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Abstract 

Economists have assumed that the Phillips curve, which shows 

a positive (negative) relation between inflation and the output 

ratio (unemployment rate), may be mapped off the aggregate demand- 

aggregate supply apparatus. The paper shows that the Phillips 

curve requires that unlikely restrictions be put on the form of the 

aggregate supply and aggregate demand curves. In this case, it is 

inappropriate to treat data on inflation and capacity utililization 

as the basis for estimating an underlying formal model. The paper 

therefore uses a nonparametric, data-driven method to describe the 

data. This method, of kernel regression, shows the inflation- 

unemployment association in Phillips's sample to be negative on a 

global scale, Yet irregular within particular ranges of 

unemployment. 
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I. Introduction 

Given the importance of the identification problem in 

econometrics, it is surprising that few economists have attempted 

to identify the model underlying the Phillips curve. This curve 

shows a positive relation between the proportionate rate of change 

of the price level and the output ratio, or (assuming markup 

pricing and Okun's law) a negative relation between 

proportionate rate of change of the money wage rate and 

unemployment rate. The curve, presented by Phillips in the 

195os, has played a prominent role in the development 

macroeconomic theory and policy analysis.' 

the 

the 

mid 

of 

In the 196Os, when Keynesian economics was in high repute, 

economists thought that the Phillips curve represented a long run 

relation between inflation and capacity utilitization. On this 

basis, economists advised that the management of aggregate demand 

involved a trade-off between inflation and unemployment. However, 

orthodox economists saw that such policy advice conflicted with 

traditional economic teaching, which said that the market tended 

to eliminate excess supplies of labor. In the 197Os, when the US 

economy experienced rapid inflation and high unemployment, the long 

run Phillips curve fell into disrepute. It became the standard 

view that the economy in the long run maintained an output level 

consistent with a tlnaturalV1 rate of unemployment. The Phillips 

1 
. Wulwick (1987) analyzes the historical development of the 

Phillips curve. 
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curve was only a short run phenomenon that arose during a period 

of adjustment following a shock to aggregate demand. Because a 

rate of unemployment below the N'naturallV rate could be maintained 

only at the cost of increasing inflation, the Phillips curve could 

not offer an exploitable trade-off. Econometric studies have 

failed to settle the controversies between economists over the 

existence and the duration of the Phillips curve phenomenon. 

The Phillips curve has remained an important notion in‘golicy- 

making and teaching at the undergraduate and graduate levels. It 

always has been a "selling point@' of the Phillips curve that it can 

be explained in terms of aggregate supply and aggregate demand. 

This paper argues that the Phillips curve requires that ad hoc and 

unlikely restrictions be put on the form of the aggregate supply 

and aggregate demand curves. If this is the case, then it is 

inappropriate to treat data on inflation and capacity utililization 

as the basis for estimating an underlying theoretical model. 

Economists require formal, econometric models only in order 

to estimate relations explained by economic theory. From this 

perspective, it appears to be unnecessary to impose a formal model 

on the the data for inflation and capacity utilization. Instead 

the paper uses kernel regression, which is a data-driven technique, 

to observe Phillips's data. The inflation-unemployment association 

appears to be negative on a global scale, yet irregular within 

particular ranges of unemployment. 
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Most economists have used only parametric methods of 

regression analysis.2 Economists estimate an algebraic model, 

after having combined all the observations of the dependent and 

independent variables. The t-test then measures the statistical 

significance of the estimates, on the assumption that the residual 

deviations from the model belong to a normal distribution Kernel 

regression offers a different approach. It computes the value of 

an unspecified function at each of its argument points‘., The 

technique does not require any assumptions about the distribution 

from which the sampled data was drawn. Indeed, kernel regression 

merely is a data-driven method of curve-fitting. Unlike the curve- 

fitting in econometrics, kernel regression has a 

mathematical statistics. 

firm basis in 

Kernel regression was introduced by Rosenblatt in the United 

States in the latter 1950s. His proposal seems to have been 

motivated by the smoothing of time-series data in the frequency 

domain.3 At this time, Phillips, who was a time series expert, was 

in London working on his curve. In some respects, Phillips's 

(1958) article on the curve developed a statistical method that is 

similar to kernel regression.4 The next section compares 

Phillips's method, with which economists are familiar, to kernel 

2 On the use of nonparametric regression in economics, see 
Ullah,' ed. (1989) and Stock (1989). 

3. Rosenblatt (1956). 

4 
. Wulwick (1989) discusses Phillips's statistical method. 
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Phillips’s Scatterlraph, 1861-1913. 
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regression and carries out a kernel regression on Phillips's data. 

