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We estimate the relationship between students’ educational achievement and the availability 
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home seems to distract students from effective learning. But measures of computer use for 
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instruction. 
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1. Introduction 

Computer use is deemed increasingly important in modern societies. Computers and the 

internet have introduced dramatic changes to work processes and to the organization of 

corporate structures over the past decade (cf. Lindbeck and Snower 2000). Computers and the 

internet have also changed the shopping and recreational behavior of households. Similarly, 

students are faced with computers both at home and at school, and governments worldwide 

have introduced schemes to equip schools with classroom computers and internet 

connections. This paper analyzes whether the availability and use of computers is related to 

students’ educational achievement. We use the extensive student-level micro data from the 

Programme for International Student Assessment (PISA), an international student 

achievement test, to estimate the relationship between computers and student learning 

empirically. The PISA database offers information both about the availability and about the 

use of computers by students, both at home and at school.  

We show that, first, bivariate evidence on the relationship between computers and 

students’ educational achievement is highly misleading. Because computer availability at 

home is strongly correlated with other family-background characteristics, bivariate results on 

computer availability at home are severely biased. Still, simple bivariate correlations are what 

many commentators base their assessments on. Even high-quality documents such as the 

initial release of the PISA results, albeit cautioning about possible limitations to the 

interpretation of bivariate findings, reports the simple bivariate finding that “[s]tudents with 

higher values on the index of interest in computers tend to perform better on the combined 

reading literacy scale” (OECD 2001, p. 118). We show that the statistically significant 

positive correlation between the availability of computers at home and student performance in 

math and reading reverses into a statistically significantly negative one as soon as other 

family-background influences are extensively controlled for in multivariate regressions.  

Second, similar to the case of computer availability at home, bivariate results on computer 

availability at school are severely biased because the availability of school computers is 

strongly correlated with the availability of other school resources. While the bivariate 

correlation between the availability of computers at school and student performance is 

strongly and statistically significantly positive, the correlation becomes small and statistically 

indistinguishable from zero once other school characteristics are held constant. The 

multivariate results illustrate how careless bivariate interpretations can lead to patently false 

conclusions. 
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Third, we show that the relationship between computers and student learning differs 

strongly between the mere availability of computers and their use as a communicational and 

educational device. At home, the negative relationship of student performance with computer 

availability contrasts with positive relationships with the use of computers for emailing, 

webpage access and the use of educational software. Thus, the mere availability of computers 

at home seems to distract students from learning, presumably mainly serving as devices for 

playing computer games. Only by using computers in constructive ways can the negative 

effect of computer provision on student learning be partly compensated for. 

Fourth, the relationship between student achievement and the use of computers and the 

internet at school shows an inverted U-shape. That is, students who never use computers or 

the internet at school show lower performance than students who sometimes use computers or 

the internet at school. But students who use them several times a week perform even lower. 

We offer two possible explanations for this pattern. On the one hand, teachers might refrain 

from using computers with students of a low ability level. Then, the first part of the pattern 

may simply reflect an ability bias, and the second part of the pattern may reflect that computer 

use might actually have decreased student learning, as has also been found in a previous 

quasi-experimental study (Angrist and Lavy 2002). On the other hand, assuming that there is 

no ability bias left after the extensive controls that we include in the regressions, the pattern 

might suggest that there is an optimal level of computer and internet use at school, 

substantially below a use intensity of several times a week.  

Despite the extensive information on family and school background that we can control 

for, the PISA study still provides only observational data, where the availability and use of 

computers is not randomly divided between a treatment group that has computer access and a 

control group that does not have computer access. Therefore, in contrast to randomized 

experimental evidence, our evidence has to be interpreted cautiously in terms of descriptive 

conditional correlations, which do not necessarily allow for causal inferences because they 

may also reflect effects of other, unobservable characteristics. Still, the application shows that 

the multivariate analysis can go substantially beyond bivariate correlations in terms of 

detecting underlying relationships by disentangling these relationships from other observable 

influences. The results illustrate that accounting for other observable influence factors – i.e., 

comparing students who are equal in terms of other observable characteristics – can already 

yield results that are perfectly opposite to bivariate patterns.  
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The remainder of the paper is structured as follows. Section 2 briefly describes previous 

research on the impact of computers and presents possible hypotheses on the impact of 

computerized learning and instruction on students’ educational achievement. Section 3 

introduces the database, the identification problem and the empirical model employed. 

Section 4 presents the results in terms of computer availability and use at home and at school. 

Section 5 concludes.  

2. Literature and Hypotheses 

2.1 Research on the Economic and Educational Impact of Computers 

Using a computer may affect economic outcomes in at least two ways. First, computer skills – 

knowing how to use a computer – may have direct effects on productivity and wages. Second, 

computers can be used as means for learning other skills, such as math, reading and science, 

which in turn may give rise to positive labor-market outcomes.  

An increasing literature analyzes the first effect, the direct impact of computer skills on the 

labor market. In a seminal paper, Krueger (1993) found that computer use by workers is 

related to an expected wage that is approximately 10 to 15 percent higher in cross-sectional 

data. However, DiNardo and Pischke (1997) cast doubt that this finding reflects true returns 

to computer skills, as similar wage differentials can be found for the use of such devices as 

telephones and pencils. Using matched employer-employee panel data to identify the causal 

effect of computer skills on wages, Entorf, Gollac and Kramarz (1999) show that the cross-

sectional wage differential in favor of computer users is nearly entirely due to a selection bias 

of high-skilled workers into computer-using employments.  

Recently, Borghans and ter Weel (2004) replicate the finding that the ability to effectively 

use a computer has no substantial impact on wages. At the same time, they show that math 

and writing abilities do yield significant returns on the labor market. Thus, they suggest that 

math and writing can be regarded as basic productive skills, while computer skills cannot.  

