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Abstract

In this paper modelling time series by single hidden layer feedforward neural network models

is considered. A coherent modelling strategy based on statistical inference is discussed. The

problems of selecting the variables and the number of hidden units are solved by using statistical

model selection criteria and tests. Misspeci�cation tests for evaluating an estimated neural

network model are considered. Forecasting with neural network models is discussed and an

application to a real time series is presented.
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1 Introduction

Arti�cial neural network (ANN) models form an important class of nonlinear models that has

attracted considerable attention in many �elds of application. The use of these models in applied

work is generally motivated by a mathematical result stating that under mild regularity conditions,

a relatively simple ANN model is capable of approximating any Borel-measurable function to any

given degree of accuracy; see, for example, Funahashi (1989), Cybenko (1989), Hornik, Stinchombe,

and White (1989,1990), White (1990), or Gallant and White (1992). How to specify such a model,

that is, how to �nd the right combination of parameters and variables, is a central topic in the

ANN literature and has been considered in a large number of books such as Bishop (1995), Ripley

(1996), Fine (1999), Haykin (1999), and Reed and Marks II (1999), and articles. Many popular

speci�cation techniques are \general-to-speci�c" or \top-down" procedures: the investigator begins

with a large model and applies appropriate algorithms to reduce the number of parameters using

a predetermined stopping-rule. Such algorithms usually do not rely on statistical inference.

In this paper, we propose a coherent modelling strategy for simple single hidden-layer feedfor-

ward ANN time series models. These models discussed here are univariate, but adding exogenous

regressors to them does not pose problems. The results presented here are a summary of some of

the �ndings described in detail in Medeiros, Ter�asvirta and Rech (2001). The di�erence between

our strategy and the general-to-speci�c approaches is that ours works in the opposite direction,

from speci�c to general. We begin with a small model and expand that according to a set of

predetermined rules. This way we hope to avoid the estimation of excessive large models and keep

the computational e�ort relatively limited. The general idea is to make use statistical methods in

building the model (choosing the neural network architecture) and evaluating the estimated model.

More recently, Anders and Korn (1999) presented a strategy that shares certain features with our

procedure. Swanson and White (1995,1997a,b) also discussed and applied a speci�c-to-general

strategy that deserves mention here.

The plan of the paper is as follows. Section 2 describes the model and Section 3 considers

identi�cation. A model speci�cation strategy, consisting of speci�cation, estimation, and evaluation

of the model is described in Section 4. Section 5 discusses the issues related to forecasting from
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neural network models. An empirical application is presented in Section 6. Section 7 contains

concluding remarks.

2 The Autoregressive Neural Network Model

The AutoRegressive Neural Network (AR-NN) model with a single hidden layer and no feedback

is de�ned as

yt = G(xt; ) + "t = �
0~xt +

hX
i=1

�iF (~!
0
ixt � �i) + "t (1)

where G(xt; ) is a nonlinear function of the variables xt with parameter vector  2 R
(q+2)h+q+1

de�ned as  = [�0; �1; : : : ; �h; ~!
0
1; : : : ; ~!

0
h; �1; : : : ; �h]

0. The vector ~xt 2 R
q+1 is de�ned as ~xt =

[1;x0t]
0, where xt 2 R

q is a vector of lagged values of yt and/or some exogenous variables. The

function, or sigmoid, F (~!0ixt � �i) is the logistic function

F (~!0ixt � �i) = (1 + e�(~!0

i
xt��i))�1 (2)

where ~!i = [~!1i; : : : ; ~!qi]
0 2 Rq and �i 2 R, and the linear combination of these functions or hidden

units in (1) forms the hidden layer. Instead of viewing (1) as an approximation to an unknown

function representing the data-generator, as is customary in the neural network literature, we follow

the tradition in mathematical statistics and assume that model (1) is the true data-generating

process. Function G(xt; ) is thus the conditional mean of the process. Furthermore, f"tg is a

sequence of independently normally distributed random variables with zero mean and variance �2.

The normality assumption enables us to de�ne the log-likelihood function, which is required for

statistical inference, although this assumption can be relaxed.

It should be pointed out that the assumption of (1) being a true model is a technical assumption

required in model building. As we do not know the truth, it is clear that the AR-NN model

represents just one attempt to approximate the process that generates the observations. As our

modelling approach is sequential, statistical inference is at every stage conditional on previous

decisions made in the sequence. Thus, for example, it is clear that the standard deviation estimates

reported in the empirical example of Section 6 underestimate the uncertainty of the parameter
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estimates.

