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1 Introduction

Using non-aggregated micro-data for estimating systems of seemingly unrelated equa-

tions – the most prominent among them being demand systems – often encounters

the problem of numerous zero-observations in the dependent variables. These can-

not be appropriately explained by conventional continuous SUR1 models. Instead,

zero-observations may be modelled as determined by an upstream multivariate binary

choice problem. Under the assumption of normally distributed errors, the resulting

joint model represents a multivariate generalization to the classical univariate sample-

selection model, cf. Heckman (1976 and 1979). In the literature, this model is often

referred to as a “censored system of equations”, yet censoring in the narrow sense just

represents a special case of the general model.2

The question of how to estimate the parameters of this model is subject to an

ongoing debate. Clearly, under parametric distributional assumptions full information

maximum likelihood (FIML) is the efficient estimation technique. In fact, FIML has

recently been applied to this problem by Yen (2005). However, the FIML estimator is

computationally extremely demanding, rendering much simpler two-step approaches

worth considering for many applications.

Among two-step estimators the one proposed by Heien & Wessels (1990) has been

particularly popular. Besides numerous other authors, it has been applied by Heien

& Durham (1991), Gao et al. (1995), and Nayga et al. (1999). However, Shonkwiler

& Yen (1999) as well as Vermeulen (2001) show that this estimator lacks a decent

basis in statistical theory and cannot be interpreted in terms of conditional means.

The Heien & Wessels (1990) estimator, therefore, is inconsistent despite its popularity.

Chen & Yen (2005) further investigate the nature of its inconsistency and show that

even a modified variant of this estimator fails to correct properly for sample-selection

bias. Shonkwiler & Yen (1999) propose an alternative simple two-step estimator that

1See Zellner (1963) for the seemingly unrelated regression equations (SUR) model.
2We stick to the relevant literature und use the term “censored” as a synonym for “not selected”.

4



– in contrast to Heien & Wessels (1990) – is theoretically well founded. This estimator

is based on the mean of dependent variables that is unconditional on the outcome of

the upstream discrete choice model. Su & Yen (2000), Yen et al. (2002) and Goodwin

et al. (2004) may serve as examples for applications of this procedure.

Tauchmann (2005) compares the performance of the Shonkwiler & Yen (1999) esti-

mator and two-step estimators that – analogously to the classical Heckman (1976 and

1979) two-step approach, yet in contrast to Shonkwiler & Yen (1999) – condition on

the outcome the upstream discrete choice model. In terms of the mean square predic-

tion error, the unconditional Shonkwiler & Yen (1999) estimator is shown to perform

poorly if the conditional mean of the dependent variables is large compared to its

conditional variance. Tauchmann (2005), however, exclusively focuses on the mean

square error yet does not check for unbiasedness and consistency of the conditional

estimators. Though one may argue that it is of no relevance in applied work whether

an error originates from an estimator’s bias or from its variance, many researches do

avoid inconsistent estimators, even if their mean square error is small. For this rea-

son, addressing unbiasedness and consistency of Heckman-type two-step estimators for

censored systems of equations is a relevant task.

The analysis presented in this article shows that some of the estimators proposed

by Tauchmann (2005) are consistent only for restrictive error-covariance structures. It

also shows that a modified two-step Heckman-type estimator is generally consistent

and performs well in terms of the mean square prediction error. In order to yield

these results, the remainder of this paper is organized as follows: Section 2 introduces

the model to be analyzed in more detail and analyzes the properties of straightfor-

ward multivariate generalizations to the Heckman (1976 and 1979) two-step estimator.

In Section 3 an alternative class of generalized two-step Heckman-type estimators is

derived. Section 4 presents results from Monte-Carlo simulations that illustrate the

theoretical results and extends the analysis to the estimators’ mean square error. Sec-

tion 5 concludes.
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2 An analysis of sample-selection models

2.1 A multivariate sample-selection model

Recall the m-variate sample-selection model, which is analyzed by Heinen & Wessels

(1990), Shonkwiler & Yen (1999), Tauchmann (2005), Yen (2005), and Chen & Yen

(2005). The equations

y∗it = x′itβi + εit (1)

d∗it = z′itαi + υit, (2)

characterize the latent model, that is y∗it and d∗it are unobserved. Their observed

counterparts yit and dit are determined by

dit =

⎧⎨⎩ 1 if d∗it > 0

0 if d∗it ≤ 0
(3)

yit = dity
∗
it. (4)

Here, i = 1, . . . ,m indexes the m equations of the system, and t = 1, . . . , T in-

dexes the individuals. xit and zit are vectors of observed exogenous variables. The

vector dt = [d1t . . . dmt]
′ describes the entire individual selection pattern. Finally,

εt = [ε1t . . . εmt]
′ and υt = [υ1t . . . υmt]

′ are normally distributed, zero-mean error vec-

tors with the covariance matrix

Var (εt, υt) =

⎡⎣ Σεε Σ′
ευ

Σευ Συυ

⎤⎦ . (5)

The diagonal-elements of Συυ are subject to the normalization συυii = 1, i = 1 . . . m.