Given that computer skills do not seem to have direct returns on the labor market, but more 

basic skills do, the possible impact of computers on learning skills such as math, writing, 

reading and science is an interesting topic. The existing evidence focuses on the effect of 

classroom computers on student achievement, showing mixed results at best. Reviews of 

observational studies such as Cuban (1993), Oppenheimer (1997) and Kirkpatrick and Cuban 

(1998) tend towards a negative assessment of the potential of using computers for 

instructional purposes in classrooms to improve students’ educational achievement.  
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Wenglinsky (1998) and Angrist and Lavy (2002) even report negative effects of computer 

use in schools on some student achievement measures. The quasi-experimental study of 

Angrist and Lavy (2002) finds that the introduction of computer-aided instruction in Israeli 

schools exerted a statistically significant negative effect on the math achievement of fourth-

grade students and a negative but statistically insignificant effect on student achievement in 

other subjects and higher grades. Recent studies by Borman and Rachuba (2001) and Rouse 

and Krueger (2004) analyze randomized experiments of computerized reading instruction, 

finding that noteworthy impacts of computerized instruction can be ruled out.  

Thus, the evidence so far does not suggest that computers have a substantial impact on the 

economic and educational outcome of individuals, neither in terms of worker wages nor in 

terms of student learning. Despite numerous claims by politicians and software vendors to the 

contrary, the evidence so far suggests that computer use in schools does not seem to 

contribute substantially to students’ learning of basic skills such as math or reading.  

2.2 Hypotheses on the Impact of Computers on Student Achievement 

At the most basic level, there are both hypotheses suggesting that computers may further 

student learning and hypotheses suggesting that computers may hinder student learning. 

Therefore, the expected net effect is equivocal – ultimately being an empirical question – and 

may depend on factors supporting either the positive or the negative effects.  

The positive hypotheses run down to the point that everything else equal, computers 

constitute an input in students’ learning process that should help produce better learning 

output. Computer use can enhance learning by making education less dependent on differing 

teacher quality and by making education available at home throughout the day. Using the 

computer to employ educational software can positively infer knowledge to students. 

Furthermore, internet access can help students exploit enormous information possibilities for 

schooling purposes and increase learning through communication.  

A first set of negative hypotheses builds on the idea that, actually, everything else is not 

equal. Computerized instruction induces reallocations, substituting alternative, possibly more 

effective forms of instruction. Given a constant overall instruction time, this may decrease 

student achievement. Also, given that budgets are not perfectly elastic, the introduction of 

computerized instruction can result in a reallocation of funds in favor of computers, possibly 

substituting more effective instructional materials.  
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A second set of negative hypotheses combines arguments that computers can distract from 

learning. This may be particularly salient at home, where computers may be used mainly to 

play computer games. This can keep students from doing homework and learning at home. 

Survey evidence suggests that computers at home indeed tend to be mainly used as toys 

(Wirth and Klieme 2003). Similarly, internet access could offer distraction by chat rooms or 

online games, reducing the time spent on doing homework or learning. Thus, the impact on 

student learning of the availability of computers and the internet will strongly depend on their 

specific uses.  

A third set of negative hypotheses surrounds the argument that computer-aided instruction 

could restrict the creativity of children. Computerized programs tend to only allow acting in a 

predefined way with limited interactive possibilities. This might reduce students’ abilities in 

terms of problem solving and creativity, thinking in predetermined schemes but not coming 

up with independent creative solutions by their own.  

3. Data and Empirical Identification 

3.1 The PISA Data 

To estimate the relationship between computers and student learning empirically, we use the 

student-level dataset of the Programme for International Student Assessment (PISA), an 

international student achievement test of 15-year-old students conducted in 2000 by the 

Organisation for Economic Co-Operation and Development (OECD). The study tested 

student performance in reading, math and science in 32 developed and emerging countries, 28 

of which are OECD countries. The OECD ensured a consistent and coherent study design and 

as much comparability as possible among the participating countries. The countries 

participating in the PISA 2000 study are: Australia, Austria, Belgium, Brazil, Canada, the 

Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, 

Italy, Japan, Korea, Latvia, Liechtenstein,1 Luxembourg, Mexico, the Netherlands, New 

Zealand, Norway, Poland, Portugal, the Russian Federation, Spain, Sweden, Switzerland, the 

United Kingdom and the United States.2 

                                                 
1 Liechtenstein was not included in our analysis due to lack of internationally comparable country-level 

data, e.g. on educational expenditure per student. Note also that there were only 326 15-year-old students in 
Liechtenstein in total, 314 of whom participated in PISA.  

2 Adams and Wu (2002), OECD (2000, 2001, 2002) and the PISA webpage at www.pisa.oecd.org 
provide detailed information on the PISA study.  
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PISA sampled a representative random sample of the population of 15-year-old students in 

each country.3 The PISA study tested the students with paper and pencil tests, which lasted 

two hours for each student. Using item response theory, the test results were transformed into 

test scores with an OECD mean of 500 points and an OECD standard deviation of 100 points.  

In this paper, we use the student-level database constructed by Fuchs and Wößmann 

(2004), who provide more detailed information and notes on the specific database. They 

combine the test results with background information on students and schools from PISA 

background questionnaires answered by the specific students and schools tested in PISA. In 

addition to the rich PISA data at the student and school level, we also use some country-level 

data on the countries’ GDP per capita, on their average educational expenditure per student in 

secondary education and on the existence of curriculum-based external exit exams.  

In order to use all available information of the PISA test and estimate the maximum 

sample of students participating in the test, missing values in the student and school 

questionnaires were imputed (see Fuchs and Wößmann 2004 for details on the imputation 

method employed). Data imputation is preferable to dropping all observations with a missing 

value on at least one variable because it allows a much larger sample size, uses the available 

information on other explanatory variables for students with some missing information and 

because the estimator using only non-imputed data would yield biased results if the missing 

data follow a non-random pattern. To ensure consistency of estimation, the estimated 

regressions control for dummies on imputed data (see below).  

In this paper, we focus on student performance in math and reading. Math performance is 

one of the “basic skills” that Borghans and ter Weel (2004) found to yield productive returns 

on the labor market. Similarly, other studies have shown before that math achievement is 

most strongly related to productivity (e.g., Bishop 1992). Also, math performance is generally 

viewed as being most readily comparable across countries. The sample size of our PISA 

database in math is 96,855 students from 31 countries. The PISA 2000 study had a special 

focus on the reading literacy of students, where the dataset covers 174,227 students from 31 

countries. Thus, we conduct our estimations in math and reading. Science results, for which 

we find a pattern very similar to the other two subjects, are not reported here.4  

                                                 
3  Most PISA countries employed a two-stage stratified sampling technique. The first stage drew a 

(usually stratified) random sample of schools in which 15-year-old students were enrolled, yielding a minimum 
sample of 150 schools per country. The second stage randomly sampled 35 of the 15-year-old students in each 
of these schools, with each 15-year-old student in a school having equal probability of selection. Within each 
country, this sampling procedure typically led to a sample of between 4,500 and 10,000 tested students. 