3 Identi�ability of the AR-NN model

Our aim is to apply statistical inference to building AR-NN models. This being the case, the

question of identi�ability of model (1) arises. This model is, in principle, neither globally nor

locally identi�ed, which means that there exist two or more sets of parameters  (two or more

di�erent models) that correspond to the same distribution of (y;x). In other words, there exist

models that cannot be distinguished from each other on the basis of data. A consequence of this

is that we cannot estimate the parameters of an unidenti�ed model consistently: the estimates

cannot be expected to converge to their true values in probability as the number of observations

approaches in�nity. As a result we do not have asymptotic distribution results for our parameter

estimators, which precludes a statistical approach to neural network modelling. The following

three features of model (1) imply non-identi�ability. The �rst one is the exchangeability property

of the AR-NN model. The value in the likelihood function of the model remains unchanged if we

permute the hidden units. Permutation results in h! di�erent models that are indistinguishable

from each other, and the log-likelihood function has h! equal local maxima. The second feature is

that F (x) = 1�F (�x) in (2). This yields two observationally equivalent parametrizations for each

hidden unit. The �nal problem is the potential presence of irrelevant hidden units in the model.

If model (1) has hidden units such that �i = 0 for at least one i, the parameters ~!i and �i remain

unidenti�ed. Conversely, and this is the other side of the same coin, if ~!i = 0 then any values of

�i and �i lead to the same maximum of the likelihood function.

The �rst problem is solved by imposing, say, the restrictions �1 � � � � � �h or �1 � � � � � �h.

The second source of unidenti�cation can be circumvented, for example, by imposing the restrictions

~!1i > 0, i = 1; : : : ; h. To remedy the third problem it is necessary to ensure that the model contains

no irrelevant hidden units. This diÆculty is dealt with by applying statistical inference in model

speci�cation; see Section 4. For further discussion of the identi�ability of ANN models see, for

example, Sussman (1992), Kurkov�a and Kainen (1994), Hwang and Ding (1997), and Anders and

Korn (1999).
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4 Strategy for Building AR-NN Models

4.1 Three Stages of Model Building

As mentioned in the Introduction, our aim is to construct a coherent strategy for building AR-NN

models using statistical inference. The structure or architecture of an AR-NN model has to be

determined from the data, a problem that has received plenty of attention in the neural network

literature. It involves selecting the lags or variables to be included in the model and determining

the number of hidden units. Finding the correct number of hidden units is particularly important

because, as indicated above, selecting too many neurons yields an unidenti�ed model. In this work,

the lag structure or the variables included in the model are determined using well-known variable

selection techniques. This speci�cation stage of AR-NN modelling also requires estimation because

we suggest choosing the hidden units sequentially. After estimating a model with h hidden units

we shall test it against the one with h+1 hidden units (without at this stage estimating the latter)

and continue until the �rst acceptance of a null hypothesis. What follows thereafter is evaluation

of the �nal estimated model. Neural network models are typically evaluated out-of-sample, but

our statistical approach allows us to derive in-sample misspeci�cation tests for the purpose. These

tests do not replace out-of-sample evaluation, in particular as neural network models for time series

are a forecasting tool. They are rather complements to out-of-sample evaluation techniques.

We begin the discussion of our modelling strategy by considering variable selection. After

dealing with that problem we turn to parameter estimation. Finally, after discussing statistical

inference for selecting the hidden units and after briey discussing our in-sample model evaluation

tools we put the pieces together and present the whole modelling strategy.

4.2 Variable Selection

In this paper the idea is to �rst select the variables and �nd an appropriate number of hidden

units thereafter, conditionally on the variables selected. In pruning neural network models these

two selection problems are typically solved simultaneously using an appropriate decision rule. Here

variable selection is carried out by linearizing the model and applying well-known techniques of

linear variable selection to the linearized version. This keeps computational cost to a minimum.
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We follow a simple procedure proposed in Rech, Ter�asvirta and Tschernig (2001). The �rst step

consists of approximating functionG(xt; ) in (1) by a general k-th order polynomial. By the Stone-

Weierstrass theorem, the approximation can be made arbitrarily accurate if some mild conditions,

such as the parameter space 	 being compact, are imposed on function G(xt; ). Thus the AR-NN

model, itself a universal approximator, is approximated by another function. We have

G(xt; ) = �
0~xt +

qX
j1=1

qX
j2=j1

�j1j2xj1;txj2;t

+ � � �+

qX
j1=1

� � �

qX
jk=jk�1

�j1:::jkxj1;t � � � xjk;t +R(xt; );

(3)

where R(xt; ) is the approximation error that can be made negligible by choosing k suÆciently

high. The �0s are parameters, and � 2 R
q+1 is a vector of parameters. The right-hand side of (3)

is linear in parameters, and its form is independent of the number of hidden units in (1).

