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Abstract

We consider a setting where strategic behavior of r&d firms can lead to different
types of a technology lock-in, permanent or temporary, in an eventually inferior
technology. The simple setting with one incumbent and one potential entrant may
lead to a wide variety of possible strategic regimes. We study conditions on relative
market strength of the incumbent and the entrant which lead to different strategic
actions and demonstrate, that such a strategic behavior is not always socially sub-
optimal, since it may lead to faster development of the existing technology due to
persistent threat of the potential entrant. We further elaborate on the selection of
support tools which may induce the development of new technology in the second-
best world and establish criteria for these tools to be social welfare improving ones.
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1 Introduction

For many environmental problems, a shift to green technologies is considered to be a

promising long-term solution. A prominent example is climate change, where much hope

rests on a transition from fossil fuel based technologies to renewable energy sources. An-

other example is traffic-related air pollution, where cleaner engines or e-mobility provide

opportunities to reduce pollution levels substantially.

In this context, a crucial question is whether and to what extent a government should

interfere with technological change. It is obvious that an internalization of environmental

externalities is important to provide incentives for developing clean technologies. Ar-

guably, competition among technologies will seek out the best technological solutions

once environmental damages are correctly priced. But many countries use considerably

more fine-grained approaches to steer details of technological change. A prominent exam-

ple are feed-in tariffs for renewables. By using different tariffs for different technologies,

many countries make sure that a broad set of technologies is developed and used. Often

this approach eliminates competition among technologies (as less efficient technologies are

subsidized to an extent that ensures their use) and thus replaces market-based technology

selection with politically set targets for technology development and diffusion. Subsidies

for different new transport technologies (fuel cells, e-mobility) work in a similar way.

Not surprisingly, many economists are skeptical regarding this approach and argue

that governments might lack the necessary information to ensure efficient investments in

different options for green technologies. However, there are also economic arguments in

favor of detailed incentive schemes. Numerous studies have shown that almost unavoidable

market failures can lead to a technology lock-in; typical examples are lock-ins caused by

market power that is due to patents for new technologies (see, e.g., Krysiak (2011)) or

externalities caused by network effects in technology adoption (see Arrow (1962), Arthur

(1989), (Unruh, 2000), or (Unruh, 2002)). In such cases, it is not sufficient to only set a

price for environmental damages to ensure that the best clean technologies are developed;

more specific incentives are necessary (Krysiak, 2011).

The size and duration of such specific interventions will typically depend strongly

on different cases of market failures. For example, the development of a new promising
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technology might only be delayed or it could be prevented completely, rendering different

interventions necessary.

However, in many cases it is not easy to assess the type and scope of market failures

that might require an intervention. This holds in particular, as the potential of yet to be

developed technologies cannot be predicted with certainty. It is often hard to say whether

a new technology is not developed, because market actors expect that it is an inferior

solution (and thus do not invest) or because some actors with incumbent technologies

use their power to forestall the development of a superior competition. Furthermore, it is

hard to assess whether a development is forestalled or only delayed.

There are numerous models analyzing r&d competition between firms in a differential

game context. This literature dates back to patent races (D’Aspremont and Jacquemin,

1988). Some more recent contributions are (Dawid et al., 2010) and (Bondarev, 2014).

These studies concentrate on the r&d dynamics in a rather similar setup but do not go

into analysis of government policies. Other studies focus on the evolution of the market

structure as in (Hinloopen et al., 2013), where one firm may leave the market due to

having a weaker position. In this paper the dynamic market structure is allowed for

but the government policy is not studied. The paper (Ben-Youssef and Zaccour, 2014)

considers a dynamic r&d duopoly and government regulation, but does not allow for

strategic pricing behavior. Our contribution is the development of a framework which

accounts both for strategic behaviour of duopolists and government interventions. We

specifically focus on the market failure that could lead to a monopolization of a market

and ways to avert this problem, thus combining the effects of government policy with an

evolving market structure.

In this paper, we investigate how qualitatively different types of market failures can

arise in technological change and what kind of policy intervention is required to cope with

them. We use a simple model where, depending on the efficiency of a new technology,

an incumbent might or might not have an incentive to keep the new technology out of

the market or to delay its entrance. A government could, in addition to internalizing an

externality, provide specific support for the new technology. We show that different cases

of market failure can arise and require different levels and duration of an intervention.
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The structure of the rest of the paper is as following: Section 2 introduces the model,

in Section 3 we describe the multiplicity of arising r&d regimes, Section 4 describes the

social welfare and subsidizing schemes for different regimes of r&d, Section 5 concludes.

Most lengthy computations may be found in the Appendices section.

2 The model

We consider a setting with a production sector, where firms decide which out of two

technologies to use, and an r&d sector, where two firms develop these technologies.

In the production sector, there is perfect competition. But in the r&d sector, the firms

get a patent for their developments and are thus monopolistic suppliers of their technology.

One of the firms has an initial advantage (its technology being somewhat more developed

initially) and thus might act strategically to forestall the use and development of the

second technology.

Both r&d firms know with certainty technology characteristics of each other. In our

analysis we abstract from further market imperfections such as environmental external-

ities, assuming it is already taken care about by proper remuneration schemes in case

technologies at hand are dirty and clean ones or both are green. By doing so we apply our

study to the case of general innovations setting with green technologies being a specific

(but rather important) example of those.

2.1 The production sector

Firms in the production sector can choose among two technologies, labeled j ∈ {A,B}.
Each firm can invest in one unit of technology. The technologies differ regarding their

quality qj(t) and their price pj(t), which can change over time. Thereby the quality

influences the amount of output generated with one unit of equipment. The remuneration

per unit of output is z and is fixed over time1.

1it is possible to carry out the analysis with time-varying final product price, but analytical derivations

become much more challenging without altering the main results of the paper
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The firms have different locations, which also influence the achievable output. For

simplicity, we use a single location parameter x that influences the output achievable

with both technologies, but in different directions (one technology being more suited at

a location than the other). For example, in the case of renewable energy, some locations

might be better suited for wind power whereas others are more suitable for PV. We assume

that there is a continuum of locations x and that there is exactly one firm at each location.

The profit that this firm can obtain by using technology A or B is given by

πProdA = z (qA(t)− x)− pA(t), (1)

πProdB = z (qB(t) + x)− pB(t). (2)

We assume x ∈ [−x̄A, x̄B] ⊂ R. Thus, depending on the choice of x̄A, x̄B, locations could

be on average better suited for technology A or for technology B.

To calculate the demand for each technology, we take into account that each firm buys

one unit of equipment and each locations hosts a single firm. As long as z qj > pj holds

for j = A,B, all locations are used and thus the demand for technology j is determined

by the distance between x̄j and the location where a firm is indifferent between both

technologies. This implies the following demand functions

NProd
A = x̄A −

1

2

(
pA − pB

z
− qA + qB

)
, (3)

NProd
B = x̄B −

1

2

(
pB − pA

z
− qB + qA

)
. (4)

We assume that x̄j ≤ qj/2 for j = A,B, which implies that in the equilibrium derived

later, the condition z qj > pj for j = A,B will always hold. Thus these demand functions

characterize the case where both technologies are available.

If only technology A is available (which will be the case in some settings), demand for

this technology is determined by the distance between x̄A and the location where a firm

receives a profit of zero when using technology A. In this case, demand for technology A

is given by

NProd
A,−B = x̄A −

(pA
z
− qA

)
. (5)

where subscript A,−B denotes the demand for A in the absence of B.
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2.2 The r&d sector

In the r&d sector, firms can invest in r&d and set prices for their technologies. Owing to

their patent, they are the sole suppliers of their respective technologies.

A firm’s r&d efforts improve the quality of its technology

q̇j(t) = gj(t)Qj − qj(t), (6)

with Qj being a measure of the efficiency of r&d for this technology and thus (implicitly)

of the long-term quality (potential) that the technology might eventually achieve.

