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The Determinants of Long-Run Economic Growth:
A Conceptually and Computationally Simple Approach

b,
Jarosrava Hoouskova® and MARTIN WAGNER™

JEL-Classification: C31, C52, O11, O18, O47
Keywords: economic growth, economic convergence, frequentist model averaging, growth regres-
sions, principal components augmented regression

1. Introduction

DuRrLAUF, JoHNsoN, and TEmPLE (2005) forcefully argue that the empirical
analysis of economic growth is one of the areas of economics in which progress
seems to be hardest to achieve and where only few definite results are established.
Large sets of potentially relevant candidate variables have been used in empiri-
cal analysis to capture what BRock and DUrRLAUE (2001) refer to as theory open
endedness of economic growth. A large variety of different approaches has been
and is used to identify variables relevant for economic growth. Many of the con-
tributions employ model averaging estimators to tackle the uncertainty about the
relevant variables. SALA-I-MARTIN (1997a) runs two million regressions and uses
a modification of the extreme bounds test of LEAMER (1985), used in the growth
context earlier also by LEVINE and RENELT (1992), to single out what he calls
‘significant’ variables. FERNANDEZ, LEY, and STEEL (2001) and SALA-I-MARTIN,
DOPPELHOEFER, and MILLER (2004) use Bayesian model averaging (BMA) tech-
niques to identify important growth determinants. The former perform Bayesian
averaging of Bayesian estimates, introduced by LEAMER (1978), whereas the latter
perform Bayesian averaging of classical estimates, proposed by RAFTERY (1995).
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446 Hrouskova/ WAGNER

More recently MagNus, PowkLL, and PRUFER (2010) provide a computation-
ally simple approach to BMA that bears some resemblences with our approach
(compare the discussion in Section 2.3 below).

Alternatively, several approaches have been followed in the growth regressions
literature that instead intend to provide only one selected model together with one
set of parameter estimates. HENDRY and Krorz1G (2004) use, similar to Hoover
and PEREZ (2004), a general-to-specific modeling strategy to cope with the large
amount of regressors while avoiding the estimation of a large number of equa-
tions. Clearly, also in a general-to-specific analysis a certain number of regres-
sions, typically greater than one, has to be estimated. SCHNEIDER and WAGNER
(2012) apply the adaptive LASSO estimator, which has the computational cost
of one OLS estimation including all variables, in the growth regressions context.

The typical situation in the empirical analysis of economic growth is the avail-
ability of a data set where the number of variables is close to (or in one of our
data sets, which is an extension and update of the SaLa-1-MaRrTIN, DOPPEL-
HOFER, and MILLER (2004) data set, precisely equal to) the number of countries
considered. Given the above mentioned uncertainty about which variables are
relevant the researcher faces a difficult situation. Any regression including only
few regressors (which are usually the ones considered with high probability in
BMA growth regression exercises) risks to suffer from omitted variables biases.
On the other hand any regression with many variables included runs the risk of
large estimator variance, in particular in case of near multi-collinearity of the
data. As an example, for one of the data sets used in this paper, the one origi-
nally used in SALA-I-MARTIN, DOPPELHOFER, and MILLER (2004), the recipro-
cal condition number of the full regressor matrix including all 67 regressors is
9.38 x 10~*’. In the extended and updated data set the number of variables is,
as mentioned before, equal to the number of countries which allows for per-
fect (but meaningless) fit from the full regression. Thus, it is important to find
a good trade-off between parsimony of the regression (to achieve low estimator
variance but potentially high bias) and the inclusion of as many variables as pos-
sible (to achieve low bias at the price of potentially high variance). An optimal
positioning on the bias variance trade-off is achieved, given a choice concerning
which variable(s) the researcher is interested in, by so-called principal compo-
nents augmented regressions (discussed in detail in Section 2 and considered also
in WagNER and Hrouskova (2012)). In the simplest case, when one is interested
in understanding the individual variables” conditional effect on growth (which
is usually the object of interest in the empirical growth literature) one estimates
regressions of GDP growth on this variable and principal components extracted
from all other variables. We refer to such regressions as principal components
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The Determinants of Long-Run Economic Growth 447

augmented regressions (PCARs). These regressions contain (in a sense made pre-
cise in the following section) as much information as possible (for a given number
of included additional regressors) from the data set and thus are least prone to
omitted variables bias whilst being well-conditioned since the principal compo-
nents are mutually orthogonal.'

