+2γ(β − β̂PE)(

x̄0f
T
) + γ2(

f 0f
T
)

+(
ε̄0ε̄
T
) + 2γ(β − β̂PE)(

x̄0ε̄
T
) + 2γ(

f 0ε̄
T
).
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Under CFS’s assumptions T−1ε̄0ε̄, T−1x̄0ε̄, T−1f 0ε̄ and N−1
PN
i=1 T

−1x0iεi all converge to zero in

probability as N and T →∞ (in no particular order) and the following probability limits exist and

are bounded

(
x̄0x̄
T
)
p→ σ2x̄ ≥ 0, (

x̄0f
T
)
p→ σx̄f , (

f 0f
T
)
p→ σ2f > 0,

and
1

N

NX
i=1

(
x0ixi
T
)
p→ lim
N→∞

Ã
1

N

NX
i=1

σ2ix

!
= σ2x > 0.

Also using (3.1)

β − β̂PE
p→ −γ

µ
σx̄f
σ2x

¶
.

Substituting these probability limits in (3.3) and after some algebra we have

β̂PC − β
p→

γ
¡
σx̄f/σ

2
x

¢³
σ2fσ

2
x̄ − σ2x̄f

´
σ2xσ

2
f − σ2x̄f

£
σ4x̄/σ

4
x − 3σ2x̄/σ2x + 3

¤ . (3.4)

Therefore, in the presence of common effects (γ 6= 0) the CFS’s principal components estimator

is consistent only under the two extremes of zero correlation between the common factor and the

cross-section average of the included regressor, namely if σx̄f = 0, or when the common factor and

the cross section average of the included regressor are perfectly correlated, namely σ2x̄f = σ2fσ
2
x̄.

This result also explains CFS’s Monte Carlo simulations and the small sample evidence that they

seem to provide in support of their proposed estimator. The processes used to generate ft and xit

are given by

ft = 0.9 ft−1 + εft,

xit = λi ft + vit,

vit = 0.9 vi,t−1 + εvi,t,

and the shocks εft and εvi,t are IID draws from the normal distribution. It is now easily seen that

x̄t = λ̄ft + v̄t,

where v̄t and λ̄ are the cross section means of dit and λi, respectively. Also

v̄t = 0.9 v̄t−1 + ε̄dt,

and since the shocks, εvi,t, are IID it then readily follows that V ar(ε̄vt)→ 0 and hence V ar(v̄t)→ 0

for each t as N → ∞. Therefore, x̄t and ft will become perfectly correlated if N is sufficiently

large.
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4 A General Approach to Estimation of Panels with Common

Effects

The main difficulty with the CFS’s estimator lies in the fact that it makes use of an inconsistent

estimator of βi to obtain the principal components which are then used as proxies for the unobserved

common effects. One way of overcoming this problem would be to estimate βi directly, using

suitable proxies for the unobserved factors that do not depend on an initial estimate of βi. To see

how this can be done consider the cross section averages of the equations in (2.4), using the weights

wj :
6

z̄wt = B̄
0
wdt + C̄

0
wft + ūwt, (4.1)

where as before, z̄wt =
PN
j=1wjzjt and

B̄w =
NX
i=1

wiBi, C̄w =
NX
i=1

wiCi, ūwt =
NX
i=1

wiuit, (4.2)

and suppose that

Rank(C̄w) = m ≤ k + 1, for all N. (4.3)

Then we have

ft =
¡
C̄wC̄

0
w

¢−1
C̄w

¡
z̄wt − B̄0wdt − ūwt

¢
. (4.4)

But using Lemma A.1 in Appendix A, we have

ūwt
q.m.→ 0, as N →∞, for each t, (4.5)

and

C̄w
p→ C = Γ̃

Ã
1 0

β Ik

!
, as N →∞, (4.6)

where

Γ̃ = (E (γi) , E (Γi))= (γ,Γ) . (4.7)

6In principle the weights used in the construction of the aggregates, z̄wt, could be individual-specific, namely for

individual i one could use z̄wit =
PN

j=1wijzjt, with wii = 0. As we shall see later in small samples the optimal choice

of these weights will depend on the unknown parameters, γj and σ2j , j = 1, 2, ..., N . But for consistent estimation it

is only required that the chosen weights satisfy the conditions in (2.12), in particular that for each i,
PN

j=1 w
2
ij → 0

as N →∞.

11



Therefore, assuming that Rank(Γ̃) = m we obtain

ft −
¡
CC0

¢−1
C
¡
z̄wt − B̄0wdt

¢ p→ 0, as N →∞.

This suggests using h̄wt = (d
0
t, z̄

0
wt)

0 as observable proxies for ft. Whilst consistent estimation of ft
using the above results still requires knowledge of the underlying parameters, the individual slope

coefficients of interest, βi and their means, β, can be consistently estimated by augmenting the

OLS or pooled regressions of yit on xit with dt and the cross section averages, z̄wt. We shall refer to

such estimators as the “common correlated effect estimator” (CCE). As we shall see later the basic

idea of augmenting the regressions with cross section averages continues to work even if the rank

condition, (4.3), is not satisfied. Rank deficiency in C induces exact linear dependencies amongst

the elements of h̄wt, as N → ∞. For example, in the extreme case where C = 0, using (4.1), we
have

z̄wt − B̄0wdt q.m.→ 0, as N →∞,
and a full augmentation of regressions of yit on xit with all the elements of h̄wt would not be

necessary. But augmenting the individual regressions with h̄wt would still be effective in reducing

residual cross section correlations, even though in this case the elements of h̄wt will be perfectly

correlated as N → ∞. But as we shall show the CCE estimators of β are not affected by rank
deficiency problem and continue to be asymptotically invariant to the factor loadings, γi, for any

fixed m.

5 Common Correlated Effects Estimators: Individual Specific Co-

efficients

For the individual slope coefficients the CCE is given by

b̂i = (X
0
iM̄wXi)

−1X0iM̄wyi, (5.8)

where Xi = (xi1,xi2, ...,xiT )
0, yi = (yi1, yi2, ..., yiT )0, and M̄w is defined by

M̄w = IT − H̄w

¡
H̄0
wH̄w

¢−1
H̄0
w, (5.9)

and as before H̄w = (D, Z̄w), D and Z̄w being, respectively, the T ×n and T × (k+ 1) matrices of
observations on dt and z̄wt. The rank condition, Rank(Γ̃) = m, ensures that under Assumptions

1-4, T−1
¡
H̄0
wH̄w

¢
converges to a positive definite matrix, for a fixed T as N →∞, as well as when

(N,T )
j→ ∞. But T−1(X0iM̄wXi) and its limit as (N,T )

j→ ∞ exits even if the rank condition is

not satisfied. This is because T−1(X0iM̄wXi) is invariant to the choice of a g-inverse for H̄
0
wH̄w,

and as we shall see its limit under (N,T )
j→ ∞ will be positive definite so long as Σi, is positive

definite.
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For each i and t = 1, 2, ..., T , writing (2.1) and (2.2) in matrix notations we have

yi = Dαi +Xiβi +Fγi + εi, (5.10)

where εi = (εi1, εi2, ..., εiT )
0, and as set out in Assumption 5, D = (d1,d2, ...,dT )

0 and F =

(f1, f2, ..., fT )
0. Using (5.10) in (5.8) we have

b̂i − βi =
µ
X0iM̄wXi

T

¶−1µ
X0iM̄wF

T

¶
γi+

µ
X0iM̄wXi

T

¶−1µ
X0iM̄wεi
T

¶
, (5.11)

which shows the direct dependence of b̂i on the unobserved factors through T
−1X0iM̄wF. To

examine the properties of this component, writing (2.3) and (4.1) in matrix notations, we first note

that

Xi =GΠi +Vi, (5.12)

and

H̄w =GP̄w + Ū
∗
w, (5.13)

where G = (D,F), Πi = (A0i,Γ0i)
0, Vi = (vi1,vi2, ...,viT )0 ,

P̄w
(n+m)×(n+k+1)

=

Ã
In B̄w

0 C̄w

!
, Ū∗w = (0, Ūw), (5.14)

Ūw = (ūw1, ūw2, ..., ūwT )
0. Also

°°B̄w°° = NX
i=1

|wi| kBik < K, and ,
°°C̄w°° = NX

i=1

|wi| kCik < K, (5.15)

under (2.12) and noting that kBik and kCik are bounded. Furthermore, under Assumptions 1 and
2, (G,Vi) is covariance stationary and

X0iG
T

= Π0i

µ
G0G
T

¶
+
V0iG
T

= Op(1),

G0G
T

= Op(1),
G0F
T

= Op(1).

Using results in Lemmas A.2 and A.3, it is now easily seen that

X0iH̄w

T
=

µ
X0iG
T

¶
P̄w +Op

µ
1

N

¶
+Op

µ
1√
NT

¶
, (5.16)

H̄0
wH̄w

T
= P̄0w

µ
G0G
T

¶
P̄w +Op

µ
1

N

¶
+Op

µ
1√
NT

¶
, (5.17)
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H̄0
wF

T
= P̄0w

µ
G0F
T

¶
+Op

µ
1√
NT

¶
, (5.18)

Hence, we obtain the following result which is critical to many of the derivations in this paper and

does not require the rank condition (4.3):

X0iM̄wF

T
=
X0iM̄qF

T
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
, (5.19)

where

M̄q = IT − Q̄w
¡
Q̄0wQ̄w

¢−
Q̄0w, with Q̄w =GP̄w. (5.20)

When the rank condition (4.3) is satisfied, using familiar results on generalized inverse, we have

M̄q =Mg = IT −G
¡
G0G

¢−
G0,

and since F ⊂G then M̄qF =MgF = 0, and

X0iM̄wF

T
= Op

µ
1

N

¶
+Op

µ
1√
NT

¶
. (5.21)

If the rank condition is not satisfied, we still have X0iM̄qQ̄w = 0, and since Q̄w = GP̄w =

(D,DB̄w+FC̄w), it follows thatµ
X0iM̄wF

T

¶
C̄w = Op

µ
1

N

¶
+Op

µ
1√
NT

¶
. (5.22)

Also, using (2.6) and (2.11) we have

C̄w =

Ã
γ̄w + Γ̄wβ+

NX
i=1

wiΓiυi, Γ̄w

!
,

where Γ̄w =
PN
i=1wiΓi. Substituting this result in (5.22) now yieldsµ
X0iM̄wF

T

¶Ã
γ̄w + Γ̄wβ+

NX
i=1

wiΓiυi

!
= Op

µ
1

N

¶
+Op

µ
1√
NT

¶
,µ

X0iM̄wF

T

¶
Γ̄w = Op

µ
1

N

¶
+Op

µ
1√
NT

¶
,

which in turn leads to

√
NX0iM̄wF

T

Ã
γ̄w +

NX
i=1

wiΓiυi

!
= Op

µ
1√
N

¶
+Op

µ
1√
T

¶
.

But under Assumption 4 and (2.12),
PN
i=1wiΓiυi = Op

¡
N−1/2

¢
, and therefore

√
N
¡
X0iM̄wF

¢
γ̄w

T
= Op

µ
1√
N

¶
+Op

µ
1√
T

¶
. (5.23)
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This result is clearly implied by (5.21), irrespective of whether the factor loadings are random or

just bounded. But the reverse is not true; (5.23) does not imply (5.21) if the rank condition is not

satisfied.