The objective of both firms is to maximize their discounted stream of profits (value)

for a given discount rate r and with Nj being given by (3),(4)

Jj = max
pj ,gj

∫ ∞
0

e−rt
{
pj(t)Nj(t)−

1

2
g2
j (t)

}
dt. (7)

As we allow for dynamic price adjustments, the state of both technologies influence both

firms and we thus have a differential game setup. To reduce dimensionality, we introduce

the distance between technologies as a state variable (referred to as technological gap

throughout the rest of the paper). States of both technologies and distance between them

are linked via

δ̇(t) = q̇A(t)− q̇B(t) = gA(t)QA − gB(t)QB − δ(t). (8)

The differential game thus consists of two firms maximizing the functionals (7) subject

to the common dynamic constraint (8) and the demand functions given by (3),(4), which

can also be written as functions of δ(t). The initial condition for the game is the distance

between technologies at time 0, which we denote by δ(0).

We want to analyze the most interesting case, where an older and thus somewhat more

refined technology A could potentially prevent the development of a currently less refined

technology B that, however, has the potential to become the better technology. We thus

assume δ(0) > 0, that is, technology A has the better initial quality2. Furthermore, we

assume QB > QA, that is, technology B has the better long-run potential.

2if on the contrary, δ(0) < 0 technology B has the head start and all analysis is repeated with

interchanging A and B
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2.3 Government

We introduce the social welfare into the model to make comparisons across different

regimes of the r&d game. However we restrain from formulating any subsidies/taxes at

this stage, to keep the analysis focused on strategic behavior of the firms. The net social

benefit consists of a marginal benefit β attached to each unit of production with both

technologies3 minus locational costs, minus the costs of developing the technologies. For

simplicity, we assume that the social planner uses the same discount rate r as the r&d

firms. Social welfare is thus given by:

W :=

∫ ∞
0

e−rt
{
β (NA(t) (qA(t) + ΞA(t)) +NB(t) (qB(t) + ΞB(t)))− 1

2

(
g2
A(t) + g2

B(t)
)}

dt,

(9)

where Ξj(t) denotes the average effect of used locations on output for technology j.

In case that both technologies are available, these costs are given by4

ΞA(t) =
x̄2
A

2
− (pA(t)− pB(t)− z (qA(t)− qB(t)))2

8 z2
, (10)

ΞB(t) =
x̄2
B

2
− (pA(t)− pB(t)− z (qA(t)− qB(t)))2

8 z2
. (11)

In case only technology A is used, we get

Ξ(t) =
x̄2
A

2
− 1

2 z2
(pA(t)− z qA(t))2 . (12)

In Section 4 we compute W associated with different outcomes of the game and study what

ranking is induced across social welfare by different strategic actions of the incumbent firm.

3 Regimes of the r&d sector

To assess whether the government should subsidize the initially weaker technology, it

is important to analyze the dynamics of technological development. The model admits

several qualitatively different cases: Both firms might develop their technologies simulta-

neously, firm B might decide not to enter the market, firm A could use strategic pricing

3For simplicity, we assume that both technologies induce the same marginal benefit.
4This follows directly from (3)–(4).
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to delay development of technology B (temporary technology lock-in), and firm A might

keep firm B from ever developing its technology (permanent technology lock-in).

To prepare the analysis of policy interventions, we first investigate these cases sequen-

tially and then show under which conditions which case will emerge as the solution of the

game. Throughout the exposition we move all intermediate calculations and results to

appendices referred to throughout the main text.

3.1 Simultaneous play: both technologies are present

In case both technologies are available, (3)–(4) describe the relevant demand system. The

optimal price schedules for both firms as functions of the technological gap are then

pA(t) = z x̄A +
z δ(t)

2
+
pB(t)

2
, pB(t) = z x̄B −

z δ(t)

2
+
pA(t)

2
; (13)

p∗A(t) =
z

3
(4 x̄A + 2 x̄B + δ(t)) , (14)

p∗B(t) =
z

3
(4 x̄B + 2 x̄A − δ(t)) . (15)

where the superscript ∗ denotes optimally chosen prices. Thus revenue for each firm is a

function of the quality difference between technologies only:

p∗A(t)N∗A(t) = SA1 δ2(t) + SA2 δ(t) + SA3 ,

p∗B(t)N∗B(t) = SB1 δ2(t) + SB2 δ(t) + SB3 , (16)

with SA1 = SB1 = z2

18
, SA2 := z (4 x̄A+2 x̄B)

9
, SB2 := z (2 x̄A+4 x̄B)

9
, SA3 := (4 x̄A+2 x̄B)2

18
, and

SB3 := (2 x̄A+4 x̄B)2

18
. With the above price choices, the firms still have to choose their r&d

efforts. Given the above revenues, firm A has an incentive to increase δ(t), whereas firm

B wants to reduce the quality difference. This constitutes a standard non-cooperative
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differential game5:

JA = max
gA(•)

∫ ∞
0

e−rt
{
p∗A N

∗
A −

1

2
g2
A

}
dt,

JB = max
gB(•)

∫ ∞
0

e−rt
{
p∗B N

∗
B −

1

2
g2
B

}
dt,

s.t.

δ̇ = gA QA − gB QB − δ,

δ(0) = qA(0)− qB(0) = δ0,

gA, gB ∈ [0;∞) ⊂ R+ (17)

where the last condition ensures nonnegative controls.

An application of Maximum Principle6 yields optimal investments of both firms and

state dynamics7:

δ∗ = δ0e
1
2

(
r−
√

(r+2)2− 4
9
z2(Q2

A+Q2
B)

)
t
+

(SA2 Q
2
A + SB2 Q

2
B)(e

1
2

(
r−
√

(r+2)2− 4
9
z2(Q2

A+Q2
B)

)
t − 1)

1
9
z2(Q2

A +Q2
B)− (1 + r)

(18)

g∗A = 4e
1
2

(r−
√
X) t
(
FA

1 δ0 + FA
2

)
− FA

3 , (19)

g∗B = −4e
1
2

(r−
√
X) t
(
FB

1 δ0 + FB
2

)
− FB

3 , (20)

Details of derivation may be found in Appendix A and definitions of coefficients in Ap-

pendix F.

The time t∗, when technology B catches up with technology A, is therefore (from

δ∗(t∗) = 0):

t∗ = 2
ln
(

(SA2 Q
2
A+SB2 Q

2
B)

δ0( 1
9
z2(Q2

A+Q2
B)−(1+r))+(SA2 Q

2
A+SB2 Q

2
B)

)
r −

√
(r + 2)2 − 4

9
z2(Q2

A +Q2
B)

. (21)

The illustration of the typical simultaneous development of both technologies is given

by Figure 1. We denote by δj∗ such initial technology gaps, that simultaneous play yields

5From now on we omit time argument to condense notation everywhere where it is possible.
6we derive only the open-loop solution for this game and mean everywhere by solution the open-loop

one. Main results hold for the closed loop also, but with substantial analytical complications.
7assuming smooth interior solution ∀t, ∀j : g∗j > 0 with both firms remaining operative infinitely long,

condition for that see Appendix A
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Figure 1: Evolution of rival technologies with simultaneous play

zero value for firm j once δ0 = δj∗.

3.2 Sole innovator: Uncontested monopoly and strategic pricing

We next describe two regimes, where only firm A is present on the market, but with

differing price schedules.

3.2.1 Unrestricted monopoly

If firm B does not enter the market, because the initial gap between technologies is so

large that firm B’s value becomes negative (i. e. max{δB∗ } > δ0 > min{δB∗ } see Appendix

C for details), we obtain the case of unrestricted monopoly of firm A.

In this case, we get the usual monopolistic price and revenue functions:

pMA =
z
(
x̄A + δM

)
2

, pMA (t)NM
A (t) = SM1 δ2(t) + SM2 δ(t) + SM3 (22)

with δM(t) = qMA (t) − qB(0), depending on the state of technology A only, and SM1 =
z
4
,SM2 = z x̄A

2
, and SM3 =

z x̄2A
2

.
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The monopolist’a problem is a standard optimal control problem:

JMA = max
gA(•)

∫ ∞
0

e−rt
{
pMA (t)NM

A (t)− 1

2
g2
A

}
dt,

s.t.