4 The specific science results are available from the authors on request. 
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Table 1 presents descriptive statistics on the data on computer availability and use at home 

and at school that we employ in this paper.5 The table also reports the share of missing and 

thus imputed data for each variable. All data on computers at home stem from the student 

background questionnaire. In terms of computer availability, students report how many 

computers they have at home. We use two dummies on this variable, the first one reporting 

whether there is one computer in a student’s home, the second one reporting whether there are 

two or more computers in the home. More than half of the students in our sample have more 

than one computer in their home, 25% have one computer and 23% do not have a computer at 

home. Students also report whether they have internet access at home or not, which 43% of 

the students have. Students also report how often they read emails and webpages because they 

want to do it, using five answer categories: “never or hardly ever”, “a few times a year”, 

“about once a month”, “several times a month” and “several times a week”. We use two 

dummies on this in our estimations, one for students who never or hardly ever use emails and 

webpages (38% in our sample) and one for students who use them several times a week 

(27%), with the remaining students lying in between. A final information on computers at 

home is whether students have educational software at home, which 55% of the students 

have.  

In terms of computer availability at school, school principals report in the school 

background questionnaire how much the learning at their school is hindered by not having 

enough computers for instruction. Four answer categories are given: “not at all”, “very little”, 

“to some extent” and “a lot”. We use two dummies on this variable, one reporting whether 

lack of computers hinders learning a lot (12% of the students) and the other whether lack of 

computers does not hinder learning at all (30%), with the remaining students again lying in 

between. School principals also report the number of computers in their schools, as well as 

the number of computers with internet connection. We use both variables in terms of 

computers per student. The international mean is 0.126 computers per student at school (or 

roughly 8 students on a computer) and 0.067 computers with internet access per student at 

school (or roughly 15 students on an internet-connected computer). In terms of computer use 

at school, there is additional information in the student background questionnaires. Students 

report how often they use computers at their school, in five answer categories: “never or 

hardly ever”, “a few times a year”, “about once a month”, “several times a month” and 

                                                 
5 Descriptive statistics on the extensive control variables employed can be found in Fuchs and Wößmann 

(2004).  



 

Table 1: Descriptive Statistics on Achievement and Computers 

 Mean Std. Dev. Source Imputed 

Test scores     
   Math 496.1 102.6 St 0.000
   Reading 495.4 101.3 St 0.000
Computers at home     
   Computers at home         
      None 0.229  St 0.025
      One 0.247  St 0.025
      More than one 0.524  St 0.025
   Internet access at home 0.431 St 0.024
   Use of email and webpages  
      Never or hardly ever 0.381 St 0.036
      Several times a week 0.265 St 0.036
   Educational software at home 0.552  St 0.028
Computers at school  
   Computers at school   
      Strongly lacking 0.115  Sc 0.044
      No lack at all 0.304  Sc 0.044
   PCs per student 0.126 0.385 Sc 0.116
   Computer use at school  
      Never or hardly ever 0.259  St 0.036
      Several times a week 0.277  St 0.036
   PCs with internet access per student 0.067 0.218 Sc 0.137
   Internet use at school   
      Never or hardly ever 0.485  St 0.039
      Several times a week 0.152  St 0.039

Notes: Mean: International mean, based on non-imputed data for each variable, 
weighted by sampling probabilities. – Std. Dev.: International standard deviation 
(only for discrete variables). – Source: Data source and thus level of observation: St = 
student achievement test or student background questionnaire; Sc = school 
background questionnaire. – Imputed: Fraction of students with missing and thus 
imputed data, weighted by sampling probabilities. 
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“several times a week”. Again, we use the two extreme categories as dummies, where 26% of 

the students never or hardly ever use computers at school and 28% use computers at school 

several times a week. Similarly, students also report how often they use the internet at their 

school, where 49% use it never or hardly ever and only 15% use it several times a week. 

3.2 The Identification Problem 

As has been shown in numerous studies, students with more advantaged family backgrounds, 

such as better-educated parents or parents with higher-paying jobs, generally tend to perform 

substantially better in terms of educational achievement (e.g., Wößmann 2004). This may be 

the case because of heritability or because parents with more educated backgrounds provide 

more inputs for their children’s learning in terms of home instruction, motivation, educational 

resources and so on (cf. Behrman and Rosenzweig 2002; Sacerdote 2002; Plug and 

Vijverberg 2003). Students from more advantaged family backgrounds also tend to have more 

computers at home. Thus, having computers at home will proxy for the economic, social and 

educational environment at home at the same time as potentially having an own direct impact 

on students’ learning. It follows that any bivariate correlation between computers and student 

achievement can well be a sign of other beneficial family-background effects rather than a 

sign of computers having an effect on student achievement. This is the essence of the problem 

of identifying effects of computer availability and using observational data, because the 

computer effects can easily be confounded by effects of other factors. If these other variables 

are omitted from the empirical estimation, they will bias the estimated effect of computers.  

Therefore, in our estimations, we try to control for as many other observable family-

background effects as possible. In the PISA background questionnaires, we have a vast 

amount of information on each student’s personal and family background, as well as on each 

school’s resource endowment and organizational structure. By directly controlling for the 

economic, social and educational environment at home in a multivariate analysis, we can at 

least make sure that any estimated effect of computers will not be driven by these other 

observable characteristics.  