2.2 Inconsistency of Heckman-type estimators

For the model (1) through (4) Tauchmann (2005) suggests a class of system two-

step estimators that – analogously to the original Heckman two-step approach – con-
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ditions on dit equation-by-equation. That is, after first-step estimation of the vec-

tors αi by univariate or multivariate probit, the second-step regressions yielding es-

timates for the vectors βi are based on the conditional expectations3 E(yit|xit, dit) =

ditx
′
itβi + ditσ

ευ
ii λ(z′itαi). Each regression equation, therefore, includes the inverse Mills

ratio λ(z′itα̂i) as an auxiliary regressor and the parameters σευii are estimated as regres-

sion coefficients. Note that dit serves as a weighting variable, i.e. censored observations

are weighted by zero and are therefore effectively excluded from the regression.4

Tauchmann (2005) distinguishes three variants of this estimator: The first one uses

ordinary least squares (OLS) and ignores cross-equation correlation of εit, another

variant accounts for it in a simplified SUR fashion, and a third accounts for cross-

equation correlation and heteroscedasticity using a proper generalized least squares

(GLS) approach.5

In order to analyze these estimators’ properties, we consider α as known and focus

on the second-step regression. Let X denote the stacked, mT ×mk regressor-matrix6

consisting of rows
[
01×k(i−1) x

′
it λ(z′itαi) 01×k(m−i)

]
. Note that inverse Mills ratios are

included to the list of regressors. Let D denote a mT × mT matrix with diagonal-

elements dit and zero off-diagonal elements. This matrix allocates zero weight to cen-

sored units. Ω denotes the mT ×mT block-diagonal weighting-matrix with elements

3To simplify notation, E(yit|xit, dit = 1) is used as short term for E(yit|xit, υit > −z′itαi) through-

out this paper. Yet, it does not denote Ez[E(yit|xit, υit > −z′itαi)], although zit is not explicitly

mentioned in list of the conditioning variables. This analogously applies to any moment that is

conditional on either dit = 1, ditdjt = 1, dit, ditdjt, or dt.
4Because of (4), which implies E(yit|xit, dit = 0) = 0, the original Heckman (1976 and 1979)

estimator can well be interpreted as a procedure that conditions on dit in the full sample and,

therefore, uses dit as a weighting variable rather than an estimation procedure that conditions on

dit = 1 and uses the sub-sample of selected units; see Tauchmann (2005) for details.
5Because of var(εit|dit = 1) = σεε

ii

((
1 − σευ

ii
2σεε

ii
−1

)
+ σευ

ii
2σεε

ii
−1

(
1 − z′itαiλ(z′itαi) − λ(z′itαi)2

))
,

cf. Heckman (1976), the errors are heteroscedastic and SUR is not a proper GLS estimator.
6ki denotes the number of coefficients in the ith equation. In order to simplify notation, yet with

no loss of generality, we assume ki = k for i = 1, . . . ,m. The matrix X is arranged as such that all

m rows belonging to an individual t adjoin each other.
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ωijt. It coincides with the identity-matrix if the model is estimated using the classical

Heckman approach equation-by-equation, i.e. OLS. In the case of SUR estimation,

the individual m × m sub-matrices Ωt are uniform across all t. In the case of GLS

estimation, these weighting matrices are individually derived through matrix-inversion

from estimates for var(εit|dit = 1) and cov(εit, εjt|ditdjt = 1). Finally, let Y denote

the stacked mT × 1 vector of dependent variables yit and ε̃ denote the corresponding

mT × 1 error-vector. Because of the inclusion of λ(z′itαi) to the list of regressors and

E(εit|dit = 1) = σευii λ(z′itαi), the error vector ε̃ consists of elements εit − E(εit|dit = 1)

rather than εit. Now the generalized Heckman-estimators for β̂ proposed by Tauch-

mann (2005) can be written

β̂ = (X ′DΩDX)−1X ′DΩY. (6)