δ̇ = gA QA − δ,

gA ∈ [0;∞) ⊂ R+ (23)

The Maximum Principle yields the following technology development and investments:

δM(t) = δ0e
1
2

(
r−
√

(r+2)2−8SM1 Q2
A

)
t
+
SM2 Q2

A(e
1
2

(
r−
√

(r+2)2−8SM1 Q2
A

)
t − 1)

2SM1 Q2
A − (1 + r)

gMA = FM
1 δ0e

1
2

(r−
√
Xm)t + FM

2 e
1
2

(r−
√
Xm)t − FM

3 (24)

with Xm := (r + 2)2 − 8SM1 Q2
A (and real-valued solution exists only if Xm > 0) and with

FM
1,2,3 being functions of monopolist’s demand parameters and efficiency of investments

QA specified in the Appendix F.

3.2.2 Strategic pricing

If firm B position is strong enough to enter the market, firm A may have an incentive to

prevent its entry. If firm A has a sufficiently strong advantage, it can keep the other firm

off the market. To do so, it has to set the price of its technology in such a way, that firm

B does not gain by entering the market. More precisely, firm A has to set its price so

that, even with its best response, firm B cannot achieve a total discounted profit stream

that is strictly greater than zero.

This strategic price, ensuring firm B does not enter the market is

pSA = z (δ − 2 x̄B) . (25)

Details of derivation are in Appendix B.

If strategic pricing is implemented (conditions of Lemma 8 from Appendix B hold)

permanently, firm B never enters the market. In this case, the resulting technology

state and investments are derived by the same Maximum principle application as for
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uncontested monopoly case albeit with price given by (25):

δS = δ0e−t +
SS1 Q

2
A(1− e−t)

(1 + r)
(26)

δ̄S =
SS1 Q

2
A

1 + r
(27)

gSA = QAS
S
1 (28)

where δS = qSA(t)− qB(0) and SS1 = z(x̄A + 2x̄B).

3.3 Piecewise solutions: temporary strategic pricing

Observe that solution given by (26) is valid only if strategic pricing is implemented in-

definitely long. Still, it might be that firm A will be able only to delay the entry of firm

B via strategic pricing, that is, firm A might switch from strategic pricing to the pricing

analyzed in subsection 3.1. Moreover it might be the case that temporary strategic pric-

ing is sufficient to permanently prevent B’s entry and firm A switches to monopolistic

behavior studied in subsection 3.2.

3.3.1 Temporary strategic pricing with permanent technology lock-in:

(un)contested monopoly

First consider the case when firm A is able to develop its technology to such a level, that

it is no longer profitable for firm B to enter the market even in the absence of strategic

pricing. This is possible, if there exists a value of technology gap δB∗ , after reaching

which at some time tP the value for the firm B upon entrance is non-positive in the

simultaneous development regime. Condition for such permanent lock-in are stated by

Lemma 9 in Appendix C.

If this is the case, the objective for firm A is:

JPA = max
gA(•)

{∫ tP

0

e−rt
{
pSAN

S
A −

1

2

(
gSA
)2
}
dt+

∫ ∞
tP

e−rt
{
pMA N

M
A −

1

2

(
gMA
)2
}
dt

}
. (29)

with P superscript denoting piecewise strategic-monopolistic regime. We label it by un-

contested monopoly to contrast it with the contested monopoly described further.

11



The optimal control problem solution for the case (29) is also obtained via Maximum

Principle and the resulting state dynamics is a piecewise system8:

δ̇P (t) =

δ̇S(t), t < tP ,

δ̇M(t), t ≥ tP , δM(tP ) = δB∗ .
(31)

where δ̇S, δ̇M are dynamical systems associated with permanent strategic pricing and

unrestricted monopoly respectively and δB∗ is the threshold technology gap value.

Figure 2a illustrates possible (un)contested monopoly cases. As firm A anticipates the

change in the strategy from gS to gM , the solution differs from the monopolistic and from

strategic ones. It is always the case that

δM(t) ≤ δP (t) ≤ δS(t) (32)

The longer it takes to prevent the entry of firm B, the closer the resulting technology

evolution is to δS and vice versa: the sooner the strategic pricing stops, the closer the

evolution is to the monopolistic one.

3.3.2 Temporary strategic pricing with temporary technology lock-in: delay

Next we study the case when position of firm A is not strong enough to prevent entrance of

firm B forever, but it still finds it profitable to price strategically for some time, delaying

firm’s B entry. We label it as a delay.

In this case there exists a threshold value of technology gap δd upon reaching which

at a time td it is no longer profitable for firm A to continue with strategic pricing and

8in fact, as long as δ̄S > δ̄M two cases are possible: either δ̄M > δB∗ or vice versa. In the first case

the dynamics is described by (31), but in the other case it is not possible for the firm A to switch to the

uncontested monopoly from subsection 3.2. It can still stop strategic pricing and price monopolistically,

but has to sustain the threshold level of technology gap δ∗B . We refer to this case as contested monopoly

and it is described by

δ̇C(t) =

δ̇S(t), t < tP ,

0, t ≥ tP , δ(t) = δB∗ .
(30)

with superscript C denoting contested monopoly regime.
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(a) Contested monopoly for tP = 1 (b) Delay for δd = 0.8

Figure 2: Piecewise regimes of the model

it allows the entry of firm B, while firm B still finds it profitable to enter the market

(conditions for that stated by Lemma 12 in Appendix E). We thus have a mixed optimal

control-differential game for firm A with the objective

JdA = max
gA(•)

{∫ td

0

e−rt
{
pSAN

S
A −

1

2

(
gSA
)2
}
dt+

∫ ∞
td

e−rt
{
p∗AN

∗
A −

1

2
(g∗A)2

}
dt

}
. (33)

and differential game for firm B starting at time td at initial gap δd with the objective

JdB = max
gB(•)

{∫ ∞
td

e−rt
{
p∗BN

∗
B −

1

2
(g∗B)2

}
dt

}
. (34)

The application of standard technique results in the piecewise state dynamics:

δ̇d =

δ̇S, t < td,

δ̇∗, t ≥ td, δ∗(td) = δd.

Observe that in the case of temporary delay the solution again is piecewise-defined and

hence fully informed players have dynamics different from both the strategic and simul-

taneous play regimes, as illustrated by the Figure 2b.
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It always holds that δ∗(t) < δd(t) < δS(t) in analogue with strategic piecewise solution

described above.

We thus observe that the simple framework with two firms allows for rich set of possible

outcomes if no entry costs are assumed. We next move to classifying and characterizing

conditions, under which these cases may arise.

3.4 Choosing a game to play

So far, we have analyzed a number of possible outcomes. To answer the question which

case realizes we compare values of firms under different outcomes. Define by Πm
j the value

of firm j ∈ {A,B} in regime m ∈ {∗,M, S, P, C, d} = O computed at time 0, where labels

in set O denote associated regimes described above. Denote further F ⊆ O the set of

feasible outcomes of the game.

It turns out that value of both firms in all regimes can be represented as polynomials

of at most 2nd degree (See Appendix C for details). Denote by δjm roots of polynomials

type Πm
j in δ0.

We compare the strategic pricing and the monopoly cases from the perspective of firm

A. The value function of firm A under permanent strategic pricing and under monopoly

(given in Appendix C) have roots δAS , δ
A
M . Value under monopoly is greater than under

strategic regime9, thus firm A will try to switch from strategic regime to monopoly as

soon as possible.

Next, we inquire whether strategic pricing is feasible and profitable. Feasibility is

worked out by Lemma 10, and profitability condition is given by Lemma 11, both from

Appendix D. If conditions of both lemmas hold, firm A behaves strategically for the

time tP defined in Lemma 9 (see Appendix C) and switches to monopolistic behavior

afterwards (contested or uncontested).

