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Rich Iovanna and Colin Vance*

Satellites and Suburbs: A High-resolution Model of
Open-space Conversion

Abstract
This study examines the determinants of urbanized area across a 10,000-mile
square swath in central North Carolina, an area undergoing extensive con-
version of forest and agricultural land. We model the temporal and spatial di-
mensions of these landscape changes using a database that links five satellite
images spanning 1976–2001 to a suite of socioeconomic, ecological and GIS-
created explanatory variables. By specifying the complementary log-log deri-
vation of the proportional hazards model, we employ a methodology for
modeling a continuous time process – the conversion of land to impervious
surface – using discrete-time satellite data. Spatial effects are captured by
several variables derived from the imagery that measure the landscape config-
uration surrounding a pixel. Empirical results confirm the significance of
several determinants of urbanization identified elsewhere in the literature, in-
cluding proximity to roads and population density, but also suggest that the
parameterization of these variables is biased when the influence of landscape
configuration is unaccounted for. We conclude that the inclusion of spatial
pattern metrics significantly improves both the explanatory and predictive
power of the estimated model of urbanization.

JEL classification: R14, C41

Keywords: Urbanization, hazard models, satellite imagery

October 2006

*Rich Iovanna, Economic and Planning Analysis Staff, Farm Service Agency, U.S. Department of
Agriculture, Washington DC; Colin Vance, RWI Essen, Germany. – The authors wish to thank
Manuel Frondel for his comments on an earlier draft. All correspondence to Colin Vance,
Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI Essen), Hohenzollernstr. 1–3,
45128 Essen, Germany, Fax: +49 201 / 81 49-200. Email: vance@rwi-essen.de.



1. Introduction

Over the past two decades, the conversion of farm and forestlands on city
fringes throughout the United States has continued unabated, with the ur-
banized area expanding from approximately 51 to 76 million acres between
1982 and 1997 (Fulton et al. 2001). While partly reflecting growing prosperity
and preferences for increased living space, this trend has raised concerns on
several fronts. Through its strong association to the increase in impervious
surfaces, expansion of the urban frontier eliminates, degrades, and fragments
natural habitats, contributes to poor air quality through increased reliance on
vehicle travel, and disrupts such ecosystem services as aquifer recharge and
nutrient cycling. In turn, such disruptions can impose significant costs on mu-
nicipalities, including higher medical costs for air quality-related illnesses and
increased expenditures for the provision of public services and infrastructure.
Aesthetic, social, and cultural costs may further compound these ecological
and health impacts: The movement of populations away from central city
areas has been argued to not only contribute to urban blight (Jargowsky 2001),
but also a loss of cultural heritage when farmland and forest is replaced by
helter-skelter development characterized by strip malls, office parks, and dis-
connected residential communities (Kunstler 1994).

To the extent that development decisions create landscape mosaics that alter
ecological function and constrain the choice set of future land-use alternatives,
efforts to understand urban expansion can contribute greatly to land-use
planning and environmental policy processes. Such efforts often come in the
form of models, and those that are fine scale and spatially explicit are partic-
ularly meaningful because of the tight connection between the provision of
habitat and other services by ecosystems and the pattern of the landscape
mosaic in which the ecosystems function. When patches of impervious surface
manifest in an open-space matrix, the environment is adversely affected as
ecosystems are fragmented and the ratio of edge to interior area increased.
Similarly, where development takes place (e.g., in terms of proximity to
surface waters) may be as relevant as how much when considering impacts
(e.g., aquatic ecosystem stress).

In recent years, an increasing number of studies have combined principles
from landscape ecology with spatial-econometric methods to describe the
effect of human decision-making, ecosystem function, and their interaction on
the landscape across different spatial scales (e.g., Geoghegan et al. 1997; Kline
et al. 2001; Irwin, Bockstael 2002; Fang et al. 2005). Many of these studies have
looked to satellite imagery for their unit of observation, for their dependent
variable, for landscape metrics to explain observed conversion, and to handle
statistical problems emerging from spatial autocorrelation (Turner et al. 1996;
Chomitz, Gray 1996; Nelson, Hellerstein 1997; Pfaff 1999; Srinivisan 2005;
Vance, Iovanna 2005).
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The goal of the present paper is to explore the potential of satellite imagery,
and the hazard models derived from it, to explain and predict the conversion
of open space to impervious surface. The novelty of our approach relates to
both the degree to which we rely on satellite imagery and the use of a
modeling specification well suited to a continuous process that is measured in
discrete time (by the imagery).

The considerable coverage over space and time afforded by satellite imagery
is advantageous for projecting trends and for policy simulation. In contrast,
simulation can be problematic when datasets are used that do not represent at
a fine resolution the entire surface of the region of interest, such as the sample
of fields underlying the National Resources Inventory.