We then present the economic argument for using kernel regression 

to describe the Phillips curve. 

II. Phillips's Curve and Kernel Regression 

A. Phillips's Method 

Phillips presented a scattergraph of annual money wage 

inflation and the annual unemployment rate for Great Britain 1861- 

1913, as shown in Figure 1. (The data appear in Appendix A.) His 

previous theoretical work suggested to him that the inflation- 

unemployment association was negative and markedly nonlinear 

(Phillips (1954)). Thus Phillips specified a hyperbolic shape to 

model the scattergraph. Since nonlinear least squares was 

unavailable in the late 195Os, Phillips exploited what was then a 

conventional method of curve-fitting. He divided the x-axis of the 

scattergraph into six intervals and represented (i.) the 

unemployment variable by the arithmetic mean of the unemployment 

observations within each interval and (ii.) money wage inflation 

by the average value of observations of inflation within each 

interval. The procedure, as Figure 2 shows, yielded a graph of 

averages relating mean inflation to unemployment which formed a 

regular, hyperbolic shape. 
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The regularity of the graph of averages depended on Phillips's choice of 

intervals, which included six, ten, twelve, five, eleven and nine 

observations, with varying bandwidths at the unemployment rates O- 

2, 2-3, 3-4, 4-5, 5-7 and 7-11. A small change in the number or 

the width of Phillips's bands produces an irregular graph of 

averages, with a positive inflation-unemployment relation at some 

ranges of unemployment.5 

Like Phillips's curve-fitting method, kernel regression 

divides the horizontal axis into bandwidths and computes the local 

average observation of the dependent variables. However, kernel 

regression provides criteria for the optimal choice of bandwidths.6 

B. The Kernel Method: A I'Moving II Histogram 

For constructing a probability density function p(x), the 

kernel method is analogous to the histogram. To construct a 

histogram for the given data (Xi, i=l . . . n), the x-axis is 

partitioned into k (k = 1 ..v, v 5 n) intervals of width b and 

midpoint m,. For ease of discussion, we assume the bandwidths are 

uniform in size. Then, 

(1.) b = (mk - b/2) + (mk + b/2). 

5. Wulwick (1989), Figures 4-5. 

6 
. Silverman (1988) presents a introduction to kernel 

regression. 
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The number Nk of data points falling inside an interval is counted 

and then the histogram density, ph(x), is constructed according to 

the relative frequency of observations Xi, normalized by the width 

b of the interval. Thus, 

(2.1 J+ (xl = NO% k = 1 . . . v, v<n. 

Alternatively, we can construct the histogram density by using a 

kernel, K, a weighting function which is used in mathematical 

transforms. The histogram density implicitly assumes a weighting 

function, K, so that any observation b/2 distance from the midpoint 

m, receives a weight of 1 and zero otherwise, that is, 

1, if 1 (mk-X,)/b; 5 %. 

(3.) K((mk-Xi)/b) = 

0, otherwise. 

The probability density function can 

(4.) Ph (xl = l/nb Cy K[(m,-Xi)/b]. 

The histogram density fixes the 

In contrast, the kernel method allows 

be written as 

intervals along the x-axis. 

the intervals to VUmovell with 

the observation Xi and overlap. An interval is formed centered at 

each observation Xi with variable bandwidths b, and midpoint x,. 

The kernel method then defines the density function as' 

(5.) pk(x) = l/n& Cy K(z), Z = (Xk-Xi) /&t 

i=l...n, k=l...v, v<n, 

where 

1, if ;z; 5 $. 

7 
. If v=n, the histogram will be a series of spikes. 
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K(z) = 

0, otherwise. 

The kernel function, K(z), in equation 5 makes each data point 

within an interval contribute equally to the local average. Other 

kernel functions employ different weighting schemes. Typically, 

kernels are symmetric probability densities. The bandwidth, b, 

controls the amount of local smoothing and satisfies the condition 

that the width shrink to zero as the same size n grows'without 

bounds -- that is, nb -->O as n -->a. 