At last, if there is no option to permanently deter the entrance by temporary strategic

pricing (δB∗ > δ̄S), it might be still possible (and profitable) to delay the entrance of firm

B. This case is worked out in Lemma 12 in Appendix E.

9since it is always the case that pMA > pSA and monopoly is profit maximizing while strategic forestaller

is not
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We thus observe three different types of strategic behavior, with two of them leading

to permanent lock-in and another one to temporary lock-in on the industry in an inferior

technology A. We need thus a unified characterization of all those cases of strategic

behavior. We state this result next.

Proposition 1 (Strategic regimes algebraization).

• If max{δB∗ } > δ0 > min{δB∗ } and max{δAM} > δ0 > min{δAM}, the unrestricted

monopoly of firm A earning ΠM
A realizes;

• If Lemma 8 holds, strategic pricing is feasible for firm A and, if in addition min{δd} ≤
δ0, strategic pricing is also profitable.

• If Lemmas 9, 10 and 11 hold, strategic pricing is implemented for tP , given by (C.6),

and firm B never enters the market. Firm A switches to the uncontested monopoly

regime after tP and earns ΠP
A if min{δB∗ } < δ̄M or to contested monopoly preserving

the threshold level min{δB∗ } otherwise earning ΠC
A.

• If Lemma 9 does not hold, but Lemma 12 holds and Condition (E.4) is met, strategic

pricing is implemented for t ∈ [0, td[ (given by (E.2)) and firm B enters at time td.

Firm A earns Πd
A and firm B earns Πd

B|δ0=δd.

• If Condition (E.4) does not hold, but Condition (E.5) holds, the delay option results

in permanent strategic pricing with firm A earning ΠS
A.

Proof. The first point follows from assumption on leading coefficients of value functions

to be of opposite signs and definitions of δjm values. Other points follow from lemmas

contained in Appendix.

This proposition shows that, even in our rather simple model, qualitatively different

cases of strategic behavior can arise. It is possible that the development of technology

B is only delayed, it can be prevented for ever by permanent strategic pricing, or firm A

could attain an advantage after some time, where firm B would never enter the market,

even if firm A stops strategic pricing. More importantly it relates the cases of strategic

behavior with a single observable parameter δ and its threshold values.
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It is straightforward to translate the result of Proposition 1 into the comparison of

potentials of competing technologies (as these are the main parameters of interest).

Corollary 1 (Impact of technologies’ potentials on values of r&d).

For all polynomials type Πm
j it holds that

∂|δjm|
∂Q−j

≤ 0,
∂|δjm|
∂Qj

≤ 0, (35)

thus the higher is the potential of both technologies, the lower is the range of initial gap,

for which simultaneous play may happen.

Proof. Showing (35) amounts to differentiating the roots of polynomials given in Appendix

w.r.t. Qj.

Next, observe that (35) characterizes the decrease in the length of the interval in

δ axis, for which the simultaneous game takes place. If initial gap is inside of the

interval [min{δB∗ },max{δB∗ }], firm B will not engage into the competitive development

game. Firm A will not engage into the game once the initial gap is outside the interval

[min{δA∗ },max{δA∗ }]. Thus the r&d game will take place only if δ0 lies in the intersection

of [min{δA∗ },max{δA∗ }] with one of (−∞,min{δB∗ }], [max{δB∗ },+∞). Denote this by I(∗),
interval of r&d game realization. Since we limited exposition to δ0 > 0 it follows that

with increase in potentials the intersection of the I(∗) with positive range of δ becomes

smaller.

4 Social welfare

4.1 Social welfare comparisons

Proposition 1 shows that there are several distinct cases in which a technology lock-in

occurs; the incumbent (firm A) uses its advantage to prevent or delay the entry of the

competing firm B.

The first question is under which conditions this is socially suboptimal, that is, when

should technology B be developed. To this end, we have to evaluate and compare social
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welfare, as defined by (9), for the different cases of simultaneous development, delayed

development, forestalled development and unrestricted monopoly.

Denote by Wm the social welfare resulting from outcome m ∈ F of the r&d game

above and further denote

Dm(W ) = W ∗ −Wm (36)

the social welfare difference between the given regime m and the simultaneous develop-

ment regime10 e. g. for m = M ∈ F we have:

DM(W )
def
= W ∗ −WM =

=

∫ ∞
0

e−rt
{
β (N∗A(t) (q∗A(t) + Ξ∗A(t)) +N∗B(t) (q∗B(t) + Ξ∗B(t)))− 1

2

(
(g∗A(t))2 + (g∗B(t))2

)}
dt−∫ ∞

0

e−rt
{
βNM

A (t)
(
qMA (t) + ΞM

A (t)
)
− 1

2
(gMA (t))2

}
dt (37)

This expression depends on potentials of both technologies, initial conditions and the

characteristic of locations better suited to one or the other technology. If we take charac-

teristics of technology A (QA, qA(0), x̄A) fixed, the social welfare difference is positive and

increases in QB, qB(0) as long as x̄B � x̄A reflecting the high market potential of tech-

nology B (it is better suited for more sites). However, as soon as x̄B < x̄A, the monopoly

of technology A might be social welfare improving. This is illustrated by Figure 3.

It is interesting to note, that the higher is the potential of technology B, the lower

is the social welfare under simultaneous development, provided the condition x̄B � x̄A

holds (see Figure 3b). At the same time as soon as x̄B � x̄A, the higher is the potential

of B, the higher is welfare under simultaneous development (see Figure 3c).

The difference in social welfare (37) is the 3d degree polynomial in qB(0) of the form

WM
1 qB(0)3 +WM

2 qB(0)2 +WM
3 qB(0) +WM

4 (38)

10of course we could define more generally Dm,k(W ) = W k−Wm, ∀{m, k} ∈ O, but we limit exposition

to comparisons with simultaneous behavior here for brevity reasons

17



(a) Different x̄B , QB > QA (b) Different QB ,x̄B � x̄A (c) Different QB ,x̄B � x̄A

Figure 3: Social welfare under simultaneous development and monopoly

where superscript M denotes that difference is taken with respect to monopoly. Its leading

coefficient WM
1 is always negative11:

WM
1 =

zβ
(
−4 zQA

2 − 4 Q2B
2z +

√
−4 zQA

2 − 4 QB
2z + 9 r2 + 36 r + 36r + 9 r2 + 36 r + 36

)
432

√
−4 QB

2z − 4 zQA
2 + 9 (r + 2)2 ((QA

2 + QB
2
)
z − 2 r2 − 9 r − 9

)
(39)

and does not depend on initial technologies’ states, thus the resulting welfare is higher

under monopoly starting from some qB(0) which is given by the maximal root of the

equation (38) and always higher for competitive case for qB(0) values below the minimal

root of that polynomial.

There are potentially up to three values of technology B initial state (being functions

of demand potentials and potentials for development of both technologies), separating

regimes where monopoly is preferred to simultaneous development and vice versa. De-

note roots of the polynomial (37) in qB(0) by q̂MB {1, 2, 3} with superscript denoting the

difference with monopoly and indexed such that q̂MB {1} < q̂MB {2} < q̂MB {3}. We have then

the following:

11indeed, since square root has to be positive, and expression has the form (x−y)+
√
x−y√

x−y·α(y−x) , α < 1 and

y < x to yield real values
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Lemma 1. Simultaneous development is social welfare improving over the monopoly of

technology A as long as:

1. Either 0 ≤ qB(0) < q̂MB {1}

2. Either 0 ≤ q̂MB {2} < qB(0) < q̂MB {3}

Proof. Follows from the negative leading coefficient in (38) and shape of 3d degree poly-

nomials algebraic curves.

Next consider the social welfare under infinitely forestalled development of technology

B and simultaneous development.