Our observations are the pixels that compose satellite imagery and our de-
pendent variable signifies whether or not conversion to impervious surface
has occurred over the interval of time between two satellite images. We use
data from five images spanning the years 1976–2001 to examine the drivers of
conversion across a 25,900 square kilometer swath in central North Carolina,
an area that has lost considerable open space over the last two decades.

Attention in the land-use change literature is turning toward illuminating the
still poorly understood role of natural amenities in the process (Alig et al.
2004). Another current theme is how the spatial configuration of land use, by
virtue of its association to both accessibility and spatially determined ame-
nities, is, itself, an important determinant of conversion of open space to de-
veloped uses. In addition to a broad array of time-varying covariates that
measure the land allocation response to the site and locational attributes asso-
ciated with each pixel, our model includes GIS-created pattern metrics that
serve as controls for spatial autocorrelation, landscape amenities, and spatial
externalities from neighboring land uses.

Our specification is based on a dynamic, profit-maximizing framework that
suggests several possible determinants of land conversion from open space to
impervious surface. We subsequently test for the significance of these deter-
minants with an empirical model estimating the likelihood of conversion that
accommodates the temporally discrete information on conversion provided
by the satellite imagery. While a litany of discrete-choice models already exist
to examine differences in land cover or use (Lubowski et al. 2003), they are
ill-suited to policy simulation because they fail to reflect the time dependence
of the conversion process.

Modeling specifications have only recently focused on estimating directly the
risk or hazard (instantaneous risk) of conversion.The distinguishing feature of
our model is that it accommodates the temporally discrete information on
conversion provided by the satellite imagery. In doing so, the specification
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allows for time-varying covariates, unlike the accelerated failure-time model
in Hite et al. (2003) and estimation of conversion probabilities, unlike Cox re-
gression in Irwin et al. (2003).

Our empirical results confirm the hypothesis that pixel-level characteristics –
particularly what surrounds a pixel – have a major influence on the likelihood
of its conversion. We also find that the omission of landscape pattern variables
can lead to biased inferences regarding the influence of other covariates, such
as proximity to the urban core, which is commonly identified as an important
determinant of land-use change. In addition to parameter and goodness-of-fit
estimates, cartographic and nonparametric validation exercises provide added
support to an unconstrained model that includes such variables. The paper
concludes with a simple policy simulation that illustrates the model’s practical
merit.

2. The Study Region

The amount of privately-owned land, the mix of land uses, and the pace of
change among them were leading considerations for site selection of this ex-
ploratory exercise. The study region straddles portions of the Piedmont and
the Inner Coastal Plain of North Carolina, two distinct physiogeographic
zones along a north-south axis across the state (Figure 1). Over the centuries
of human occupation, what had been completely forested has been trans-
formed into a patchwork that now includes croplands, fields in varying stages
of abandonment, and, increasingly, built-up areas.

The regional economy has transitioned from one based largely on agriculture
to one based on the service sector and on manufacturing, with heavy reliance
on the forest-products sector. Although the state remains a major producer of
tobacco, sweet potatoes, and hog products, the spatial extent of agricultural
production has declined drastically since its peak in the early 1900s (Lilly
1998). And while the extent of forests has remained relatively stable, peaking
in the early 1970s at 20.13 million acres and then dropping back down to ap-
proach the 1938 level of 18.1 million acres by 1990 (Brown 1993), the U.S.
Forest Service anticipates a loss of 30% of North Carolina’s privately-owned
forest by 2040, with the Interstate 85 corridor extending southward from
Raleigh-Durham designated as a “hotspot” of forest loss due to continuing ur-
banization (Prestemon, Abt 2002; Wear, Greis 2002).

In general, North Carolina is is a national leader in terms of land-use change.
A highly publicized report recently released from Smart Growth America
(Ewing et al. 2003) ranked Greensboro and Raleigh-Durham as second and
third among a listing of 83 U.S. cities in which the spread of development far
outpaces population growth. In Raleigh, for example, the population in-
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creased by 32 percent between 1990 and 1996, while its urbanized land area in-
creased nearly twofold (Sierra Club 1998).

3. Formalization

Responding to concern about the rate and extent of land-use change requires
understanding the causes, timing and location of land-use change. If we know
why and when pressures to develop increase for a given tract, we will be in a
better position to evaluate where significant ecological consequences are
likely to occur, as well as the merit of conservation responses. The decision to
convert depends on a complex multiplicity of factors, including the market
value of output from the land in alternative uses, expectations about the future
use of neighboring lands, and the surrounding composition of land ownership.
Following the work of Capozza/Helsley (1989) and Boscolo et al. (1998), the
theoretical approach taken here attempts to structure this complexity by as-
suming that a unit of land (referred to hereafter as a “pixel” to keep this dis-
cussion consistent with the data we ultimately use) will be converted if the net
present discounted benefits of doing so are greater than the net present dis-
counted benefits of leaving the land under its present use. In other words, the
land manager converts pixel i in period T to maximize the following objective
function:

Satellites and Suburbs: A High-resolution Model of Open-space Conversion 7
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Source: Adapted from Stear 1973.
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where
Ait : is the return derived from a commodity-based use of the pixel in period t, i.e., the agricul-

tural or forestry rent;
Dit is the return to development in period t, i.e., the development rent;
X it is a vector of variables that determine returns to development and commodity uses;
CT is the cost associated with conversion; and
δ is the discount rate, 1/(1+r).