Similarly, irrespective of the rank of C̄w, it can be established that

X0iM̄wXi
T

=
X0iM̄qXi

T
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
, (5.24)

and

X0iM̄wεi
T

=
X0iM̄qεi
T

+Op

µ
1

N

¶
. (5.25)

When the rank condition is satisfied, however, the matrices X0iM̄qXi and X
0
iM̄qεi would simplify

to X0iMgXi and X
0
iMgεi, respectively.

Using the above results in (5.11) and noting that T−1X0iM̄qXi = Op (1), and assuming that the

rank condition (4.3) is satisfied we have7

b̂i − βi =
µ
X0iMgXi

T

¶−1µX0iMgεi
T

¶
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
. (5.26)

Since εi is independently distributed of Xi and G = (D,F), then for a fixed T , and as N →∞,
E
³
b̂i − βi

´
= 0. The finite-T distribution of b̂i−βi will be free of nuisance parameters asN →∞,

but will depend on the probability density of εi. For N and T sufficiently large, the distribution of√
T
³
b̂i − βi

´
will be asymptotically normal if the rank condition (4.3) is satisfied and if N and T

are of the same order of magnitudes, namely, if T/N → κ as N and T →∞, where κ is a positive
finite constant. To see why this additional condition is needed, using (5.26) note that

√
T
³
b̂i − βi

´
=

µ
X0iMgXi

T

¶−1 X0iMgεi√
T

+Op

Ã√
T

N

!
+Op

µ
1√
N

¶
, (5.27)

and the asymptotic distribution of
√
T
³
b̂i − βi

´
will be free of nuisance parameters only if

√
T/N →

0, as (N,T )
j→∞. For this condition to be satisfied it is sufficient that T/N → κ, as (N,T )

j→∞,
where κ is a finite non-negative constant.

The following theorem provides a formal statement of these results and the associated asymp-

totic distributions in the case where the rank condition is satisfied.

Theorem 5.1 Consider the panel data model (2.1) and (2.2) and suppose that kβik < K, kΠik <
K, Assumptions 1,2, and 5a hold, and the rank condition (4.3) is satisfied.

7Note also that under Assumption 5a, T−1 (X0
iMgXi) is a positive definite matrix.
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(a) - (N-asymptotic) The common correlated effects estimator, b̂i, defined by (5.8) is unbiased

for a fixed T > n + 2k + 1 and N → ∞, in the sense that limN→∞E
³
b̂i
´
= βi. Under the

additional assumption that εit ∼ IIDN(0,σ2i ),

b̂i − βi d→ N(0,ΣT,bi), (5.28)

as N →∞, where

ΣT,bi = T
−1σ2iΨ

−1
ig , Ψig = T

−1 ¡X0iMgXi
¢
, (5.29)

Mg = IT −G(G0G)−1G0, (5.30)

and G = (g1,g2, ...,gT ) = (F,D).

(b) - (Joint asymptotic) As (N,T )
j→∞ (in no particular order), b̂i is a consistent estimator

of βi. If it is further assumed that
√
T/N → 0 as (N,T )

j→∞, then
√
T
³
b̂i − βi

´
d→ N(0,Σbi), (5.31)

where

Σbi = σ2iΣ
−1
i . (5.32)

An asymptotically unbiased estimator of ΣT,bi , as N →∞ for a fixed T > n+ 2k + 1, is given

by (See Appendix B for a proof):

Σ̂T,bi = σ̂2i
¡
X0iM̄wXi

¢−1
, (5.33)

where

σ̂2i =

³
yi −Xib̂i

´0
M̄w

³
yi −Xib̂i

´
T − (n+m+ k) . (5.34)

In the case where (N,T )
j→∞, a consistent estimator of Σbi is given by

Σ̂bi = σ̊2i

µ
X0iM̄wXi

T

¶−1
, (5.35)

where

σ̊2i =

³
yi −Xib̂i

´0
M̄w

³
yi −Xib̂i

´
T − (n+ 2k + 1) . (5.36)

Here we have approximated m in (5.34) by its upper bound under the rank condition (4.3), namely

k + 1. For T sufficiently large the difference between σ̂2i and σ̊2i will be negligible, but the latter

has the advantage of not requiring an a priori knowledge of m.

When the rank condition, (4.3), is not satisfied consistent estimation of the individual slope

coefficients is not possible. But as we shall, the mean of βi can be consistently estimated irrespective

of the rank of C̄w under the random coefficient Assumptions 3 and 4.
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6 Pooled Estimators

In this section we shall assume that the parameters of interest are the cross-section means of the

slope coefficients βi, namely β defined by (2.11), and consider two alternative estimators, the

Mean Group (MG) estimator proposed in Pesaran and Smith (1995) and a generalization of the

fixed effects estimator that allow for the possibility of cross section dependence. We shall refer to

the former as the “Common Correlated Effects Mean Group” (CCEMG) estimator, and the latter

as the “Common Correlated Effects Pooled” (CCEP) estimator.

6.1 Common Correlated Effects Mean Group Estimator

The CCEMG estimator is a simple average of the individual CCE estimators, b̂i,

b̂MG = N
−1

NX
i=1

b̂i. (6.37)

As an alternative one could also consider Swamy’s Random Coefficient (RC) estimator defined by

the weighted average of the individual estimates with the weights being inversely proportional to

the individual variances (see, for example, Swamy (1970)):

b̂RC =
NX
i=1

Θ̂ib̂i, (6.38)

where

Θ̂i =


NX
j=1

h
Σ̂T,bj + Ω̂υ

i−1
−1 h
Σ̂T,bi + Ω̂υ

i−1
, (6.39)

Σ̂T,bj is given by (5.33) and Ω̂υ is a consistent estimator of Ωυ , the variance of υi defined by

(2.11). A comparative analysis of the MG and the RC estimators in the context of dynamic panel

data models without unobserved common effects is provided in Hsiao, Pesaran and Tahmiscioglu

(1999). It is shown that, for N and T sufficiently large, both of these estimators are consistent

and asymptotically equivalent. These results continue to apply in the more general setting of this

paper. Here we shall focus on the MG estimator, and note that under Assumption 4 and using

(5.11) we have

√
N
³
b̂MG − β

´
=

1√
N

NX
i=1

υi +
1

N

NX
i=1

Ψ̂−1iT

Ã√
NX0iM̄wF

T

!
γi +

1

N

NX
i=1

Ψ̂−1iT

Ã√
NX0iM̄wεi

T

!
, (6.40)
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where by assumption Ψ̂−1iT =
¡
T−1X0iM̄wXi

¢−1
has second order moments. In the case where the

rank condition (4.3) is satisfied, using (5.21) we have
√
N
¡
X0iM̄wF

¢
T

= Op

µ
1√
N

¶
+Op

µ
1√
T

¶
,

and it is easily seen that for all bounded values of the factor loadings, γi, that

1

N

NX
i=1

Ψ̂−1iT

Ã√
NX0iM̄wF

T

!
γi

p→ 0, as (N,T )
j→∞.

Similarly, using (5.24) and (5.25)

1

N

NX
i=1

Ψ̂−1iT

Ã√
NX0iM̄wεi

T

!
= ∆NT +Op

µ
1√
N

¶
+Op

µ
1√
T

¶
,

where

∆NT =
1√
N

NX
i=1

µ
X0iMgXi

T

¶−1µX0iMgεi
T

¶
.

However, since εi is distributed independently of Xi andG, and by Assumption 5a, E
³
Ψ−1ig

´
< K,

we have

V ar (∆NT ) =
1

NT

NX
i=1

σ2iE
³
Ψ−1ig

´
= O

µ
1

T

¶
,

and
√
N
³
b̂MG − β

´
=
1√
N

NX
i=1

υi +Op

µ
1√
N

¶
+Op

µ
1√
T

¶
.

Hence

√
N
³
b̂MG − β

´
d→ N(0,ΣMG), as (N,T )

j→∞. (6.41)

In the present case ΣMG = Ωυ, and can be consistently estimated non-parametrically by

Σ̂MG =
1

N − 1
NX
i=1

³
b̂i − b̂MG

´³
b̂i − b̂MG

´0
. (6.42)

It is also interesting to note that (6.41) holds even if the rank condition is not satisfied, so long

as the factor loadings satisfy the random coefficient model, (2.10). In this case using (2.10) we note

that the second term in (6.40) can be written as

χNT =
1

N

NX
i=1

Ψ̂−1iT

Ã√
NX0iM̄wF

T

!
(γ̄w + ηi − η̄w) , (6.43)

where γ̄w =
PN
i=1wiγi, and η̄w =

PN
i=1wiηi. Also using (5.19), (5.23), and (5.24) we have

χNT =
1√
N

NX
i=1

µ
X0iM̄qXi

T

¶−1µ
X0iM̄qF

T

¶
(ηi − η̄w) +Op

µ
1√
N

¶
+Op

µ
1√
T

¶
,
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which establishes that for N and T large

√
N
³
b̂MG − β

´
d∼ 1√

N

NX
i=1

υi +
1√
N

NX
i=1

µ
X0iM̄qXi

T

¶−1µ
X0iM̄qF

T

¶
(ηi − η̄w) .

The two terms on the right hand side of the above expression are independently distributed and

both tend to Normal densities with mean zero and finite variances.8 In this case the asymptotic

variance of
√
N
³
b̂MG − β

´
is given by

ΣMG = Ωυ + lim
N→∞

"
1

N

NX
i=1

³
Σ−1iq QifΩηQ

0
ifΣ

−1
iq

´#
, (6.44)

where

Σiq = p lim
T→∞

¡
T−1X0iM̄qXi

¢
and Qif = p lim

T→∞
¡
T−1X0iM̄qF

¢
, (6.45)

and depends on the unobserved factors. Nevertheless, it can be consistently estimated non-

parametrically using (6.42). To see this first note that

b̂i − β = υi + hiT +Op

µ
1√
N

¶
+Op

µ
1√
T

¶
, (6.46)

where

hiT =

µ
X0iM̄qXi

T

¶−1
X0iM̄q [F (ηi − η̄w) + εi]

T
, (6.47)

and

b̂i − b̂MG = (υi − ῡ) +
¡
hiT − h̄T

¢
+Op

µ
1√
N

¶
+Op

µ
1√
T

¶
. (6.48)

Since by assumption υi and hiT are independently distributed across i, then

E

"
1

N − 1
NX
i=1

³
b̂i − b̂MG

´³
b̂i − b̂MG

´0#
= ΣMG +O

µ
1√
N

¶
+O

µ
1√
T

¶
.

The above results are summarized in the following general theorem:

Theorem 6.1 Consider the panel data model (2.1) and (2.2) and suppose that Assumptions 1-4,

and 5a hold. Then the Common Correlated Effects Mean Group estimator, bMG defined by (6.37),

is asymptotically (for a fixed T and as N →∞) unbiased for β, and as (N,T ) j→∞
√
N
³
b̂MG − β

´
d→ N(0,ΣMG),

where ΣMG is given by (6.44), which is consistently estimated by (6.42).

8The latter result follows using Lemma A.4 and noting that as T → ∞, T−1X0
iM̄qXi

p→ Σi, which is a positive

definite matrix by assumption.

19



This theorem does not require the rank condition, (4.3), holds for any number, m, of unobserved

factors so long as m is fixed, and does not impose any restrictions on the relative rates of expansion

of N and T . But in the case where the rank condition is satisfied Assumption 3 can be relaxed and

the factor loadings, γi, need not follow the random coefficient model. It would be sufficient that

they are bounded.