The identification problem is very similar in the case of computers at schools, because 

schools which have more computers also tend to have more of other school resources. For this 

reason, we try to substantially control for other school characteristics such as their 

endowment with other resources and their institutional features.  
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Still, both in the case of computers at home and computers at school, there will be further 

unobserved characteristics left for which we cannot control. If these remaining unobserved 

characteristics are correlated with the computer variables and if they are themselves related to 

student performance, this will bias our estimated coefficients on the computer variables. For 

example, in the case of data on computer use, the decision to use computers may not be 

random, but rather endogenously determined by students’ ability. If our control variables do 

not fully control for student ability and if this ability is related to measured student 

performance, our estimates on computer use may well reflect this ability bias in addition to 

any causal effect of computer use. Therefore, our best estimates still do not necessarily show 

the causal effect of the computer variables on student performance. Rather, the estimates have 

to be interpreted cautiously as descriptive conditional correlations, in the sense that they 

report the relationship between computers and student learning conditional on holding 

constant the other family-background and school features that we can observe. While this is 

substantially more informative than simple bivariate correlations, it is still not the kind of 

causal information that controlled experiments could provide.  

3.3 The Empirical Model 

Following the discussion of the identification problem, we estimate the following multivariate 

microeconometric education production function: 

 ( ) ( ) isis
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is

B
isis

C
is

C
is
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+++++
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where Tis is the achievement test score of student i in school s. C is the vector of computer 

variables, and B is a vector of background data. In the most elaborate specification, this 

control vector includes 8 variables on student characteristics, 28 variables on family 

background, 12 variables on resource inputs and 12 variables on institutions, as enumerated in 

Table 2 (see Fuchs and Wößmann 2004 for details on these control variables). The parameter 

vectors β1 to β6 will be estimated in the regression. The inclusion of the imputation dummies 

D and the structure of the error term ε will be discussed below. Note that this specification of 

the international education production function restricts the effects to be the same in all 

countries, as well as at all levels (within schools, between schools and between countries). 

While it might be interesting to analyze the potential heterogeneity of certain effects between 

countries and between levels, this paper restricts itself to analyzing the international mean 



 

Table 2: Control Variables 

Student characteristics [8] Family background [28] Resource inputs [12] Institutions [12] 

• Gender 
• Age 
• Grade (6 dummies) 

• Parental education (5 dummies) 
• Migration status of father, mother and 

student (3 dummies) 
• Family status (3 dummies) 
• Parents’ work status (3 dummies) 
• Parental occupation (2 dummies) 
• Number of books at home (6 dummies) 
• School’s community location  

(5 dummies) 
• GDP per capita of country 

• Class size in subject (instrumented 
by school’s student-teacher ratio) 

• Educational expenditure per student 
of country 

• Instructional material (2 dummies) 
• Teacher education (3 dummies) 
• Instruction time 
• Homework time in subject  

(2 dummies) 
• Parental support (2 dummies) 

• External exit exams  
• Standardized tests 
• School autonomy in determining course 

content, choosing textbooks, formulating 
school budget, deciding on budget allocations, 
hiring teachers, firing teachers, establishing 
teachers’ starting salaries and establishing 
teachers’ salary increases (8 dummies) 

• Public vs. private school management 
• Share of government funding in school budget 
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effect of computer use on student achievement.6 Fuchs and Wößmann (2004) provide a more 

detailed discussion of this general specification of the estimation equation.  

We test for the robustness of our results in two further specifications. First, following 

Dronkers and Robert (2003), we control for possible school composition effects by including 

school means of student gender and of all the 28 family-background variables reported in 

Table 2. In effect, this adds 29 additional school-level variables to the background vector B. 

By controlling for the socio-economic composition of a school, this specification is meant to 

account for possible biases due to the endogenous sorting of students into schools. Second, to 

account for potential omitted variables at the country level, we additionally include a whole 

set of country dummies in the estimation of equation (1). These country fixed effects control 

for unobserved country-specific heterogeneity in the level of student performance.  

As discussed in the previous section, some of the data are imputed rather than original. 

Generally, data imputation introduces measurement error in the explanatory variables, which 

should make it more difficult to observe statistically significant effects. Still, to make sure 

that the results are not driven by imputed data, two vectors of dummy variables DC and DB are 

included as controls in the estimation. The D vectors contain one dummy for each variable in 

the vectors C and B that takes the value of 1 for observations with missing and thus imputed 

data and 0 for observations with original data. The inclusion of the D vectors as controls in 

the estimation allows the observations with missing data on each variable to have their own 

intercepts. Furthermore, the inclusion of the interaction terms between imputation dummies 

and data vectors, DCC and DBB, allows them to also have their own slopes for the respective 

variables. These imputation controls for each variable with missing values ensure that the 

results are robust against possible biases arising from data imputation. 

Owing to the complex data structure produced by the PISA survey design and the multi-

level nature of the explanatory variables, the error term ε of the regression has a non-trivial 

structure. Although we include a considerable amount of school-related variables, we cannot 

be sure that there are no omitted variables at the school level. Given the possible dependence 

of students within the same school, the use of school-level variables and the fact that schools 

                                                 
6 Wößmann (2003) compares this restricted specification to an alternative two-step specification, 

discussing advantages and drawbacks particularly in light of potential omitted country-level variables. He finds 
that the substantive results are virtually the same in the alternative specification and provides arguments favoring 
the specification employed here. Furthermore, Fuchs and Wößmann (2004) show that this estimation 
specification can account for more than 85% of the between-country variation in test scores in each subject. 
Therefore, the scope for obvious unobserved country-specific heterogeneity seems small. In the most elaborate 
specifications of this paper, we also control for country fixed effects.  
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were the primary sampling unit (PSU) in PISA, there may be unobservable correlation among 

the error terms εis at the school level (cf. Moulton 1986 for this problem of hierarchical data 

structure). We correct for potential correlations of the error terms by imposing an adequate 

structure on the covariance matrix. Thus, we suppose the error term to have the following 

structure: 

 isis υηε +=   , (2) 

where ηs is the school-level element of the error term and υi is the student-specific element of 

the error term. We use clustering-robust linear regressions (CRLR) to estimate standard errors 

that recognize this clustering of the student-level data within schools. The CRLR method 

relaxes the independence assumption and requires only that the observations be independent 

across the PSUs, i.e. across schools. To avoid inefficiency due to heteroscedasticity, CRLR 

imposes a clustered covariance structure on the covariance matrix, allowing within-school 

correlations of the error term. By allowing any given amount of correlation within the PSUs, 

CRLR yields consistent and efficient estimates when many observations share the same value 

on some but not all independent variables (cf. Deaton 1997; White 1984).  