Clearly, principal components augmentation is also useful when combined with
model averaging, be it frequentist or Bayesian. Once the set of focus variables of
interest is specified, which can be motivated by a specific theoretical model or
also by the quest of understanding the contribution to growth of certain factors
like human capital, for which several proxies may be available in the data set, one
can perform model averaging over these focus variables, whilst including in all
regressions principal components computed from the remaining variables. Com-
pared to the usual BMA analysis in which the priors are set such that the expected
prior model size is very small the augmentation by principal components makes
model averaging estimators less prone to suffer from omitted variables biases
whilst keeping estimator variance low. In the empirical analysis in this paper we
partition the extended and updated growth data set into twelve groups and per-
form model averaging over principal components augmented regressions for these
groups. The selection of a relatively small set of focus variables drastically reduces
the model space (to two to the power number of focus variables) and allows for
estimating all models rather than just a random selection of models, as would be
the case in the unrestricted model space with no partitioning of the variables into
focus and auxiliary variables. The coefficients to the focus variables in a PCAR
measure the effect on growth of each of these variables when considered jointly,
whilst in addition conditioning on the information contained in the principal
components and are in this sense robust estimates.

In this paper we perform model averaging based upon PCAR in a frequen-
tist framework, using recent advantages in the statistics literature which allow
to perform valid frequentist inference in a model averaging context, see in par-
ticular CLAESKENS and HjorT (2008, Section 7.5). In our analysis we consider
four different weighting schemes. One, as a benchmark, uses equal weights for
each model and the three others are based on weights derived from informa-
tion criteria computed for the individual models. These are smoothed AIC and
smoothed BIC weights considered by BuckLAND, BuRNHAM, and AUGUSTIN
(1997) and studied in detail also in CLAESKENS and HjorT (2008) and Mallows

1 Thus, problems of multi-collinearity can only arise if the variable whose effect is studied is
highly correlated with the principal components, which can be easily checked upfront.
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448 Hrouskova/ WAGNER

model averaging (MMA) advocated by Hansen (2007). Furthermore, we calcu-
late frequentist analogs to quantities considered to be informative in a Bayesian
model averaging framework. We compute e.g. for any given weighting scheme
the so-called inclusion weight as the classical counterpart of the Bayesian pos-
terior inclusion probability of a variable.” Clearly, either Bayesian or frequentist
model averaging could be employed and we have chosen frequentist model aver-
aging to try popularizing it in the growth empirics literature, in which typically
Bayesian or pseudo-Bayesian model averaging approaches are employed to date.’

We apply the methodology to three data sets. Two of them have been widely
studied and are used to ‘benchmark’ our findings. These are the data of SALa-
I-MARTIN, DOPPELHOFER, and MILLER (2004) and of FERNANDEZ, LEY, and
StEEL (2001). For these data sets we compute the (conditional) individual effects
of all variables and compare the findings with those in the original papers as
well as with the estimates found from the simple bivariate regressions (in order
to highlight the ensuing omitted variables biases). The third data set is, as has
been mentioned already, an updated and extended data set based on the SALA-1-
MARTIN, DOPPELHOFER, and MILLER (2004) data with the number of variables
equal to the number of countries. This clearly necessitates thinking about how
to perform regression analysis in a sensible way. For this data set we also com-
pute the variables’ individual conditional effects, but in addition as mentioned
also study the joint effects of 12 groups of variables (comprising between 4 and
10 variables) by combining PCAR with model averaging. The ‘final” analysis
then considers all significant variables from the 12 groups jointly. The results
show that estimating well-behaved regressions that include the relevant informa-
tion from the available variables is important to obtain robust estimates of the
variables’ effect on economic growth. For the SALA-I-MARTIN, DOPPELHOFER,
and MILLER (2004) data set our findings differ from those in the original paper
in that we find more core economic variables related to economic growth and
an implied convergence speed that is about twice as high as found by Sara-1-
MARTIN, DOPPELHOFER, and MiLLER (2004). For the FERNANDEZ, LEY, and

2 Similarly one can also compute the distribution of model weights over model sizes, see also
WacNER and HrLouskova (2012). That paper also performs model averaging over PCARs with
the focus variables taken from the results of the partial LASSO estimates in SCHNEIDER and
WaGNER (2012). Koor and PoTTER (2004) perform Bayesian model averaging over princi-
pal components computed from all variables and employ their approach to a macroeconomic
forecasting exercise. Thus, in our language they include zero focus variables.