In equation (3), every product of variables involving at least one redundant variable has the

regression coeÆcient zero because the approximation to the true model does not contain any of

those variables. The redundant variables can be found by using this property of (3). In order to do

that, we �rst regress yt on all variables in (3) and compute the value of a model selection criterion

(MSC), AIC (Akaike 1974) or SBIC (Schwarz 1978, Rissanen 1978) for example. After doing that,

we remove one variable from the original model and regress yt on all the remaining terms in the

corresponding polynomial and again compute the value of the MSC. This procedure is repeated

by omitting each variable in turn. We continue by simultaneously omitting two regressors of the

original model and proceed in that way until the polynomial is of a function of a single regressor

and, �nally, just a constant. Having done that, we choose the combination of variables that yields

the lowest value of the MSC. This amounts to estimating
Pq

i=1
q!

i!(p�i)!+1 linear models by ordinary

least squares (OLS). This technique has the favourable property that it can be successfully applied

even in large samples when available nonparametric model selection techniques, another alternative

in this situation, become computationally infeasible.
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4.3 Parameter Estimation

4.3.1 Maximum Likelihood Estimation

Selecting the number of hidden units requires estimation of neural network models, and we now turn

to this problem. We estimate the parameters of our AR-NN model by maximum likelihood making

use of the normality assumption of "t. It may be argued that maximum likelihood estimation of

neural network models is most likely to lead to convergence problems, and that penalizing the log-

likelihood function is a necessary precondition for satisfactory results. Many estimation methods

applied in neural network models are based on penalizing the likelihood one way or the other; see,

for example, Fine (1999, Chapter 6).

Two things can be said in favour of maximum likelihood here. First, model building proceeds

from small to large models, so that estimation of unidenti�ed or nearly unidenti�ed models which

is a major reason for the need to penalize the log-likelihood, is avoided. Second, the initial values

of the parameter estimates are chosen carefully, and we discuss the details of this in Section 4.3.2.

For estimation purposes it is useful to reparametrize the logistic function (2) as

F
�
i
�
!0ixt � ci

��
=
�
1 + e�i(!

0

i
xt�ci)

��1
(4)

where i > 0, i = 1; : : : ; h, and k!ik = 1 with

!i1 =

vuut1�

qX
j=2

!2
ij > 0; i = 1; : : : ; h: (5)

The parameter vector  of model (1) becomes

 = [�0; �1; : : : ; �h; 1; : : : ; h; !12; : : : ; !1q; : : : ; !h2; : : : ; !hq; c1; : : : ; ch]
0:

In this case the �rst two identifying restrictions discussed in Section 3 can be de�ned as follows.

First, c1 � � � � � ch or �1 � � � � � �h and, second, i > 0; i = 1; : : : ; h.

The AR-NN model is similar to many linear or nonlinear time series models in that the in-

formation matrix of the logarithmic likelihood function is block-diagonal in such a way that we
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can concentrate the likelihood and �rst estimate the parameters of the conditional mean. Thus

conditional maximum likelihood is equivalent to nonlinear least squares. Under mild regularity con-

ditions that include the requirement that the AR-NN process is weakly stationary, it is possible to

prove consistency and asymptotic normality of the maximum likelihood estimator  ; see Medeiros

et al. (2001) for details. In the estimation, the use of algorithms such as the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) or the Levenberg-Marquardt algorithms is strongly recommended. See,

for example, Bertsekas (1995) for details of optimization algorithms or Fine (1999, Chapter 5) for

ones especially applied to the estimation of NN models.

4.3.2 Starting-values

Many iterative optimization algorithms are sensitive to the choice of starting-values, and this is

certainly so in the estimation of AR-NN models. Besides, an AR-NN model with h hidden units

contains h parameters, i, i = 1; :::; h, that are not scale-free. Our �rst task is thus to rescale the

input variables in such a way that they have the standard deviation equal to unity. In the univariate

AR-NN case, this simply means normalizing yt. This, together with the fact that k!hk = 1, gives

us a basis for discussing the choice of starting-values of i; i = 1; :::; h. Another advantage of this

is that normalization generally facilitates numerical optimization. When all variables have the

same standard deviation the corresponding parameters are more likely to be of the same order of

magnitude. This, however, does not apply to i, i = 1; :::; h, as these parameters control the \slope"

of the logistic functions.