6.2 Common Correlated Effects Pooled Estimators

Efficiency gains from pooling of observations over the cross section units can be achieved when the

individual slope coefficients, βi, are the same. In what follows we developed a pooled estimator

of β that assumes (possibly incorrectly) that βi = β, and σ2i = σ2, although it allows the slope

coefficients of the common effects (whether observed or not) to differ across i. Such a pooled

estimator of β, denoted by CCEP, is given by

b̂P =

Ã
NX
i=1

θiX
0
iM̄wXi

!−1 NX
i=1

θiX
0
iM̄wyi. (6.49)

Typically, the (pooling) weights θi are set equal to 1/N , although in the general case where σ
2
i differ

across i as we shall see it will be optimal to set θi = σ−2i /
PN
j=1 σ

−2
j . However, in practice where

σ2i is unknown the efficiency gain from using an estimate of σ2i is likely to be limited particularly

when T is small. In the present context it also turns out that when the rank condition (4.3) is

not satisfied the pooling weights, θi, must equal the aggregating weights, wi; otherwise the CCEP

estimator will not be consistent. The asymptotic results for b̂P is summarized in the following

theorem, with proofs provided in Appendix B.

Theorem 6.2 Consider the panel data model (2.1) and (2.2) and suppose that Assumptions 1-4

and 5b hold, and θi = wi. Then the Common Correlated Effects Pooled estimator, b̂P , defined by

(6.49) is asymptotically unbiased for β, and as (N,T )
j→∞ we haveÃ

NX
i=1

w2i

!−1/2 ³
b̂P − β

´
d→ N(0,Σ∗P ),

where

Σ∗P = Ψ
∗−1R∗Ψ∗−1, (6.50)

Ψ∗ = lim
N→∞

Ã
NX
i=1

wiΣiq

!
, R∗= lim

N→∞

"
N−1

NX
i=1

w̃2i
¡
ΣiqΩυΣiq +QifΩηQ

0
if

¢#
,

(6.51)

w̃i =
wiq

N−1
PN
i=1w

2
i

, (6.52)

and Σiq and Qif are defined by (6.45).
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Although the asymototic variance matrix of b̂P depends on the unobserved factors and their

loadings, it is nevertheless possible to estimate it consistently along the lines similar to that followed

in the case of CCEMG. Using (5.24) and (6.48) we first note thatµ
X0iM̄wXi

T

¶³
b̂i − b̂MG

´
=

µ
X0iM̄qXi

T

¶
(υi − ῡ)+

µ
X0iM̄qXi

T

¶¡
hiT − h̄T

¢
+Op

µ
1√
N

¶
+Op

µ
1√
T

¶
,

and since (υi − ῡ) and
¡
hiT − h̄T

¢
are independently distributed across i we then have

E

"
1

N − 1
NX
i=1

w̃2i

µ
X0iM̄wXi

T

¶³
b̂i − b̂MG

´³
b̂i − b̂MG

´0µX0iM̄wXi
T

¶#
= R∗+O

µ
1√
N

¶
+O

µ
1√
T

¶
.

Therefore, R∗ can be consistently estimated by

R̂∗ =
1

N − 1
NX
i=1

w̃2i

µ
X0iM̄wXi

T

¶³
b̂i − b̂MG

´³
b̂i − b̂MG

´0µX0iM̄wXi
T

¶
. (6.53)

Using (5.24) we also note that Ψ∗ can be consistently estimated by

Ψ̂∗ =
NX
i=1

wi

µ
X0iM̄wXi

T

¶
. (6.54)

Hence

\AV ar
³
b̂P
´
=

Ã
NX
i=1

w2i

!
Ψ̂∗−1R̂∗Ψ̂∗−1. (6.55)

Remark 6.1 It can also be shown that when the rank condition (4.3) is satisfied Theorem 6.2 holds

even if θi 6= wi. Further, in this case Assumption 3 can be relaxed by requiring the factor loadings,
γi, to be bounded. The expression for the asymptotic variance of

³PN
i=1 θ

2
i

´−1/2 ³
b̂P − β

´
also

simplifies to

ΣP = Ψ
−1RΨ−1, (6.56)

where

Ψ = lim
N→∞

Ã
NX
i=1

θiΣi

!
, R = lim

(N,T )
j→∞

"
N−1

NX
i=1

θ̃2i
¡
ΣiΩυΣi + T

−1σ2iΣi
¢#
, (6.57)

and9

\AV ar
³
b̂P

´
=

Ã
NX
i=1

θiΨ̂iT

!−1 " NX
i=1

θ2i

³
Ψ̂iT Ω̂υΨ̂iT + T

−1σ̊2i Ψ̂iT
´#Ã NX

i=1

θiΨ̂iT

!−1
,

(6.58)

9Although the second term of R in (6.57) is negligible when T is sufficiently large, Monte Carlo experiments

suggest that its inclusion could be beneficial when T is small.
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where Ψ̂iT = T
−1X0iM̄wXi, and σ̊

2
i is defined by (5.36). To obtain Ω̂υ we use (6.48) and note that

when the rank condition is satisfied, (6.47) reduces to

hiT =

µ
X0iMgXi

T

¶−1 X0iMgεi
T

,

and we have

Ω̂υ =
1

N − 1
NX
i=1

³
b̂i − b̂MG

´³
b̂i − b̂MG

´0 − 1

TN

NX
i=1

σ̊2i Ψ̂
−1
iT . (6.59)

As with Swamy type standard errors, it is possible for Ω̂υ to become non-negative definite when T

is small.10 To avoid this possibility the second term in (6.59) which is of order T−1 can be ignored.

Alternatively, one could use the non-parametric estimator, (6.55), which is valid irrespective of

whether the rank condition (4.3) is satisfied.

Finally, the case where βi’s are homogeneous, namely when Ωυ = 0, requires special treatment.

In this case b̂P converges to β at a faster rate and its asymptotic covariance matrix is no longer

given by (6.50). Under βi = β, and using (B.12) and (B.14) we have (noting that in this case

υi = 0) ÃPN
i=1w

2
i

T

!−1/2 ³
b̂P − β

´
d∼ Ψ∗−1

"
1√
TN

NX
i=1

w̃iX
0
iM̄w (Fηi + εi)

#
, (6.60)

where we have also multiplied both sides of (B.12) by
√
T in order to avoid a degenerate asymptotic

distribution. It is easily seen that b̂P continues to be consistent for β so long asN →∞, irrespective
of whether T is fixed or →∞. In general, however, its asymptotic distribution will depend on the
nuisance parameters, with at least one important exception summarized in the following theorem.11

Theorem 6.3 Consider the panel data model (2.1) and (2.2) and suppose that Assumptions 1-4

and 5b hold, m = 1, the rank condition (4.3) is satisfied, θi = wi, and βi = β for all i, and

T/N → 0, as (N,T )
j→∞. ThenÃPN

i=1w
2
i

T

!−1/2 ³
b̂P − β

´
d→ N(0,ΣPH), (6.61)

where

ΣPH = Ψ
−1ṘΨ

−1
, (6.62)

10But the inclusion of T−1σ̊2i Ψ̂iT in (6.58), which is also of order T−1, should help compensate for the possible

negative effect of Ω̂υ on AV ar
³
b̂P
´
.

11See Appendix B for a proof.

22



Ψ = lim
N→∞

Ã
NX
i=1

wiΣi

!
, Ṙ = lim

N→∞

Ã
1

N

NX
i=1

w̃2i σ
2
iΣi

!
, (6.63)

and

w̃i =
wiq

N−1
PN
i=1w

2
i

.

This theorem also applies to the standard homogenous slope panel data models when T is fixed

and N →∞. But it is clearly not as general as Theorem 6.1 for the CCEMG estimator.

Under assumptions of Theorem 6.3, the asymptotic variance matrix of b̂P is given by

AV ar
³
b̂P

´
=
1

T

Ã
NX
i=1

wiΣi

!−1Ã NX
i=1

w2i σ
2
iΣi

!Ã
NX
i=1

wiΣi

!−1
, (6.64)

which can be consistently estimated by

\AV ar(b̂P ) =
1

T

Ã
NX
i=1

wiΨ̂iT

!−1Ã NX
i=1

w2i σ̃
2
i Ψ̂iT

!Ã
NX
i=1

wiΨ̂iT

!−1
, (6.65)

where

σ̃2i =

³
yi −Xib̂P

´0
M̄w

³
yi −Xib̂P

´
T

. (6.66)

In general, however, where the conditions of theorem 6.3 might not be satisfied, one could use the

non-parametric variance estimator of b̂P , given by (6.55). The Monte Carlo experiments to be

reported in Section 8 support such a strategy.

7 Determination of Optimal Weights

Our asymptotic results hold for all weights, wi, that satisfy the atomistic conditions in (2.12).

Clearly, these conditions do not uniquely determine these weights and the issue of an optimal

choice for wi’s naturally arises. One possible approach would be to determine the weights such that

the asymptotic variance of the estimators of interest are minimized (in a suitable sense) subject

to the conditions in (2.12). For the individual coefficients, b̂i, with T fixed, the variance matrix

is given by (5.29), and does not depend on wi’s, and the asymptotic (large N) properties of the

CCE estimator would be invariant to the choice of the weights used in the construction of the cross

section aggregates. By implication the same also applies to the CCEMG estimator, b̂MG, defined

by (6.37).

Consider now the CCE pooled estimator, b̂P , under slope homogeneity. The asymptotic vari-

ance matrix of b̂P in this case is given by (6.64), and is minimized with wi set at

w∗i =
σ−2iPN
j=1 σ

−2
j

, (7.67)
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yielding

AV ar
³
b̂P (w

∗)
´
=
1

T

Ã
NX
i=1

σ−2i Σi

!−1
. (7.68)

Noting that Σi is a positive definite matrix we can write

T

·
AV ar

³
b̂P (w

∗)
´−1 −AV ar ³b̂P´−1¸

=

Ã
NX
i=1

XiX 0i
!
−
Ã

NX
i=1

XiY 0i
!Ã

NX
i=1

YiY 0i
!−1Ã NX

i=1

YiX 0i
!
≥ 0,

where

Xi = σ−1i Σ
1/2
i , and Yi = wiσiΣ1/2i .

This now establishes that

·
AV ar

³
b̂P (w

∗)
´−1 −AV ar ³b̂P´−1¸ is a non-negative definite matrix,

with {w∗i } providing an optimal choice in the sense that AV ar
³
b̂P (w

∗)
´
≤ AV ar

³
b̂P
´
.

Not surprisingly the pooled estimator computed using w∗i reduces to the generalized least squares

estimator

b̂P (w
∗) =

Ã
NX
i=1

σ−2i X
0
iM̄w∗Xi

!−1 NX
i=1

σ−2i X
0
iM̄w∗yi, (7.69)

with its feasible counterpart obtained by replacing σ2i with the estimates, σ̊
2
i , given by (5.36) and

computed using an initial consistent estimator of β based on (say) wi = 1/N . Recall, however, for

the pooled estimator to remain asymptotically valid the weights used for the construction of the

aggregates must be the same as the ones used in the formation of the pooled estimator.