Finally, PISA used a stratified sampling design within each country, producing varying 

sampling probabilities for different students. To obtain nationally representative estimates 

from the stratified survey data at the within-country level, we employ weighted least squares 

(WLS) estimation using sampling probabilities as weights. WLS estimation ensures that the 

proportional contribution to the parameter estimates of each stratum in the sample is the same 

as would have been obtained in a complete census enumeration (DuMouchel and Duncan 

1983; Wooldridge 2001). Furthermore, at the between-country level, our weights give equal 

weight to each of the 31 countries.  

4. Results 

This section reports and discusses the empirical results on the relationship between computers 

and student achievement. First, we look at the availability of computers at home and at 

school. Then, we look at the use of computers at home and at school. 
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4.1 Computer Availability 

Computer Availability at Home 

Table 3a reports the results on the availability of computers at home and student performance 

in math, successively adding groups of control variables. Column I regresses math 

performance only on the two dummies of computer availability at home, without controlling 

for any other impact. Similar to the OECD’s (2001, p. 118) finding that a computer interest 

index is positively related to performance, computer availability at home is strongly and 

statistically significantly positively related to student performance. Students with one 

computer at home perform 22.7 achievement points (AP) better than students without a 

computer at home, and students with more than one computer at home perform another 6.7 

AP better. To provide an impression of the size of this performance difference, it may be 

compared to the unconditional international mean difference between students attending 9th 

grade and students attending 10th grade. These two grades contain the most students in the 

PISA study and show a difference of 30.3 AP in math (33.2 AP in reading). Thus, the 

unconditional performance difference between students with several computers at home and 

students with no computers at home is approximately equal to a whole grade difference.7  

The regression reported in column II adds control variables for student characteristics, 

including gender, age and grade, which makes the computer estimates decrease slightly, but 

remaining large and statistically significantly positive. In column III, the family-background 

controls, such as education and occupation of parents, immigration and family status, are 

added to the regression. Now, the coefficients on computer availability at home become small 

and statistically insignificantly different from zero. That is, the initial positive correlation 

between computer availability at home and student performance was simply driven by the fact 

that students from better economic, social and educational family backgrounds tend to have 

more computers at home. Holding the other family-background characteristics constant, 

computer availability is not related to math performance.  

In column IV, control variables for schools’ resource endowments are added to the 

regression. Once these are controlled for, computer availability at home is statistically 

significantly negatively related to student performance. The more computers there are in a 

student’s home, the worse the student’s math performance. This pattern of results gets even 

                                                 
7 As an alternative benchmark, when estimating the average unconditional performance difference per 

month between students of different age and extrapolating this to a performance difference per year of age, this 
is equal to 12.9 AP in math (16.4 AP in reading). 

 



 

Table 3a: Computer Availability at Home and Student Performance in Math 

 I II III IV V VI VII 
Computers at home               

   One 22.737*** (1.589) 17.143*** (1.457) 1.791 (1.290) -2.103* (1.216) -3.921*** (1.174) -5.580*** (1.121) -5.907*** (1.106)

   More than one 29.452*** (1.604) 21.693*** (1.492) -2.068 (1.355) -6.576*** (1.266) -9.804*** (1.192) -12.118*** (1.125) -13.863*** (1.070)

Student characteristics [8] – incl. incl. incl.  incl. incl. incl.
Family background [28] – – incl. incl.  incl. incl. incl.
Resource inputs [12] – – – incl.  incl. incl. incl.
Institutions [12] – – – –  incl. incl. incl.
School composition [29] – – – –  – incl. incl.
Country dummies [30] – – – –  – – incl.
R2 0.03 0.14 0.26 0.31  0.33 0.37 0.39
Observations 96,855 96,855 96,855 96,855  96,855 96,855 96,855

Notes: Dependent variable: PISA international math test score. – I-II: WLS regressions. – III-VII: 2SLS regressions with class size instrumented by schools’ 
student-teacher ratio. – Regressions weighted by students’ sampling probabilities. – Clustering-robust standard errors (taking account of correlated error terms 
within schools) in parentheses. – Significance level (based on clustering-robust standard errors): *** 1 percent. – * 10 percent. 



 

Table 3b: Computer Availability at Home and Student Performance in Reading 

 I II III IV V VI VII 
Computers at home               
   One 22.011*** (1.298) 17.047*** (1.165) 3.783*** (1.016) -1.075 (1.126) -4.227*** (1.026) -5.558*** (0.893) -6.551*** (0.817)

   More than one 26.008*** (1.427) 19.205*** (1.285) -1.786 (1.184) -5.885*** (1.246) -10.381*** (1.055) -12.500*** (0.914) -15.606*** (0.819)

Student characteristics [8] –  incl.  incl. incl.  incl. incl. incl.  
Family background [28] –  –  incl. incl.  incl. incl. incl.  
Resource inputs [12] –  –  – incl.  incl. incl. incl.  
Institutions [12] –  –  – –  incl. incl. incl.  
School composition [29] –  –  – –  – incl. incl.  
Country dummies [30] –  –  – –  – – incl.  
R2 0.02 0.15 0.29 0.33  0.34 0.38 0.40  
Observations 174,227 174,227 174,227 174,227  174,227 174,227 174,227  

Notes: Dependent variable: PISA international reading test score. – I-II: WLS regressions. – III-VII: 2SLS regressions with class size instrumented by schools’ 
student-teacher ratio. – Regressions weighted by students’ sampling probabilities. – Clustering-robust standard errors (taking account of correlated error terms 
within schools) in parentheses. – Significance level (based on clustering-robust standard errors): *** 1 percent. 
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more pronounced when controls for institutional features of the schools are added in column 

V. Similarly, it stays unchanged when the schools’ socio-economic composition is controlled 

for in column VI, as well as when country fixed effects are included in column VII. In this 

most elaborate specification, students with one computer at home perform statistically 

significantly 5.9 AP lower than students without a computer at home, and students with 

several computers at home perform another 8.0 AP worse.  

Table 3b reports the same results for reading literacy. The pattern is the same as in math. 