C. Defining Kernel Regression 

Consider the problem of analyzing 

attributes of the population by using 

the bivariate stochastic variables, 

regression of Y on X be defined by the 

the value of X, 

(6.) r(x) = E(YiX=x). 

The conditional mean is defined by 

E(Y;X=x) = Jyf(y;x)dy. 

If 

p(x)# 0, 

then 

the association between two 

regression analysis. Given 

X, Y, let the population 

conditional mean of Y given 

f(YM = dXlY)/P(X) I 
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where g(x,y) is the joint probability density function and p(x) is 

the marginal probability density function. Thus, the population 

regression may be defined by 

(7.) r(x) = sYg(xlY)/P(x)* 

Kernel regression, Ikr ls analogous to the population 

regression, r(x), defined by equation 7. 

the data (Xi,Yi, i=l...n) with kernel k 

as follows: The marginal probability 

The regression based on 

and bandwidth b, proceeds 
\ 

density function p.(x) is 

constructed according to equation (5) and the joint probability 

density function, g(x) according to 

(8.) gk cx) = l/nb C~YiK(Z), Z = (Xk-Xi)/b. 

The definition of kernel regression then is 

(9.) rk tx) = CY,K(z)/CK(z). 

This means that kernel regression, rk(x), gives a graph of averages 

that has coordinates with the first term defined by the midpoint 

of each bandwidth and the second term by the weighted average 

observation of Y in each bandwidth, where the weights, w(x), are 

defined by the kernel function. We can write this formally as, 

(10-I rk tx) = cy YiW(X) , 

where the weights are 

w(x) = K(z)/CK(z). 

The sum of the weights equals one, 

C>(x)=l. 

When the kernel K(z) is the uniform kernel given by equation 

r, is simply the ordinary average of the Y observations 

(3), 

with 
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corresponding X values which fall within the distance b/2 of xk. 

There are pros and cons for using kernel regression as opposed 

to the least squares algorithm to model data. When economists use 

least squares, they typically assume that the joint density of X 

and Y is normal. Only in this case will least squares give the 

maximum likelihood estimate. Economists also assume that the 

residuals from the least squares estimate are distributed 

normality, which is a condition of the statistical 'test of 

significance. These assumptions of normality appear to be 

inappropriate in many economic problems.' In contrast to least 

squares, nonparametric regression does not involve assumptions 

about the distribution of the data. This is the main statistical 

reason for using the nonparametric approach in economics.g 

However, the use of kernel regression in economics suffers from 

several technical drawbacks. Economists often study multivariate 

data. Although statistical theory explains that kernel regression 

can treat multivariate data, in practice, the statistical studies 

have been limited to bivariate data to facilitate computer 

programming. In addition, a ttlarget8 sample is necessary to carry 

out kernel regression, which estimates a data distribution without 

an estimating model. Statisticians usually lack the information 

to determine objectively how large is lVlargetl in any particular 

a 
. For example, Mandlebrot found that stock market prices 

follow a Cauchy distribution. 

9 
. The residuals from Phillips's own nonlinear equation and 

estimates show only a moderate amount of departure from normality. 



11 

case and rely on experience to make their judgements. Certainly, 

the lllarget' samples available in biology and engineering, fields 

that have used kernel regression, are unusual in economics. 

Taking into account the technical pros and cons of the method, from 

an economic perspective, kernel regression offers a data-driven 

approach which is particularly appropriate when economists wish to 

\ 

observe data, rather than use data to estimate a theoretical 

model." 

D. An Approximate Kernel Regression and Phillips's Method 

Compared. 

To give some idea about how the kernel approach would compare 

with Phillips's procedure, let us compute the kernel regression 

estimate at the averaged values of unemployment, using the 

bandwidths, b,, suggested by Phillips. 

We shall use a quadratic kernel, defined as followsl' 

(11.) 0.75(1-z2), if 121 5 1, z = (x4G)/bk, 
K(z) = 

0, otherwise. 

10 Stock (1989) used kernel regression to evaluate the effect 
of policy intervention. Kernel regression eliminates the risk of 
making invalid inferences because of misspecifvinq a parametric 
model. 