8 Small Sample Properties of CCE Estimators: Monte Carlo Ex-

periments

This section provides Monte Carlo evidence on the small sample properties of the CCEMG and the

CCEP estimators defined by (6.37) and (6.49), respectively, using the weights wi = θi = 1/N , and

the following data generating process (DGP):

yit = αi1d1t + βi1x1it + βi2x2it + γi1f1t + γi2f2t + εit, (8.1)

and

xijt = aij1d1t + aij2d2t + γij1f1t + γij3f3t + vijt, j = 1, 2, (8.2)
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for i = 1, 2, ..., N , and t = 1, 2, ..., T . This DGP is a restricted version of the general linear model

considered in the paper, and sets n = k = 2, and m = 3, with α0i = (αi1, 0), β
0
i = (βi1,βi2), and

γ0i = (γi1, γi2, 0), imposed on (2.1) and (2.2), and

A0i =

Ã
ai11 ai12

ai21 ai22

!
, Γ0i =

Ã
γi11 0 γi13

γi21 0 γi23

!
,

on the (2.3). The common factors and the individual specific errors of xit are generated as inde-

pendent stationary AR(1) processes with zero means and unit variances:

d1t = 1, d2t = ρdd2,t−1 + vdt, t = −49, ...1, ..., T ,
vdt ∼ IIDN(0, 1− ρ2d), ρd = 0.5, d2,−50 = 0,

fjt = ρfjfjt−1 + vfj,t, for j = 1, 2, 3, t = −49, .., 0, .., T,
vfj,t ∼ IIDN(0, 1− ρ2fj), ρfj = 0.5, fj,−50 = 0, for j = 1, 2, 3,

vijt = ρvijvijt−1 + υijt, t = −49, ...1, ..., T,
υijt ∼ IIDN

¡
0, 1− ρ2vij

¢
, vji,−50 = 0,

and

ρvij ∼ IIDU [0.05, 0.95] , for j = 1, 2.

The individual specific errors of yit are generated as

εit ∼ IIDN
¡
0,σ2i

¢
, σ2i ∼ IIDU [0.5, 1.5] .

The factor loadings of the observed common effects, αi1, and vec(Ai) = (ai11, ai21, ai12, ai22)
0 are

generated as IIDN(1, 1), and IIDN(0.5τ 4, 0.5 I4), where τ 4 = (1, 1, 1, 1)0, and are not changed

across replications. They are treated as fixed effects. The parameters of the unobserved common

effects in the xit equation are generated independently across replications as

Γ0i =

Ã
γi11 0 γi13

γi21 0 γi23

!
∼ IID

Ã
N (0.5, 0.50) 0 N (0, 0.50)

N (0, 0.50) 0 N (0.5, 0.50)

!
,

For the parameters of the unobserved common effects in the yit equation, γi, we considered two

different sets that we denote by A and B. Under set A, γi are drawn such that the rank condition
(4.3) is satisfied, namely

γi1 ∼ IIDN (1, 0.2) , γi2A ∼ IIDN (1, 0.2) , γi3 = 0,
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and

E
³
Γ̃iA

´
= (E (γiA) , E (Γi)) =


1 0.5 0

1 0 0

0 0 0.5

 .
Under set B

γi1 ∼ IIDN (1, 0.2) , γi2B ∼ IIDN (0, 1) , γi3 = 0,

so that

E
³
Γ̃iB
´
= (E (γiB) , E (Γi)) =


1 0.5 0

0 0 0

0 0 0.5

 ,
and the rank condition is not satisfied. For each set we conducted two different experiments:12

• Experiment 1 examines the case of heterogeneous slopes with βij = 1 + ηij , j = 1, 2, and

ηij ∼ IIDN(0, 0.04), across replications.

• Experiment 2 considers the case of homogeneous slopes with βi = β =(1, 1)0.

The two versions of experiment 1 will be denoted by A1 and B1, and those of experiment 2 by
A2, and B2.13 For each experiment we computed the CCEMG and the CCEP estimators as well as
the associated “infeasible” estimators (MG and Pooled) that include f1t and f2t in the regressions

of yit on (d1t,xit), and the “naive” estimators that excludes these factors. The infeasible MG

(Pooled) estimator provides an upper bound to the efficiency of the CCEMG (CCEP) estimator

under slope heterogeneity (homogeneity), whilst the naive estimators illustrate the extent of bias

and size distortions that can occur if the error cross section dependence is ignored. Each experiment

was replicated 2000 times for the (N,T ) pairs with N,T = 20, 30, 50, 100, 200. In what follows we

shall focus on β1 (the cross section mean of βi1). Results for β2 are very similar and will not be

reported.

8.1 Bias and RMSE

Results of experiments A1 and B1 are summarized in Tables A1(i)-A1(iv) and B1(i)-B1(iv), respec-
tively. Not surprisingly, as can be seen from Tables A1(i)-A1(iv) the naive estimator is substantially

12We also carried out a number of experiments with γij ∼ IIDN (0.5, 0.2), for j = 1, 2, that give a lower degree

of error cross section dependence as compared to γij ∼ IIDN (1, 0.2), but obtained very similar results. We decided
to report the outcomes of the experiments with the higher cross section dependence, as they are likely to provide a

more demanding check on the validity of the CCE estimators.
13We also carried out a third set of experiments with βi2 = 0, so that k + 1 < m. Once again the results turned

out to be qualitatively the same. The failure of the order or rank condition does not seem to play a significant role

in the outcomes.
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biased, performs very poorly and is subject to large size distortions; an outcome that continues to

apply in the case of other experiments. To save space we provide results for the naive estimators

only in the case of experiment A1. In contrast, the bias of the CCEMG and CCEP estimators are
very small and comparable to the bias of the associated infeasible estimators. A comparison of the

bias estimates in Tables A1(i) and B1(i) also shows that the bias of the CCE type estimators does

not depend on whether the rank condition, (4.3), is satisfied.14

Table A1(ii) provides the root mean squared errors (RMSE) of the various estimators for exper-

iment A1 (full rank+heterogenous slopes). Under this experiment the lower bound to CCEMG’s
RMSE is given by the RMSE of the infeasible MG estimator. For T = N = 20, the RMSE of the

CCEMG is 32.1% higher than that of the infeasible MG, and falls steadily with N and T , and ends

up being only 2.5% higher for T = N = 200. The Monte Carlo results also confirm the asymptotic

efficiency of the MG type estimators relative to the pooled estimators under slope heterogeneity.

This seems to occur for T ≥ 30. It is also interesting to note that the CCEP estimator in fact
dominates the infeasible pooled estimator for N ≥ 30 and T ≥ 50. For example, for N = 50 and

T = 100 the RMSE of the CCEP estimator is 9% lower than the RMSE of the infeasible pooled

estimator. Overall, both CCEMG and CCEP provide reasonably efficient estimators, particularly

for relatively large N and T , with the CCEP doing slightly better in small samples. This general

conclusion also holds in the rank deficient case, as can be seen from the results summarized in

Table B1(ii). In the rank deficient case, however, the efficiency loss of the CCEMG relative to the

infeasible MG is higher, being 69% (compared to 32.1% under full rank) at N = T = 20 and 11.5%

(compared to 2.5% under full rank) at N = T = 200.

The RMSE results for the homogeneous slope experiments, A2 and B2, are summarized in Tables
A2(i) and B2(i). For these experiments the pooled estimators are expected to be more efficient

than the MG estimators, and this is corroborated by the results in these Tables, although the

differences between MG and pooled estimators become very small as N and T are increased. The

efficiency loss of the CCE estimators relative to their infeasible counterparts also tends to be slightly

higher in the case of the homogeneous slope experiments, as compared to the heterogenous slope

case discussed above. Once again the same qualitative conclusions follow under rank deficiency,

although the efficiency loss of not knowing the true error factor model is now even greater. See

Table B2(i).

Of course, in reality the true error factor model is not known even if other proxies could be

found for the unobserved factors, ft. It is not clear how this can be accomplished in the present

experimental set up. Therefore, within the realm of feasible estimators the choice is between

CCEMG and CCEP. The simulation results tend to favour the CCEP for small to moderate sample

sizes and CCEMG when N and T are relatively large. This conclusion seems to be robust and

14To save space we are not reporting the bias estimates for the homogeneous slope experiments A2 and B2.
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stands for homogeneous as well as heterogeneous slope experiments, and does not seem to depend

on whether the rank condition is satisfied.

Finally, it is worth emphasizing that knowing the factors or having good proxies for them is

not enough; one must also know which of them influence yit and which of them influence xit. This

would involve specification searches that are not required by the CCE estimators.

8.2 Size and Power

For the full rank and heterogenous experiments A1, size and power of a two-sided test of β1 = 1
are reported in Tables A1(iii) and A1(iv), respectively. The variance of the CCEMG estimator

is computed using (6.42), both under heterogeneous and homogeneous slope coefficients. The

empirical size of the test based on the CCEMG estimator is very close to the nominal size of 5%,

for all values of N and T except for T = 20, which is slightly over-sized. As can be seen from Tables

B1(iii), A2(ii), and B2(ii), this conclusion continues to hold for all other experiments and does not

seem to depend on the rank condition or the homogeneity/heterogeneity of the slopes. This is in

line with our theoretical results set out in Theorem 6.1.

By comparison, tests based on the CCEP estimator are less robust and depend on the choice

of the variance estimator, namely whether (6.55) or (6.65) is used. Under heterogenous slopes the

appropriate variance estimator is (6.55), which is the one used to produce the results in Table

A1(iii). In this case the size of the CCEP test is very similar to those obtained using CCEMG.

As can be seen from Table B1(iii), this conclusion holds even if the rank condition is not satisfied.

However, as predicted by Theorem 6.3, under slope homogeneity, βi = β, the validity of a test

based on CCEP using the variance estimator (6.65) requires T/N to be relatively small, even if

the rank condition is satisfied. This can be clearly seen in the empirical sizes of the CCEP test

summarized in Tables A2(ii) and B2(ii). It is also interesting that rank deficiency now seems to

make a noticeable difference to the results. The empirical sizes for CCEP in Table B2(ii) are

generally higher than those in Table A2(ii).

Given the efficiency of CCEP estimator relative to the CCEMG estimator under slope homo-

geneity, and the fact that CCEP is asymptotically unbiased as N →∞, the over-rejection tendency
of the CCEP test is most likely due to inappropriate standard errors. One possible alternative

would be to use the heterogenous variance estimator, (6.55), even under slope homogeneity.15 We

denote this test by CCEP(hetro), and report its empirical size in Tables A2(ii) and B2(ii). The

CCEP(hetro) test results all have the correct size forN,T ≥ 20, and the outcomes no longer depend
on the rank condition.

The power of the various tests are computed under the alternative, β1 = 0.95 and reported in

15It is unlikely that it would be known with certainty that βi = β, and in practice the use of CCEP(hetro) might

be advisable on a priori grounds.
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Figure 1: Power Function for Experiment B1, N=50, T=30

Tables A1(iv) and B1(iv) under slope heterogeneity, and in Tables A2(iii) and B2(iii) under slope

homogeneity, respectively. Given the size distortion of the CCEP test under slope homogeneity, we

only report the power of CCEP(hetro) in these tables. CCEP(hetro) tends to be more powerful

than CCEMG for moderate values of N and T , particularly for T ≤ 30.
A comparison of the power of the CCE type tests with the tests based on the infeasible estimators

shows, perhaps not surprisingly, that not knowing the true error factor process would result in some

loss of power, although the power differentials tend to die out relatively rapidly with increases in

N and T .