An initial statistically significant and sizable positive correlation between computer 

availability at home and reading performance is turned around into a statistically significant 

and sizable negative one once student and family background as well as schools’ resources 

and institutional features are controlled for.  

Computer Availability at School 

Tables 4a and 4b report equivalent estimations for the relationship between computer 

availability at school and student performance in math and reading. The initial correlations in 

column I suggest that students perform statistically significantly and sizably (40.7 AP in math 

and 36.5 AP in reading) worse in schools where computers are strongly lacking. There is no 

statistically significant performance difference between students in schools without any lack 

of computers and students in schools with little or some lack of computers. This pattern of 

results stays intact once student and family characteristics are controlled for in columns II and 

III. However, the picture starts to turn once measures of schools’ resource endowments are 

added as controls. In math, there is no longer a statistically significant performance gap for 

students in schools where computers are strongly lacking, and students in schools without a 

lack of computers now actually show a statistically significant lower performance. The same 

pattern emerges in both subjects in the specifications that additionally control for schools’ 

institutional features and socio-economic composition in columns V and VI. Once country 

fixed effects are added in column VII, none of the performance differences between students 

with different extents of computer availability at school is statistically significant. That is, the 

initial positive pattern on computer availability at school simply reflects that schools with 

better computer availability also feature other positive school characteristics. Once these are 

controlled for, computer availability at school is not related to student performance in math 

and reading.  

Column VIII adds the variable on the number of computers per student at the school to the 

most elaborate specification. This variable is also not statistically significantly related to 



 

Table 4a: Computer Availability at School and Student Performance in Math 

 I II III IV V VI VII          VIII 
Computers at school                 
   Strongly lacking -40.717*** (3.600) -31.847*** (3.170) -15.611*** (2.466) -2.777 (2.307) -1.568 (2.133) -0.463 (2.015) -1.592 (1.870) -1.624 (1.872) 

   No lack at all -0.280 (2.403) 1.420 (2.081) 1.659 (1.805) -4.395** (1.733) -6.053*** (1.640) -2.344* (1.415) -1.314 (1.236) -1.315 (1.236) 

PCs per student – – – –  – – – -0.480 (0.829) 

Student characteristics [8] – incl. incl. incl.  incl. incl. incl. incl.  
Family background [28] – – incl. incl.  incl. incl. incl. incl.  
Resource inputs [12] – – – incl.  incl. incl. incl. incl.  
Institutions [12] – – – –  incl. incl. incl. incl.  
School composition [29] – – – –  – incl. incl. incl.  
Country dummies [30] – – – –  – – incl. incl.  
R2 0.02 0.13 0.26 0.31  0.33 0.36 0.39 0.39  
Observations 96,855 96,855 96,855 96,855  96,855 96,855 96,855 96,855  

Notes: Dependent variable: PISA international math test score. – I-II: WLS regressions. – III-VIII: 2SLS regressions with class size instrumented by schools’ student-teacher 
ratio. – Regressions weighted by students’ sampling probabilities. – Clustering-robust standard errors (taking account of correlated error terms within schools) in parentheses. – 
Significance level (based on clustering-robust standard errors): *** 1 percent. – ** 5 percent. – * 10 percent. 



 

Table 4b: Computer Availability at School and Student Performance in Reading 

 I II III IV V VI VII          VIII 
Computers at school                 
   Strongly lacking -36.456*** (3.285) -27.819*** (2.834) -14.862*** (2.155) -5.213** (2.285) -2.868 (2.069) -1.845 (1.806) -1.778 (1.631) -1.812 (1.634) 

   No lack at all -0.092 (2.310) 1.010 (1.953) 0.407 (1.592) -5.076*** (1.693) -6.234*** (1.564) -2.430* (1.306) -1.184 (1.108) -1.179 (1.108) 

PCs per student – – – –  – – – -0.584 (0.744) 

Student characteristics [8] – incl. incl. incl.  incl. incl. incl. incl.  
Family background [28] – – incl. incl.  incl. incl. incl. incl.  
Resource inputs [12] – – – incl.  incl. incl. incl. incl.  
Institutions [12] – – – –  incl. incl. incl. incl.  
School composition [29] – – – –  – incl. incl. incl.  
Country dummies [30] – – – –  – – incl. incl.  
R2 0.01 0.15 0.29 0.32  0.34 0.38 0.40 0.40  
Observations 174,227 174,227 174,227 174,227  174,227 174,227 174,227 174,227  

Notes: Dependent variable: PISA international reading test score. – I-II: WLS regressions. – III-VIII: 2SLS regressions with class size instrumented by schools’ student-teacher 
ratio. – Regressions weighted by students’ sampling probabilities. – Clustering-robust standard errors (taking account of correlated error terms within schools) in parentheses. – 
Significance level (based on clustering-robust standard errors): *** 1 percent. – ** 5 percent. – * 10 percent. 
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student performance. The statistical insignificance of this variable is already given in a 

bivariate correlation, and it remains throughout the other specifications that add more control 

variables.  

In sum, the results cast strong doubt that the mere availability of computers at home and at 

school does a lot to advance students’ educational performance. While bivariate results would 

suggest that there is a positive relationship in both cases, these results are spurious. Once 

other features of student, family and school background are held constant, computer 

availability at home shows a strong statistically significant negative relationship to math and 

reading performance, and computer availability at school is unrelated to performance.  

The pattern of which particular additional group of control variables brings about the 

change in results is telling. In the case of computer availability at home, the first big change 

enters when family-background characteristics are controlled for. That is, the strongest bias is 

due to the fact that computer availability at home proxies for the economic, social and 

educational background of the students’ families. The fact that the negative pattern becomes 

more pronounced once schools’ resources, institutions and composition are controlled for 

suggests that computer availability at home is also positively correlated with positive school 

characteristics. In the case of computer availability at school, the result pattern changes only 

once schools’ resource endowments are controlled for. That is, in this case the bias is mainly 

due to the fact that computer availability at school proxies for other resource endowments of 

the schools, rather than for family background.  