Assuming irreversibility of the conversion process, there are two necessary
conditions for conversion to take place: The first is that the discounted stream
of returns derived from conversion are greater than that of leaving the pixel in
its present use, net of the one-time conversion costs:
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=
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The operative condition, however, is one that will be met well after that
specified by equation (2): Conversion will occur when the development rent
just equals the opportunity cost, OC, of developing that period as opposed to
the next. Before time T and assuming development rents are rising over time
and conversion costs are declining, it is more profitable to the land owner to
defer development for at least another period. After T, the landowner loses
money every period that development is deferred. More formally, a developed
pixel is one in which:

(3) D OC A C Cit it it it it it≥ = + − ++( ) .δ ε1

With equality between development rent in period t and the sum of agri-
cultural rent and the cost savings from deferring development, the pixel
converts. Equation (3) indicates that higher development rents hasten con-
version, while higher agricultural rents, conversion costs, and the rate of
decline in costs defer conversion for one pixel relative to another.

The error term inserted in equation (3) accounts for unobserved idiosyncratic
factors associated with pixel i at time t; the greater it is, ceteris paribus, the less
likely is conversion. If we further specify ε * as the amount that makes (3) an
equality, then we find the likelihood of conversion at time t to simply be the cu-
mulative density of ε evaluated at ε∗. In other words, if the error for pixel i at
time t is less than or equal to ε*, conversion occurs.

In taking the above framework to the empirics, we focus on the critical role
that timing plays in the risk of conversion. Given that conversion may occur at
any point in time during the period under observation and that the factors in-
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fluencing conversion are often continuous processes, survival modeling is
uniquely suited to the task of estimating the parameters of interest. Rather
than modeling the direct influence of a covariate on conversion probabilities,
survival models are concerned with the hazard rate underlying the proba-
bilities, i.e., the instantaneous risk that pixel i is cleared in period t conditional
on not having been converted before t. While conventional methods such as
linear or logistic regression have been applied in these contexts, they are
ill-equipped to handle the features that often characterize survival data, in-
cluding time-varying explanatory variables and censoring or truncation of the
dependent variable.

Derived from satellite imagery, our data are interval censored. We know
simply whether or not an observation’s survival time falls somewhere between
two dates. Accordingly, the dependent variable assumes a value of 1 if con-
version occurs over an interval between the dates and 0 otherwise. To rec-
oncile the temporal continuity of the conversion process being modeled with
this coarseness in the measurement of timing, and because alternative link
functions for binary data are inappropriate for such processes, we specify a
complementary log-log survival model. By doing so, the relationship between
the X covariates and the probability that opportunity costs (OC) are low
enough for conversion to occur (i.e., that ε is less than or equal to ε*) is
assumed to be:

(4) P eOC
h= − −1 ,

where

(5) h e X= +α β ... .

It is to the researcher’s considerable advantage to rely on the complementary
log-log link when formulating the generalized linear model for estimation
since it can be derived directly from interval-censored data of event time. As a
consequence, a coefficient estimate’s relationship to the hazard of conversion
is unaffected by time, itself. For alternative estimators, such as the logit or
probit, the model fundamentally changes as one shifts consideration from one
interval to another (Allison 1995).

As a proportional hazards model and a discrete analogue to that developed by
Cox (1972), the complementary log-log model readily accommodates time-
varying covariates and requires no assumptions regarding the functional form
of the baseline hazard rate. This enables attention to be focused specifically on
the effect of the covariates on the relative risk of a transition,which is obtained
in a straightforward manner. Unlike the Cox model (such as that used in Irwin
et al. 2003), the complementary log-log model is estimated using maximum
likelihood, rather than partial likelihood, allowing one to readily generate es-
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timates for the effect of time on the odds of a transition, facilitating the
model’s use for prediction (see Allison 1995, for further discussion).

4. Measurement of Conversion

The econometric model presented in this paper is estimated using a time series
of five classified Thematic Mapper (TM) and Landsat Multispectral Scanner
(MSS) satellite images over central North Carolina for the years 1976, 1980,
1986, 1993, 2001. The process of imagery classification was preceded by the
standard pre-processing activities, including geometric correction, spectral-
spatial clustering, and radiometric normalization. Classification then pro-
ceeded according to a hybrid change detection methodology combining radio-
metric and categorical change techniques on a pixel-by-pixel basis. This pro-
cedure produced four land cover classes: forest, non-forest vegetation, im-
pervious surface, and water. From these classes, we generated a binary de-
pendent variable equaling 1 if a conversion from forest or non-forest vege-
tation to impervious surface occurred between two dates and 0 otherwise. Our
data indicate a 67% increase in impervious surfaces between 1976 and 2001,
which is roughly consistent with the NRI estimate of a 62% increase in urban
areas for NC as a whole between 1982 and 1997 (USDA 1997b).