Finally, as can be seen from Figure 1, the power function of the tests tend to be symmetric

and have the familiar inverted bell shape. As an illustration, Figure 1 shows the power function of

CCEMG and CCEP(hetro) tests, as well as the associated infeasible tests, in the case of experiment

B1 for N = 50 and T = 30. The figure clearly shows that for this sample size the CCEP(hetro)

test performs slightly better than the CCEMG test, and as compared with the tests based on the

infeasible estimators the two CCE tests seem to perform reasonably well.

9 Concluding Remarks

This paper provides a simple procedure for estimation of panel data models subject to error cross

section dependence when the cross section dimension (N) of the panel is sufficiently large. The

asymptotic theory required for estimation and inference is developed under fairly general conditions

both when the time dimension (T ) is fixed and when T →∞. Conditions under which the proposed
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correlated common effects estimators are consistent and asymptotically normal are provided. The

Monte Carlo experiments show that the pooled estimators have satisfactory small sample properties.

Further extensions and generalizations are, however, clearly desirable.

The focus of this paper has been on estimation of βi and their means, β. Our analysis shows

that consistent estimation of β, can be carried out for any fixed but unknown m, the number of

unobserved factors. A priori knowledge of m is not required. But if the focus of the analysis is on

the factor loadings, as is the case, for example, in the multifactor asset pricing models, an estimate

of m would be needed. This can be achieved, for example, by application of the Bai and Ng’s

(2002) procedure to the residuals

êi = M̄
³
yi −Xib̂i

´
, or êi = M̄

³
yi −Xib̂P

´
.

Under our assumptions, for any fixed m these residuals provide consistent estimates of eit in the

multifactor model (2.1), and could be used as “observed data” to obtain estimates of the factors

ft (subject to orthonormalization restrictions, for example). It is reasonable to expect these factor

estimates (denoted by f̂t) to be consistent. The factor estimates can then be used directly as

(generated) regressors in the regression equation

yit = α0idt + β0ixit + γ0if̂t + ζit,

to obtain the estimates of the factor loadings, γi, or their means, γ. The small sample properties

of such a two-stage procedure would also be of interest.

Further, it is desirable to see if the results of this paper carry over to the case where lagged

values of yit are allowed to be included amongst the individual-specific regressors. The regression

model (2.1) allows for dynamics only through the general dynamics of the common effects in eit,

and the fact that these effects could have differential impacts on different groups. This is restrictive

and its relaxation is clearly important for a wider applicability of the approach advanced in this

paper. Pesaran (2003) provides an application of the CCE approach to testing for unit roots in the

presence of error cross section dependence. But more general treatments would be desirable.

Another important extension is to multi-variate panel data models such as Panel Vector Au-

toregressions (PVAR) of the type discussed, for example, in Binder, Hsiao and Pesaran (2004).

These further developments are beyond the scope of the present paper and will be the subject

of separate studies.
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Appendix A: Lemmas: Statements and Proofs

Lemma A.1 Suppose that either kβik < K, or that the random coefficient Assumption 4 holds. Then under As-

sumption 2 for each t, we have

E (ūwt) = 0, (A.1)

V ar(ūwt) = O

Ã
NX
i=1

w2i

!
= O

µ
1

N

¶
, (A.2)

ūwt
q.m.→ 0, as N →∞, (A.3)

E kūwtk2 = O
µ

1

N

¶
, and E kūwtk = O

µ
1√
N

¶
, (A.4)

where ūwt =
PN

i=1wiuit, uit is defined by (2.5) and the weights, wi, satisfy the conditions in (2.12).

Proof: First note that

ūwt =

Ã
ε̄wt +

PN
i=1 wiβ

0
ivit

v̄wt

!
, (A.5)

where v̄wt =
PN

i=1

P∞
`=0 wiSi`νi,t−`. Since ν it ∼ IID(0, Ik), then conditional on wi and Si`, V ar (v̄wt) =PN

i=1w
2
i

¡P∞
`=0 Si`S

0
i`

¢
, and using (2.9) and (2.12) we have (unconditionally)

V ar (v̄wt) ≤ K
Ã

NX
i=1

w2i

!
= O

µ
1

N

¶
. (A.6)

Similarly,

V ar (ε̄wt) = O

µ
1

N

¶
, (A.7)

and

V ar

Ã
NX
i=1

wiβ
0
ivit

!
=

NX
i=1

w2iE
¡
β0iΣiβi

¢ ≤ NX
i=1

w2iE
¡
β0iβi

¢
E [λmax(Σi)]

where λmax(Σi) is the maximum eigen value of Σi which is bounded by Assumption 2. Also, either β
0
iβi = kβik2 < K,

or under Assumption 4 we have E (β0iβi) < K, and therefore

V ar

Ã
NX
i=1

wiβ
0
ivit

!
= O

Ã
NX
i=1

w2i

!
= O

µ
1

N

¶
. (A.8)

Using (A.6), (A.7) and (A.8) in connection with (A.5), and noting that

Cov

Ã
ε̄wt +

NX
i=1

wiβ
0
ivit, v̄wt

!
=

NX
i=1

w2iE
¡
β0i
¢
Σi = O

Ã
NX
i=1

w2i

!
= O

µ
1

N

¶
,

it also readily follows that

V ar (ūwt) = O

Ã
NX
i=1

w2i

!
= O

µ
1

N

¶
, (A.9)

which establishes (A.3), considering that E (ūwt) = 0.
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To prove (A.4), note that by assumption E (v0itvit) = Tr (Σi) < K, and σ2i + E (β
0
iΣiβi) < K, and hence using

(A.5):

E kūwtk2 =
NX
i=1

w2i
£
σ2i + E

¡
β0iΣiβi

¢
+ E

¡
v0itvit

¢¤
= O

Ã
NX
i=1

w2i

!
= O

µ
1

N

¶
.

Further,

E kūwtk ≤
£
E kūwtk2

¤1/2
= O

µ
1√
N

¶
.

Lemma A.2 Suppose that either kβik < K, or that the random coefficient Assumption 4 holds. Then under As-

sumptions 1 and 2

Ū0
wŪw

T
= Op

µ
1

N

¶
, (A.10)

F0Ūw

T
= Op

µ
1√
NT

¶
,
D0Ūw

T
= Op

µ
1√
NT

¶
, (A.11)

V0
iD

T
= Op

µ
1√
T

¶
,
V0
iF

T
= Op

µ
1√
T

¶
, (A.12)

V0
iŪw

T
= Op

µ
1

N

¶
+Op

µ
1√
NT

¶
,
ε0iŪw

T
= Op

µ
1

N

¶
+Op

µ
1√
NT

¶
, (A.13)

where Ūw = (ūw1, ūw2, ..., ūwT )
0, ūwt is defined by (A.5), the weights, wi, satisfy the conditions in (2.12), Vi =

(vi1,vi2, ...,viT )
0, D and F are T × n and T ×m, data matrices on observed and unobserved common factors.

Proof: Note that T−1Ū0
wŪw = T−1

³PT
t=1 ūwtū

0
wt

´
, where the cross-product terms in ūwtū

0
wt, being functions of

linear stationary processes with fourth-order cumulants, are themselves stationary with finite means and variances.

Also, E
°°T−1Ū0

wŪw

°° ≤ T−1PT
t=1E kūwtk2, and by (A.4) E

°°T−1Ū0
wŪw

°° = O ¡N−1¢, which establishes (A.10).
Consider the `th row of T−1

¡
F0Ūw

¢
and note that it can be written as T−1

³PT
t=1 f`tū

0
wt

´
. Since by assumption

f`t and ūwt are independently distributed covariance stationary processes then

V ar

ÃPT
t=1 f`tūwt

T

!
=

PT
t=1

PT
t0=1 E (f`tf`t0)E (ūwtū

0
wt0)

T 2
,

where E (ūwtū
0
wt0) = O

¡
N−1

¢
. Hence,

V ar

ÃPT
t=1 f`tūwt

T

!
= O

µ
1

N

¶(PT
t=1

PT
t0=1E (f`tf`t0)

T 2

)

= O

µ
1

N

¶(PT
t=1

PT
t0=1 Γf` (|t− t0|)
T 2

)
,

where Γf` (|t− t0|) is the autocovariance function of the stationary process, f`t, which decays exponentially in |t− t0|.
Therefore,

V ar

ÃPT
t=1 f`tūwt

T

!
= O

µ
1

NT

¶
, (A.14)

which establishes that T−1
PT

t=1 f`tūwt converges to its limit at the desired rate of Op
³
1/
√
NT

´
. Consider now

the limit of T−1
PT

t=1 f`tūwt and note that since f`t and ūwt are independently distributed covariance stationary

processes, PT
t=1 f`tūwt

T
= Op

µ
1√
T

¶
, for any fixed N,
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and by (A.4)

E

°°°°°
PT

t=1 f`tūwt

T

°°°°° ≤
PT

t=1 E kf`tkE kūwtk
T

= Op

µ
1√
N

¶
, for any fixed T .

Furthermore, since for each t, uit’s are cross sectionally independent, then by standard central limit theorems for

independent but not identically distributed random variables we have
√
N ūwt

d→ Op(1), as N →∞. Therefore,PT
t=1 f`t

√
N ū0wt√

T

d→ Op(1) as (N, T )
j→∞,

as required. The second result in (A.11) follows similarly.

The results in (A.12) are standard in the literature on independent stationary processes.

To establish the results in (A.13), using (A.5) first note that

T−1V0
iŪw =

Ã
T−1V0

iε̄w + T
−1V0

i

NX
j=1

wjVjβj , T
−1V0

iV̄w

!
, (A.15)

where ε̄w =
PN

j=1 wjεj and V̄w =
PN

j=1wjVj . Since, by assumption vit and ε̄wt are independently distributed

covariance stationary processes, then by following the same line of reasoning as used for the proof of (A.11) we have

T−1V0
iε̄w = Op

µ
1√
NT

¶
. (A.16)

Consider the second term in (A.15) and note that

T−1V0
i

NX
j=1

wjVjβj = wi

µ
V0
iVi

T

¶
βi +

µ
V0
iV̄
∗
w,−i
T

¶
, (A.17)

where V̄∗w,−i =
PN

j=1,j 6=i wjVjβj . Since wi = O(N
−1), βi is either bounded or satisfy the conditions of Assumption

4 and the elements of Vi are covariance stationary, then

wi

µ
V0
iVi

T

¶
βi = Op

µ
1

N

¶
. (A.18)

Also since the elements of Vi and V̄
∗
w,−i are independently distributed and covariance stationary, using the same line

of reasoning as above we have

V0
iV̄
∗
w,−i
T

= Op

µ
1√
NT

¶
. (A.19)

Using (A.18) and (A.19) in (A.17) now yields

T−1V0
i

NX
j=1

wjVjβj = Op

µ
1

N

¶
+Op

µ
1√
NT

¶
. (A.20)

Finally, since the last term of (A.15) can be written as

T−1V0
iV̄w = wi

µ
V0
iVi

T

¶
+
V0
iV̄w,−i
T

where V̄w,−i =
PN

j=1,j 6=i wjVj , it also follows that

T−1V0
iV̄w = Op

µ
1

N

¶
+Op

µ
1√
NT

¶
. (A.21)

Using (A.16), (A.20) and (A.21) in (A.15) now establishes the first result in (A.13). The second result also follows

similarly.
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Lemma A.3 Suppose that the conditions of Lemma A.2 hold, and kΠik ≤ K, where Πi = (A
0
i,Γ

0
i)
0
and Ai and Γi

are the parameters of the xit process defined by (2.3). Then

X0
iŪw

T
= Op

µ
1

N

¶
+Op

µ
1√
NT

¶
(A.22)

Proof: Using (5.12) we have
X0
iŪw

T
= Π0

i

µ
G0Ūw

T

¶
+

µ
V0
iŪw

T

¶
,

and (A.22) follows from (A.11) and (A.13), and since by assumption the elements of Πi are bounded.