3 WacNER and ZEUGNER (2012) develop a Bayesian framework for model averaging with prin-
cipal components augmented regressions.
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StEEL (2001) data set our findings very strongly coincide with the BMA findings
obtained in the original paper, yet they are obtained at a negligible fraction of
computational cost (and are independent of any — in the growth literature inevi-
tably — ad hoc choices concerning priors on coefficients or model sizes). For the
extended data set we consider the joint effect of thematic groups of variables in
addition to each variables effect. From an individual perspective the following 7
variables are significantly related (at the 5% level) to long-run economic growth:
initial GDP (with an implied convergence speed that is about three times as high
as in SALA-I-MARTIN , DOPPELHOFER, and MILLER, 2004), the male labor force
participation rate, the fraction of Confucian in the population, the share of gov-
ernment spending in GDP, the relative investment price, the share of mining in
GDP and mobile phone subscribers per person (as a proxy for modern communi-
cation technologies). When considering the variables separated into 12 thematic
groups there are 5 groups in which only one variable is found to be significant and
4 groups in which no variable is significant (information technology, education,
health, historical and political data) and altogether there are only 16 variables
significant (when considering the 10% and only 14 when considering the 5%
level). Analyzing these 16 variables’ joint conditional effect on economic growth
results again in 7 variables significantly related to economic growth at the 5%
level. Combining the different pieces of evidence (both the individual and the
group-wise conditional effects and their significance) leads to only 6 variables
related to economic growth: initial GDP, the population growth rate, the share of
mining in GDP, the losses due to climate disasters, the relative investment price
and the share of Confucian in the population. All coefficients have the correct
sign and sensible magnitudes. Furthermore, the inclusion weights (which are the
frequentist counterparts of the Bayesian posterior inclusion probabilities) of the
significant variables are typically very high, confirming their importance from
another angle. The findings show that appropriate conditioning on the relevant
information in well-behaved regressions can help to uncover the determinants of
economic growth in a computationally extremely cheap fashion.

The paper is organized as follows: The following section contains a descrip-
tion of the econometric approach. In Section 3 the results obtained with the
three mentioned data sets are discussed in three subsections. Section 4 briefly
summarizes and concludes. The appendix contains a detailed description of the
extended data set including the data sources. Two supplementary appendices as
well as the dataset are available as supplementary material on the website of the
Journal (www.sjes.ch). Appendix B contains additional empirical results and
Appendix C describes the computation of (frequentist) confidence intervals for
model average estimators.

Swiss Journal of Economics and Statistics, 2013, Vol. 149 (4)



450 Hrouskova/ WAGNER

2. Description of the Econometric Approach

2.1 Principal Components Augmented Regressions

Let y€R" denote the variable to be explained (in our application average per
capita GDP growth for /V countries) and collect all explanatory variables in
X=[X,X,] e R, w1th the focus variables given in X, € R “ and the auxiliary
variables in X, € R “ with = k + k,. Without loss of generality we assume
that all variables have zero mean, since in growth regressions an intercept is typ-
ically included. As is well known, by the Frisch-Waugh theorem, the regressions
can therefore equivalently be estimated with demeaned variables. The regression
including all variables is given by

= XI/Bl + Xzﬁz +u. 1)

The information for regression (1) contained in X, is equivalently summarized in
the set of (orthogonal) principal components computed from X,. The principal
components are the set of transformed variables X, = X,0, with O € R>* com-
puted from the eigenvalue decomposition of Ly, = = XJX, (due to the assump-
tion of zero means):

S, = XX, =0A0' =[0,0,] &

A, oo
0 A0

=0,A,0/+0,A,0!,

where 0'0 =00" =1, and A = diag(\,....\,), A\, >\, fori=1,....k,— 1.
The partitioning into Varlables with subscripts 1 and 2 in (2) will become clear
in the discussion below. From (2) the orthogonality of the variables in X is
immediate, since X X A.

Let us consider the case of multi-collinearity in X, first (which e.g. nec-
essarily occurs when £, > N) and let us denote the rank of X, with r. Take
A, €R™, hence A,=0 and X, X, = O,A,0/. The space spanned by the col-
umns of X € R™™ coincides Wlth the space spanned by the orthogonal regres-
sors X, X 0, € R" | i.e. with the space spanned by the 7 principal compo-
nents. Thus, in this case regression (1) is equivalent to the regression

r=X05 +X2B2 +u 3)
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in the sense that both regressions lead to exactly the same fitted values and resid-
uals. Furthermore, in case [X] Xz] has full rank, regression (3) leads to unique
coefficient estimates of 3, and (3,. Therefore, the use of principal components
is one computationally efficient way of overcoming multicollinearity. The facts
discussed above are, of course, well known results from linear regression theory.