Conversions to water were eliminated from the observations used for esti-
mation, as were those relating to pixels whose classification in the first year
(1976) was either water or impervious surface. Transitions between forest and
non-forest vegetation were also treated as censored as these may be attrib-
utable more to forest rotations than permanent conversion from one land
cover to another. After overlaying two GIS layers of tenure data from ESRI
(2000a, 2000b) and the North Carolina Department of Parks and Recreation
(2003), those pixels falling under public ownership (e.g., national, state, and
municipal parks) were also eliminated.

Upon classifying the imagery, a systematic sample of pixels was drawn that
provided 65,991 pixels for model estimation. The grid pattern across the sat-
ellite scene was such that roughly 1.2 kilometers separated each pixel from
their nearest neighbors. Systematic sampling is a commonly applied technique
to handle spatial correlation of unobserved variables that may emerge from
the clustering of behavior produced by shared attributes among neighboring
units (Turner et al. 1996; Cropper et al. 2001; Kline et al. 2001). The conse-
quences of spatial autocorrelation include inefficient, though asymptotically
unbiased estimates. However, in cases in which the unobservable variables are
spatially correlated with the included explanatory variables, the coefficient es-
timates on the included variables will be biased (Irwin, Bockstael 2001). A
major source of spatial autocorrelation arises from multiple observations
falling under common landowners (Kline et al. 2001). Given that the average
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size of private forest ownership in North Carolina is 9.7 hectares (Powell et al.
1992), while the average farm size is approximately 65 hectares (U.S. Census of
Agriculture 1997a), 1.2 kilometer pixel separation was deemed an adequate
distance to minimize the likelihood of drawing pixels for our sample that
belong to the same owner.

5. Explanatory Variables and Hypothesized Effects

Several static and time-varying covariates are included in the model, the
values for which correspond to the start year of the interval given by the dates
of the satellite imagery (Table 1). The suite of site and locational attributes is
intended to reflect the supply and demand side factors that influence the like-
lihood of land-use change. In principle, many of these factors could work in
both directions on the conversion hazard, but in what follows we hypothesize
those effects that are likely to dominate.

5.1 Window Metrics

To capture the influence of what Healy (1985) has termed juxtaposition effects
– or “spatially bounded externalities that affect adjoining or nearby land”
(Alig, Healy 1987: 225) – we derived four time-varying window-based metrics
from the imagery that measure the landscape configuration surrounding a

Satellites and Suburbs: A High-resolution Model of Open-space Conversion 11

Descriptive Statistics

Variable name Units Mean Standard deviation

dep. var. (1=conversion) 0,1 0.03 0.10
forest 0,1 0.63 0.48
wetland 0,1 0.12 0.32
slope degrees 0.60 1.19
elevation meters 137.18 65.81
distance to city kilometers 42.35 20.07
distance to road kilometers 1.41 1.32
distance to chipmill kilometers 63.74 44.56
near public lands 0,1 0.09 0.28
distance to hazardous waste site kilometers 11.37 6.95
per capita income $1000/person 17.10 4.54
population density people/km2 75.03 63.34
agricultural returns $1/acre 104.04 123.38
inner impervious surface percent 1.69 6.26
outer impervious surface percent 2.02 6.47
percent water percent 0.51 3.05

Table 1



pixel. The first metric is the percent of the area within a window of approxi-
mately two square kilometers that is classified as impervious (inner im-
pervious surface), which serves as a spatial lag variable to control for the an ad-
ditional source of spatial autocorrelation that may emerge from the diffusion
of behavior between neighboring units. The window size covers an admittedly
arbitrary area, but one which was based both on best professional judgment of
a typical developer’s spatial frame of reference and on previous studies that
have found window-sizes of similar magnitude to capture spatial externalities
(Geoghegan et al. 1997; Fleming, 1999; Irwin, Bockstael 2002). Given the likely
predominance of agglomeration effects associated with impervious surface in
the immediate vicinity of the pixel, we hypothesize the sign of this variable to
be positive.