Because of Y = D(Xβ + ε̃) equation (6) is equivalent to

β̂ = β + (X ′DΩDX)−1X ′Ξ, with Ξ ≡ DΩDε̃. (7)

Here, the condition E(Ξ|X) = 0 implies plim T−1(X ′Ξ) = 0 and, therefore, implies

consistency of β̂ under standard regularity conditions. To check whether E(Ξ|X) = 0

holds, consider an arbitrary element from Ξ:

ξit = ωiitditε̃it +
∑
j �=i

ωijtditdjtε̃jt (8)

= ωiitdit[εit − E(εit|dit = 1)] +
∑
j �=i

ωijtditdjt[εjt − E(εjt|djt = 1)].

We apply the law of iterated expectations to (8). First, we take the expectation of ξit

conditional on xt as well as on the individual selection pattern dt.

E(ξit|xt, dt) = ωiitdit[E(εit|dt)−E(εit|dit = 1)]+
∑
j �=i

ωijtditdjt[E(εjt|dt)−E(εjt|djt = 1)]

(9)

Second, we take the expectation with respect to dt, yielding

E(ξit|xt) =
∑
j �=i

ωijtPr(ditdjt = 1)[E(εjt|ditdjt = 1) − E(εjt|djt = 1)]. (10)
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From (10) it becomes obvious that the estimator β̂ is biased and inconsistent unless

either (i) E(εjt|ditdjt = 1) equals E(εjt|djt = 1) for any pair i �= j and any t; that

is E(εit|dt) exclusively depends on dit, yet does not depend on any djt, j �= i. This

requires that Συυ as well as Σευ are diagonal matrices. The estimator β̂ does also not

suffer from inconsistency if (ii) ωijt = 0 holds for all i �= j and t. Condition (ii) implies

that equation-by-equation Heckman is consistent, since cross-equation correlations are

not taken into account. Yet, in contrast, any system estimator that involves non-zero

weights ωijt is inconsistent, unless Συυ as well as Σευ are diagonal matrices. Clearly,

the inconsistency of β̂ originates from conditioning on dit equation-by-equation.

3 A consistent generalized Heckman estimator

The above discussion clearly suggests, how to construct a consistent system-estimator

as generalization to the original Heckman-approach. From (9) follows that if ε̃it were

defined as εit−E(εit|dt) rather than εit−E(εit|dit = 1), the condition E(ξit|xt, dt) = 0

and subsequently E(ξit|xt) = 0 would be satisfied for any weighting matrix Ω, rendering

the entire class of estimators consistent. Uniformly conditioning on dt, i.e. condition-

ing on the entire selection pattern, in all equations rather than conditioning on dit

equation-by-equation and, correspondingly, including E(εit|dt) rather than the inverse

Mills ratio as correction-term would lead to errors defined as εit − E(εit|dt). That

is, the regression must be based on the conditional mean E(yit|xit, dt) rather than

E(yit|xit, dit).
In order to implement this estimator, an expression for E(εit|dt) is required. It is

easily shown that

E(εt|dt) = E(εt) + Σευ(Συυ)
−1[E(υt|dt) − E(υt)] (11)

holds. Since the unconditional expectations of εt and υt equal zero, the expression

reduces to a linear-combination of truncated first moments E(υt|dt) from the multi-

variate normal distribution. Therefore, in each regression equation m truncated means

9



from the multivariate normal distribution have to be included to correct for sample-

selection bias. Results for these truncated means are provided by Tallis (1961) as well

as for the special case m = 2 – albeit in more detail – by Shah & Parikh (1964).

Including these expressions and rearranging terms leads to the system of regression

equations

yit = ditx
′
itβi + dit

m∑
j=1

δijψjtφ(z′jtαj)
Φm−1(Ãjt, R̃jt)

Φm(•) + ditε̃it, i = 1, ...,m. (12)

As in the original Heckman-model, the coefficients δij attached to the correction-terms

ψjtφ(z′jtαj)
Φm−1(Ãjt,R̃jt)

Φm(•) are subject to estimation. Here, φ denotes the probability den-

sity function of the univariate standard normal distribution, while Φm denotes the

cumulative density function of the m-variate standard normal distribution. ψjt is de-

fined as 2djt−1 and distinguishes truncation from either below or above. Ãjt represents

a vector which consists of m − 1 elements
ψlt(z

′
ltαl−συυ

lj z
′
jtαj)