Using principal components in case of full rank of X, and hence of ¥ X how-
ever, also has a clear interpretation and motivation. In such a situation replac-
ing X, by the first 7 principal components X, leads to a regression where the set
of regressors X, spans that 7-dimensional subspace of the space spanned by the
columns of X, which minimizes the approximation error to the full space in a
least squares sense. More formally the following holds true, resorting here to the
population level. Let x, € R* be a mean zero random vector with covariance
matrix ¥, (using here the same notation for both the sample and the popula-
tion covariance matrix for simplicity). For a given value of 7 consider a decompo-
sition of x, into a factor component and a noise component, i.c. a decomposition
x, = Lf +v, where f € R" is random, L € R““ is non-random and v € R* is
noise. If the decomposition is such that the factors fand the noise v are uncorre-
lated, i.e. orthogonal, then 3, = LY fL/ +3,, with ¥ fdenoting the covariance
matrix of fand ¥ denoting the covariance matrix of v. Principal components
analysis performs such an orthogonal decomposition of x, into Lf'and v so that
the noise component is as small as possible, i.e. it minimizes E(v'v) =r(X ). As
is well known, the solution is given by f = O/x,, L=0,, with O, € R*" and
v=0,0'x,, using the same notation for the spectral decomposition as above.

Therefore, including only 7 principal components X, instead of all regres-
sors X, has a clear interpretation: the principal components augmented regres-
sion (PCAR) includes ‘as much information as possible’ with » linearly indepen-
dent regressors contained in the space spanned by the columns of X,. We write
the PCAR as:

y=XB+X,B +i, 4)

neglecting in the notation the dependence upon the (chosen) number of princi-
pal components 7, but indicating by using # the fact that the residuals of (4) in
general differ from the residuals of (3). Including only the information contained
in the first 7 principal components of X, in the regression when the rank of X, is

4 Te. we now consider the #,-dimensional random vector x, for which a sample X, of size NV is
available.
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452 Hrouskova/ WAGNER

larger than 7 of course amounts to neglecting some information and hence leads
to different, larger residuals. Thus, in comparison to the full regression (1), if it
can be estimated, the PCAR regression will potentially incur some bias in the
estimates which has to be weighed against the benefits of a lower estimator vari-
ance. It is immediate that the choice of 7 is a key issue. The larger 7, the more
information is included but the fewer degrees of freedom are left (i.e. a lower bias
but a higher variance). The choice concerning 7 is generally based on the eigenval-
ues A, where ‘large’ eigenvalues are typically attributed to the factors and ‘small’
ones to the noise. The literature provides many choices in this respect and we
have experimented with several thereof.” A classical, descriptive approach is given
by the so-called variance proportion criterion (VPC),

j
S
Fpcy = min 17 | =+—2>1—ay, 5)
Jolk E DY

2 .
=1 !

with a € [0,1]. Thus, 7, is the smallest number of principal components such
that a fraction 1 — « of the variance is explained. For our applications setting
a=0.2, i.e. explaining 80% of the variance, leads to reasonable numbers of
principal components included. In the context of growth regressions there is no
underlying theoretical factor model explaining the second-moment structure of
the auxiliary variables X, available. Thus, any choice has to a certain extent heu-
ristic character and has to trade off good approximation (necessary to capture
the information contained in all explanatory variables to have small bias) with a
sufficiently small number of principal components (necessary for well-behaved
regression analysis with low estimator variance).

When computing the principal components from the regressors X, € R** in
our growth application, we split this set of variables in 2 groups. One group con-
tains the quantitative or cardinal variables and the other includes the dummy
or qualitative variables. We separate these two groups to take into account their

5 Inaddition to the results reported in the paper the number of principal components has also
been determined using the testing approaches of LawLEYy and MaxweLL (1963), MALINOWSKI
(1989), FaBer and KowaLskr (1997), ScaotT (2006) and KrircumaN and NADLER (2008).
In a variety of simulations, however, the VPC criterion and a simple eigenvalue test based on
the correlation matrix (see below) have performed best. Using the VPC criterion can also be
interpreted as a regularization device for linear regression when the data are in fact not gener-
ated by a factor model (as is potentially the case in our application), whereas the mentioned
tests have been derived explicitly for factor models.
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The Determinants of Long-Run Economic Growth 453

different nature when computing principal components. For both groups the
principal components are computed based on the correlation matrix of the vari-
ables. Computing the principal components based on the correlation matrix is
especially important for the group of quantitative variables. These differ con-
siderably in magnitude, due to their scaling which we keep unchanged for the
FERNANDEZ, LEY, and STEEL (2001) and SALA-I-MARTIN, DOPPELHOFER, and
MILLER (2004) data to use exactly the same data as in these papers. Computing
the principal components based on the covariance matrix leads in such a case to
essentially fitting the ‘large’ variables, whereas the computation based on the cor-
relation matrix corrects for scaling differences and leads to a scale-free computa-
tion of the principal components. To be precise, in this case a so-called weighted
principal components problem is solved in which the function minimized is
given by E@'Qu)=#(QX,) with Q = dz’ag(a;jl,. . »‘7;22,132 ), neglecting here for
simplicity the separation of the variables in X, in quantitative and dummy vari-
ables.” This leads to f =0/Q"x,, L=Q "0, and v =Q "0,0/Q"*x,, i..
the auxiliary regressors are given by X, = X,Q"0,.