The second metric complements the first, and is the percent of impervious
surface in a region between the aforementioned window and a larger one with
sides twice as large (outer impervious surface). The inclusion of this variable,
which is non-overlapping with inner impervious surface, allows for varying pa-
rameters with increased distance from the pixel. Such variation may arise, for
example, from spatial externalities associated with neighboring pixels. While
the effect of such externalities is expected to vary depending on the sur-
rounding configuration of land uses, evidence obtained from Irwin/Bockstael
(2002) suggests the net effect to be negative, a finding that they attribute to
“repelling effects” associated with low-density residential development. It
bears noting that Irwin/Bockstael use parcel-level data (i.e., each observation
being a tract of land under common ownership), allowing them to readily
identify the effects of neighboring land parcels. We acknowledge that the
absence of parcel boundary information here makes it difficult to distinguish
true externalities associated with a neighboring parcel from spatial effects
within the parcel itself. With respect to outer impervious surface, however,
there are two reasons why any difference between a window-based calculation
of imperviousness centered on the parcel and that on an undeveloped pixel
within the parcel is likely to be negligible. First, the calculation covers a surface
area that is a kilometer in width and a kilometer removed from the pixel on all
sides, so that overlap with the parcel is difficult to conceive. Moreover, to the
extent that the undeveloped pixels comprising the sample are within parcels
that are themselves undeveloped, whatever impervious surface entering in
calculation of the metric will be primarily – if not exclusively – associated with
neighboring parcels.

The remaining metric, based on the smaller window, is the percent of area clas-
sified as water (percent water). The effect of percent water cannot be hypoth-
esized a priori: while developers are expected to covet increased water surface
area as a residential amenity, this feature could also confer benefits to agri-
cultural activities.
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5.2 Remaining Explanatory Variables

In addition to the window-based metrics, time-varying proximity-based
metrics are also included in the specification. The first is the Euclidean
distance to the nearest woodchip mill (distance to chipmill), which is a poten-
tially important cost attribute of forestry operations. Between 1980 and 1998
the number of such mills in this region increased from two to 18, a trend that
many perceive as hastening environmental degradation and biodiversity loss
by facilitating the clear-cutting of non-industrial woodlots that is required to
develop the underlying land (Schaberg et al. 2000). Whether the mills thereby
increase the hazard of conversion or alternatively serve to maintain forested
land in a rotation cycle, however, is a question left to the empirical results.

The second proximity metric is the Euclidean distance to the nearest primary
or secondary road (distance to road), which is expected to have a negative
effect on the conversion hazard given higher access costs. The final proximity
metric (distance to city) measures the Euclidean distance to the nearest city
with a population of over 50,000 (i.e., Charlotte, Durham, Fayetteville,
Greensboro, Raleigh, Winston-Salem). As a measure of the influence of
market proximity, an increase in this variable is expected to exert a negative
effect on the conversion hazard. The parameter for fourth proximity metric,
the Euclidean distance to the nearest hazardous waste site (distance to haz-
ardous waste site), is expected to be positive.

A fifth proximity metric does not change with time and is binary: Near public
lands indicates whether public lands are nearby the pixel (within the outer
window mentioned, above) and is hypothesized to have a positive coefficient
through its effect on the amenity value of the pixel.

Additional pixel-level variables are included in the model that do not change
with time, including elevation, slope, and dummy variables indicating forest
cover (forest) or wetlands (wetland). All of these variables are expected to
have negative effects given higher conversion costs as well as higher oppor-
tunity costs associated with pixels under mature or ecologically important veg-
etation.

Varying by county and time interval, a returns to agriculture metric is also in
the model to capture the opportunity costs of commodity uses (agricultural
returns). This metric, which is expected to negatively affect the conversion
hazard, is calculated as county total farm receipts less costs, divided by farm
acreage in the county (USDA 1997a). This metric was associated with even
forested pixels, pertaining as it does to the mix of uses to which a farmer may
put their land, including forestry. Two additional time-varying indicators of
county-level socioeconomic conditions included in the model are the deflated
per capita income and population density. As proxies for increased demand for
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developed land, both variables are expected to increase the conversion
hazard.

Finally, we include a set of county dummies representing the counties in the
region that experienced at least one instance of conversion and a set of year
dummies indicating the beginning of each interval. The former serve to limit
omitted variable effects arising from county-level differences in governance,
zoning, and other factors that may be fixed over time while the latter control
for the effects of autonomous shifts in the policy and economic environment
that occur over time in the region as a whole.

6. Results

Table 2 presents results of two complementary log-log models of the deter-
minants of the hazard of conversion. The second model (the unconstrained
model) is distinguished from the first (the constrained model) by its inclusion
of the window-based metrics. Although interpretation of the coefficient es-
timates from the complementary log-log model is complicated by the log-odds
transformation of the dependent variable, we can readily calculate their “risk
ratio”. In the case of the continuous covariates, the risk ratio is interpreted as
the percent change in the hazard rate from a unit increase in the covariate.
These values are obtained by subtracting one from eβ and multiplying the re-
sulting value by 100. In the case of the dichotomous variables, the risk ratio is
simply equal to eβ , and can be interpreted as the ratio of the estimated hazard
for observations with a value of one to the estimated hazard for those with a
value of zero (Allison 1995).

Before discussing the parameter estimates of the two models, we revisit the
issue of spatial autocorrelation and whether our sampling approach,
combined with the window metrics we include in Model 2, assuages the
concern. Using a modified Moran’s I diagnostic appropriate for limited de-
pendent variable models (Kelijian, Prucha 2001), we report some success: At
1.05 on the standard normal distribution, we cannot reject the null of no
spatial autocorrelation.