(1−(συυ
lj )2)1/2 ; l = 1 . . .m, l �= j. Cor-

respondingly, R̃jt is defined as ΨjtRjtΨjt, where Rjt denotes the partial conditional

correlation-matrix Cor(υt|υjt) and Ψjt denotes a diagonal-matrix with diagonal ele-

ments ψlt, l �= j. Finally, Φm(•) denotes the joint probability of the observed pattern

dt. Note that the regression equations are still weighted by dit.
7

In applied work α and Συυ are likely to be unknown. In order to calculate the

auxiliary regressors ψjtφ(z′jtαj)
Φm−1(Ãjt,R̃jt)

Φm(•) , one has to replace the true parameters

with estimates obtained from first-step multivariate probit estimation. In the special

case m = 2 the regression equations are equivalent to the one used by Poirier (1980),

except for the fact that Poirier (1980) conditions on d1td2t = 1 rather than d1t and

d2t, i.e. ψjt equals one for all j and t.8 For m = 2, δij = σευij holds for the auxiliary

regression coefficients.

One may estimate the system (12) equation-by-equation using OLS. Yet, the simple

equation-by-equation Heckman-estimator is consistent as well in this case. So, condi-

7Since E(yit|xit, dt, dit = 0) = 0 holds, the ith equation of the tth observation still receives zero

weight if yit equals zero because of censoring.
8See Vella (1997) for other related models.
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tioning on dt makes sense only in the context of simultaneous estimation. As a simple

variant, one can construct such a system-estimator in the standard SUR fashion. How-

ever, this ignores the heteroscedasticity of the individual conditional error-variances.

In order to be able to construct a proper GLS estimator, expressions for Var(εt|dt) are

required from which one can calculate an appropriate weighting matrix Ω. Through

the use of the normality assumption and the decomposition rule for variances in a joint

distribution such an expression can easily be derived as

Var(εt|dt) = Σεε − Σευ(Συυ)
−1Σ′

ευ + Σευ(Συυ)
−1Var(υt|dt)(Συυ)

−1Σ′
ευ. (13)

Obviously, any element of Var(εt|dt) is a linear function of all elements of the truncated

m-variate normal variance-covariance matrix Var(υt|dt). Therefore, estimates for the

elements of Var(εt|dt) can be obtained as fitted values from regressing squared residuals

and residual cross-products – which, in turn, have been obtained from initial OLS

regressions – on a constant and on estimates for all elements of Var(υt|dt).9 Results

for the latter ones are provided by Tallis (1961). Therefore, with estimates for α and

Συυ in hand, one can calculate these auxiliary regressors.

4 Monte-Carlo analysis

In addition to the theoretical analysis we carry out Monte-Carlo simulations. On

the one hand, we want to illustrate the theoretical results derived in Section 2. Test

results on the joint unbiasedness of the second-step coefficients are provided for this

purpose.10

9Because of var(ditεit|dit = 0) = 0, the variance-covariance matrix Var(d1tε1t . . . dmtεmt|dt) that

is effectively required for the construction of the GLS estimator in general is short-ranked and cannot

ordinarily be inverted in order to obtain individual weighting-matrices Ωt. Yet, using a generalized

Moore-Penrose inverse is appropriate for this purpose.
10Tables of raw coefficients’ estimates are provided in the appendix. The LIMDEP command file

used for carrying out the MC-simulations is available from the author upon request.

11



On the other, we also want to address the estimators’ performance beyond the issue

of consistency. Therefore, we present estimates for the CP-conditional mean square

error prediction criterion

CP(β̂) = E

[
1

T

T∑
t=1

m∑
i=1

(βi − β̂i)
′xitx′it(βi − β̂i)

∣∣∣∣∣X
]
, (14)

cf. Judge et al. (1980). CP(β̂) measures the mean squared deviation of the estimated

conditional mean from its true counterpart E(y∗it|xit) and, therefore, translates an

estimator’s MSE-matrix to a scalar performance measure that takes into account its

variance as well as a potential bias.

Unknown values for α and Συυ rather than known ones appear to be the relevant

case from the viewpoint of applied econometrics. In our Monte-Carlo simulations,

therefore, these parameters are estimated by first-step probit models. We consider six

different estimators. In particular, conditioning on either dit or dt is combined with

OLS, SUR and, finally GLS estimation. Conditioning on dit combined with OLS or

SUR allows for estimating the first step using univariate probit models. All other

estimators require simultaneous estimation of all vectors αi along with Συυ.

