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Abstract

This analysis shows that multivariate generalizations to the classical Heckman
(1976 and 1979) two-step estimator that account for cross-equation correla-
tion and use the inverse Mills ratio as a correction-term are consistent only if
certain restrictions apply to the true error-covariance structure. We derive an
alternative class of generalizations to the classical Heckman two-step ap-
proach that conditions on the entire selection pattern rather than the selection
of particular equations and, therefore, uses modified correction-terms. This
class of estimators is shown to be consistent. In addition, Monte-Carlo results
illustrate that these estimators display a smaller mean square prediction error.
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1 Introduction

Using non-aggregated micro-data for estimating systems of seemingly unrelated equa-
tions — the most prominent among them being demand systems — often encounters
the problem of numerous zero-observations in the dependent variables. These can-
not be appropriately explained by conventional continuous SUR! models. Instead,
zero-observations may be modelled as determined by an upstream multivariate binary
choice problem. Under the assumption of normally distributed errors, the resulting
joint model represents a multivariate generalization to the classical univariate sample-
selection model, cf. Heckman (1976 and 1979). In the literature, this model is often
referred to as a “censored system of equations”, yet censoring in the narrow sense just
represents a special case of the general model.?

The question of how to estimate the parameters of this model is subject to an
ongoing debate. Clearly, under parametric distributional assumptions full information
maximum likelihood (FIML) is the efficient estimation technique. In fact, FIML has
recently been applied to this problem by Yen (2005). However, the FIML estimator is
computationally extremely demanding, rendering much simpler two-step approaches

worth considering for many applications.

Among two-step estimators the one proposed by Heien & Wessels (1990) has been
particularly popular. Besides numerous other authors, it has been applied by Heien
& Durham (1991), Gao et al. (1995), and Nayga et al. (1999). However, Shonkwiler
& Yen (1999) as well as Vermeulen (2001) show that this estimator lacks a decent
basis in statistical theory and cannot be interpreted in terms of conditional means.
The Heien & Wessels (1990) estimator, therefore, is inconsistent despite its popularity.
Chen & Yen (2005) further investigate the nature of its inconsistency and show that
even a modified variant of this estimator fails to correct properly for sample-selection

bias. Shonkwiler & Yen (1999) propose an alternative simple two-step estimator that

1See Zellner (1963) for the seemingly unrelated regression equations (SUR) model.

2We stick to the relevant literature und use the term “censored” as a synonym for “not selected”.



— in contrast to Heien & Wessels (1990) — is theoretically well founded. This estimator
is based on the mean of dependent variables that is unconditional on the outcome of
the upstream discrete choice model. Su & Yen (2000), Yen et al. (2002) and Goodwin

et al. (2004) may serve as examples for applications of this procedure.

Tauchmann (2005) compares the performance of the Shonkwiler & Yen (1999) esti-
mator and two-step estimators that — analogously to the classical Heckman (1976 and
1979) two-step approach, yet in contrast to Shonkwiler & Yen (1999) — condition on
the outcome the upstream discrete choice model. In terms of the mean square predic-
tion error, the unconditional Shonkwiler & Yen (1999) estimator is shown to perform
poorly if the conditional mean of the dependent variables is large compared to its
conditional variance. Tauchmann (2005), however, exclusively focuses on the mean
square error yet does not check for unbiasedness and consistency of the conditional
estimators. Though one may argue that it is of no relevance in applied work whether
an error originates from an estimator’s bias or from its variance, many researches do
avoid inconsistent estimators, even if their mean square error is small. For this rea-
son, addressing unbiasedness and consistency of Heckman-type two-step estimators for

censored systems of equations is a relevant task.

The analysis presented in this article shows that some of the estimators proposed
by Tauchmann (2005) are consistent only for restrictive error-covariance structures. It
also shows that a modified two-step Heckman-type estimator is generally consistent
and performs well in terms of the mean square prediction error. In order to yield
these results, the remainder of this paper is organized as follows: Section 2 introduces
the model to be analyzed in more detail and analyzes the properties of straightfor-
ward multivariate generalizations to the Heckman (1976 and 1979) two-step estimator.
In Section 3 an alternative class of generalized two-step Heckman-type estimators is
derived. Section 4 presents results from Monte-Carlo simulations that illustrate the
theoretical results and extends the analysis to the estimators’ mean square error. Sec-

tion 5 concludes.