The difference in social welfare is defined equivalently to (37) as

DS(W )
def
= W ∗ −W S = W S

1 qB(0)3 +W S
2 qB(0)2 +W S

3 qB(0) +W S
4 (40)

with the help of objective functional (9) and associated solutions to the original two-

states problem in qA, qB. This is again the 3d degree polynomial in qB(0) with coefficients

denoted W S
1,2,3,4. Denote its roots by q̂SB{1, 2, 3}. Then we have the same result as for

monopoly case:

Lemma 2. As long as W S
1 > 0, simultaneous development is socially welfare improving

over strategic forestall by firm A if qB(0) > q̂SB{3} > 0 or 0 < q̂SB{1} < qB(0) < q̂SB{2}.
As long as W S

1 < 0,simultaneous development is socially welfare improving over strate-

gic forestall by firm A if 0 < qB(0) < q̂SB{1} or 0 < q̂SB{2} < qB(0) < q̂SB{3}.

Proof. The same as for Lemma (1) but for positive and negative leading coefficients

cases.

If we compare the social welfare under monopoly and strategic permanent pricing, it

turns out that the social welfare under monopoly can be higher or lower than under strate-

gic forestall depending on the market potential of technology B, x̄B. This is illustrated

by Figure 4, which is the result of different signs of leading coefficients in polynomials

(38),(40).

The same logic applies for the delayed development: it may not necessarily lie in

between the simultaneous development and strategic permanent forestall. Thus both
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Figure 4: Difference in social welfare under monopoly and strategic forestall

δP (t), δd(t) regimes are to be taken into account. We need some invariant measure of

social optimality of simultaneous development case. For that we use the choice function

defined as:

Definition 1. A choice function (selector, selection) is a mathematical function f that is

defined on some collection X of non empty sets and assigns to each set S in that collection

some element f(S) of S.

It is provided by the following Lemma:

Lemma 3 (Selector for socially optimal regime).

The simultaneous development of both technologies is socially optimal across all possible

regimes m ∈ O iff qB(0) lies in the intersection of positive intervals of all respective

polynomials, i. e. there exists a selector

Ψ(qB(0)) :
∏
m∈O

Dm(W )|qB(0) > 0 (41)

Proof. The product
∏

m∈ODm(W ) is positive only if all of components are positive, mean-

ing simultaneous development is better than any other regime in social welfare terms. This

product is a rational function (product of finitely many polynomials), and has finite num-

ber of intervals with changing sign. Thus as soon as qB(0) lies in one of such intervals, it
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is better for social planner to have simultaneous development than any other regime of

the game.

It is immediate to note that the same type of selectors may be obtained for social

optimality of any other regime. We omit this since we are primarily interested in simul-

taneous development regime.We now can summarize our social welfare results in terms of

choice functions over regimes as following:

Proposition 2 (Social welfare algebraization).

The outcome s ∈ F of the r&d game is socially optimal among outcomes F ⊆ O if qB(0)

lies in the union of intervals where social welfare is higher under outcome s than under

any other m ∈ F , i. e. there exists the choice function:

Ψ(F) : qB(0) ∈
⋃
m∈F

⋂
m∈F

[q̂s,mB {z}; q̂
s,m
B {z + 1}] :

Ds,m(W ) ≥ 0 =⇒

Ψ(F) = arg max
m∈F

Wm(qB) = s. (42)

In particular, the outcome ∗ is welfare-optimal if ∗ ∈ F and Ψ(F) = ∗.

Proof. follows from the direct computation of social welfare defined above and comparison

of the roots of resulting polynomials in qB(0).

The particular application of Proposition 2 to the case of simultaneous development

yields combined results of Lemmas 1, 2

Corollary 2 (Social optimality of simultaneous development).

One of the following cases hold:

1. As long as both max{q̂MB } < 0,max{q̂SB} < 0 or ∀j ∈ 1, 2, 3 : qB(0) > max{q̂SB{j}, q̂MB {j}} >
0 it is never socially optimal to allow monopoly or strategic behavior of firm A;

2. If maxj{q̂MB {j}} > qB(0) > maxj{q̂SB{j}} > 0 it is socially optimal to allow

monopoly regime but not the strategic regime;

3. If maxj{q̂MB {j}} > maxj{q̂SB{j}} > qB(0) > 0 it is socially optimal to allow strategic

pricing regime and turn it into monopoly by proper subsidizing technology A;
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4. If maxj{q̂SB{j}} > maxj{q̂SB{j}} > qB(0) > 0 it is socially optimal to allow perma-

nent strategic pricing

Proof. Application of Proposition 2 to the case s = ∗.

It should be noticed that cases 2, 3, 4 above can be realized only for low x̄B � x̄A

new technology market potential. We thus assume in the rest of the paper that case 1

holds, i. e. parameters are set up in such a way, that it is socially optimal to have both

technologies being developed.

Corollary 3 (Impact of technologies’ potential on welfare).

There exists x̄∗j > x̄−j : ∀x̄j > x̄∗j it holds:

∂q̂mj
∂Qj

≤ 0,
∂q̂mj
∂Q−j

≥ 0 (43)

In particular if case 1 of Corollary 2 takes place, the higher is the potential of B, the less

initial qB(0) suffices for socially optimal simultaneous development.

Proof. Amounts to computing derivatives of roots of Dm(W ) polynomials with respect to

potentials. Since as long as qB(0) is higher than any of the roots q̂SB{j}, q̂MB {j} it is optimal

to develop both technologies, increase of QB decreases these roots and thus increases the

range of qB(0) for which development of B is socially desirable.

Using Proposition 2 it is straightforward to compute social welfare under different

policy schemes and compare it with sole development of A regimes. This is done by

replacing q∗B, q
∗
A terms in Dm(W ) polynomials by qσkj terms, which are optimal open loop

solutions of the associated differential game of r&d firms under given subsidy level σk. For

that we first derive some policy schemes and then conclude with statements over social

optimality of subsidized r&d regimes.

4.2 Policy schemes preventing strategic behavior

To prevent strategic pricing, the government can use a subsidy that is paid for each unit

of technology B. We do not ask the optimality, but only feasibility of such subsidies at
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this stage12. Such a subsidy σ alters the reaction functions of both firms:

pA(t) = z x̄A +
z δ(t)

2
+
pB(t)

2
, pB(t) = z x̄A −

z δ(t)

2
+
pA(t)

2
− 1

2
σ; (44)

The resulting equilibrium prices for both firms are

pσA =
1

3
(z (4 x̄A + 2 x̄B + δ(t))− σ) = p∗A −

1

3
σ,

pσB =
1

3
(z (2 x̄A + 4 x̄B − δ(t))− 2 σ) = p∗B −

2

3
σ. (45)

In the following, we discuss subsidies for the different cases of strategic behavior described

by the Proposition 1. We thereby derive different bounds for the subsidy and its duration.

Given the above reaction functions, the strategic price of firm A that will reduce the

profit of firm B to zero is now subsidy-dependent:

p−σ,SA = z δ − 2 z x̄B − σ. (46)

Thus the subsidy level that makes strategic pricing infeasible (reducing firm A’s revenues

to zero) follows from p−σ,SA = 0 and is

σmax = z δ(t)− 2 z x̄B = pSA. (47)

Given that δ(t) declines over time when both firms develop their technology, the maximal

required subsidy size is thus

σ+
def
= z δ0 − 2 z x̄B. (48)

This maximal subsidy is constant and thus easy to implement. However, the state-

dependent (and thus declining) subsidy σmax suffices to prevent strategic pricing in all

regimes.

The corresponding duration of the subsidy can be derived from the condition in Lemma

8, as this is a necessary and the least demanding condition for strategic pricing. Denoting

the solution of the simultaneous development game with the subsidy by δσ, we get the

following result.

12the first-best subsidy is always defined within a Stackelberg game with government playing a leader.

However this first-best subsidy is not computationally feasible even in our simple setup and we characterize

several simpler subsidizing schemes being aware of there second-best optimality.

23



Lemma 4 (Maximal size and duration of subsidy).

To prevent strategic pricing of firm A, it is sufficient to set the subsidy level at σmax and

pay it no longer than

tmax : δσ(tmax) = 2 x̄B. (49)

This duration is always shorter than the time required for technology B to catch up to

technology A.