11 
. This kernel is referred to as Epanechnikov's kernel, after 

the statistician who first applied this mathematical function to 
kernel regression. 
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The Quadratic Kernel Functions using Phillip's Six Bandwidths 
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The quadratic kernel has a unimodal shape that gives more weight 

to those points with first coordinates, Xi, lying closer to xk. 

Given this kernel, the kernel regression, rk, is given by 

(12.) rk(x) = CYJ(z)/CX(z), 

= C3Yi0.75(1-Zi2)/C~0.75(1-Zi2), 

= g(xlc) / P(Xk) l 

where and b, are variable bandwidths. Equation 12 

means that the graph of averages will have coordinates ;ith. the 

first term defined by the midpoint of each bandwidth and the second 

term defined by the weighted average of the Y observations in each 

bandwidth, where the weights are defined by the quadratic kernel.12 

Given this kernel, we defined (i.) b, as six Phillips's 

bandwidths, (ii.) xk as the midpoint of Phillips's six bandwidths 

on the horizontal axis, and (iii.) Xi as the 53 observations of 

unemployment, sorted by increasing size. Then we computed six 

series, each of 53 measures of z, 

z = (x, - Xi)/b,, i = 53, k = 6. 

To obtain the kernel weights, we checked which of the 53 

values of z in each of the six series equalled or were less than 

one in absolute terms, according to equation 11. For values of z 

in that range, we computed the values of the quadratic kernel for 

each of the six fixed values, xk, according to equation 11. Figure 

3 shows the assignment of weights by the kernel function. It is 

clear that the six kernels overlap and have a symmetric, unimodal 

12 
. In contrast, Phillips (1958) did not use weights. 
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shape. 

Given the kernel weights, we constructed according to equation 

12 the joint density, gk(x) and the marginal density, pk(x) and the 

weighted average of the observations of money wage inflation at the 

midpoint of each bandwidth, x,. Figure 4 presents the graph of 

averages using the kernel weighting function. Figure 5 constructs 

the marginal density, Pi, of unemployment13. 
\ 

Money wage inflation in Figure 4 assumes a lower value when 

the unemployment rate is very small than in Phillips's graph of 

averages, shown in Figure 2. This result arose because kernel 

regression weights each observation of inflation in a way that 

takes into account the lower inflation values when unemployment is 

very small in the surrounding region near the left boundary. 

Otherwise, the two graphs of averages in Figures 2 and 4, which are 

based on identical bandwidths, show a similar association between 

mean inflation and mean unemployment. 

13 
. A Comparison of the Probability of U: 

The Histogram and the Kernel Estimator. 

Bandwidth 
o-2 
2-3 
3-4 
4-5 
5-7 
7-11 

The marginal probability 
equation 12. 

Histogram Kernel Estimator 
0.055 0.11 
0.19 0.16 
0.23 0.19 
0.09 0.11 
0.105 0.10 
0.04 0.05 
density function is given by pk(x) in 
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The illustration of kernel regression using Phillips's 

bandwidths yields a graph of averages with a space between each 

point. (Phillips measured his graph of averages, having 

transformed the data into loglinear terms, by means of ordinary 

least squares regression.) In contrast, a real exercise of kernel 

regression actually plots the regression line, given a suitable 

choice of bandwidths. The kernel regression exercise performed 

below will replace Phillips's expertise in choosing bandwidths by 

an expert system. 

E. A Kernel Regression of Phillips's Data 

As mentioned before, the theory of kernel regression is large- 

sample based. In an economic context, the issue of asymptotic 

approximation is irrelevant if, as we shall show, there is no 

theoretical Phillips curve. In a statistical context, however, 

kernel regression requires satisfaction of the asymptotic 

conditions.14 

We determined a global optimal bandwidths by means of cross- 

validation (CV) by least squares. This method minimizes the sum 

of the squares of the difference between the observed values, Yi, 

and the weighted average values of Y given by the kernel 

regression. A leave-out one regression estimate r+(x) is used to 

avoid a trivial solution to the optimization problem. In 

14 
. Mack and Silverman (1982). 