Suppose now that we have estimated an AR-NN model with h � 1 hidden units and want to

estimate one with h units. A natural choice of initial values for the estimation of parameters in

the model with h neurons is to use the �nal estimates for the parameters in the �rst h� 1 hidden

neurons and the linear unit. The starting-values for the parameters in the hth hidden unit can be

found by making use of the fact that model (1) is linear in parameters � and �i, i = 1; :::; h. The

idea is to construct a grid of parameter values h; �h;!h and ch; estimate � and �h conditionally

on the other parameters and, �nally, choose the set of parameter values that minimizes the residual

sum of squares. For details, see Medeiros et al. (2001).
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4.4 Determining the Number of Hidden Units

The number of hidden units included in a neural network model is usually determined from the

data. In this work the hidden units are selected using a sequence of statistical tests. How to

carry out the testing is not completely straightforward due to the identi�cation problem already

mentioned in Section 3. The idea is to circumvent the identi�cation problem in a way that enables

us to control the signi�cance level of the tests in the sequence and thus also the overall signi�cance

level of the procedure. Following Ter�asvirta and Lin (1993) we propose a test that is repeated until

the �rst acceptance of the null hypothesis. Assume now that our AR-NN model (4) contains h+ 1

hidden units and write it as follows

yt = �
0~xt +

hX
i=1

�iF (i(!
0
ixt � ci)) + �h+1F (h+1(!

0
h+1xt � ch+1)) + "t: (6)

Suppose now that we have accepted the hypothesis of model (6) containing h hidden units and

want to test for the (h+ 1)th hidden unit. The appropriate null hypothesis is

H0 : h+1 = 0 (7)

because this choice makes F (i(!
0
ixt � ci)) � constant (=1/2) so that the (h + 1)th hidden unit

vanishes. The alternative hypothesis H1 : h+1 > 0.

We assume that under (7) maximum likelihood estimators of the parameters are asymptotically

normal (the null hypothesis being valid implies that we only estimate the model with h hidden

units). Model (6) is only identi�ed under the alternative so that, as discussed above, the standard

asymptotic inference is not available. This problem is circumvented as in Luukkonen, Saikkonen

and Ter�asvirta (1988) by expanding the (h + 1)th hidden unit into a Taylor series around the

h+1 = 0. Using a third-order Taylor expansion, rearranging and merging terms results in the

following local approximation to (6):

yt = �
0~xt +

hX
i=1

�iF (i(!
0
ixt � ci)) +

qX
i=1

qX
j=i

�ijxi;txj;t +

qX
i=1

qX
j=i

qX
k=j

�ijkxi;txj;txk;t + "�t (8)
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where "�t = "t + �h+1R(xt); R(xt) is the remainder. It can be shown that �ij = 2h+1
~�ij, ~�ij 6= 0,

i = 1; : : : ; q; j = i; : : : ; q; and �ijk = 3h+1
~�ijk, ~�ijk 6= 0, i = 1; : : : ; q; j = i; : : : ; q, k = j; : : : ; q.

Thus the null hypothesis H0
0 : �ij = 0, i = 1; : : : ; q; j = i; : : : ; q, �ijk = 0, i = 1; : : : ; q; j = i; : : : ; q;

k = j; : : : ; q. Note that under H0
0 : "�t = "t; so that the properties of the error process are not

a�ected by the remainder when the null hypothesis holds. Assuming Ejxi;tj
Æ < 1, i = 1; : : : ; q,

for some Æ > 6, it is possible to derive a score or Lagrange multiplier type statistic for testing H0
0.

By trading o� information about the structure of the (h + 1)th hidden unit we in return obtain a

simple test. It can be carried out in stages as follows:

1. Estimate model (4) with h hidden units. If the sample size is small and the model thus

diÆcult to estimate, numerical problems in applying the maximum likelihood algorithm may

lead to a solution such that the residual vector is not precisely orthogonal to the gradient

matrix of G(xt;  ̂). This has an adverse e�ect on the empirical size of the test. To circumvent

this problem, we regress the residuals "̂t on ĥt, the elements of the score vector of the model

with h hidden units, and compute the sum of squared residuals SSR0 =
PT

t=1 ~"
2
t . The new

residuals ~"t are orthogonal to ĥt.

2. Regress ~"t on ĥt and �̂t, the vector containing as its elements all combinations xi;txj;t and

xi;txj;txk;t. Compute the sum of squared residuals SSR1 =
PT

t=1 v̂
2
t .