2 An analysis of sample-selection models

2.1 A multivariate sample-selection model

Recall the m-variate sample-selection model, which is analyzed by Heinen & Wessels
(1990), Shonkwiler & Yen (1999), Tauchmann (2005), Yen (2005), and Chen & Yen
(2005). The equations

Ui = B+ i (1)

d;y = 20 + v, (2)

characterize the latent model, that is y}, and d}, are unobserved. Their observed

counterparts y;; and d;; are determined by

1 if d;>0
0 if d;,<o0
Yit = ditsy- (4)
Here, ¢ = 1,...,m indexes the m equations of the system, and t = 1,...,T in-

dexes the individuals. x; and z; are vectors of observed exogenous variables. The
vector dy = [dy;...dp) describes the entire individual selection pattern. Finally,
g = lew.. &) and vy = [vy; ... Uy are normally distributed, zero-mean error vec-

tors with the covariance matrix

2 EI’U
Var (g, v;) = =T (5)
261) E'UU

U

The diagonal-elements of ¥, are subject to the normalization o}’ =1,i=1... m.

i

2.2 Inconsistency of Heckman-type estimators

For the model (1) through (4) Tauchmann (2005) suggests a class of system two-

step estimators that — analogously to the original Heckman two-step approach — con-



ditions on d; equation-by-equation. That is, after first-step estimation of the vec-
tors «; by univariate or multivariate probit, the second-step regressions yielding es-
timates for the vectors (3; are based on the conditional expectations® E(yy|w, dit) =
dyxl, B + dios? Mzl,;). Each regression equation, therefore, includes the inverse Mills
ratio A(z,Q;) as an auxiliary regressor and the parameters o5 are estimated as regres-
sion coefficients. Note that d;; serves as a weighting variable, i.e. censored observations

are weighted by zero and are therefore effectively excluded from the regression.*

Tauchmann (2005) distinguishes three variants of this estimator: The first one uses
ordinary least squares (OLS) and ignores cross-equation correlation of &;, another
variant accounts for it in a simplified SUR fashion, and a third accounts for cross-
equation correlation and heteroscedasticity using a proper generalized least squares

(GLS) approach.’

In order to analyze these estimators’ properties, we consider « as known and focus
on the second-step regression. Let X denote the stacked, mT x mk regressor-matrix®
consisting of rows [lek(i,l) xh, Mzlho) 01xk(m,i)]. Note that inverse Mills ratios are
included to the list of regressors. Let D denote a mT x mT matrix with diagonal-
elements d;; and zero off-diagonal elements. This matrix allocates zero weight to cen-

sored units. €2 denotes the mT x mT block-diagonal weighting-matrix with elements

3To simplify notation, E(y;¢|zit, diz = 1) is used as short term for E(y;t| @i, vir > —2,4) through-
out this paper. Yet, it does not denote E,[E(y|zi, v > —zl;i)], although z;; is not explicitly
mentioned in list of the conditioning variables. This analogously applies to any moment that is
conditional on either d;; = 1, dyydj; = 1, dit, dirdje, or dy.

4Because of (4), which implies E(y;|zs,di; = 0) = 0, the original Heckman (1976 and 1979)
estimator can well be interpreted as a procedure that conditions on d;; in the full sample and,
therefore, uses d;; as a weighting variable rather than an estimation procedure that conditions on
d;x = 1 and uses the sub-sample of selected units; see Tauchmann (2005) for details.

Because of var(ey|dy = 1) = 05 ((1 — 0520557 1) + 02057 (1 — 2l (2),00) — A(2hai)?)),
cf. Heckman (1976), the errors are heteroscedastic and SUR is not a proper GLS estimator.

6k, denotes the number of coefficients in the ith equation. In order to simplify notation, yet with
no loss of generality, we assume k; = k for ¢ = 1,...,m. The matrix X is arranged as such that all

'm rows belonging to an individual ¢ adjoin each other.



wiji. 1t coincides with the identity-matrix if the model is estimated using the classical
Heckman approach equation-by-equation, i.e. OLS. In the case of SUR estimation,
the individual m x m sub-matrices €); are uniform across all ¢t. In the case of GLS
estimation, these weighting matrices are individually derived through matrix-inversion
from estimates for var(e;|d; = 1) and cov(ey, €jt|did;y = 1). Finally, let Y denote
the stacked mT x 1 vector of dependent variables y;; and & denote the corresponding
mT x 1 error-vector. Because of the inclusion of A(z},c;) to the list of regressors and
E(euldi = 1) = 057 A(2},q;), the error vector € consists of elements e;; — E(ey|di = 1)

rather than €;. Now the generalized Heckman-estimators for B proposed by Tauch-

mann (2005) can be written
3 = (X'DQDX)"'X'DQY. (6)
Because of Y = D(X 3 + €) equation (6) is equivalent to
3=p+(X'DODX)'X'E,  with == DQDZ. (7)