Lemma A.4 Suppose that Assumption 3, and conditions (2.12) and (2.16) hold and QiT is a k×m matrix, distrib-

uted independently of ηi ∼ IID
¡
0,Ωη

¢
, kΩηk < K, and E kQiT k < K. Let

qNT =

Ã
NX
i=1

θ2i

!−1/2 NX
i=1

θiQiT (ηi − η̄w) ,

where η̄w =
PN

i=1wiηi, and ηi, wi and θi are defined by (2.10), (2.12), and (2.16), respectively. Then

qNT
d→ N(0,ΣqT ), as N →∞,

where

ΣqT = lim
N→∞

Ã
N−1

NX
i=1

PiTΩηP
0
iT

!
< K,

and

PiT =
θiq

N−1
PN

i=1 θ
2
i

QiT − wiq
N−1

PN
i=1 θ

2
i

Q̄θT , Q̄θT =

NX
i=1

θiQiT .

Proof: The result follows observing thatÃ
NX
i=1

θ2i

!−1/2 NX
i=1

θiQiT (ηi − η̄w) =
NX
i=1

PiTηi,

E kPiTk < |θi|qPN
i=1 θ

2
i

E kQiT k+ |wi|qPN
i=1 θ

2
i

E
°°Q̄θT

°° ,
E
°°Q̄θT

°° < NX
i=1

|θi|E kQiT k < K,

and since by assumption
|θi|q

N−1
PN

i=1 θ
2
i

= O (1) , and
|wi|q

N−1
PN

i=1 θ
2
i

= O (1) .

Appendix B: Mathematical Proofs

Proof of Asymptotic Unbiasedness of Σ̂T,bi

Here T is fixed and the rank condition (4.3) is satisfied. σ̂2i given by (5.34) can be written as

σ̂2i =
y0iS̄wyi

T − (n+m+ k) , (B.1)

where

S̄w = M̄w − M̄wXi

¡
X0
iM̄wXi

¢−1
X0
iM̄w. (B.2)
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Under (5.10)

y0iS̄wyi = γ 0iF
0S̄wFγ i − 2γ 0iF0S̄wεi + ε0iS̄wεi, (B.3)

where

γ 0iF
0S̄wFγi = γ 0iF

0M̄wFγi − γ 0iF
0M̄wXi

¡
X0
iM̄wXi

¢−1
X0
iM̄wFγi, (B.4)

γ 0iF
0S̄wεi = γ 0iF

0M̄wεi − γ 0iF
0M̄wXi

¡
X0
iM̄wXi

¢−1
X0
iM̄wεi.

and

ε0iS̄wεi = ε0iM̄wεi − ε0iM̄wXi

¡
X0
iM̄wXi

¢−1
X0
iM̄wεi.

Using (5.21), (5.24) and (5.25), and noting also that

F0M̄wF

T
= Op

µ
1

N

¶
+Op

µ
1√
NT

¶
, (B.5)

it follows that T−1γ 0iF
0S̄wFγ i and T

−1γ 0iF
0S̄wεi are Op

¡
N−1

¢
+Op

h
(NT )−1/2

i
, and hence

σ̂2i =
ε0iM̄wεi − ε0iM̄wXi

¡
X0
iM̄wXi

¢−1
X0
iM̄wεi

T − (n+m+ k)
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
.

Also under the rank condition (4.3), using (5.24) and (5.25) we have

X0
iM̄wXi

T
=
X0
iMgXi

T
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
, (B.6)

X0
iM̄wεi
T

=
X0
iMgεi
T

+Op

µ
1

N

¶
. (B.7)

Similarly
ε0iM̄wεi

T − (n+m+ k)
=

ε0iMgεi
T − (n+m+ k)

+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
.

Hence

σ̂2i =
ε0iMgεi − ε0iMgXi (X

0
iMgXi)

−1
X0
iMgεi

T − (n+m+ k)
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
. (B.8)

This result in conjunction with (B.6) now yields

Σ̂T,bi = T−1σ̂2i

µ
X0
iM̄wXi

T

¶−1
= T−1

Ã
ε0iMgεi − ε0iMgXi (X

0
iMgXi)

−1
X0
iMgεi

T − (n+m+ k)

!µ
X0
iMgXi

T

¶−1
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
.

and, conditioning on Xi and G, for a fixed T , we have

lim
N→∞

E(Σ̂T,bi) = T
−1σ2i

µ
X0
iMgXi

T

¶−1
.

Proof of Consistency of Σ̂bi

Using (5.12) in (B.6)

X0
iM̄wXi

T
=
V0
iMgVi

T
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
. (B.9)

Also

V0
iMgVi

T
= Σi +Op

µ
1√
T

¶
, (B.10)
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and since σ̊2i = σ̂2i +O(T
−1), from (B.8)

σ̊2i = σ2i +Op

µ
1√
T

¶
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
. (B.11)

Using this result and (B.9) in (5.35) we have

σ̊2i

µ
X0
iM̄wXi

T

¶−1
= σ2iΣ

−1
i +Op

µ
1√
T

¶
+Op

µ
1

N

¶
+Op

µ
1√
NT

¶
,

as required.

Proof of Theorem 6.2

Under (2.1) and (2.2), b̂P defined by (6.49), can be written asÃ
NX
i=1

θ2i

!−1/2 ³
b̂P − β

´
=

Ã
NX
i=1

θi
X0
iM̄wXi

T

!−1 "
1√
N

NX
i=1

θ̃i
X0
iM̄w(Xiυi + εi)

T
+ qNT

#
. (B.12)

where

θ̃i =
θiq

N−1
PN

i=1 θ
2
i

= O(1), (B.13)

and

qNT =
1√
N

NX
i=1

θ̃i

¡
X0
iM̄wF

¢
γi

T
. (B.14)

Using (2.10) we first note that γ i = γ̄w + ηi − η̄w, where η̄w =
PN

i=1wiηi. Hence

qNT =
1

√
N
³
N−1

PN
i=1 θ

2
i

´1/2 NX
i=1

θi

µ
X0
iM̄wF

T

¶
(γ̄w − η̄w)

+
1³

N−1
PN

i=1 θ
2
i

´1/2 NX
i=1

θi

µ
X0
iM̄wF

T

¶
ηi.

Recall that N−1
PN

i=1 θ
2
i = O(1), and in general when the rank condition is not satisfied T−1

¡
X0
iM̄wF

¢
= Op(1).

(See (5.24)). Hence, the first term of qNT will be unbounded, unless θi = wi. But when this condition is satisfied,

since X̄0
wM̄w = 0, we have

NX
i=1

wiX
0
iM̄wF (γ̄w − η̄w) = X̄

0
wM̄wF (γ̄w − η̄w) = 0,

and using (5.24) it follows that

qNT =
1√
N

NX
i=1

w̃i

µ
X0
iM̄wF

T

¶
ηi (B.15)

=
1√
N

NX
i=1

w̃i

µ
X0
iM̄qF

T

¶
ηi +Op

µ
1√
N

¶
+Op

µ
1√
T

¶
,

where w̃i = wi/
³
N−1

PN
i=1w

2
i

´1/2
. Substituting this result in (B.12), and making use of (5.24) and (5.25) we have

Ã
NX
i=1

w2i

!−1/2 ³
b̂P − β

´
=

Ã
NX
i=1

wi
X0
iM̄qXi

T

!−1 "
1√
N

NX
i=1

w̃i
X0
iM̄q(Xiυi + εi + Fηi)

T

#
+ (B.16)

Op

µ
1√
N

¶
+Op

µ
1√
T

¶
.
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Hence, as (N,T )
j→∞ Ã

NX
i=1

w2i

!−1/2 ³
b̂− β

´
d→ N(0,Σ∗P ),

where

Σ∗P = Ψ
∗−1R∗Ψ∗−1, (B.17)

Ψ∗ = lim
N→∞

Ã
NX
i=1

wiΣiq

!
, R∗= lim

N→∞

"
N−1

NX
i=1

w̃2i
¡
ΣiqΩυΣiq +QifΩηQ

0
if

¢#
, (B.18)

and Σiq and Qif are defined by (6.45).

Proof of Theorem 6.3 (Pooled Homogeneous Slope)

As in proof of Theorem 6.2, we first note that under θi = wi

1√
TN

NX
i=1

θ̃i
¡
X0
iM̄wF

¢
γi =

1√
NT

NX
i=1

w̃i
¡
X0
iM̄wF

¢
ηi.

Also since the rank condition (4.3) is satisfied, using (4.4) we have

X0
iM̄wF = −

¡
X0
iM̄wŪw

¢
C̄0
w

¡
C̄wC̄

0
w

¢−1
,

where C̄0
w

¡
C̄wC̄

0
w

¢−1
is bounded for all N . Hence (noting that here ηi is an scaler):

1√
TN

NX
i=1

w̃i
¡
X0
iM̄wF

¢
ηi =

1√
NT

NX
i=1

w̃iηi
¡
X0
iM̄wŪw

¢
C̄0
w

¡
C̄wC̄

0
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.

But

1√
NT

NX
i=1

w̃iηi
¡
X0
iM̄wŪw

¢
=
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(B.19)

where H̄w is defined by (5.13). Writing the first term as
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and noting from (A.22) that
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´
+Op (1), it readily follows that
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since w̃i = O(1), ηi are IID and distributed independently of
√
NX0

iŪw/
√
T , with the terms ηi
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iŪw/
√
T
´

having finite second order moments. Consider the second term of (B.19) and note that it can be written as
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which in conjunction with (5.16) and (5.17) yieldsµ
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Therefore
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where
p
N/TG0Ūw = Op(1), and ηi are IID and distributed independently ofG and Ūw. Hence, under the condition

that T/N → 0 as (N,T )
j→∞, we also obtain
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Using this result and (B.20) in (B.19) now yields
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But since the rank condition (4.3) is satisfied, using (5.25) we have
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which establishes the validity of (6.61).
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Table A1(i): Bias of Estimators of β1
Experiment A1: Full Rank + Heterogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 -0.0012 -0.0020 -0.0014 0.0015 0.0019
N=30 0.0003 0.0015 0.0004 0.0006 -0.0004
N=50 -0.0022 0.0009 0.0000 -0.0011 -0.0004
N=100 -0.0001 -0.0012 -0.0001 0.0007 0.0011
N=200 0.0001 -0.0008 -0.0003 -0.0005 0.0003

CCEP
N=20 -0.0001 -0.0012 -0.0011 0.0012 0.0021
N=30 -0.0001 0.0012 0.0009 0.0007 -0.0006
N=50 -0.0011 0.0006 0.0002 -0.0009 -0.0003
N=100 -0.0004 -0.0015 -0.0004 0.0011 0.0013
N=200 -0.0004 -0.0010 -0.0001 -0.0006 0.0002