3. Compute the �2 statistic

LMhn
�2 = T

SSR0 � SSR1

SSR0
; (9)

or the F version of the test

LMhn
F =

(SSR0 � SSR1)=m

SSR1=(T � n�m)
: (10)

Under H0, LM
hn
�2

has an asymptotic �2 distribution with m degrees of freedom and LMhn
F is

approximately F -distributed with m and T �n�m degrees of freedom, where n = (q+2)h+p+1.

The F -version is recommended in small samples where the �2 test can be severely size-distorted

(the empirical signi�cance level exceeds the nominal one). See Medeiros et al. (2001) for details

and more discussion.
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4.5 Evaluation of the Estimated Model

Although the AR-NN model is a very exible nonlinear model and motivated by as being a universal

approximator, there exist situations in practice where the model cannot adequately capture the

nonlinear dynamic structure it is expected to approximate. Evaluating the estimated model is thus

important. We propose two in-sample misspeci�cation tests for this purpose. The �rst one tests

for the instability of the parameters. Under the alternative the parameters are assumed to change

smoothly and deterministically over time. The change is parameterized much in the same way as

the hidden units are. We consider a model with time-varying parameters de�ned as

yt = ~G(xt; ; ~ ) + "t = ~�0(t)~xt +

hX
i=1

n
~�i(t)F (i(!

0
ixt � ci))

o
+ "t; (11)

where

~�(t) = �+ ��F (�(t� �)) ; (12)

and

~�i(t) = �i + ��iF (�(t� �)) ; i = 1; : : : ; h: (13)

The function F in (12) and (13) is de�ned as in (2), and � > 0. The parameter vector  is de�ned

as before, and ~ = [��; ��1; : : : ; ��h; �; �]
0. The parameter � controls the smoothness of the monotonic

change in the autoregressive parameters. When � ! 1, equations (11){(13) represent a model

with a single structural break at t = �. The null hypothesis is � = 0; and it is seen from (12) and

(13) and the model is not identi�ed under the null hypothesis. Deriving the test is again based on

expanding F (�(t� �)) into a Taylor series around the null point expansion of � = 0. For details of

derivation of the test, see Medeiros et al. (2001). When the model is assumed not to contain any

hidden units: �i(t) � 0, i = 1; : : : ; h, the test collapses into the parameter constancy test in Lin

and Ter�asvirta (1994).

The test of no serial correlation in the errors is an application of the results in Eitrheim and

Ter�asvirta (1996) and Godfrey (1988, pp. 112{121). The alternative hypothesis is that the error

process

"t = �
0�t + ut; (14)
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where �0 = [�1; : : : ; �r] is a parameter vector, � 0t = ["t�1; : : : ; "t�r], and ut�NID(0; �
2). The null

hypothesis H0 : � = 0. In this case there is no identi�cation problem, and the test is a standard

Lagrange multiplier test. It can be carried out in stages like the test for the number of hidden

units; see Medeiros et al. (2001) for details. It may be pointed out that the Ljung-Box test or its

asymptotically equivalent counterpart, the Box-Pierce test, both recommended for use in connection

with neural networks models by Zapranis and Refenes (1999), are not available. Their asymptotic

null distribution is unknown when the estimated model is an AR-NN model.

4.6 Modelling strategy

At this point we are ready to combine the above statistical ingredients into a coherent modelling

strategy. We �rst de�ne the potential variables (lags) and select a subset of them applying the

variable selection technique considered in Section 4.2. After selecting the variables we select the

number of hidden units sequentially. We begin testing linearity against a single hidden unit as

described in Section 4.4 at signi�cance level �. The model under the null hypothesis is simply a

linear AR(p) model. If the null hypothesis is not rejected, the AR model is accepted. In case of

a rejection, an AR-NN model with a single unit is estimated and tested against a model with two

hidden units at the signi�cance level �%, 0 < % < 1. Another rejection leads to estimating a model

with two hidden units and testing it against a model with three hidden neurons at the signi�cance

level �%2. The sequence is terminated at the �rst acceptance of the null hypothesis. By letting

the signi�cance level of the tests to converge to zero when the number of steps in the sequence

approaches in�nity we avoid excessively large models that are diÆcult to estimate and may contain

redundant units. The parsimony of the model is controlled by the parameters � and %. Setting,

for example, � = 0:1 and � = 0:5 is often a reasonable choice. In the empirical example of Section

6 the results are quite robust to the choice of the original signi�cance level and �.