4.2 Computer Use 

The regressions reported in Tables 5a and 5b extent the results beyond the mere availability 

of computers at home or at school. All results are based on the most elaborate specification, 

which controls for student characteristics, family background, resource inputs, institutions, 

school composition and country fixed effects. The regression in column I simply combines 

the availability of computers at home and at school, showing that the previous results are 

robust to their joint entrance in the regression. The following regressions add measures of 

computer use at home and at school to this specification.  

Computer Use at Home 

There are three proxy measures for the kind of computer use at home in the PISA 

questionnaires, which are added to the regression in column II. The first thing to note is that 



 

Table 5a: Computer Use at Home and at School and Student Performance in Math 

 I II III IV 
Computers at home         
   One -5.895*** (1.106) -6.981*** (1.103)  –   -7.086*** (1.104) 

   More than one -13.843*** (1.069) -16.359*** (1.080)  –   -16.164*** (1.078) 

Internet access –    4.859*** (0.955)  –   4.590*** (0.935) 

Use of email and webpages       
   Never or hardly ever –    -7.614*** (0.864)  –   -7.003*** (0.868) 

   Several times a week –    4.055*** (0.884)  –   6.301*** (0.914) 

Educational software –    2.116*** (0.815)  –   1.788** (0.806) 

Computers at school         
   Strongly lacking -1.803 (1.864)  –   -0.871 (1.887) -1.093 (1.882) 

   No lack at all -1.218 (1.233)  –   -1.357 (1.221) -1.259 (1.209) 

PCs per student  –    –   1.415 (2.073) 1.575 (2.066) 

Computer use at school       
   Never or hardly ever  –    –   -1.938* (1.039) -2.323** (1.035) 

   Several times a week  –    –   -6.321*** (1.098) -6.075*** (1.089) 

PCs with internet access per student  –    –   -4.134 (3.874) -4.436 (3.914) 

Internet use at school       
   Never or hardly ever  –    –   -3.741*** (1.024) -2.079** (1.023) 

   Several times a week  –    –   -6.694*** (1.294) -9.224*** (1.336) 

Student characteristics [8] incl. incl. incl. incl. 
Family background [28] incl. incl. incl. incl. 
Resource inputs [12] incl. incl. incl. incl. 
Institutions [12] incl. incl. incl. incl. 
School composition [29] incl. incl. incl. incl. 
Country dummies [30] incl. incl. incl. incl. 
R2 0.40 0.40 0.40 0.40  
Observations 96,855  96,855  96,855  96,855   

Notes: Dependent variable: PISA international math test score. – 2SLS regressions with class size instrumented by 
schools’ student-teacher ratio. – Regressions weighted by students’ sampling probabilities. – Clustering-robust 
standard errors (taking account of correlated error terms within schools) in parentheses. – Significance level 
(based on clustering-robust standard errors): *** 1 percent. – ** 5 percent. – * 10 percent. 



 

Table 5b: Computer Use at Home and at School and Student Performance in Reading 

 I II III IV 
Computers at home         
   One -6.603*** (0.815) -7.547*** (0.815)  –   -7.631*** (0.811) 

   More than one -15.697*** (0.820) -17.995*** (0.836)  –   -17.932*** (0.834) 

Internet access –    4.808*** (0.705)  –   4.450*** (0.697) 

Use of email and webpages       
   Never or hardly ever –    -6.403*** (0.665)  –   -6.183*** (0.665) 

   Several times a week –    5.916*** (0.668)  –   8.703*** (0.681) 

Educational software –    0.088 (0.603)  –   -0.278 (0.596) 

Computers at school         
   Strongly lacking -1.960 (1.622)  –   -1.166 (1.642) -1.363 (1.626) 

   No lack at all -1.149 (1.102)  –   -1.216 (1.092) -1.152 (1.075) 

PCs per student –     –   -1.798 (2.537) -1.540 (2.398) 

Computer use at school       
   Never or hardly ever  –    –   -0.528 (0.812) -0.887 (0.806) 

   Several times a week  –    –   -5.067*** (0.851) -4.934*** (0.843) 

PCs with internet access per student –    –   2.202 (4.790) 1.688 (4.648) 

Internet use at school       
   Never or hardly ever  –    –   -2.986*** (0.809) -1.519* (0.798) 

   Several times a week  –    –   -9.552*** (1.021) -12.577*** (1.037) 

Student characteristics [8] incl. incl. incl. incl. 
Family background [28] incl. incl. incl. incl. 
Resource inputs [12] incl. incl. incl. incl. 
Institutions [12] incl. incl. incl. incl. 
School composition [29] incl. incl. incl. incl. 
Country dummies [30] incl. incl. incl. incl. 
R2 0.40 0.40 0.40 0.41  
Observations 174,227  174,227  174,227  174,227   

Notes: Dependent variable: PISA international reading test score. – 2SLS regressions with class size instrumented 
by schools’ student-teacher ratio. – Regressions weighted by students’ sampling probabilities. Clustering-robust 
standard errors (taking account of correlated error terms within schools) in parentheses. – Significance level 
(based on clustering-robust standard errors): *** 1 percent. – * 10 percent. 
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the negative results on computer availability at home remain unchanged once the computer-

use variables are entered.  

Only part of the students who have computers at home also have internet access at home. 

Having internet access can already hint towards possible alternative uses of computers. 

Holding all other influences constant, the performance of students with internet access at 

home is statistically significantly better in math and reading than the performance of students 

without internet access at home. Additionally, student performance in both math and reading 

increases with the frequency of the use of email and webpages by the students. Students who 

never or hardly ever read emails and webpages perform statistically significantly worse than 

students who use them between a few times a year and several times a month, and students 

who use emails and webpages several times a week perform statistically significantly better. 

Finally, students that have educational software at home perform statistically significantly 

better in math. However, having educational software at home is not statistically significantly 

related to student performance in reading literacy. 

We suggest two possible interpretations of these positive results of computer use at home. 

First, they may simply reflect that more able students tend to be more likely to get internet 

access and educational software at home and to use emails and webpages regularly. While 

this interpretation is possible, it is not obvious that this kind of ability bias is the main story 

here. It might as well be the case that parents tend to be more likely to provide their children 

with internet access and educational software if they want to make up for relatively low 

ability. Particularly in the case of educational software, parents may tend to buy this 

equipment for low-ability rather than high-ability students.  