Here, the condition E(Z|X) = 0 implies plim 7~ }(X'Z) = 0 and, therefore, implies
consistency of B under standard regularity conditions. To check whether E(Z|X) = 0

holds, consider an arbitrary element from =:

it = wiitdsEit + Z wijidiy €5 (8)
J#i
= wigrdit[g — Bleg|dy = 1)] + Zwijtditdjt [€jt - E(Ejt|djt =1)].
J#i

We apply the law of iterated expectations to (8). First, we take the expectation of &;
conditional on x; as well as on the individual selection pattern d,.
E(&itle, di) = winndin[E(gi|dr) — E(ie|die = 1)] + Zwijzditdjt[E(Ejt|dt) —E(gji|dje = 1)]
J#i
(9)
Second, we take the expectation with respect to d;, yielding

E(Gulw) =) wipPr(did;e = D[E(euldid; = 1) = B(gjuldj = 1)), (10)
i#i



From (10) it becomes obvious that the estimator B is biased and inconsistent unless
either (i) E(eji|dud; = 1) equals E(eji|d;; = 1) for any pair ¢ # j and any t; that
is E(ey|d;) exclusively depends on d;;, yet does not depend on any dj;, j # i. This
requires that 3, as well as X, are diagonal matrices. The estimator B does also not
suffer from inconsistency if (ii) w;; = 0 holds for all i # j and ¢. Condition (ii) implies
that equation-by-equation Heckman is consistent, since cross-equation correlations are
not taken into account. Yet, in contrast, any system estimator that involves non-zero
weights w;j; is inconsistent, unless ¥, as well as ¥, are diagonal matrices. Clearly,

the inconsistency of Z))\ originates from conditioning on d;; equation-by-equation.

3 A consistent generalized Heckman estimator

The above discussion clearly suggests, how to construct a consistent system-estimator
as generalization to the original Heckman-approach. From (9) follows that if £ were
defined as e;; — E(g4|d;) rather than e;; — E(e;|d;s = 1), the condition E(&;|xt, di) =0
and subsequently E(&;|x;) = 0 would be satisfied for any weighting matrix €, rendering
the entire class of estimators consistent. Uniformly conditioning on d;, i.e. condition-
ing on the entire selection pattern, in all equations rather than conditioning on dj
equation-by-equation and, correspondingly, including E(g;|d;) rather than the inverse
Mills ratio as correction-term would lead to errors defined as e;; — E(g|d;). That
is, the regression must be based on the conditional mean E(y;|zy,d;) rather than
E(yit| i, dit).-

In order to implement this estimator, an expression for E(ey|d;) is required. It is

easily shown that
E(etld:) = E(er) + Beo(Bo0) ™ [E(velde) — E(vy)] (11)

holds. Since the unconditional expectations of £; and v; equal zero, the expression
reduces to a linear-combination of truncated first moments E(v4|d;) from the multi-

variate normal distribution. Therefore, in each regression equation m truncated means



from the multivariate normal distribution have to be included to correct for sample-
selection bias. Results for these truncated means are provided by Tallis (1961) as well
as for the special case m = 2 — albeit in more detail — by Shah & Parikh (1964).
Including these expressions and rearranging terms leads to the system of regression
equations

"1 (A, Rj)

Yir = dyalyBi + di Z 3i¥e(2j,05) o (e)

=1

+ duEy, i=1,...,m. (12

As in the original Heckman-model, the coefficients d;; attached to the correction-terms
%@(zﬁaﬂ%}.‘)’m are subject to estimation. Here, ¢ denotes the probability den-
sity function of the univariate standard normal distribution, while ®™ denotes the
cumulative density function of the m-variate standard normal distribution. ;; is de-

fined as 2d;; —1 and distinguishes truncation from either below or above. gjt represents

! o — gV 5 .
a vector which consists of m — 1 elements %, l=1...m,1+#j. Cor-
J

respondingly, R;; is defined as W;R;;¥;;, where R;; denotes the partial conditional
correlation-matrix Cor(v;|v;) and ¥j;, denotes a diagonal-matrix with diagonal ele-
ments ¢y, | # j. Finally, ®™(e) denotes the joint probability of the observed pattern

d;. Note that the regression equations are still weighted by dy.”