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.0005 -0.0010 -0.0011 0.0007 0.0014
N=30 0.0006 -0.0010 0.0010 0.0004 -0.0002
N=50 -0.0015 0.0007 0.0003 -0.0006 -0.0005
N=100 0.0005 -0.0005 -0.0001 0.0006 0.0010
N=200 0.0001 -0.0007 -0.0003 -0.0004 0.0003

Pooled
N=20 0.0002 0.0002 -0.0006 0.0003 0.0026
N=30 0.0013 -0.0005 0.0009 0.0006 -0.0005
N=50 -0.0014 0.0006 0.0006 -0.0011 0.0007
N=100 0.0002 -0.0001 -0.0005 0.0002 0.0012
N=200 -0.0004 -0.0008 -0.0006 -0.0004 0.0004

Naïve Estimators (excluding f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.1452 0.1449 0.1408 0.1445 0.1449
N=30 0.1531 0.1494 0.1505 0.1498 0.1486
N=50 0.1366 0.1391 0.1375 0.1347 0.1360
N=100 0.1524 0.1518 0.1497 0.1482 0.1486
N=200 0.1558 0.1524 0.1500 0.1488 0.1454

Pooled
N=20 0.1599 0.1636 0.1608 0.1666 0.1692
N=30 0.1646 0.1668 0.1665 0.1689 0.1667
N=50 0.1448 0.1489 0.1507 0.1502 0.1522
N=100 0.1622 0.1636 0.1638 0.1648 0.1659
N=200 0.1661 0.1660 0.1657 0.1672 0.1654
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Table A1(ii): Root Mean Squared Errors of Estimators of β1
Experiment A1: Full Rank + Heterogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.0947 0.0743 0.0619 0.0534 0.0499
N=30 0.0779 0.0601 0.0496 0.0420 0.0390
N=50 0.0587 0.0456 0.0375 0.0320 0.0300
N=100 0.0419 0.0331 0.0268 0.0227 0.0212
N=200 0.0308 0.0236 0.0192 0.0166 0.0148

CCEP
N=20 0.0880 0.0729 0.0625 0.0560 0.0520
N=30 0.0698 0.0584 0.0502 0.0435 0.0405
N=50 0.0526 0.0443 0.0378 0.0325 0.0305
N=100 0.0367 0.0313 0.0268 0.0232 0.0214
N=200 0.0269 0.0222 0.0191 0.0168 0.0150

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.0717 0.0603 0.0525 0.0481 0.0464
N=30 0.0591 0.0502 0.0442 0.0391 0.0371
N=50 0.0448 0.0382 0.0336 0.0301 0.0292
N=100 0.0323 0.0274 0.0239 0.0217 0.0205
N=200 0.0238 0.0192 0.0169 0.0157 0.0144

Pooled
N=20 0.0716 0.0627 0.0589 0.0546 0.0531
N=30 0.0591 0.0532 0.0502 0.0463 0.0439
N=50 0.0431 0.0408 0.0377 0.0358 0.0347
N=100 0.0323 0.0296 0.0277 0.0262 0.0259
N=200 0.0237 0.0210 0.0194 0.0183 0.0178

Naïve Estimators (excluding f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.1907 0.1795 0.1695 0.1659 0.1635
N=30 0.1914 0.1803 0.1733 0.1667 0.1621
N=50 0.1767 0.1670 0.1569 0.1489 0.1465
N=100 0.1751 0.1676 0.1602 0.1556 0.1539
N=200 0.1738 0.1657 0.1591 0.1543 0.1489

Pooled
N=20 0.2032 0.1970 0.1890 0.1876 0.1873
N=30 0.2048 0.1979 0.1903 0.1867 0.1805
N=50 0.1889 0.1816 0.1727 0.1651 0.1630
N=100 0.1908 0.1832 0.1773 0.1738 0.1718
N=200 0.1906 0.1836 0.1778 0.1739 0.1696
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Table A1(iii): Size of the test (H0 : β1 = 1) at 0.05 level
Experiment A1: Full Rank + Heterogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.071 0.076 0.076 0.078 0.081
N=30 0.067 0.063 0.067 0.061 0.066
N=50 0.046 0.058 0.068 0.057 0.056
N=100 0.043 0.057 0.057 0.054 0.054
N=200 0.054 0.056 0.058 0.055 0.048

CCEP(hetero)
N=20 0.076 0.079 0.078 0.085 0.079
N=30 0.074 0.069 0.066 0.061 0.067
N=50 0.063 0.060 0.065 0.054 0.053
N=100 0.052 0.055 0.057 0.055 0.051
N=200 0.046 0.050 0.050 0.060 0.045

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.071 0.069 0.062 0.062 0.061
N=30 0.063 0.063 0.055 0.060 0.059
N=50 0.055 0.064 0.055 0.055 0.053
N=100 0.048 0.064 0.055 0.052 0.046
N=200 0.060 0.049 0.054 0.055 0.049

Pooled(hetero)
N=20 0.072 0.066 0.070 0.067 0.068
N=30 0.062 0.055 0.064 0.060 0.053
N=50 0.053 0.053 0.066 0.054 0.055
N=100 0.053 0.055 0.058 0.055 0.060
N=200 0.058 0.048 0.048 0.052 0.053

Naïve Estimators (excluding f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.314 0.369 0.406 0.476 0.499
N=30 0.426 0.478 0.547 0.621 0.672
N=50 0.548 0.603 0.679 0.738 0.795
N=100 0.754 0.843 0.921 0.961 0.985
N=200 0.888 0.932 0.977 0.997 1.000

Pooled(hetero)
N=20 0.389 0.441 0.466 0.535 0.593
N=30 0.519 0.572 0.624 0.679 0.720
N=50 0.613 0645 0.718 0.784 0.838
N=100 0.781 0.860 0.924 0.964 0.992
N=200 0.896 0.940 0.976 0.995 1.000

3



Table A1(iv): Power of the test (H0 : β1 = 0.95) at 0.05 level
Experiment A1: Full Rank + Heterogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.108 0.128 0.166 0.196 0.242
N=30 0.123 0.160 0.208 0.249 0.268
N=50 0.149 0.214 0.295 0.350 0.388
N=100 0.223 0.330 0.470 0.606 0.677
N=200 0.375 0.543 0.749 0.855 0.917

CCEP(hetero)
N=20 0.132 0.138 0.168 0.199 0.231
N=30 0.140 0.171 0.214 0.241 0.257
N=50 0.176 0.232 0.288 0.332 0.377
N=100 0.262 0.349 0.458 0.595 0.670
N=200 0.449 0.592 0.742 0.843 0.910

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.133 0.144 0.165 0.203 0.227
N=30 0.148 0.183 0.238 0.244 0.256
N=50 0.211 0.293 0.342 0.376 0.397
N=100 0.361 0.445 0.557 0.640 0.693
N=200 0.574 0.721 0.835 0.897 0.936

Pooled(hetero)
N=20 0.135 0.145 0.165 0.174 0.197
N=30 0.166 0.168 0.193 0.219 0.216
N=50 0.213 0.271 0.284 0.294 0.322
N=100 0.345 0.401 0.442 0.511 0.520
N=200 0.574 0.658 0.721 0.770 0.808

Naïve Estimators (excluding f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.464 0.544 0.618 0.691 0.745
N=30 0.618 0.671 0.759 0.834 0.882
N=50 0.713 0.806 0.868 0.923 0.961
N=100 0.914 0.964 0.992 0.999 1.000
N=200 0.975 0.991 0.999 1.000 1.000

Pooled(hetero)
N=20 0.563 0.613 0.658 0.755 0.792
N=30 0.694 0.745 0.800 0.856 0.910
N=50 0.759 0.819 0.870 0.927 0.964
N=100 0.920 0.957 0.987 0.998 0.999
N=200 0.967 0.987 0.998 1.000 1.000
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Table A2(i): Root Mean Squared Errors of Estimators of β1
Experiment A2: Full Rank + Homogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.0837 0.0604 0.0413 0.0285 0.0218
N=30 0.0698 0.0467 0.0342 0.0221 0.0163
N=50 0.0525 0.0350 0.0235 0.0162 0.0114
N=100 0.0374 0.0261 0.0183 0.0112 0.0075
N=200 0.0282 0.0190 0.0129 0.0080 0.0054

CCEP
N=20 0.0705 0.0535 0.0398 0.0292 0.0228
N=30 0.0562 0.0408 0.0308 0.0214 0.0169
N=50 0.0417 0.0303 0.0222 0.0156 0.0115
N=100 0.0297 0.0223 0.0167 0.0106 0.0074
N=200 0.0219 0.0158 0.0115 0.0076 0.0053

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.0563 0.0406 0.0290 0.0192 0.0138
N=30 0.0472 0.0340 0.0241 0.0155 0.0107
N=50 0.0335 0.0240 0.0166 0.0111 0.0077
N=100 0.0261 0.0183 0.0134 0.0086 0.0058
N=200 0.0185 0.0132 0.0095 0.0061 0.0042

Pooled
N=20 0.0424 0.0315 0.0242 0.0164 0.0115
N=30 0.0341 0.0268 0.0193 0.0130 0.0090
N=50 0.0235 0.0182 0.0133 0.0090 0.0063
N=100 0.0184 0.0140 0.0105 0.0070 0.0048
N=200 0.0128 0.0097 0.0074 0.0048 0.0034
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Table A2(ii): Size of the test (H0 : β1 = 1) at 0.05 level
Experiment A2: Full Rank + Homogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.071 0.065 0.075 0.065 0.071
N=30 0.063 0.056 0.078 0.065 0.063
N=50 0.059 0.047 0.044 0.057 0.056
N=100 0.051 0.053 0.059 0.058 0.047
N=200 0.055 0.052 0.052 0.051 0.053

CCEP
N=20 0.076 0.078 0.094 0.109 0.160
N=30 0.068 0.056 0.074 0.088 0.130
N=50 0.066 0.046 0.059 0.076 0.086
N=100 0.055 0.053 0.067 0.053 0.051
N=200 0.059 0.046 0.050 0.050 0.053

CCEP(hetero)
N=20 0.076 0.076 0.074 0.068 0.074
N=30 0.072 0.053 0.066 0.061 0.068
N=50 0.062 0.050 0.054 0.059 0.061
N=100 0.056 0.057 0.066 0.056 0.045
N=200 0.059 0.047 0.048 0.047 0.053

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.061 0.064 0.068 0.066 0.074
N=30 0.053 0.063 0.061 0.066 0.059
N=50 0.051 0.049 0.045 0.049 0.053
N=100 0.050 0.052 0.058 0.055 0.051
N=200 0.047 0.048 0.054 0.050 0.046

Pooled
N=20 0.055 0.040 0.057 0.053 0.054
N=30 0.053 0.051 0.057 0.055 0.050
N=50 0.051 0.048 0.048 0.041 0.048
N=100 0.050 0.049 0.052 0.052 0.051
N=200 0.047 0.049 0.057 0.045 0.049
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Table A2(iii): Power of the test (H0 : β1 = 0.95) at 0.05 level
Experiment A2: Full Rank + Homogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.121 0.175 0.268 0.455 0.684
N=30 0.141 0.211 0.366 0.616 0.864
N=50 0.187 0.301 0.539 0.870 0.988
N=100 0.277 0.505 0.806 0.993 1.000
N=200 0.444 0.757 0.979 1.000 1.000

CCEP(hetero)
N=20 0.141 0.194 0.303 0.466 0.654
N=30 0.177 0.235 0.402 0.631 0.853
N=50 0.243 0.367 0.620 0.890 0.986
N=100 0.396 0.629 0.872 0.996 1.000
N=200 0.650 0.882 0.994 1.000 1.000