In following the above path we have assumed that all hidden neurons contain the variables that

are originally selected to the AR-NN model. We may also augment the strategy by separately

choosing a subset of variables for each hidden unit from the set originally selected as discussed in

4.2. This can be done without re-estimating the model; for details see Medeiros et al. (2001).
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4.7 Discussion and comparisons

There exist other bottom-up approaches in the literature. Swanson and White (1995,1997a,b)

apply SBIC model selection criterion as follows. They start with a linear model, adding potential

variables to it until SBIC indicates that the model cannot be further improved. Then they estimate

models with a single hidden unit and select regressors sequentially to it one by one unless SBIC

shows no further improvement. Next Swanson and White add another hidden unit and proceed

by adding variables to it. The selection process is terminated when SBIC indicates that no more

hidden units should be added or when a predetermined maximum number of hidden units has been

reached. This modelling strategy can be termed fully sequential. A problem of this technique is

the use SBIC. How it should be applied when choosing between an identi�ed and an unidenti�ed

model, a situation that occurs frequently and was discussed in Section 4.4, is not clear. There is

also a strong possibility of estimating at least one unidenti�ed or at least nearly unidenti�ed model

before terminating the sequence.

Anders and Korn (1999) essentially adopt the procedure of Ter�asvirta and Lin (1993) described

in Section 4.4 for selecting the number of hidden units. After estimating the largest model they

suggest proceeding from general-to-speci�c by sequentially removing those variables from hidden

units whose parameter estimates have the lowest (t-test) p-values. Note that this presupposes

parameterizing the hidden units as in (2), not as in (4) and (5).

The strategy Swanson and White applied is computationally the most intensive one, as the

number of steps involving an estimation of a neural networks model is large. Our procedure is in

this respect considerably less demanding. The di�erence between our scheme and the Anders and

Korn one is that in our strategy, variable selection does not require estimation of neural networks

models because it is wholly based on LM type tests (the model is only estimated under the null

hypothesis). Furthermore, there is a possibility of omitting certain potential variables before even

estimating neural network models.

Like ours, the Swanson and White strategy is truly sequential: the modeller proceeds by con-

sidering nested models. The di�erence lies in how to compare two nested models in the sequence.

Swanson and White apply SBIC, which, as we indicated, is not unproblematic, whereas Anders

and Korn and we use LM type tests.
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5 Forecasting

Forecasting with nonlinear models is numerically more involved than carrying a similar exercise

with linear models, see Tong (1990, Chapter 6) and Granger and Ter�asvirta (1993, Section 8.1) for

general reviews. We briey illustrate the forecasting issues in the neural network context. Consider

the AR-NN model (1) with sigmoid activation functions (2). Suppose we want to forecast yT+k,

k � 1, at time T . Assuming that the loss function of the forecaster is quadratic, the optimal

forecast is the conditional mean

ŷT+kjT = E(yT+kjFT ); (15)

where FT contains all the available information at time T . In this case the information can be

expressed using q lags of yT : FT = xT = [yT�1; yT�2; : : : ; yT�q]
0, in (15). Forecasting one period

ahead poses no problem, but nonlinearity of the AR-NN model a�ects forecasting for k � 2, because

ŷT+kjT is a nonlinear function of "T+1; "T+2; : : : ; "T+k�1.

Consider the case k = 2. We have

ŷT+2jT = �0E(~xT+2jT ) +

hX
i=1

�iEf(1 + e�i(!
0

i
xt+2�ci))g; (16)

where E(~xT+2jT ) = [1; E(xT+2jFT )
0]0, with xT+2 = [ŷT+1jT+"T+1; yT ; : : : ; yT�q+1]

0, and E(xT+2) =

[ŷT+1jT ; yT ; : : : ; yT�q+]
0. In order to obtain (16), we have to compute the h conditional expectations

E

��
1 + e�i(!

0

i
xT+2�ci)

��1
jFt

�
=

Z 1

�1

�
1 + e�i(!

0

i
xT+2�ci)

��1
f("T+1)d"T+1; i = 1; : : : ; h;

(17)

where f(z) is the density of z. Expectations (17) may be calculated using numerical integration.

However, for k > 2, multiple integrals have to be evaluated, so that numerical integration becomes

tedious. It is easier to use Monte Carlo simulation and approximate

EfF (i(!
0
ixT+2 � ci))jFtg �

1

M

MX
m=1

F (i(!
0
ix

(m)
T+2 � ci)); (18)

where x
(m)
T+2 = [ŷT+1jT + "

(m)
T+1; yT ; : : : ; yT�q+1]

0 and "
(m)
T+1 is a random draw from the distribution of

"t. Alternatively, if one does not want to assume a speci�c error distribution, it is possible to use
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a bootstrap, that is, draw the values "
(m)
T+1 randomly, with replacement, from the set of residuals

f"̂1; : : : ; "̂T g of the estimated AR-NN model. The forecasts yT+kjT , k > 2, are obtained in the same

way.