2.2 Model Averaging of Principal Components Augmented Regressions

For a chosen number of principal components, the PCAR (4) allows to estimate
the conditional effects of the variables X| taking into account the relevant infor-
mation contained in X, and summarized in X,. As discussed in the introduction,
one can also use (4) as a starting point to consider model averaging. By resort-
ing to PCAR analysis, the number of regressions to be computed to estimate all
sub-models is reduced from 2* to 2" if one computes all sub-models with respect
to the focus variables. The number of regressions can be reduced further by par-
titioning the set of focus variables X, = [X,,X,], with X, € R"*" included in
each regression and X,, € R"*, where k4, = &, + k,,, containing the variables
in- or excluded in the sub-models estimated. This further reduces the number of
regressions to be computed to 22 and makes it even more likely that all sub-mod-
els can be estimated. As already mentioned in the introduction, the small number

6 Performing the spectral decomposition on a correlation matrix allows for another simple
descriptive criterion concerning the number of principal components. By construction the
trace of a correlation matrix equals its dimension, i.e. is equal to 4,. Therefore, if all #, eigen-
values were equally large, they all would equal 1. This suggests to include as many principal
components as there are eigenvalues larger than 1, i.e. to consider the eigenvalues larger than
1 as big and those smaller than 1 as small. The results correspond closely to those obtained
with VPC_ with a=0.2.
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454 Hrouskova/ WAGNER

of models has the advantage, for both frequentist and Bayesian approaches, that
inference need not be based on estimation results obtained only on subsets of the
model space containing mainly small models.”

We denote the sub-model regressions, based on the partitioning of (4) as

= X,,0,,(/)+ X, (NBL () + X,8,(j) + (). ©)

The sub-models M [ are indexed with j =1,.. 2% where X,,(j) denotes the j-th
subset of X,. The corresponding coefficient estimates are given by

B(]) = [Bn(j)/ﬁz(]')léz(j)/]l S Rk‘ﬁk””‘

Here, with some imprecision in notation we include in Bu (j) € R*™ zero entries
corresponding to all variables not included in model M,, whereas in (6) the
dimension of 3,(;) equals the number of variables of X, included. We are con-
fident that this does not lead to any confusion.® Furthermore, note already here
that the regression including all explanatory variables, i.e. all variables in X, ,, will
be referred to as full model in the empirical application. Model average coeffi-
cients ﬂ are computed as weighted averages of the coefficient estimates of the
sub-regressions, i.e.

A 2/@12 A
B =320 wl(PAG) %
with 0<w(j)<1 and Zil w(j) =

We consider four different weighting schemes: equal weights, smoothed AIC
(S-AIC) and smoothed BIC (S-BIC) weights considered by BuckLaND, BURN-
HAM, and AuGusTIN (1997) and discussed in detail in CLaeskens and HjorT

7 This statement has to be interpreted in the following way: Inference is based on a different type
of subset of the model space, since all information contained in X, is summarized in X, and
taken into account. This conditional model space, after purging the effects of X,, however,
can then be fully exhausted.

8 Note furthermore that we can, since X, is included in each regression, invoke the Frisch-
Waugh theorem and entirely equivalently consider model averaging only for the regressions
of y on X;; and the subsets of X, by considering the residuals of the regressions of y, X, and
X,, on X,. This equivalent interpretation highlights again that the inclusion of X, condmons
on the ‘relevant’ information contained in X,.
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(2008) and MMA weights as considered in HANSEN (2007). Equal weighting
assigns weights w(j) =1/2" to each of the models. By definition, this model
averaging scheme does not allocate model weights according to any measure of
quality of the individual models and thus serves more as a baseline averaging
scheme. The other model averaging schemes base the model weights on differ-
ent information criteria to give higher weights to models showing better perfor-
mance in the ‘metric’ of the underlying information criterion. The S-AIC and
S-BIC averaging schemes base their weights on the information criteria AIC and
BIC, defined here as