4.1 The experimental setup

The design of the Monte-Carlo experiment is equivalent to the one used by Tauchmann

(2005).11 We consider the case m = 2.12 The sample size is 4000. The size of the

Monte Carlo experiment is 1000 iterations. The vectors of exogenous variables each

consist of three elements:

zit = [1 z1,it z2,it]
′, xit = [1 x1,it x2,it]

′, i = 1, 2.

11In contrast to the analysis presented here, Tauchmann (2005) imposes restrictions on the coeffi-

cients’ estimates β̂i. This does not allow for directly comparing estimated CP-measures.
12For m ≥ 3, simulated ML were required for estimation the first-step multivariate probit models.

This would increase computing time for the Monte-Carlo experiments enormously.
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Here z1,1t, z2,1t, z1,2t, and x2,1t are independently drawn from the standard normal

distribution, while z2,2t = z2,1t, x1,1t = z1,1t, x1,2t = z1,2t and x2,2t = x2,1t. These vari-

ables are drawn only once and then kept fixed. For the coefficient vectors βi = [1 1 1]′,

i = 1, 2 holds.13

The value
√

0.5 is assigned to all coefficients α attached to z1,it and z2,it. In order

to allow for different unconditional censoring probabilities Pr (d∗it ≤ 0), the constants

α0,i are varied. We run two simulations with unconditional censoring probabilities

that are uniform across equations, in particular 0.25 and 0.5, which corresponds to

constants 0.9539 and 0, respectively. Another simulation is carried out for mixed

unconditional censoring probabilities, i.e. 0.25 for equation one and 0.75 for equation

two, which corresponds to constants 0.9539 and −0.9539, respectively. The error-

covariance structure is specified as

Σεε =

[
1.5

−1 2

]
, Συυ =

[
1

−0.5 1

]
, Σευ =

[
0.75 −0.25

−0.25 0.75

]
.

As an alternative specification, the value zero is assigned to all off-diagonal elements

of Συυ and Σευ everything else remaining unchanged, i.e.

Σεε =

[
1.5

−1 2

]
, Συυ =

[
1

0 1

]
, Σευ =

[
0.75 0

0 0.75

]
.

This defines the four-variate N (0,Σ) distribution, from where the random com-

ponents are drawn separately for each model. After drawing the error vector, the

dependent variables are calculated as defined by model (1) through (4). Subsequently,

the generated data serves as input to the estimators.

4.2 Simulation results

Results for Wald-tests on the unbiasedness of the six estimators are displayed in

Table 1. These simulation results are consistent with the theoretical ones, obtained

13We do not vary these parameters, since – in contrast to the estimator proposed by Shonkwiler &

Yen (1999) – the performance of generalized Heckman estimators does not depend on the true value

of β, c.f. Tauchmann (2005).
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Table 1: Tests on joint unbiasedness of regression coefficients

OLS SUR GLS OLS SUR GLS

conditional on dit conditional on dt

dense error variance-covariance matrix

censoring prob. 0.25 0.800 0.000 0.000 0.449 0.484 0.155

censoring prob. 0.5 0.545 0.000 0.000 0.964 0.070 0.642

censoring prob. 0.25 and 0.75 0.446 0.000 0.000 0.117 0.929 0.259

Συυ and Σευ with zero off-diagonal elements

censoring prob. 0.25 0.320 0.415 0.052 0.805 0.208 0.082

censoring prob. 0.5 0.595 0.659 0.610 0.900 0.760 0.807

censoring prob. 0.25 and 0.75 0.832 0.620 0.604 0.963 0.634 0.215

Note: P-values for Wald-tests reported.

in Section 2. If Συυ and Σευ are dense matrices, unbiasedness is clearly rejected for

those estimators that condition on dit equation-by-equation and use SUR or GLS.

In contrast, the classical Heckman estimator employed equation-by-equation does not

display a significant bias. The estimators that condition on the entire selection pattern

do not display a significant bias either. If, instead, Συυ and Σευ are diagonal-matrices,

neither of the estimators display a bias that is significant at the 0.05-level. There-

fore, the Monte-Carlo simulation confirms that system-estimators that condition on

dt are consistent, while system-estimators that condition on dit equation-by-equation

are biased, unless certain restrictions apply to the true error-covariance matrix.