As a second step, we consider the subsidy level and duration that render strategic

pricing non-profitable. Let us first consider the case of permanent strategic pricing. The

condition that strategic pricing is not profitable in this case, implies that the profit streams

under permanent strategic pricing and simultaneous development starting at level δσ are

equal:

δσ : ΠS
A,∞|δ0=δσ = Π∗A,∞|δ0=δσ . (50)

With (C.1) and (C.4), this results in a quadratic equation for δσ, which is similar to (E.1).

Comparing this condition with those of Lemma 11, we observe that δσ is given by the

same polynomial as δd (see Appendix D). The minimal duration of a subsidy is thus given

by

tmin : δσ(tmin) = δσ = min{δd}. (51)

The subsidy level that is necessary to prevent permanent strategic pricing is defined by

the condition

σmin : πSA,∞|pA=p−σ,SA
= π∗A,∞|pA,B=pσA,B

, (52)

which compares the revenue streams at each time t < tmin for firm A under the strategic

and the simultaneous development regimes. The value of σ that reduces this difference

to zero, is given by the larger root of the following second degree polynomial:

p−σ,SA (σ)NS
A − pσANσ

A = 0→ σmin = z (δ(t)− 4 x̄B − 2 x̄A) . (53)
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This value depends on the state δ(t). As the state is decreasing function of time under

the subsidy regime, the corresponding constant subsidy is always higher:

σ−
def
= z (δ0 − 4 x̄B − 2 x̄A) ≥ σmin. (54)

The minimal state-dependent subsidy is always lower than the maximal one for any δ, as

it can be inferred from comparison of (47) and (53).

Now, we turn to non-permanent strategic pricing, as described by Lemma 9. If this

lemma holds, the strategic pricing regime lasts only for tP . Thus the profitability of

strategic pricing for firm A could be higher and is limited by the monopolistic profit.

Thus the subsidy should continue for

tsuff : δσ(tsuff ) = δσ = min{δ−}, (55)

whenever tP <∞. Obviously, tsuff > tmin, as min{δM} < min{δd}.
In this case, the level of the subsidy that is sufficient to prevent strategic pricing is

given by the condition

σsuff : πMA,∞|pA=p−σ,MA
= π∗A,∞|pA,B=pσA,B

. (56)

where

p−σ,MA =
z
(
x̄A + δM

)
2

− σ (57)

Repeating our arguments regarding σmin, we see that σsuff has to be the maximal root of

polynomial over σ given by the difference in revenue streams between the monopoly and

the simultaneous development regime:

p−σ,MA (σ)NM
A − pσANσ

A = 0→

σsuff =
z

36 + z

(
3Xsuff + 3δ + 6x̄A +

(
x̄A + 2x̄B −

1

2
δ

)
z

)
δ≤δ2
≥ σmin, (58)

where Xsuff is specified in the Appendix, and where δ2 is the value of δ above which the

sufficient subsidy becomes lower than the minimal one.

As above, we can complement this state-dependent subsidy with a constant, suffi-

cient subsidy that might be easier to implement by replacing the time-varying difference
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between the states of the technologies with the initial gap:

σo
def
=

z

36 + z

(
3Xsuff |δ=δ0 + 3δ0 + 6x̄A +

(
x̄A + 2x̄B −

1

2
δ

)
z

)
≥ σsuff ,

σo
δ0≤δ2
≥ σ−. (59)

As long as both firms are present on the market, δ is always decreasing till the steady

state level. Thus, for the minimal duration tmin to be lower than the maximal duration

tmax it is necessary that

tmin ≤ tsuff ≤ tmax : δd ≥ δ− ≥ 2 x̄B. (60)

Note that the size of subsidies is not always ordered in the same way:

δ2 > δ > δ1 � σmax > σsuff > σmin (61)

where δ1 is defined by the intersection of σmax and σsuff and δ2 is defined by the inter-

section of σsuff and σmin. Figure 5 illustrates the relationship between different levels of

subsidizing.

Altogether, we have proven the following result.

Lemma 5 (Minimal size and duration of the subsidy).

To prevent strategic pricing of firm A, it is necessary to set the subsidy level at σmin and

pay it at least tmin. It is sufficient to pay the subsidy at the level σsuff during tsuff

It holds that tmin < tsuff < tmax and σmin < σsuff < σmax as long as (60), (61) hold.

The exact size and duration lie within the following boundaries

σmin ≤ σ(tP ) ≤ σsuff ,
∂σ(tP )

∂tP
< 0;

tmin ≤ tσ(tP ) ≤ tsuff ,
∂tσ(tP )

∂tP
< 0,

lim
tP→∞

σ(tP )→ σmin, lim
tP→0

σ(tP )→ σsuff ,

lim
tP→∞

tσ(tP )→ tmin, lim
tP→0

tσ(tP )→ tsuff . (62)

Finally, let us consider the last remaining case, that is, delayed development. Here,

Lemma 9 does not hold, that is, it is not possible to keep firm B permanently out of the

26



Figure 5: Relative subsidies sizes as functions of the state

market, but Lemma 12 holds, so that there is an option for delaying the entrance of firm

B.

In this case, the subsidy duration tmin is sufficient to prevent the delay. Indeed, we

have δσ = δd and thus if no δ∗B ≤ δ̄S exists, the duration tmin is both necessary and

sufficient, irrespective of whether the strategic delay is temporary or permanent.13 This

yields the following result

Lemma 6 (Subsidy size and duration for the case of strategic delay).

In conditions of Lemma 12 it is both necessary and sufficient to set the subsidy at σmin, t
min

levels to prevent the strategic delay option.

Summarizing our results on preventing strategic pricing under full information, we get

the following proposition.

13This holds, as the delay duration is defined by max{δd}, whereas the subsidy duration is defined by

min{δd}.
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Proposition 3 (Subsidy to prevent strategic pricing).

1. If Lemmas 8, 9, and 10 hold, the subsidy is set at the level σsuff and paid till

t = tsuff , if (60)–(61) holds, or at σmax till t = tmax otherwise;

2. If Lemma 9 does not hold, but Lemma 12 holds, the subsidy is set at σmin and paid

till t = tmin;

3. If one of the Lemmas 8 or 11 does not hold, there is no need for a subsidy.

This proposition shows that the different cases of strategic behavior considered in the

preceding section ask for different responses by the regulator.

4.3 Social welfare under subsidizing schemes

Previous subsection answered the question what kind of subsidy should be implemented to

prevent each possible kind of strategic behaviour. The answer depends on the initial gap

between both technologies. However the question whether it is socially welfare improving

to implement a subsidy is still open.

We use the same approach as in subsection 4.1, deriving and comparing social welfare

under different regimes. We have identified six different subsidizing schemes, three of them

constant and three state-dependent. It turns out that the quantities D(W ) computed in

the same manner as in (37), are 2nd degree polynomials in qB(0) for constant subsidies

and 3d degree polynomials for state-dependent subsidies. As such, they allow to derive

analytically the threshold levels, which indicate whether the given subsidy is socially

optimal.

For constant subsidizing schemes the social welfare decreases in the size of subsidy.

Thus as long as the ordering of subsidies size σ+ > σo > σ− holds, it also holds that

Dm(W )σ− > Dm(W )σo > Dm(W )σ+ where superscripts denote the implemented subsidiz-

ing scheme. Since all these polynomials are of the same degree it then follows, that the

maximal roots of them in qB(0) also have the same ordering.

The same is true for state-dependent subsidies, but with 3d degree polynomials. We

thus have:
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Lemma 7. The subsidies defined by the Proposition 3 are implemented only if the maximal

root of the associated polynomial Dm(W )σ is lower than qB(0).

Denote associated maximal roots by ˆ̂qσmaxm , ˆ̂q
σsuff
m , ˆ̂qσminm , ˆ̂qσ+m , ˆ̂qσom ,

ˆ̂qσ−m where superscript

denotes the polynomial Dm(W )σ from which the roots are taken. Denote further by

Θ(F) the choice function (as in Lemma 3) for the individually-optimal outcome of the

r&d game, defined via Proposition 1.