Alternatively, if ability biases do not account for all of the observed performance 

differences by computer use, the results may suggest that using computers for productive 

purposes at home indeed furthers students’ educational performance. In this interpretation, the 

effect of computers at home on student achievement depends on the specific uses to which the 

computers are taken. The mere availability of computers at home may in the first instance 

serve children as devises to play computer games. This distracts them from learning, and thus 

affects their educational performance negatively. But if the computers are instead used for 

other means than gaming, namely for communicating by email, accessing information on the 

internet and using educational software, this may compensate, at least partly, for the negative 

effects induced by computer availability at home and help to advance children’s knowledge in 

math and reading.  
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Computer Use at School 

Column III of Tables 5a and 5b reports the coefficient estimates on several measures of 

computer availability and use at school. Again, adding the computer-use measures does not 

change the results on computer availability at school. The mere availability of computers with 

internet connection at school is also not statistically significantly related to student 

performance.  

In terms of computer use at school, on the one hand, students who never or hardly ever use 

computers at school perform slightly lower than students who use computers at school 

between a few times a year and several times a month. This performance difference is 

statistically significant in math, but not in reading. On the other hand, students who use 

computers at school several times a week perform sizably and statistically significantly worse 

in both math and reading. A very similar pattern of results is found in the case of internet use 

at school. In both math and reading, students reporting no internet use at school perform 

statistically significantly lower than students of medium internet use at school, while students 

who use the internet at school several times a week even perform statistically significantly 

worse than both other groups. That is, both in the case of computer use at school and of 

internet use at school, the relationship is shaped as an inverted U, with student achievement 

initially increasing and subsequently decreasing with the intensity of computer and internet 

use at school. The regression in column IV shows that all previous results on computer 

availability and use at home and at school are also robust to entering all computer variables at 

once. 

Again, we suggest two possible patterns of interpretation for the results on computer use at 

school. First, there may again be an ability bias. In this case, it seems reasonable to expect 

that teachers would not want to use computers with very low-ability students, but only with 

students who are reasonably capable to use them. This may explain the fact that students who 

never or hardly ever use computers or the internet at school perform somewhat lower, which 

then would simply reflect that they are low-ability students. It seems less likely that such an 

ability effect can also account for the substantially lower performance of students who use 

computers and the internet at school several times a week. This latter finding might instead be 

explained by a true negative effect of excessive computer use at school. As argued above, 

computerized instruction may substitute alternative, more effective forms of instruction, and it 

may also harm the creativity of children’s learning. This result would then be in line with 
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Angrist and Lavy’s (2002) quasi-experimental finding that in some cases, computer use at 

schools can have negative effects on students’ educational achievement.  

There is also a second interpretation of the pattern of results, which does not consider 

ability biases. In this interpretation, the inverted U-shape of the relationship between 

computer and internet use at school and student performance may be due to a true causal 

effect of computer and internet use. In this case, some computerized instruction would be 

beneficial for student learning, constituting a valuable input in the students’ learning process. 

Only at higher intensities of computer and internet use at school would the negative effects of 

computer and internet use set in, in terms of crowding out more effective methods of teaching 

and of hindering student creativity. Thus, there may be an optimal level of computer and 

internet use at school, with student learning initially increasing and subsequently decreasing 

with the intensity of computer and internet use. The presented results suggest that this optimal 

level may be pretty low, though, somewhere between using computers and the internet at 

school “a few times a year” and “several times a month”, as students in these categories 

perform better than students in the categories of both “never or hardly ever” and “several 

times a week”.  

5. Conclusions 

This paper has found that despite bivariate correlations that show a positive relationship, once 

family background and school characteristics are extensively controlled for, the mere 

availability of computers at home is negatively related to student performance in math and 

reading, and the availability of computers at school is unrelated to student performance. By 

contrast, student performance is positively related to the use of computers at home for 

accessing emails and webpages and to the availability of educational software at home. 

Finally, student performance shows an inverted U-shaped relationship with the extent of 

computer and internet use at school, rising with some use but falling again with a use of 

several times a week.  

Despite the extensive use of control variables, the analysis has still been descriptive rather 

than causal. For a thorough analysis of causal effects of computers on student performance, 

we have to be sure that the variation in computer availability and use on which the analysis is 

based is truly exogenous to the model. For analyses based on observational rather than 

experimental data, this is always a somewhat strong assumption. However, given our 

extensive controlling for student, family and school background effects, the descriptive results 
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that we obtain give a clearer picture of the relationship between computers and student 

performance than mere bivariate analyses. Actually, the diametrically opposite difference 

between our bivariate and multivariate results for the availability of computers at home shows 

that the simple bivariate picture is clearly not based on exogenous variation in computer 

availability, and is therefore a far cry from depicting any causal effect of computer 

availability. Rather than the statistically significant and large positive bivariate correlation 

between computer availability and student performance, once we control extensively for 

family background we find a statistically significant and large negative relationship between 

the two. This is still a descriptive finding, but one which we think should come much closer to 

any causal effect than the often presented bivariate relationship.  

Our results on computer availability and use at school corroborate previous work on school 

computers such as Angrist and Lavy (2002) and Rouse and Krueger (2004), who also find 

disappointing results in terms of effects on students’ educational performance. Our results on 

computer availability and use at home extends this evidence, illustrating that there is also a 

negative relationship between home computer availability and student achievement, but a 

positive relationship between home computer use for internet communication and educational 

software. Similarly, our results on internet use at school complement the previous evidence on 

computer use at school.  

Having a computer at home and using it at school will almost certainly raise some 

computer skills. What our results suggest is only that this may come at the expense of other 

skills. However, the results in Borghans and ter Weel (2004) show that these other (math and 

writing) skills are the ones that yield significant labor-market returns, not the computer skills.  

Our results also cast strong doubt on the possibility of giving a causal interpretation to 

bivariate results for other variables. For example, the OECD (2001) reports bivariate 

correlations of student performance with such features as reading interest, motivation, 

engagement and different teaching techniques. Our results suggest that any such finding may 

well be spurious, being driven by other important factors. In this sense, our exercise provides 

an illustration of the need for, at least, multivariate analysis.  
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