Money Wage 
Inflation 

Figure 6 

Kerhe\ Regression with Bandwidth 5 0.64, Phillip's Data 

Unemployment 

-0 I 2 3 4 5 6 7; 8 9 10 11 



15 

mathematical terms, the cross-validated bandwidth is that value 

such that 

(13.) CV(b) = LcYtyi - r-dxd I2 

is minimized. The estimate of the optimal cross-validated 

bandwidth on Phillips's data is 0.64. Figure 6, which is based on 

this global bandwidth and the quadratic kernel, shows a money-wage- 

unemployment association that is negative on a global scale, but 

positive within some ranges of unemployment. The wiggles,in the 

regression line at unemployment rates exceeding 4 percent reflect 

the variability of the inflation-unemployment association in the 

scatter diagram.15 

The kernel regressions shown in Figure 6 is peculiar to 

Phillips's sample. The marked wiggles in the curve suggest the 

presence of omitted variables that invite historical investigation. 

Econometricians also note the presence of omitted variables 

when they see outlying residual deviations from their formal 

specifications. But because econometricians seek regularities 

existing across samples, they will remove the outliers if this 

improves the results of the statistical tests. The economic 

rationale for using kernel regression on the data for inflation and 

the unemployment rate (or output ratio) is that economists do not 

have a theoretical model of a Phillips curve to estimate or test. 

In this case, it is unnecessary to replicate the Phillips curve or 

specify a formal Phillips curve as part of a deductive system. The 

15 
. See Figure 1. 
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next section of the paper argues that the standard theoretical 

model of the Phillips curve is incoherent. 

III. The Phillips Curve: Theoretical Structure or Statistical 

Pattern? 

Economic theorists have produced various explanations of the 

existence of the Phillips curve. Orthodox economists .have 

generated the Phillips curve as an equilibrium relation that arises 

from the misinformation about relative prices on the part of 

rational, optimizing suppliers of labor and goods (Friedman (1968); 

Lucas and Rapping (1969); Lucas (1973)). Keynesian economists have 

explained the Phillips curve as a price adjustment mechanism which 

clears markets of excess demand (Phillips (1954); Gordon (1985)).16 

In either case, the Phillips curve can be mapped off a model of 

supply and demand. We shall analyze geometrical mappings of the 

Phillips curve from the aggregate supply and aggregate demand 

curves.17 

Gordon (1990), who has revived the Keynesian Phillips curve 

in the 198Os, mapped this curve off the aggregate supply curve. 

16. Gordon (1985), pp.268, 290. Phillips (1954) presented a 
curve that related the rate of change of the price level (rather 
than inflation) to the output ratio. 

17 
. Note that these two curves are supply and demand curves in 

a special sense. Figure 7 shows that output, along the horizontal 
axis is measured in index terms, where an index of 100 stands for 
the ~~natural~~ level of output. Points on the graph with first 
coordinates that exceed 100 refer to the supply of excess output 
or the demand for excess output. 
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Figure 7a shows a shock to aggregate demand increasing the 

equilibrium output ratio and the price level over their ttnaturalll 

levels at E,. For every possible shock to demand off the "naturall' 

equilibrium level, E,, Gordon mapped a Phillips curve off the 

aggregate supply curve, as if the Phillips curve is a logarithmic 

transformation of the aggregate supply curve.l' The mapping 

involves the special assumption that inflation, I, is defined as 

the change in the second coordinate as one moves up along. the 

aggregate supply curve from the natural level -- that is, as 

I = (P,-P,)/P,l 

rather than by the proportionate rate of change of the price level 

per unit of time.lg 

Hall, the policy adviser at the Hoover Institute, and Taylor, 

a member of President Bush's Council of Economic Advisers, mapped 

an aggregate demand curve off the short run Phillips curve (Hall 

and Taylor (1986)). Figure 7b shows that a shock to aggregate 

demand creates excess demand in year 2001. Given the output ratio, 

Q, in 2001, the Phillips curve shows the rate of inflation in that 

18 
. Assume that 

(i.) p = bQ. 
Then, 

(ii.) log p = log b + log Q. 
Differentiate (ii.) in respect to time and, as an approximation, 
write the result in finite terms, 

(iii.) (P, - P,)/P, = (Q, - Q,)/Q,, 
where n stands for the natural rate and a for the actual rate. 