While Models 1 and 2 are both highly significant, with chi-square values of
2015 and 2460, respectively, a likelihood ratio test of the null-restrictions
imposed by Model 1 on the effects of the window based metrics suggests that it
be rejected in favor of the unconstrained Model 2. The chi-square value of the
test is 445 with four degrees of freedom, providing clear-cut evidence that the
metrics improve the fit of the model. In light of our highly unbalanced sample,
we refer to Goodman/Kruskal’s gamma (Goodman, Kruskal 1954, 1959, 1963)
as an indicator of the predictive performance of the two models. This is a
non-parametric, symmetric metric based on the difference between con-
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cordant (C) and discordant (D) pairs of predicted and actual values of the de-
pendent variable as a percentage of all pairs ignoring ties.Gamma is computed
as ( / ) /( )C D C D+ , and can be interpreted as the contribution of the inde-
pendent variables in reducing the errors of predicting the rank of the de-
pendent variable. The value of gamma calculated from Model 1 is 0.85, while
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Complementary log-log Model of the Hazard of Conversion to Impervious Surface

Model 1: Constrained Model Model 2: Unconstrained Model

Coef. est. % Chg. Coef. est. % Chg.

forest –0.682
(0.000)

0.506 –0.675
(0.000)

0.509

wetland –0.842
(0.000)

0.431 –0.694
(0.000)

0.500

slope 0.017
(0.687)

1.684 0.018
(0.687)

1.816

elevation 0.006
(0.004)

0.574 0.002
(0.380)

0.200

distance to city –0.033
(0.000)

–3.227 –0.004
(0.494)

–0.399

distance to road –0.941
(0.000)

–60.968 –0.536
(0.000)

–41.492

distance to chipmill –0.004
(0.121)

–0.392 –0.002
(0.562)

–0.200

near public lands 0.593
(0.000)

1.810 0.185
(0.102)

1.203

distance to hazardous waste site –0.175
(0.000)

–16.054 –0.084
(0.000)

–8.057

per capita income 0.160
(0.057)

17.351 0.117
(0.169)

12.412

population density 0.012
(0.030)

1.157 0.011
(0.051)

1.106

agricultural returns –0.003
(0.003)

–0.267 –0.003
(0.001)

–0.300

Window metrics
percent water 0.038

(0.011)
3.873

inner impervious surface 0.157
(0.000)

17.000

inner impervious surface
squared

–0.002
(0.000)

–0.200

outer impervious surface –0.018
(0.010)

–1.784

intercept –5.566
(0.000)

–7.502
(0.000)

chi2 county dummies (27) 113
(0.000)

58
(0.000)

chi2 time dummies (3) 149
(0.000)

142
(0.000)

LR chi2 (60, 46) 2015 2460
n_obs 65991 65991

p-values in parenthesis.

Table 2



that of Model 2 is 0.90. The improvement in the predictive ability of the model
with the inclusion of the window metrics is thus considerable, reducing the
fraction of uncertainty remaining in the constrained model by a third.

Turning to the coefficients of the window metrics, all are seen to be highly sig-
nificant, with the inner ring variable having the strongest positive effect on the
conversion hazard. Its magnitude, however, decreases with increases in im-
pervious surface, as evidenced by the negative coefficient of the squared term.
Increased water surface also has a positive but somewhat weaker effect, in-
creasing the hazard by 3.9%. The only window metric having a negative effect
is that measuring the outer band of impervious surface, pointing to the
presence of varying parameters across adjacent bands surrounding the pixel.
As noted above, this finding supports research by Irwin/Bockstael (2002), who
employ similarly constructed variables derived from parcel-level data in
Maryland to test for spatial externalities. The negative coefficient in theirs and
the present study suggests that existing development in the vicinity of an unde-
veloped pixel reduces the hazard of conversion, a likely reflection of pref-
erences for open space. It bears noting that the replication of this result with
the pixel level data used here hinges on the inclusion of the inner impervious
surface metric. Excluding this variable was found – in an unreported model –
to result in a positive and significant effect of outer impervious surface, high-
lighting the potential for spurious results when spatially lagged effects are un-
accounted for.