AIC(j)=N1né; +2dim(M,) and BIC(j)= NlIng; +InN dim(M,),

where &]2. is the estimated residual variance of M . Based on these the corre-
sponding model weights are computed as

exp{f%A[C( )

w(j)= 1
Zmexp{—EA]C(m)}

for S-AIC weights and as

exp{—%B[C( 0

w(j)= i
Zmexp{—EBIC(m)}

for S-BIC weights. Hansen (2007), based on L1 (1987), advocates the use of a
Mallows criterion for model averaging that under certain assumptions results in
optimal model averaging in terms of minimal squared error of the corresponding
model average estimator amongst all model average estimators.” The MMA model
weights are obtained by solving a quadratic optimization problem. Denote with

A

U= [ﬁ(l), .,ﬁ(z"lz e RNxzklz

9 Liang etal. (2011) propose to select the weights by minimizing the trace of an unbiased esti-
mator of the model average estimator MSE.
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the collection of residual vectors of all models and with
M =[dim(M,),...,dim(M , ) € R*"

the dimensions of all models. The dimension of M, is given by %, + 7 plus the
number of variables of X, included in M. Further, denote with 7 the esti-
mated residual variance from the full model including all variables of X, ,. Then,
the MMA weight vector is obtained by solving the following quadratic optimi-
zation problem, where

w=[w),.. w2")] e R*™

is the vector of weights corresponding to all models.
A, A ks
m,jn {w/U/Uw + 2&;w/M} subject to: w >0, Z;l w(j)=1. 8)

Each of the variables in X, is included in exactly half of the models consid-
ered. The model average coefficient corresponding to each of the variables X, ,
i=1,...,k,, can be written as

ki

Bt = Do w( ), ())
= 3 w(Ho+ > w(DBu,()).

X1 M Xy M

)

The above equation (9) shows the shrinkage character of model averaging. This
is most clearly seen for equal weighting, for which the inclusion weight of vari-
able 4, i.e.

XM
is exactly 1/2 for all variables X, . Hence for equal weighting the average coeffi-
cient is given by 1/2%* times the sum of all coefficient estimates over only 227" (i.e.
half of the) models. More generally, for any given weighting scheme the inclusion
weight of variable i indicates the importance of this particular variable, in the
‘metric’ of the chosen weighting scheme. Thus, the inclusion weight is in a certain
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sense the frequentist alternative to Bayesian posterior inclusion probabilities. If the
inclusion weight of a certain variable is high (e.g. higher than 0.5), this means that
the 50% of the models in which this variable is included have a high explanatory
power or good performance with respect to e.g. AIC or BIC. Thus, the assessment
concerning the importance of variables can be based on their inclusion weights.
Inclusion weights can also be computed for sets of variables together, which then
allows to assess the joint explanatory power of a certain group of variables. One
can then e.g. also compare the joint inclusion weight of two variables with the
individual inclusion weights of the two variables when considered separately to
assess the joint importance of two variables, compare also LEy and STEEL (2007)
or DorPELHOFER and WEEKS (2009) who study the joint effects of growth deter-
minants in a Bayesian framework."

If one does not want to resort to the inclusion weights, or wants to have addi-
tional tools at hand, the variables’ importance can, of course, be assessed also
via significance testing. Proper frequentist inference concerning model average
coefficients has to take into account that model average estimators are (random)
mixtures of correlated estimators. Frequentist (or classical) inference taking these
aspects into account has been developed in Hjort and CLAESKENS (2003) and is
discussed in detail in CLAEskENS and HjorT (2008, Section 7.5). We use their
two-stage simulation approach for the computation of conservative confidence
intervals based on approximating the limiting distributions of model average
estimators, compare Sections 7.5.3 and 7.5.4 of CLAESKENS and Hjort (2008).
A description is available in supplementary material.

2.3 A Comparison with WALS

Let us now compare our approach with that of MagNus, PoweLL, and PRUFER
(2010), which they label weighted average least squares (WALS). Using our nota-
tion and setup, the WALS approach can be described as follows." Considering
again the sub-model based regression as in (6)

¥ = X101 (7) + X, (DB () + X,08,()+alj) (10)
=X, X,16(7) + X, ()8, (7) + (),

- <7

Z

10 One can also compute the distribution of inclusion weights over model sizes to see how many
variables are necessary to explain growth well.