The numerical approach yields M forecasts, and it is even more informative to report the

whole forecast density. A good way of summing it up is to use highest density regions (HDR); see

Hyndman (1995,1996). An HDR is de�ned as

HDR� = fz : g(z) � g�g; (19)

where g(z) is the density of z and g� is such that P (z 2 HDR�) = 1� �. In other words, HDR�

is a subset of the support of z such that the value of the density at every point of the subset is

at least equal to g�. As example of the use of HDRs follows in Section 6. In our case, HDRs are

straightforward to compute when the Monte Carlo or the bootstrap methods are used to compute

the point forecasts.

Forecasting with AR-NN models also requires human control because the parameters of the

model have to be estimated. The estimation algorithm may sometimes converge to a local maximum

such that the estimated model yields unrealistic forecasts. Swanson and White (1995) apply an

\insanity �lter": if the forecast exceeds the maximum value or lies below the minimum value

hitherto observed (they are concerned with sequential forecasting) in the stationary series to be

predicted, it is replaced by the sample mean of the series. As the authors put it, ignorance is

substituted for craziness.

6 Empirical Example: Annual Sunspot Numbers, 1700{2000

In this example we build an AR-ANN model for the annual sunspot numbers over the period

1700{1979 and forecast with the estimated model up until the year 2000. The series, consisting of

the years 1700{2000, was obtained from the National Geophysical Data Center web page. 1 The

sunspot numbers are a heavily modelled nonlinear time series: for a neural network example see

Weigend, Huberman and Rumelhart (1992). In this work we adopt the square-root transformation

1http://www.ngdc.noaa.gov/stp/SOLAR/SSN/ssn.html
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of Ghaddar and Tong (1981) and Tong (1990, p. 420). The transformed observations have the

form yt = 2
hp

(1 +Nt)� 1
i
, t = 1; : : : ; T , where Nt is the original number of sunspots in the

year t. The graph of the transformed series appears in Figure 1. Most of the published examples

of �tting neural networks models to sunspot series deal with the original and not the square-root

transformed series.

We begin the AR-NN modelling of the series by selecting the relevant lags using the variable

selection procedure described in Section 4.2. We use a third-order polynomial approximation to

the true model. The use of SBIC leads to selecting lags 1,2, and 7. However, the residuals of

the estimated linear AR model are strongly autocorrelated. This serial correlation is removed by

also including yt�3 in the set of selected variables. When building the AR-NN model we select

the input variables for each hidden unit separately using the speci�cation test described in Section

4.4. Linearity is rejected at any reasonable signi�cance level and the p-value of the linearity test

minimized with lags 1 2, and 7 as input variables. The process of adding hidden units is discontinued

after including the second hidden unit, see Table 1, and the �nal estimated model is

yt = �0:17
(0:83)

+ 0:85
(0:09)

yt�1 + 0:14
(0:12)

yt�2 � 0:31
(0:06)

yt�3 + 0:08
(0:05)

yt�7

+ 12:80
(7:18)

� F

�
0:46
(0:23)

�
0:29
(�)

yt�1 � 0:87
(0:83)

yt�2 + 0:40
(0:09)

yt�7 � 6:68
(0:05)

��

+ 2:44
(0:48)

� F

"
1:17 � 103
(8:45�103)

�
0:83
(�)

yt�1 � 0:53
(0:12)

yt�2 � 0:18
(0:08)

yt�7 + 0:38
(7:18)

�#
+ "̂t:

(20)

�̂ = 1:89 �̂=�̂L = 0:70 R2 = 0:89 pLJB = 1:8� 10�7

pARCH(1) = 0:94 pARCH(2) = 0:75 pARCH(3) = 0:90 pARCH(4) = 0:44;

where �̂ is the residual standard deviation, �̂L is the residual standard deviation of the linear AR

model, R2 is the determination coeÆcient, pLJB is the p-value of the Lomnicki-Jarque-Bera test of

normality, and pARCH(j), j = 1; : : : ; 4, is the p-value of the LM test of no ARCH against ARCH

of order j. The estimated correlation matrix of the linear term and the output of the hidden units
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Figure 1: Panel (a): Transformed sunspot time series. Panel (b): Output of the �rst hidden unit.
Panel (c): Output of the second hidden unit.

Table 1: Test of no additional hidden units: minimum p-value of the set of tests against each null
model.