Beyond improving the fit of the model, the inclusion of the window metrics
produces and resolves several noteworthy discrepancies with respect to the
significance and magnitude of the remaining covariates. The coefficient on ele-
vation is significant but unexpectedly positive in Model 1, a counterintuitive
result that is resolved by the insignificant estimate in Model 2. Likewise, per
capita income and the dummy indicating proximity to public lands, both of
which are significant and positive in Model 1, are insignificant at the 5% level
in Model 2. Another discrepancy is seen with respect to the effect of distance
to the nearest city. Model 1 suggests this variable to be a negative and highly
significant determinant of the conversion hazard, an effect that fades away
with the inclusion of the window metrics in Model 2. This result likely reflects
a negative bias imparted on the effect of the distance measure in Model 1 re-
sulting from the combined influence of the uniformly positive influence of
inner impervious surface on the hazard of conversion together with the
negative correlation between this variable and the variable distance to city
(equal to –0.42). More plainly stated, our results may suggest that returns to
economic activities bear increasingly little relation to the proximity to the
urban core, implying, in turn, that a dominant landscape pattern is one charac-
terized by sprawl. Taken together, these results suggest that controlling for the
influence landscape pattern can have a substantial bearing on the conclusions
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drawn with respect to other features of the landscape, many of which have im-
mediate relevance for policy planning.

The remaining statistically significant variables across the two models are
largely in agreement: Among the stronger effects are the distances to the
nearest road and nearest hazardous waste site measures, both of which are sig-
nificantly greater than zero for both models. The positive sign on the latter is
counterintuitive at first glance, but may reflect, among other things, the po-
tential for larger tracts to be at risk of development in less desirable neigh-
borhoods because land is less expensive (Alonso 1964). The variable mea-
suring the return to agricultural land uses has the hypothesized negative effect
on the hazard of conversion and is of roughly the same magnitude in both
models. Likewise, the forest and wetlands dummy both have the expected
negative coefficients. Based on the results from Model 2, forested pixels have
roughly 51% of the hazard of non-forest pixels, with the corresponding mag-
nitude for wetlands at 50%.While the coefficients of the 27 county dummies in
the model are not shown in the table, using a chi-square test of their joint sig-
nificance we reject the hypothesis at the 1% level that all of these coefficients
are zero in both models. Finally, joint tests of the year dummies are also found
to be statistically significant at the 1% level.

7. Validation

To explore the validity of the models, we developed maps indicating the
pattern of development between 1976 and 2001 (i.e., across all four intervals)
that is observed and that is predicted by the unconstrained and constrained
models. In lieu of selecting an arbitrary threshold probability to identify pre-
dicted conversions, we interpolate the predicted probabilities for our sys-
tematic sample to create a conversion probability “surface” that spans our
study area and is amenable to visual inspection. A “natural neighbor” al-
gorithm was employed to generate a raster for this purpose that corresponds
to the extent and resolution of our original satellite data (ESRI 2004).

The surface is colored according to the relative magnitude of the estimated
probability calculated from the parameter estimates of the econometric
models in Table 2. Dark green indicates where conversion is predicted to be
least likely and red where it’s most likely. The tighter the correspondence
between the high probability colors and the symbols indicating the 609 ob-
served instances of pixel conversion in the sample, the more the estimated
model is validated. The performance of the constrained model, seen in Figure
2, is not impressive, even without the other one for comparison. The areas of
high predicted probability are relatively few and many of the observed con-
versions lie outside them. The unconstrained model’s map in Figure 3 depicts a
generally superior picture with crisper transitions between areas of very high
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and very low probability. There is also greater correspondence between the
high probability regions and the instances of actual conversion, including the
more dispersed ones.

As a final diagnostic check on the performance of the two models, Figure 4
presents their associated receiver-operating characteristic (ROC) curves,
which plot the percentage of converted pixels correctly forecast (on the y-axis)
against the percentage of non-converted incorrectly forecast (on the x-axis)
for each possible prediction threshold. As with the approach used for pro-
ducing the maps, a key advantage of constructing ROC curves is that it ob-
viates the need to select an arbitrary threshold for designating whether a pre-
dicted probability generated by the model correctly predicts a changed pixel.
The area under the ROC curve, which ranges from zero to one and is
non-parametric, can be interpreted as the proportion of correct forecasts
across all possible thresholds. The closer the ROC curve is to the diagonal, the
less useful is the model for discriminating between open space and converted
pixels. Comparing the two curves, we see that that generated by Model 1 has
an area of 0.91, while the area of the curve generated by Model 2 is slightly
higher at 0.94. Moreover, a chi-square test that the areas are equal is, at 63.89,
clearly rejected, providing further evidence for the superiority of Model 2.
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Figure 2

Validation Map for Model 1 (Constrained Model)



8. Simulation

We now illustrate the utility of our modeling approach in terms of policy simu-
lation by making a simple comparison between the unconstrained model and
its depiction in Figure 2 – the baseline scenario – and a counterfactual scenario
in which all counties are assumed to encourage the conversion process to a
degree no greater than that of Durham County (whose effect, ceteris paribus,
is relatively low). The simulation approach proceeds interval by interval and is
recursive so that estimated probabilities in a given interval are not only in-
fluenced by this modification directly but also via its cumulative effect on the
window-based metrics.Comparing the resulting map (Figure 5) to the baseline
portrayed on Figure 3, we see that applying Durham county’s effect, which
ought to reflect in part their particular approach to regional planning, to other
counties results in considerably less conversion over the study area as a whole.