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.180 0.265 0.445 0.740 0.955
N=30 0.222 0.338 0.580 0.886 0.995
N=50 0.330 0.558 0.831 0.991 1.000
N=100 0.508 0.779 0.964 1.000 1.000
N=200 0.772 0.959 1.000 1.000 1.000

Pooled
N=20 0.230 0.334 0.562 0.873 0.994
N=30 0.325 0.483 0.763 0.970 1.000
N=50 0.566 0.788 0.963 1.000 1.000
N=100 0.778 0.950 0.998 1.000 1.000
N=200 0.968 0.998 1.000 1.000 1.000
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Table B1(i): Bias of Estimators of β1
Experiment B1: Rank Deficient + Heterogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 -0.0012 -0.0012 0.0000 -0.0009 0.0014
N=30 0.0002 -0.0002 0.0011 0.0001 -0.0005
N=50 -0.0011 0.0012 0.0006 -0.0004 -0.0010
N=100 -0.0007 -0.0017 -0.0006 -0.0002 0.0013
N=200 0.0002 -0.0010 -0.0004 -0.0003 0.0005

CCEP
N=20 -0.0002 -0.0008 0.0005 -0.0014 0.0015
N=30 -0.0003 -0.0006 0.0019 0.0006 -0.0007
N=50 -0.0001 0.0011 0.0006 -0.0003 -0.0010
N=100 -0.0002 -0.0015 -0.0009 0.0002 0.0015
N=200 -0.0007 -0.0005 -0.0002 -0.0004 0.0003

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.0005 -0.0010 -0.0011 0.0007 0.0014
N=30 0.0006 -0.0010 0.0010 0.0004 -0.0002
N=50 -0.0015 0.0007 0.0003 -0.0006 -0.0005
N=100 0.0005 -0.0005 -0.0001 0.0006 0.0010
N=200 0.0001 -0.0007 -0.0003 -0.0004 0.0003

Pooled
N=20 0.0002 0.0002 -0.0006 0.0003 0.0026
N=30 0.0013 -0.0005 0.0009 0.0006 -0.0005
N=50 -0.0014 0.0006 0.0006 -0.0011 0.0007
N=100 0.0002 -0.0001 -0.0005 0.0002 0.0012
N=200 -0.0004 -0.0008 -0.0006 -0.0004 0.0004

8



Table B1(ii): Root Mean Squared Errors of Estimators of β1
Experiment B1: Rank Deficient + Heterogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.1212 0.0932 0.0742 0.0610 0.0551
N=30 0.1034 0.0773 0.0615 0.0500 0.0435
N=50 0.0764 0.0603 0.0467 0.0376 0.0329
N=100 0.0546 0.0435 0.0330 0.0269 0.0236
N=200 0.0401 0.0310 0.0237 0.0192 0.0161

CCEP
N=20 0.1068 0.0873 0.0724 0.0623 0.0561
N=30 0.0895 0.0736 0.0599 0.0508 0.0445
N=50 0.0663 0.0560 0.0455 0.0373 0.0334
N=100 0.0467 0.0394 0.0320 0.0272 0.0235
N=200 0.0333 0.0282 0.0228 0.0191 0.0163

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.0717 0.0603 0.0525 0.0481 0.0464
N=30 0.0591 0.0502 0.0442 0.0391 0.0371
N=50 0.0448 0.0382 0.0336 0.0301 0.0292
N=100 0.0323 0.0274 0.0239 0.0217 0.0205
N=200 0.0238 0.0192 0.0169 0.0157 0.0144

Pooled
N=20 0.0716 0.0627 0.0589 0.0546 0.0531
N=30 0.0591 0.0532 0.0502 0.0463 0.0439
N=50 0.0431 0.0408 0.0377 0.0358 0.0347
N=100 0.0323 0.0296 0.0277 0.0262 0.0259
N=200 0.0237 0.0210 0.0194 0.0183 0.0178
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Table B1(iii): Size of the test (H0 : β1 = 1) at 0.05 level
Experiment B1: Rank Deficient + Heterogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.070 0.070 0.073 0.075 0.075
N=30 0.067 0.061 0.065 0.065 0.063
N=50 0.048 0.065 0.064 0.056 0.056
N=100 0.051 0.055 0.053 0.058 0.058
N=200 0.050 0.058 0.050 0.059 0.047

CCEP(hetero)
N=20 0.074 0.077 0.072 0.084 0.077
N=30 0.066 0.072 0.065 0.069 0.066
N=50 0.060 0.062 0.064 0.053 0.056
N=100 0.056 0.052 0.053 0.058 0.057
N=200 0.044 0.059 0.054 0.057 0.048

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.071 0.069 0.062 0.062 0.061
N=30 0.063 0.063 0.055 0.060 0.059
N=50 0.055 0.064 0.055 0.055 0.053
N=100 0.048 0.064 0.055 0.052 0.046
N=200 0.060 0.049 0.054 0.055 0.049

Pooled(hetero)
N=20 0.072 0.066 0.070 0.067 0.068
N=30 0.062 0.055 0.064 0.060 0.053
N=50 0.053 0.053 0.066 0.054 0.055
N=100 0.053 0.055 0.058 0.055 0.060
N=200 0.058 0.048 0.048 0.052 0.053
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Table B1(iv): Power of the test (H0 : β1 = 0.95) at 0.05 level
Experiment B1: Rank Deficient + Heterogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.093 0.106 0.143 0.176 0.224
N=30 0.108 0.128 0.165 0.203 0.234
N=50 0.114 0.172 0.225 0.284 0.332
N=100 0.152 0.238 0.334 0.478 0.598
N=200 0.254 0.382 0.560 0.739 0.866

CCEP(hetero)
N=20 0.114 0.111 0.146 0.167 0.212
N=30 0.111 0.138 0.166 0.205 0.233
N=50 0.137 0.187 0.233 0.283 0.323
N=100 0.186 0.259 0.338 0.480 0.600
N=200 0.315 0.453 0.586 0.739 0.859

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.133 0.144 0.165 0.203 0.227
N=30 0.148 0.183 0.238 0.244 0.256
N=50 0.211 0.293 0.342 0.376 0.397
N=100 0.361 0.445 0.557 0.640 0.693
N=200 0.574 0.721 0.835 0.897 0.936

Pooled(hetero)
N=20 0.135 0.145 0.165 0.174 0.197
N=30 0.166 0.168 0.193 0.219 0.216
N=50 0.213 0.271 0.284 0.294 0.322
N=100 0.345 0.401 0.442 0.511 0.520
N=200 0.574 0.658 0.721 0.770 0.808

11



Table B2(i): Root Mean Squared Errors of Estimators of β1
Experiment B2: Rank Deficient + Homogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.1142 0.0832 0.0587 0.0410 0.0304
N=30 0.0957 0.0691 0.0501 0.0335 0.0245
N=50 0.0710 0.0524 0.0361 0.0251 0.0178
N=100 0.0537 0.0382 0.0273 0.0172 0.0122
N=200 0.0394 0.0276 0.0192 0.0127 0.0085

CCEP
N=20 0.0924 0.0746 0.0548 0.0401 0.0307
N=30 0.0777 0.0603 0.0459 0.0323 0.0244
N=50 0.0579 0.0454 0.0341 0.0244 0.0177
N=100 0.0429 0.0328 0.0245 0.0164 0.0120
N=200 0.0308 0.0237 0.0173 0.0120 0.0084

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.0563 0.0406 0.0290 0.0192 0.0138
N=30 0.0472 0.0340 0.0241 0.0155 0.0107
N=50 0.0335 0.0240 0.0166 0.0111 0.0077
N=100 0.0261 0.0183 0.0134 0.0086 0.0058
N=200 0.0185 0.0132 0.0095 0.0061 0.0042

Pooled
N=20 0.0424 0.0315 0.0242 0.0164 0.0115
N=30 0.0341 0.0268 0.0193 0.0130 0.0090
N=50 0.0235 0.0182 0.0133 0.0090 0.0063
N=100 0.0184 0.0140 0.0105 0.0070 0.0048
N=200 0.0128 0.0097 0.0074 0.0048 0.0034
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Table B2(ii): Size of the test (H0 : β1 = 1) at 0.05 level
Experiment B2: Rank Deficient + Homogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.069 0.076 0.068 0.062 0.069
N=30 0.059 0.063 0.069 0.063 0.061
N=50 0.053 0.057 0.044 0.065 0.060
N=100 0.055 0.060 0.061 0.055 0.051
N=200 0.062 0.052 0.050 0.047 0.052

CCEP
N=20 0.076 0.096 0.093 0.131 0.163
N=30 0.079 0.085 0.098 0.117 0.165
N=50 0.068 0.078 0.093 0.111 0.132
N=100 0.075 0.083 0.097 0.092 0.110
N=200 0.073 0.080 0.081 0.084 0.099

CCEP(hetero)
N=20 0.066 0.072 0.065 0.062 0.070
N=30 0.066 0.060 0.060 0.063 0.068
N=50 0.056 0.057 0.054 0.066 0.055
N=100 0.062 0.057 0.064 0.049 0.055
N=200 0.061 0.054 0.053 0.049 0.054

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.061 0.064 0.068 0.066 0.074
N=30 0.053 0.063 0.061 0.066 0.059
N=50 0.051 0.049 0.045 0.049 0.053
N=100 0.050 0.052 0.058 0.055 0.051
N=200 0.047 0.048 0.054 0.050 0.046

Pooled
N=20 0.055 0.040 0.057 0.053 0.054
N=30 0.053 0.051 0.057 0.055 0.050
N=50 0.051 0.048 0.048 0.041 0.048
N=100 0.050 0.049 0.052 0.052 0.051
N=200 0.047 0.049 0.057 0.045 0.049
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Table B2(iii): Power of the test (H0 : β1 = 0.95) at 0.05 level
Experiment B2: Rank Deficient + Homogeneous Slope

CCE Type Estimators

CCEMG T=20 T=30 T=50 T=100 T=200
N=20 0.104 0.134 0.192 0.302 0.454
N=30 0.102 0.147 0.219 0.375 0.588
N=50 0.121 0.186 0.312 0.564 0.820
N=100 0.187 0.317 0.502 0.830 0.972
N=200 0.284 0.471 0.784 0.977 0.999

CCEP(hetero)
N=20 0.114 0.151 0.209 0.309 0.465
N=30 0.124 0.165 0.232 0.392 0.594
N=50 0.171 0.227 0.350 0.596 0.824
N=100 0.247 0.392 0.564 0.859 0.982
N=200 0.418 0.582 0.847 0.984 0.999

Infeasible Estimators (including f1t and f2t)

Mean Group T=20 T=30 T=50 T=100 T=200
N=20 0.180 0.265 0.445 0.740 0.955
N=30 0.222 0.338 0.580 0.886 0.995
N=50 0.330 0.558 0.831 0.991 1.000
N=100 0.508 0.779 0.964 1.000 1.000
N=200 0.772 0.959 1.000 1.000 1.000

Pooled
N=20 0.230 0.334 0.562 0.873 0.994
N=30 0.325 0.483 0.763 0.970 1.000
N=50 0.566 0.788 0.963 1.000 1.000
N=100 0.778 0.950 0.998 1.000 1.000
N=200 0.968 0.998 1.000 1.000 1.000
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