In order to analyze the estimators’ performance beyond the issue of unbiasedness,

estimates for the CP-conditional mean square error prediction criterion are displayed in

Table 2. Comparing the SUR estimator that conditions on dt with its counterpart that

conditions on dit yields the following plausible result: If the true covariance-matrix is

dense, the consistent estimator that conditions on dt yields smaller CP-measures than

the inconsistent one that conditions on dit. If Συυ and Σευ are diagonal-matrices –

i.e. both estimators are consistent – the more parsimoniously parameterized one that

14



Table 2: Estimated conditional mean square prediction errors

OLS SUR GLS OLS SUR GLS

conditional on dit conditional on dt

dense error variance-covariance matrix

6.499 6.038 6.455 5.826 5.468 5.357
censoring prob. 0.25

(0.154) (0.149) (0.169) (0.130) (0.137) (0.140)

12.810 13.444 15.816 12.275 11.776 11.178
censoring prob. 0.5

(0.342) (0.377) (0.483) (0.309) (0.335) (0.330)

23.747 23.129 35.492 23.095 21.877 19.387
cens. prob. 0.25 & 0.75

(0.806) (0.755) (1.391) (0.784) (0.762) (0.786)

Συυ and Σευ with zero off-diagonal elements

6.420 5.520 5.872 6.304 5.452 5.269
censoring prob. 0.25

(0.156) (0.135) (0.212) (0.147) (0.138) (0.140)

13.451 11.776 15.880 13.533 11.932 11.702
censoring prob. 0.5

(0.386) (0.346) (1.601) (0.364) (0.324) (0.352)

23.219 20.627 28.690 24.156 21.091 17.748
cens. prob. 0.25 & 0.75

(0.768) (0.744) (2.733) (0.853) (0.710) (0.655)

Notes: Standard errors in parenthesis.

Displayed CP-measures are scaled by the factor 1000.

conditions on dit performs better except for one simulation. Yet, the latter differences

in estimated CP-measures are statistically insignificant at the 0.05-level.

The comparison of OLS estimators that either condition on dt or dit yields similar

results. If the error-covariance matrix is dense, the first estimator seems to perform

better, though both are consistent. If, instead, Συυ and Σευ are diagonal-matrices the

latter displays smaller CP-measures. However, these differences never are statistically

significant, except for one simulation.

Finally, we examine the performance of GLS estimators. Here, we observe sub-

stantial deviations in estimated CP-measures. While GLS conditional on dt yields the

15



smallest mean square prediction error among all considered estimators in any simu-

lation, GLS conditional on dit, except for two simulations, displays the largest one.

Moreover, the deviations in CP-measures between both GLS estimators always are

significant. In fact, if the error covariance-matrix is dense, GLS conditional on dt sig-

nificantly outperforms any other estimator in any simulation. As the only exception

to this result, in some cases SUR conditional on dt displays CP-measures which are

not significantly lager.

Our key simulation result – that GLS conditional on dt displays the best perfor-

mance in terms of the mean square prediction error – fits theory. Among the considered

estimators, GLS conditional on dt is the only one that not only is consistent, but also

as efficiently accounts for cross-equation correlation and heteroscedasticity.

5 Conclusions

This analysis of estimation procedures for the multivariate sample-selection model

shows that multivariate generalizations to the classical Heckman (1976 and 1979) two-

step approach that account for cross-equation correlation and use the inverse Mills

ratio as a correction-term are consistent only if certain restrictions apply to the true

error-covariance structure. However, generalizations to the classical Heckman two-

step estimator that condition on the entire selection pattern rather than the selection

of particular single equations – and, therefore, use generalized correction-terms – are

shown to be generally consistent. Moreover, these estimators display a smaller mean

square prediction error. These new estimators are computationally more demanding

since they generally require simultaneous estimation of a multivariate probit model.

Nowadays, however, hard-coded procedures for this estimation problem are provided

by econometric software packages, rendering computational complexity a minor obsta-

cle to the practical application of the suggested estimation procedure.

Finally, we discuss how our results fit into the general debate on which estimator

16



is the best choice for estimating the multivariate sample selection model. If efficiency

is the major concern and numerical complexity and computing time do not matter,

then two-step approaches – including those suggested in this analysis – are generally

to be avoided, and full information maximum likelihood as proposed by Yen (2005) is

the best choice. If, in contrast, computational simplicity and consistency is the major

concern, then equation-by-equation Heckman appears to be the best choice. If a small

mean square error and computational simplicity are a researcher’s main criteria, while

consistency is of secondary relevance, one might even argue in favor of the inconsistent

SUR estimator that conditions equation-by-equation on the outcome of the upstream

choice problem. Finally, if both consistency and a small mean square error are desired,

and the computational burden of full information maximum likelihood is to be avoided,

then the GLS estimator that conditions on the entire selection pattern appears to be

the best choice.
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