We then conclude our social welfare analysis with the following result:

Corollary 4 (Social welfare and policy schemes).

There is a need to implement a subsidy only if s = Ψ(F) 6= Θ(F) = h. In this case the

policy scheme is assigned via Proposition 3 with the welfare ordering following Lemma 7.

The subsidy scheme yielding maxσk Ds,h(W )σk is implemented.

5 Conclusions

In this paper, we have investigated the question whether a government should interfere

with green technological change by granting a technology-specific subsidy, which is a

frequently observed practice (technology-specific feed-in tariffs for renewables being the

most prominent example). We have studied a setting, where an incumbent firm might

have an incentive to keep a new technology from the market or delay its entrance. We

have shown that different cases of strategic behavior can arise and require different types

of intervention.

Our results show that in many cases a time-limited interference with technological

change is indeed socially optimal. As technological development requires patents to pay off

and patents induce market power, there is a considerable danger of market failures. A firm

that owns a patent for a technology with limited potential but an initial quality advantage

can have an incentive to use this market power to prevent or delay the development of an

ultimately superior competitor. It is socially optimal to correct this problem. However,

it will often not be possible to use the best possible intervention, as it depends on the

potential of the new technology, which is likely to be unknown to the government. Thus

we have shown that even in cases of severe constraints of information, a government can
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and should interfere. Furthermore, if it should interfere, the level and duration of the

subsidy increase with the uncertainty.

The paper extends prior studies in several points. First, using a simple but coherent

model, we show how different cases of technology lock-in or development delay can arise

from the existence of market power (patents) without any further imperfections. Second,

we couple this market description with an analysis of interventions that could prevent

such a lock-in.

From a more application-oriented perspective, our paper casts some new light on

policies that aim to support green technological change. These policies are widely used

and are often criticized by economists, as they eliminate competition among technological

options. Our results show that there are cases where it is indeed reasonable to temporarily

reduce the effects of competition via technology-specific subsidies. Most interestingly, a

less informed government should subsidize new technologies more and longer, as long as

it can still ascertain that developing the technology is socially desirable.

Appendices

A Solution for simultaneous game

Maximum principle yields (current value) Hamiltonians for both players:

Hj = p∗j(t)N
∗
j (t)− 1

2
g2
j + λj (gA QA − gB QB − δ) (A.1)

with co-state dependent optimal investments of both players resulting from F.O.C.s:

g∗A = λA QA, g
∗
B = −λB QB (A.2)

and co-state equations:

λ̇A = (1 + r) λA − 2 SA1 δ − SA2 , λ̇B = (1 + r) λB − 2 SB1 δ − SB2 . (A.3)
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The resulting canonical system of the game includes co-state equations (A.3) and the

state equation:

δ̇ = λA Q
2
A + λB Q

2
B − δ. (A.4)

Together, they form a three dimensional linear system of ODEs, which admits a closed-

form solution. The resulting state evolution is given by Eq. (18).

Given the solution path for co-state equations, optimal investments of both firms can

be written as functions of time and the demand parameters, given by Eqs. (19), (20),

where we set X := (r + 2)2 − 4
9
z2(Q2

A + Q2
B) (thus real-valued solution exists only if

X > 0) and where FA,B
1,2,3 are functions of demand parameters and investment efficiencies

(see Appendix F for their definitions).

Observe also, that as long as δ(t) is monotonically decreasing in time, at some point tE

it could the case that the initial leader will exit the market as soon as qA(tE) ≤ 0, resulting

in the uncontested monopoly of the new technology after that time. The condition for

that is

δ̄∗ ≤ −q̄B (A.5)

where bars denote steady state values, and the steady state of qB is given by the associated

two-states problem. To simplify the analysis we further assume this is not the case, and

the difference in technologies potentials is not too high, allowing the initial leader to stay

on the market.14

B Strategic pricing case derivations

Formally, firm A sets the price so that it makes maximal profit of firm B non-positive:

ΠB|pA(t)=pSA(t) = max
pB ,gB

∫ ∞
0

e−rt
{
pB(pSA, δ)NB −

1

2
g2
B

}
dt ≤ 0. (B.1)

14otherwise the game becomes piecewise-defined and incentives for strategic behavior of firm A are

further increased.
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Using the revenue function of firm B and its best response to the price set by firm A given

by (13), we get

pB (pA)NB =
p2
A

8 z
+

1

2
(x̄B −

δ

2
) pA +

z δ2

8
− z x̄B δ

2
+
z x̄2

B

2
. (B.2)

Hence, the strategic price is

pSA = z (δ − 2 x̄B) . (B.3)

As long as the price A is set at most on this level, the investments of the firm B are zero,

as the co-state equation (A.3) transforms into

λ̇B = (1 + r)λB, lim
t→∞

e−rtλB(t) = 0. (B.4)

This implies a co-state value of zero for all t and thus, by Eq. (A.2), an investment

of zero. With zero investment of firm B, the distance between technologies increases,

which in turn increases the level of the strategic price. Thus, if the strategic price can be

implemented at time zero, it will stay at that value for all the time until the entry of the

firm B is possible. This implies the following result.

Lemma 8 (Possibility of strategic pricing).

Whenever

δ0 > 2 x̄B, (B.5)

it is possible for the leading firm A to set the strategic price (25) and prevent firm B from

developing its technology.
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C Value functions

For strategic and monopoly regimes:

ΠS
A =

∫ ∞
0

e−rt
{
pSAN

S
A −

1

2

(
gSA
)2
}

=

=
SS1

1 + r
δ0 +HA, (C.1)

ΠM
A =

∫ ∞
0

e−rt
{
pMA N

M
A −

1

2

(
gMA
)2
}

=

=
SM1 − 1

2

(
FM

1

)2

√
Xm

δ2
0 − 2

√
Xm

(
M∗ (FM

1 − SM1 QA

)
+ 1

2
FM

1 FM
2 − SM2

)
+ r

(
SM1 M∗ + 1

2
FM

1 FM
2

)
√
Xm(r +

√
Xm)

δ0 +MA.

(C.2)

where the coefficients MA, HA,M
∗ are given in the Appendix F and depend only on the

demand parameters and efficiency of investments of firm A. Denote the roots of the

polynomials (C.1), (C.2) by δAS , δ
A
M .

Under the simultaneous development regime values of both firms at initial time are:

Π∗B =

∫ ∞
0

e−rt
{
p∗BN

∗
B −

1

2
(g∗B)2 + λB(g∗AQA − g∗BQB − δ)

}
dt (C.3)

Π∗A =

∫ ∞
0

e−rt
{
p∗AN

∗
A −

1

2
(g∗A)2 + λA(g∗AQA − g∗BQB − δ)

}
dt. (C.4)

Again, all new parameters are given in the Appendix F. Denote the roots of the polyno-

mials (C.3), (C.4) by δB∗ , δ
A
∗ , respectively. We assume that parameters of the game are

such that leading coefficients in all profit functions are positive for firm B and negative

for firm A implying their profit functions depend on δ0 in opposite directions.

The duration of a strategic pricing that is necessary to prevent the entry of firm B, is

thus given by the time, when the δ resulting from strategic pricing (δS(t)) equals δB∗ . We

denote this by tP .

Firm A will be able to permanently prevent the follower from entering the market by

temporary strategic pricing, whenever tP < ∞. If the polynomial (C.3) has no positive

real roots, only the permanent strategic pricing may prevent the enter of firm B to the

market.

So far, our analysis has produced the following result.
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Lemma 9 (Prevention of entry).

For temporary strategic pricing to result in a permanent prevention of development of

technology B, it is necessary that the roots of polynomial (C.3) are real and that

min{δB∗ } ≤ δ̄S. (C.5)

Then firm A may prevent entrance of B by strategically pricing during

tP = − ln

(
SS1 Q

2
A + (1 + r)qB(0)− (1 + r)δ∗B

SS1 Q
2
A − (1 + r)δ0

)
. (C.6)

Otherwise, a permanent prevention of entry is only possible via permanent strategic pric-

ing.