9. Conclusion

This paper began with a theoretical model in which the timing of conversion is
determined by a comparison of the net discounted returns of the land in de-
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Figure 3

Validation Map for Model 1 (Constrained Model)
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Figure 4

Receiver operating curves

Model 1

Model 2



veloped and commodity-based uses. Based on the theoretical framework, the
paper then presented an application of a hazard model as a means of analyzing
the effects of static and time-varying socioeconomic and agronomic variables
on the conditional risk that land is converted to developed uses. By specifying
the complementary log-log derivation of the proportional hazards model, we
employed a methodology for modeling a continuous time process using
discrete time satellite data.

The empirical analysis confirmed several results uncovered elsewhere in the
literature, including significant impacts of proximity to roads, agricultural
prices, and population density. As in the parcel based analyses of Geoghegan
et al. (1997) and Irwin/Bockstael (2002), we additionally find support for the
hypothesis that spatial effects, as measured here by the landscape pattern
metrics derived from the satellite imagery, are important determinants of the
land conversion process. Not only did their inclusion significantly improve the
fit of the model, but it also produced a tighter correspondence to the actual
pattern of change, as evidenced by both a cartographic display of the predicted
transitions and ROC curves.
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Figure 5

Validation Map for Model 2 (Unconstrained Model)



These results are significant to a range of issues that have relevance for land
use planning, particularly as regards the siting of roads, protected areas, haz-
ardous waste facilities, and other landscape development decisions. Such in-
terventions not only leave a direct ecological footprint, but also impact the
future trajectory of change across adjacent land units. Reliably predicting the
location, extent, timing and character of these changes is critical to ensuring
that the planning process incorporates the human and environmental di-
mensions of the policy options under consideration. The techniques applied in
this study can inform this process by providing both the statistical and spatial
confirmation needed for gauging the impacts that are likely to emerge from
changes in the variables over which policy makers have leverage.

There are a couple of obvious extensions for using the empirical model es-
timated in this paper to explore the issue of urbanization. One useful ex-
tension involves acquiring data that make finer distinctions among land-use
classes and allow for a modeling approach that does so as well. A second stage
in the form of a multinomial logit, for example, might be applied to those
pixels that convert to examine why they are developed for a particular use
(e.g., commercial or low-density residential) as opposed to another.

The simulation exercise we report is merely illustrative, and involved trans-
ferring the time invariant factors inherent to one county over to others. Al-
though among these factors may be relative differences in approaches to
managing land-use change, the degree to which this is the case cannot be dis-
cerned. Thus, a second extension is to enhance the ability to conduct policy
simulations and forecasting. Additional satellite imagery would serve to
reduce the interval sizes, rendering the model estimated with these data more
amenable to policy analysis. With information on when and where land use
policies were promulgated and programs implemented, effects could be as-
sessed by adjusting the fixed effects to make room for dummy variables that
are switched on over the relevant dates and across the relevant areas. Even
without additional imagery, the model’s flexibility in incorporating the effects
of time on the hazard of conversion could be exploited to facilitate forecasting
(Allison 1995). Rather than relying on time dummies, a trend variable mea-
suring the time elapsed since some starting date of interest could be included
in the model, such as a change in zoning requirements or the imposition of
smart growth programs. Such an approach would enable experimentation
with different functional forms of the baseline hazard, including the inclusion
of squared and higher order trend terms to allow for nonlinearities in the
hazard rate.
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Appendix

Elaboration of data sources

The satellite images are taken from the northern half of path 16, row 36 and
the southern half of path 16, row 35 of the Landsat satellite orbit. Data for the
years 1976 and 1980 were derived from the MSS imaging system, while the TM
imaging system was the data source for the years 1986,1993,and 2001.Because
TM and MSS data have different spatial resolutions – 58 X 79 meters for MSS
and 30 X 30 meters for TM – the data was spatially degraded to a 60 X 60 meter
resolution for consistency.

The distance to the nearest chipmill was obtained by overlaying a GIS layer of
woodchip mill locations and their establishment dates that is available from
Prestemon et al. (2003) of the Economic Research Unit of the USDA’s Forest
Service.

The measure of distance to the nearest road is based primarily on the road
network available from ESRI, which includes interstate highways, U.S.
highways, and state roads. This measure was modified using image interpre-
tation of Landsat data to reflect the conditions existing at the beginning of
each interval.

The measures of elevation, slope and the forest dummy were derived directly
from the satellite imagery. The wetland category was derived from the 1992
land use and land cover data from the EROS Data Center of the USGS. Data
on the location of public lands were derived from shapefiles produced by
ESRI and the North Carolina Department of Parks and Recreation. The haz-
ardous waste site data were obtained from the North Carolina Corporate
Geographic Database Data Layers.

Data on population density and per capita income were obtained from the De-
partment of Commerce for the years 1982, 1987, and 1992. The data was
linearly interpolated for years in which published data and the satellite
imagery did not correspond.
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