Number of hidden units under null hypothesis
0 1 2

p-value 3� 10�14 2� 10�9 0:019

is

�̂ =

0
BBBB@

1 �0:30 0:74

�0:30 1 �0:19

0:74 �0:19 1

1
CCCCA : (21)

It is seen from (21) that there are no irrelevant neurons in the model as none of the correlations

is close to unity in absolute value. Figure 1 illuminates the contributions of the two hidden units

to the explanation of yt. The linear unit can only represent a symmetric cycle, so that the hidden

units must handle the nonlinear part of the cyclical variation in the series. It is seen from Figure

1 that the �rst hidden unit is activated at the beginning of every upswing, and its values return to

zero before the peak. The unit thus helps explain the very rapid recovery of the series following

each trough. The second hidden unit is activated roughly when the series is obtaining values higher

than its mean. It contributes to characterizing the general asymmetry of the sunspot cycle in which

the peaks and the troughs have distinctly di�erent shapes. The switches in the value of the hidden

unit from zero to unity and back again are quite rapid (2 large), which is the cause of the large

standard deviation of the estimate of 2, see the discussion in Section 4.3.
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Table 2: p-values of tests of no error autocorrelation and parameter constancy for model (20).

LM Test for q-th order serial correlation LM test for parameter constancy

Lags K
1 2 3 4 8 12 1 2 3 4

p-value 0.55 0.61 0.34 0.49 0.47 0.22 0.98 0.95 0.93 0.88

The results of the misspeci�cation tests of model (20) in Table 2 indicate no model misspec-

i�cation. In order to assess the out-of-sample performance of the estimated model we compare

our forecasting results with the ones obtained from the two SETAR models, the one reported in

Tong (1990, p. 420) and the other in Chen (1995), an arti�cial neural network (ANN) model with

10 hidden neurons and the �rst 9 lags as input variables, estimated with Bayesian regularization

(MacKay 1992a,b), and a linear autoregressive model with lags selected using SBIC. The SETAR

model estimated by Chen (1995) is one in which the threshold variable is a nonlinear function of

lagged values of the time series whereas it is a single lag in Tong�s model. Starting from thirteen

consecutive years 1979; : : : ; 1992, we computed the out-of-sample forecasts, ŷT+kjT , k = 1; : : : ; 8,

from each model, and the associated forecast errors. The models were not re-estimated when

the starting-point was moved. The forecasts of the nonlinear models were computed using Monte

Carlo simulation with 4000 replications. the root mean square error (RMSE) and the mean absolute

deviation (MAE) were used as summary.

The results can be found in Table 3. We leave a statistical comparison of the forecast accuracy

aside and only make a couple of brief remarks. The AR-NN model appears to yield most accurate

forecasts at short horizons. It is clearly better than the neural network model obtained by applying

Bayesian regularization. The TAR models do not seem superior to the neural network models.

It should be noted that the linear AR model is quite robust in that when the forecast horizon

increases, the forecasts from it become very competitive. For short forecast horizons, the linear

approximation to the data-generating process is not suÆciently good for forecasting purposes.
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Figure 2: 50% (darkest), 90% and 99% (lightest) highest density regions for the multi-step forecasts
made at (a) t = 1979 and (b) t = 1985.

In order to illustrate forecast densities we graphed HDRs for the ones obtained from model (20)

in 1979 for the years 1981-1987 and the ones from the same model in 1985 for the years 1987-1993. It

is seen from Figure 2 that the forecast uncertainty increases rather slowly with the forecast horizon.

Comparing the two panels it seems that values around troughs are easier to predict than the ones

around peaks. Uncertainty in forecasting peak observations is remarkably large. An interesting

detail is a bimodal density that is apparent in the Panel (b) for the year 1992. Also note that

the forecast densities for the trough values of the sunspot cycle are strongly skewed as the sunspot

numbers cannot be negative. The �gure also indicates that it is diÆcult to predict the strength of

the upswing from afar: this is seen from the very long right-hand tail of the density for 1987.

7 Conclusions

In this paper we have demonstrated how statistical methods can be applied in building neural

network models. The idea is to specify parsimonious models and keep the computational cost

small. An advantage with the modelling strategy discussed here that the modelling procedure

is not a black box. Every step in model building is clearly documented and motivated. On the

other hand, using this strategy requires active participation of the model builder and willingness
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to make decisions. Choosing the model selection criterion for variable selection and determining

signi�cance levels for the test sequence for selecting the number of hidden units are not automated,

and di�erent choices may often produce di�erent models. Combining them in forecasting could be

an interesting topic that, however, lies beyond the scope of this paper. Nevertheless, the method

shows promise, and research is being carried out in order to learn more about its properties in

modelling and forecasting stationary time series.
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