11 Clearly, in the WALS approach no principal components are included, but we keep them here
for comparability.
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with 4,(j)= [ﬁll(j)/,ﬁz (j)/]/, and where the variables X, (), over which model
averaging is performed, are orthogonalized with respect to the variables always
included, i.e. the following regressions are considered

¥y =2b()+ X, () BL() +)) (11)

where X[, is X, ortho-normalized with respect to Z such that

n

X (1,-2(z2)" 2"\ X, =1, 12)

The OLS estimator of 3 in the full model — with X, transformed as described —
is referred to as 3 = (4], ILZIA]/ and the OLS estimator of 4, from the model includ-
ing only Z is denoted by 4,, = (Z/Z)leﬁ/.

Due to the specific orthogonalization chosen it holds that

b(j)=b, —QW (B} (13)
BLG) =W ()BL, (14)

with Q = Z(Z'Z)"' Z'X, and W(}) a k,, x k,, diagonal matrix with ones and
zeros on the diagonal such that the i-th diagonal element is 0 if and only if the
i-th component of 3;; is restricted to be 0, i.e. if the corresponding variable is
excluded.

Considering model averaging at the moment only for 4, it holds, by construc-
tion, that

A klZ A
B =37 w(DhG) (15)

A

QY RV (N

A
= b, QA5
since of course
ALWALS 2 . N AL AL
12 = Z/’ﬂ w(])W(])ﬁIZ = WﬁlZ :

Next, note that due to the orthogonalization, the different components of ﬂé are
(under the normality assumption conditionally) independent of each other.
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Furthermore, it follows from the orthogonalization that Wis diagonal. There-
fore, calculation of 35" separates into k,, 1-dimensional problems."> The spe-
cific weights chosen depend upon the prior assumption. MagNUs, PowELL, and
PrUFER (2010) choose the Laplace prior and estimator, which leads to a particu-
larly simple calculation of the WALS estimator.

The description shows the similarities and differences to our approach: Both
approaches are geared towards complexity reduction with respect to model aver-
aging, where the WALS approach is more efficient in reducing the complexity
due to the orthogonality of the variables that are in- respectively excluded. This
clearly, however, limits the applicability to ‘full rank’ regression problems and
thus in particular the number of variables has to be smaller than (or equal to)
the number of observations, which is not the case for our approach. The distinc-
tion in focus and auxiliary variables has a slightly different interpretation. In our
case, the focus variables are all variables that are not input in the calculation of
principal components. Model averaging is then performed over (a subset of) the
focus variables. MagNUs, PowELL, and PROFER (2010) consider model averag-
ing over their auxiliary, orthogonalized variables only. In a sense their approach
is thus conceptually comparable to a setup in which we would model average
(also) over the principal components rather than a subset of the focus variables.
Model averaging also over principal components is considered in WAGNER and
ZEUGNER (2012).

3. Empirical Results

In the empirical analysis we use three data sets, with two of them well-known and
widely studied. These are the data sets of SaLA-I-MARTIN, DOPPELHOFER, and
MIiLLER (2004) and FERNANDEZ, LEY, and STEEL (2001). SALA-I-MARTIN, Dop-
PELHOFER, and MILLER (2004) consider data for 88 countries and 67 explana-
tory variables with the dependent variable being the average growth rate of per
capita GDP over the period 1960-1996." The data set used in FERNANDEZ, LEy,
and STEEL (2001) is based on the data set used in SALA-I-MARTIN (1997b). In

12 The diagonality of Wimplies that not all 2 weights w(;) have to be computed, but only ,,
linear combinations thereof.

13 A detailed description of this data set is given in SALA-I-MARTIN, DOPPELHOFER, and MILLER
(2004) in Tables 1 (variable list) and A.1 (country list).
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particular a subset of the Sala-i-Martin data containing the 25 variables singled
out as important by SALA-I-MARTIN (1997a) are used. These variables are avail-
able for 72 countries. FERNANDEZ, LEY, and STEEL (2001) add 16 further variables
that are also available for these 72 countries, which gives a total 41 explanatory
variables. The dependent variable is the average annual growth rate of real per
capita GDP over the period 1960-1992. The third data set is an (in terms of vari-
ables) extended and updated version of the SaLA-I-MARTIN, DOPPELHOFER, and
MILLER (2004) data set, see the description in Appendix A. The data set contains
86 countries (compared to the 88 countries used in SaLa-I-MARTIN, DOPPEL-
HOFER, and MILLER, 2004, Liberia and Taiwan are missing) and 85 explanatory
variables."* When possible the variables have been updated (for details see the
table with the variables description in Appendix A), and the dependent variable is
the average growth rate of per capita GDP over the period 1960-2004. Compared
to the original data set new variables that are included are in particular related to
information technology and climate (respectively climate related disasters). For
the extended and updated data set it is clear that with an equal number of coun-
tries and variables regression based methods cannot be meaningfully directly
applied. For the extended data set we partition the explanatory variables in 12
groups (see Table 8 in Appendix A) and also study the importance of the vari-
ables within these groups. The final analysis is then the assessment of the relative
importance of the 16 variables that are significant from the 12 groups jointly.
For the SALA-I-MARTIN, DOPPELHOFER, and MILLER (2004) and FERNANDEZ,
LEy, and SteEL (2001) data sets we only study the effect of individual variables
on GDP growth as this allows most directly for a comparison to the underlying
studies in which the variables” effects on growth are also considered individu-
ally. However, when considering the conditional effect of individual variables we
consider both growth and convergence equations. The latter include in addition
to the explanatory variable under study also initial GDP as an explanatory vari-
able, and of course the principal components. Note that in the former, however,
in our approach the effect of initial GDP is partly included since initial GDP is
in that case throughout included in the sets of control variables from which the
principal components are computed.