19 
. Gordon shows that unless aggregate demand continues to 

increase along the shifting aggregate supply curve (the shifts 
arise because agents fully anticipate inflation), the Phillips 
curve will correspond to movements along the aggregate demand 
curve, similar to the analysis of Hall and Taylor, below. 
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year, which allows one to calculate the higher price level, p, of 

year 2002. The inflation during 2001 in turn reduces the level of 

excess demand. The inflation continues at a decreasing rate until 

the market clears. 

Melvin and and Darby, the chief economic adviser at the US 

Treasury, mapped the short run aggregate supply curve off the short 

run Phillips curve (Darby and Melvin (1986)). Figure 7c shows that 

the Phillips curve negatively relates the deviation between. the 

actual and expected inflation rate with the unemployment rate, 

which is related to the output ratio, Q, by Okun's law. If the 

expected inflation rate is constant, given last period's price 

level, p_l, one can compute the current p level from the actual rate 

of inflation. One then has the Q,p coordinates to construct an 

aggregate supply curve. 

Each of these three explanations presuppose that the price 

level changes following a change in the output ratio are 

proportionate chanses. The mappings thus presuppose a one-to-one 

relation between the Phillips curve and aggregate supply (or 

demand). In fact, the aggregate supply and aggregate demand curves 

must satisfy certain first and second order conditions to 

correspond to a Phillips curve. We shall derive these conditions 

below. 

Recall that the definition of the output ratio is the relative 

difference between the actual and the long run equilibrium levels 

of output, Y, that is, 

(14.) Q = (Y,-&J/Y,. 



The proportionate rate of price inflation, I, normally refers to 

the change in the price level, p, over time, that is, 
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(15.1 I = (Pt-Pt-1)/Pt-1, 

= dp(Q) / P(Q). 

Since the actual price level varies with the output ratio, 

inflation can be defined as 

1 dp (Q) 

(16-l I= . 

P(Q) dQ 

The Phillips curve means that the change 

to the output ratio is positive, that is, 

d1 
(17.1 > 0. 

dQ 

in inflation in respect 

Given equation 17, dI/dQ can be written as 

d1 d 1 dp(Q) 
= [ 1 > 0. 

dQ dQ P(Q) dQ 

For the purposes of exposition, let us call dp/dQ=p' and 

d2p/dQ2=p". Expanding the terms on the right-hand side of equation 

17 yields, 

(18.) 
d1 

= pp" - PI2 > 0. 

dQ 

Equation 18 is the mathematical condition that will be satisfied 

by any aggregate demand or aggregate supply curve that is 

consistent with the Phillips curve. 
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Appendix B considers four functions, a supply and a demand 

curve that are each linear and a supply and a demand curve that 

each take the form of a parabola. It is easy to show that the 

condition stated in equation 18 is not satisfied by three of those 

functions, the linear demand curve and the supply curves that are 

linear or a parabola. Orthodox economics has dictated that the 

supply curve is nonlinear, on the a priori assumption of diminishing 

marginal returns, an assumption that allows income distribution and 

the level of output to be determined simultaneously, given the 

supply of labor and capital. However, economics lacks any reason 

whatsoever for the aggregate demand only to be nonlinear and the 

aggregate supply curve not to take on the form of a parabola. 

The compatibility of the Phillips curve with the conventional 

aggregate supply-demand analysis has promoted the continued 

teaching of the Phillips curve.20 However, the Phillips curve 

requires that ad hoc and unlikely restrictions be put on the form 

of the supply or demand curve. Because these curves form the 

building blocks of the standard macroeconomic model, the 

theoretical coherence of the Phillips curve itself is brought into 

question. In this case, it is inappropriate to treat data on 

inflation and capacity utililization as the basis for estimates of 

a given theoretical model. 

20 
. Haynes and Stone (1985) identify the Phillips curve as a 

dynamic aggregate supply phenomenon. 
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IV. Conclusion 

This paper has raises the methodological issue of how 

alternative methods of treating given data produce different ways 

of seeing the data, with the choice of method depending on the 

assumptions about the phenomenon under study. 

Kernel regression and parametric regression provide 

alternative ways of analyzing data. Least squares regression 

imposes a simple mathematical form on the data, on the assumption 

that the data are samples of attributes of a normal distribution, 

and allows analysis of the residual deviations from the regression, 

on the assumption that the residuals are drawn from a normal 

distribution. Kernel regression, a data-driven, smoothing 

technique, shows the major irregularities as well as the overall 

pattern of the data in the sample without any assumptions about the 

distribution of the population. 