This result shows what firm A has to do, in order to keep firm B permanently out of

the market. The next question is whether it is optimal for firm A to act in this way.

D Piecewise monopoly dynamics

The profit stream under temporary strategic pricing ΠP
A, defined by Eq. (29), is bounded

by (C.1) from below and by (C.2) from above. It is a decreasing function of tP . Thus

if ΠS
A ≥ 0, the strategic pricing is feasible for any tP . Moreover, even for negative ΠS

A,

there might exist a tP < ∞ such that strategic pricing is still feasible, if we have ΠM
A >

0. Therefore those two profit streams give a sufficient and necessary condition for the

feasibility of strategic pricing.

Lemma 10 (Feasibility of strategic pricing).

For strategic pricing to be feasible, it is necessary that δ0 ≥ min{δM}. It is sufficient that

δ0 ≥ δS, where δS, δM are roots of equations (C.1), (C.2).

The next question is whether strategic pricing is also profitable. This question can be

reduced to comparing (29) and (C.4). As long as both (29) and (C.4) are positive, firm

A has an incentive for strategic pricing for the duration tP , whenever

∃0 < tP : ΠP
A − Π∗A ≥ 0. (D.1)
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Using Lemma 10, we can express this condition again in terms of roots of polynomials.

Note that the differences in profit streams is the second degree polynomial in δ0. The

roots of this polynomial characterize the threshold levels of profit streams, for which the

monopolistic and permanent strategic regimes are more profitable than the simultaneous

development regime. As the temporary strategic pricing regime leads to a profit stream

in between monopolistic and permanent strategic pricing, we get the following result.

Lemma 11 (Profitability of strategic pricing).

For strategic pricing during tP > 0 to be profitable, it is necessary that δ0 ≥ min{δ−}, and

it is sufficient that δ0 ≥ min{δd}, where δ−, δd are the roots of polynomials ΠM
A −Π∗A and

ΠS
A − Π∗A, respectively.

E Temporary delay case

This depends on the roots δd of the polynomial ΠS
A,∞−Π∗A,∞, which, by (C.4) and (C.1),

can be written as

0 = −
SA1 − 1

2

(
FA

1

)2

√
X

δ2
d +

SS1
1 + r

δd+

+ 2

√
X
(
FA

1

(
FA

3 + 1
2
FA

2

)
+ SA1 G

∗ − SA2
)
− r

(
SA1 G

∗ − 1
2
FA

1 F
A
2

)
√
X(r +

√
X)

δd +HA −GA (E.1)

As long as at least one positive real root δd exists, it gives a criteria to stop strategic

pricing, if it is implemented. The time till which market entrance of firm B is delayed is

then given by

td = − ln

(
SS1 Q

2
A + (1 + r)qB(0)− (1 + r)δd
SS1 Q

2
A − (1 + r)δ0

)
(E.2)

The incentive for a strategic delay of entrance is given by the discounted profit stream of

firm A under switching from strategic price to the simultaneous development regime at

time td and at the level of technology δd:

ΠS
A,td =

∫ td

0

e−rt
{
pSAN

S
A −

1

2

(
gSA
)2
}
dt+

∫ ∞
td

e−rt
{
p∗AN

∗
A −

1

2
(g∗A)2

}
dt ≥ Π∗A,∞ (E.3)

We conclude this case with the following result.
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Lemma 12 (Strategic delay).

For strategic pricing to result in a temporary delay of firm B entry, it must hold that

min{δd} ≤ δ0 < max{δd} ≤ δ̄S < min{δ∗B} (E.4)

with delay duration td.

If

min{δd} ≤ δ0 ≤ δ̄S < max{δd}, δ̄S < min{δ∗B} (E.5)

only permanent strategic pricing is profitable and effective.

Proof. As long as (E.4) is met, it is initially profitable for firm A to use strategic pricing.

But it cannot shift to monopolistic pricing, as δ never becomes large enough to prevent

firm B’s entry altogether. Firm A will thus stop strategic pricing, if it is no longer

profitable compared to the simultaneous development case. In contrast, if the value of

δ at which this occurs is higher than the value required by (E.5), the strategic pricing

regime will hold forever.

F List of coefficients

Optimal investments parameters competitive case:

FA
1 =

QAS
A
1

r + 2 +
√
X
, FA

2 =
QAS

A
1 (SA2 Q

2
A + SB2 Q

2
B)

(r + 2 +
√
X)(2SA2 Q

2
A + 2SB2 Q

2
B − (1 + r))

,

FA
3 =

QA(2SA1 S
B
2 Q

2
B + SA2 (1 + r − 2SB1 Q

2
B))

(2SA2 Q
2
A + 2SB2 Q

2
B − (1 + r))(1 + r)

,

FB
1 =

QBS
B
1

r + 2 +
√
X
, FB

2 =
QBS

B
1 (SA2 Q

2
A + SB2 Q

2
B)

(r + 2 +
√
X)(2SA2 Q

2
A + 2SB2 Q

2
B − (1 + r))

,

FB
3 =

QB(−2SB1 S
A
2 Q

2
A + SB2 (2SA1 Q

2
A − 1− r))

(2SA2 Q
2
A + 2SB2 Q

2
B − (1 + r))(1 + r)

(F.1)

Optimal investments parameters monopolistic case:

FM
1 =

(
SM1 Q2

A − 1
2
(1 + r)

)
(2 + r −

√
Xm)

QA(2SM1 Q2
A − (1 + r))

, FM
2 =

1

2

SM2 Q2
A(2 + r −

√
Xm)

QA(2SM1 Q2
A − (1 + r))

,

FM
3 =

SM2 QA

2SM1 Q2
A − (1 + r)

(F.2)
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Competitive profits coefficients:

G∗ =
(SA2 Q

2
A + SB2 Q

2
B)

2(SA1 Q
2
A + SB1 Q

2
B)− (1 + r)

,

GB =
1

2

2SB1 (G∗)2X − 4SB1 (G∗)2
√
Xr + 2SB1 (G∗)2r2 − 2SB2 G

∗X + 2SB2 G
∗
√
Xr

r
√
X(r +

√
X)

+

1

2

2SB3
√
Xr + 2SB3 X − 4FB

2 F
B
3

√
Xr − (FB

2 )2r(
√
X + r)

r
√
X(r +

√
X)

,

GA =
1

2

2SA1 (G∗)2X − 4SA1 (G∗)2
√
Xr + 2SA1 (G∗)2r2 − 2SA2 G

∗X + 2SA2 G
∗
√
Xr

r
√
X(r +

√
X)

+

1

2

2SA3
√
Xr + 2SA3 X − 4FA

2 F
A
3

√
Xr − (FA

2 )2r(
√
X + r)

r
√
X(r +

√
X)

(F.3)

Strategic profit coefficient:

HA =

1

2

(xA + 2xB)
(
(−4xB + 6qB(0)) r2 + (−8xB + 12qB(0)) r +QA

2zxA + 2QA
2zxB − 4xB + 6 qB(0)

)
z

r (r + 1)2

(F.4)

Monopolistic profit coefficients:

M∗ =
SM2 QA

2SM1 Q2
A − (1 + r)

,

MA =
1

2

(
2SM1 (M∗)2QA

2 + 2SM2 M∗QA + 2SM3
)
Xm

r
√
Xm(r +

√
Xm)

−

4
(
SM1 (M∗)2QA

2 +
(
1/2SM2 QA + FM

2

)
M∗ + 1

4
(FM

2 )2 − SM3 /2
)
r
√
Xm

r
√
Xm(r +

√
Xm)

+

r2
(
2SM1 (M∗)2(QA)2 − (FM

2 )2
)

r
√
Xm(r +

√
Xm)

(F.5)

Coefficient for sufficient subsidy:

Xsuff =
√
X1δ2 +X2δ +X3

X1 = z2 + 32z + 54

X2 = (4z2 + 152z − 272)xA + 32xB(z − 6)

X3 = (4z2 + 116z − 608)x2
A − 64xAxB(z + 6)− 64x2

Bz (F.6)
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