In applied work « and ¥, are likely to be unknown. In order to calculate the

®m71(g]t71§]f>

auxiliary regressors 9, (2),0j) —gm &

, one has to replace the true parameters
with estimates obtained from first-step multivariate probit estimation. In the special
case m = 2 the regression equations are equivalent to the one used by Poirier (1980),
except for the fact that Poirier (1980) conditions on dy;de, = 1 rather than dj; and

dat, 1.e. ¥y equals one for all j and .8 For m = 2, §;; = o;; holds for the auxiliary

regression coefficients.

One may estimate the system (12) equation-by-equation using OLS. Yet, the simple

equation-by-equation Heckman-estimator is consistent as well in this case. So, condi-

"Since E(yit|Tit, d¢, diz = 0) = 0 holds, the ith equation of the tth observation still receives zero

weight if y;; equals zero because of censoring.

8See Vella (1997) for other related models.
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tioning on d; makes sense only in the context of simultaneous estimation. As a simple
variant, one can construct such a system-estimator in the standard SUR fashion. How-
ever, this ignores the heteroscedasticity of the individual conditional error-variances.
In order to be able to construct a proper GLS estimator, expressions for Var(g,|d;) are
required from which one can calculate an appropriate weighting matrix 2. Through
the use of the normality assumption and the decomposition rule for variances in a joint

distribution such an expression can easily be derived as
Var(gy|dy) = See — Zeo(Sow) 'S, 4 Zeo (Sow) " Var(vydy) (So0) 'L, (13)

Obviously, any element of Var(e;|d,) is a linear function of all elements of the truncated
m-variate normal variance-covariance matrix Var(vy|d;). Therefore, estimates for the
elements of Var(e;|d;) can be obtained as fitted values from regressing squared residuals
and residual cross-products — which, in turn, have been obtained from initial OLS
regressions — on a constant and on estimates for all elements of Var(vs|d;).® Results
for the latter ones are provided by Tallis (1961). Therefore, with estimates for o and

Y, in hand, one can calculate these auxiliary regressors.

4 Monte-Carlo analysis

In addition to the theoretical analysis we carry out Monte-Carlo simulations. On
the one hand, we want to illustrate the theoretical results derived in Section 2. Test
results on the joint unbiasedness of the second-step coefficients are provided for this

purpose.'?

9Because of var(dei|di = 0) = 0, the variance-covariance matrix Var(dysei; . .. dmieme|d;) that
is effectively required for the construction of the GLS estimator in general is short-ranked and cannot
ordinarily be inverted in order to obtain individual weighting-matrices €2;. Yet, using a generalized
Moore-Penrose inverse is appropriate for this purpose.

0Tables of raw coefficients’ estimates are provided in the appendix. The LIMDEP command file

used for carrying out the MC-simulations is available from the author upon request.
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On the other, we also want to address the estimators’ performance beyond the issue
of consistency. Therefore, we present estimates for the CP-conditional mean square
error prediction criterion

~ 1 n —~ ~
CP(B)=E T Z Z(ﬁz = Bi) wuxy, (B — )
t=1 i=1

X] : (14)

-~

cf. Judge et al. (1980). CP() measures the mean squared deviation of the estimated
conditional mean from its true counterpart E(yj|z;:) and, therefore, translates an
estimator’s MSE-matrix to a scalar performance measure that takes into account its
variance as well as a potential bias.

Unknown values for o and 3, rather than known ones appear to be the relevant
case from the viewpoint of applied econometrics. In our Monte-Carlo simulations,
therefore, these parameters are estimated by first-step probit models. We consider six
different estimators. In particular, conditioning on either d;; or d; is combined with
OLS, SUR and, finally GLS estimation. Conditioning on d;; combined with OLS or
SUR allows for estimating the first step using univariate probit models. All other

estimators require simultaneous estimation of all vectors a; along with X,,,.

4.1 The experimental setup

The design of the Monte-Carlo experiment is equivalent to the one used by Tauchmann
(2005).1Y We consider the case m = 2.12 The sample size is 4000. The size of the
Monte Carlo experiment is 1000 iterations. The vectors of exogenous variables each

consist of three elements:

Zit = [1 21,it ZQ,it]/7 Tit = [1 L1t Iz,it]/7 1=1,2.