Economists rarely have known the distributions of their data 

and not all known distributions (particularly of price data) were 

distributed normally. The residuals from econometric models often 

have not appeared to follow a normal distribution. Thus there are 

statistical reasons for economists not to rely on the standard 

parametric regression techniques, which assume normality. 

Economists might obtain a "better" picture of events using other 

tools of observation. 

Economists require parametric regression techniques to 

estimate models of an economic theory. However, standard economics 
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has lacked a basic, formal model of the Phillips curve. The 

measures of the Phillips curve given by a parametric regression do 

not estimate a theoretical model, if there is no theoretical model 

to be estimated across samples. In this case, it is unnecessary 

to impose a parametric model on the data. Kernel regression, a 

data-driven technique, offers a picture of the general movement of 

inflation and unemployment as a basis for exploration. 
\ 
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Appendix A. 

1. Phillips's Data 

1861 
1862 
1863 
1864 
1865 
1866 
1867 
1868 
1869 
1870 
1871 
1872 
1873 
1874 
1875 
1876 
1877 
1878 
1879 
1880 
1881 
1882 
1883 
1884 
1885 
1886 
1887 
1888 
1889 
1890 
1891 
1892 
1893 
1894 
1895 
1896 
1897 
1898 
1899 
1900 
1901 
1902 
1903 
1904 

Unemployment Money Wage Inflation 

txi) tyi) 

3.7 
6.05 
4.7 
1.95 
1.8 
2.65 
6.3 
6.75 
5.95 
3.75 
1.65 
. 95 

1.15 
1.6 
2.2 
3.4 
4.4 
6.25 
10.7 
5.25 
3.55 
2.35 
2.6 
7.15 
8.55 
9.55 
7.15 
4.15 
2.05 
2.11 
3.4 
6.2 
7.7 
7.2 
6 
3.35 
3.45 
2.95 
2.05 
2.45 
3.35 
4.2 
5 
6.4 

0 
1.4706 
3.5714 
3.4247 
3.3333 
1.2821 
-1.9481 
-1.3333 
2 
3.2051 
6.875 
8.9888 
5.7292 
2 
-0.5 
-1.0101 

-2.0408 
-2.6316 

-1.0753 
0 

0 
0.5376 
0.5319 
-0.5319 
-0.5376 

0 
0 
1.6129 
3.6458 
2 
0 
-0.5 
-0.5051 
-0.5051 

0 
1.0101 
1.5 
1.9608 
2.8846 
1.3889 
-0.4673 
-0.4673 

-0.9434 
-0.4762 
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1905 5.25 0.9524 
1906 3.7 0.9346 
1907 3.95 0 
1908 8.65 0 
1909 8.7 0 
1910 5.1 0.4673 
1911 3.05 1.8519 
1912 3.15 3.1532 
1913 2.1 1.7391 

2. Phillips's Bandwidths 

Mean (xk) Width (bk) 

o-2 1.5167 2 
2-3 2.35 1 
3-4 3.4 1 
4-5 4.49 1 
5-7 6 2 
7-11 8.4 4 
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Appendix B. 

The aggregate supply and demand curves consistent with the 
Phillips curve will satisfy the condition, 
(i.) -pptV - ~'2 > 0. 
Suppose that the supply curve takes the form 
(ii.) p =aQ+b 
and the demand curve, 

p = -dQ + m. 
Then, 
(iii). pt = a 
for the supply curve and 

p’ = -d 

for the demand curve. For both curves, 
(iv.). ptt = 0. 
Substitute (iii.) and (iv.) into equation (i.). 
(v*)* [(aQ + b)O - a21 > 0 
for the supply curve and 

\ 

The results, 

[(-dQ + m)O - d2] >O 
are impossible. 

Suppose that 
(vi.) p = bQa. 
Then 
(vii.) p' = abQ"-1 
and 
(viii.) p" = a(a-l)bQam2 
Substitute equations (vii.) and (viii.) into (i.) and simplify, 
which gives 
(ix.) _ab2Q2(*-l) > 0. 

Since Q and b have positive values, given (ix.) then 
(x.) - -a >O. 
This can only hold if a<O, which means that the curve is downward 
sloping. 
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