Clearly, endogeneity may be a problem that plagues growth and convergence
analysis (DurRLAUE, KOURTELLOS, and TaN, 2008; Koor and StracHAN, 2012).

14 Since all regressions considered in this paper also include an intercept, this then leads to the
fact that for this data set the total number of explanatory variables is equal to the number of
countries.
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If instruments are available, PCAR analysis can be applied using I'V rather than
OLS estimation. This stems from the fact that the principal components are
linear combinations of the original variables. In case that only focus variables
are endogenous, standard IV estimation in the PCAR is straightforward. In case
that (also) some auxiliary variables are endogenous, one can calculate the prin-
cipal components based on the fitted values of a regression of the auxiliary vari-
ables on the instruments (including the exogenous auxiliary variables). We do
not pursue this approach here, as we intend to benchmark our method against
standard results available in the literature.

3.1 The SALA-I-MARTIN, DoPPELHOFER, and MILLER (2004) Data

We start by considering the conditional effects of all the variables individually on
GDP growth. The results for the SALA-I-MARTIN, DOPPELHOFER, and MILLER
(2004) data are given in Table 1. The table reads as follows: In the column ‘Reg.
wlo PC’ the results of the regression of GDP growth on the respective variable
only are reported, the column labeled ‘PCAR w/o GDPO’ shows the results of
the growth regressions of GDP growth on the indicated variable when in addi-
tion principal components (calculated from the rest of the variables) are included
in the regression. The column PCAR GDPO’ shows the results of the conver-
gence regressions of GDP growth on inital GDDP, the indicated variable and the
principal components. The column ‘SDM04’ displays the unconditional poste-
rior means of the coefficient estimates computed from SALA-I-MARTIN, DOPPEL-
HOFER, and MILLER (2004, Table 3, pp.828-829) and Sara-1-MaRrTIN, Dop-
PELHOFER, and MILLER (2004, Table 4, p. 830) for mean prior model size 7. The
column ‘PIP’ displays the posterior inclusion probabilities from SALA-I-MARTIN,
DoPPELHOEER, and MILLER (2004, Table 3, pp. 828—829) and the correspond-
ing ranks are displayed in the column labeled ‘Rank’. Throughout the tables in
the paper numbers in bold indicate significance at the 5% level and numbers in
italic indicate significance at the 10% level.

As expected, the results from the first column differ most strongly from the
results in the other columns. These simple regressions, of course, suffer heavily
from omitted variables biases and we include them to illustrate the effect that not
controlling for other variables has on the results. These effects are twofold: First,
many variables (altogether 42 out of 67) appear to be significant and second, as
also expected, the coefficient estimates differ from the PCAR results. The resules
of the growth and convergence equations augmented by principal components
are very similar for this data set, both in terms of significance of variables as well
as with respect to the coefficient estimates.
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We start by discussing the convergence equation results (from column PCAR
GDPO0). In addition to initial GDP (GDPO0, negative, 4)® 8 variables are found
to be significant at the 5% level and 6 at the 10% level using WarTE (1980) het-
eroskedasticity robust standard errors. The variables, other than initial GDP,
that are significant at the 5% level are in alphabetical order of the variable name:
the fraction of Buddhists in the population in 1960 (BUDDHA, positive, 16);
the fraction of Confucian in the population in 1960 (CONFUC, positive, 9);
the population density in 1960 (DENS, positive, 19); the dummy for East Asia
(EAST, positive, 1); the logarithm of hydro carbon deposits in 1993 (LHCPC,
positive, 43); life expectancy in 1960 (LIFE, positive, 8); primary schooling enrol-
ment in 1960 (P, positive, 2); and real exchange r