"n contrast to the analysis presented here, Tauchmann (2005) imposes restrictions on the coeffi-
cients’ estimates Bl This does not allow for directly comparing estimated CP-measures.
2For m > 3, simulated ML were required for estimation the first-step multivariate probit models.

This would increase computing time for the Monte-Carlo experiments enormously.

12



Here 2114, 2214, 21,2, and x271; are independently drawn from the standard normal
distribution, while 299 = 2911, Z1,1t = 21,14, T1,2¢ = 21,2t and To9¢ = To1¢. These vari-
ables are drawn only once and then kept fixed. For the coefficient vectors 5; = [1 1 1],
i=1,2 holds.!?

The value v/0.5 is assigned to all coeflicients o attached to z1, and 25 ;. In order
to allow for different unconditional censoring probabilities Pr (d}, < 0), the constants
ap; are varied. We run two simulations with unconditional censoring probabilities
that are uniform across equations, in particular 0.25 and 0.5, which corresponds to
constants 0.9539 and 0, respectively. Another simulation is carried out for mixed
unconditional censoring probabilities, i.e. 0.25 for equation one and 0.75 for equation
two, which corresponds to constants 0.9539 and —0.9539, respectively. The error-

covariance structure is specified as

S — 1.5 N, = 1 Y., = 0.75 —0.25 .
-1 2 —-05 1 —-0.25 0.75

As an alternative specification, the value zero is assigned to all off-diagonal elements

of ¥,, and ¥, everything else remaining unchanged, i.e.

S = 1.5 N, = 1 N, = 075 0 .
-1 2 01 0 0.75

This defines the four-variate N (0,X) distribution, from where the random com-
ponents are drawn separately for each model. After drawing the error vector, the
dependent variables are calculated as defined by model (1) through (4). Subsequently,

the generated data serves as input to the estimators.

4.2 Simulation results

Results for Wald-tests on the unbiasedness of the six estimators are displayed in

Table 1. These simulation results are consistent with the theoretical ones, obtained

3We do not vary these parameters, since — in contrast to the estimator proposed by Shonkwiler &
Yen (1999) — the performance of generalized Heckman estimators does not depend on the true value

of 3, c.f. Tauchmann (2005).

13



Table 1: Tests on joint unbiasedness of regression coefficients

OLS SUR GLS OLS SUR GLS

conditional on d; conditional on d;

dense error variance-covariance matrix

censoring prob. 0.25 0.800  0.000 0.000 0.449 0.484 0.155
censoring prob. 0.5 0.545 0.000 0.000 0.964 0.070 0.642
censoring prob. 0.25 and 0.75  0.446  0.000 0.000 0.117  0.929 0.259

e and X, with zero off-diagonal elements

censoring prob. 0.25 0.320 0.415 0.052 0.805 0.208  0.082
censoring prob. 0.5 0.595 0.659 0.610 0.900 0.760 0.807

censoring prob. 0.25 and 0.75 0.832 0.620 0.604 0.963 0.634 0.215
Note: P-values for Wald-tests reported.

in Section 2. If ¥, and Y., are dense matrices, unbiasedness is clearly rejected for
those estimators that condition on d;; equation-by-equation and use SUR or GLS.
In contrast, the classical Heckman estimator employed equation-by-equation does not
display a significant bias. The estimators that condition on the entire selection pattern
do not display a significant bias either. If, instead, X, and X,, are diagonal-matrices,
neither of the estimators display a bias that is significant at the 0.05-level. There-
fore, the Monte-Carlo simulation confirms that system-estimators that condition on
d; are consistent, while system-estimators that condition on d;; equation-by-equation
are biased, unless certain restrictions apply to the true error-covariance matrix.

In order to analyze the estimators’ performance beyond the issue of unbiasedness,
estimates for the CP-conditional mean square error prediction criterion are displayed in
Table 2. Comparing the SUR estimator that conditions on d; with its counterpart that
conditions on d; yields the following plausible result: If the true covariance-matrix is
dense, the consistent estimator that conditions on d; yields smaller CP-measures than
the inconsistent one that conditions on dy. If ¥,, and X., are diagonal-matrices —

i.e. both estimators are consistent — the more parsimoniously parameterized one that

14



Table 2: Estimated conditional mean square prediction errors

OLS

SUR

GLS

conditional on d;

OLS

SUR

GLS

conditional on d;

dense error variance-covariance matrix

6.499
censoring prob. 0.25 (0.154)
12.810
censoring prob. 0.5 (0.342)
23.747
cens. prob. 0.25 & 0.75 (0.806)

Yoo and Y., with zero off-diagonal elements

6.420
censoring prob. 025 ;)
13.451
censoring prob. 0.5 (0.386)
23.219
cens. prob. 0.25 & 0.75 (0.768)

6.038

(0.149)
13.444
(0.377)
23.129
(0.755)

5.520
(0.135)
11.776
(0.346)
20.627
(0.744)

6.455
(0.169)
15.816
(0.483)
35.492
(1.391)

5.872
(0.212)
15.880
(1.601)
28.690
(2.733)

5.826
(0.130)
12.275
(0.309)
23.095
(0.784)

6.304
(0.147)
13.533
(0.364)
24.156
(0.853)

5.468
(0.137)
11.776
(0.335)
21.877
(0.762)

5.452
(0.138)
11.932
(0.324)
21.091
(0.710)

5.357
(0.140)
11.178
(0.330)
19.387
(0.786)

5.269
(0.140)
11.702
(0.352)
17.748
(0.655)

Notes: Standard errors in parenthesis.

Displayed CP-measures are scaled by the factor 1000.

conditions on d;; performs better except for one simulation. Yet, the latter differences

in estimated CP-measures are statistically insignificant at the 0.05-level.

The comparison of OLS estimators that either condition on d; or d;; yields similar

results. If the error-covariance matrix is dense, the first estimator seems to perform

better, though both are consistent. If, instead, ¥, and ., are diagonal-matrices the

latter displays smaller CP-measures. However, these differences never are statistically

significant, except for one simulation.

Finally, we examine the performance of GLS estimators. Here, we observe sub-

stantial deviations in estimated CP-measures. While GLS conditional on d; yields the
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smallest mean square prediction error among all considered estimators in any simu-
lation, GLS conditional on d;;, except for two simulations, displays the largest one.
Moreover, the deviations in CP-measures between both GLS estimators always are
significant. In fact, if the error covariance-matrix is dense, GLS conditional on d; sig-
nificantly outperforms any other estimator in any simulation. As the only exception
to this result, in some cases SUR conditional on d; displays CP-measures which are

not significantly lager.

Our key simulation result — that GLS conditional on d; displays the best perfor-
mance in terms of the mean square prediction error — fits theory. Among the considered
estimators, GLS conditional on d; is the only one that not only is consistent, but also

as efficiently accounts for cross-equation correlation and heteroscedasticity.

5 Conclusions

This analysis of estimation procedures for the multivariate sample-selection model
shows that multivariate generalizations to the classical Heckman (1976 and 1979) two-
step approach that account for cross-equation correlation and use the inverse Mills
ratio as a correction-term are consistent only if certain restrictions apply to the true
error-covariance structure. However, generalizations to the classical Heckman two-
step estimator that condition on the entire selection pattern rather than the selection
of particular single equations — and, therefore, use generalized correction-terms — are
shown to be generally consistent. Moreover, these estimators display a smaller mean
square prediction error. These new estimators are computationally more demanding
since they generally require simultaneous estimation of a multivariate probit model.
Nowadays, however, hard-coded procedures for this estimation problem are provided
by econometric software packages, rendering computational complexity a minor obsta-

cle to the practical application of the suggested estimation procedure.

Finally, we discuss how our results fit into the general debate on which estimator
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is the best choice for estimating the multivariate sample selection model. If efficiency
is the major concern and numerical complexity and computing time do not matter,
then two-step approaches — including those suggested in this analysis — are generally
to be avoided, and full information maximum likelihood as proposed by Yen (2005) is
the best choice. If; in contrast, computational simplicity and consistency is the major
concern, then equation-by-equation Heckman appears to be the best choice. If a small
mean square error and computational simplicity are a researcher’s main criteria, while
consistency is of secondary relevance, one might even argue in favor of the inconsistent
SUR estimator that conditions equation-by-equation on the outcome of the upstream
choice problem. Finally, if both consistency and a small mean square error are desired,
and the computational burden of full information maximum likelihood is to be avoided,
then the GLS estimator that conditions on the entire selection pattern appears to be

the best choice.
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