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Abstract

This paper combines horizontal and vertical innovations to generate an en-

dogenous growth model allowing for structural change as an endogenous phe-

nomenon. Every industry is profitable only for a limited period of time, making

the effective time of existence of the technology endogenous and finite. We find

that in such an economy endogenous structural change is the source of ongoing

economic growth. Further, the range of existing sectors stays constant as well as

growth rates as long as the technologies are symmetric.
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1 Introduction

The question of how to foster dynamic structural change (i.e. the replacement of older

sectors by newer ones) in an economy compatible with ongoing economic growth is of

interest for a great many modern economies. Such a dynamic structural change is,

for example, of great importance for developing economies and for emerging countries

of Asia. It is also of interest for developed countries when considering the transition

to more energy efficient industries. Consistent model of this structural change may

re-establish an argument for growth through horizontal innovations (i.e. through the

creation of new sectors) paving the way for a sustainable development.

In this paper we present an endogenous growth model that allows for both horizontal

and vertical innovations simultaneously. New technologies result from R&D investment

of innovating firms and are continuously improved by vertical innovations. However,

since the potential for improvement of a given technology is limited and since there

is competitive pressure in the R&D sector, investment in higher quality of a given

technology ends at a certain point in time and R&D firms rather invest in newly

created technologies that have a higher potential for further quality enhancement. This

makes old technologies disappear from the economy and, thus, generates endogenous

structural change as well as ongoing growth.

The endogenous growth literature has a long tradition of identifying technical

change as the primary source of sustained economic growth, dating back to the sem-

inal papers by Romer (1990) and by Aghion and Howitt (1992). In these papers,

economic growth results from vertical or from horizontal innovations (creative destruc-

tion). While most of the early contributions in the endogenous growth literature focus

on either vertical or horizontal innovations, there are some recent approaches to model

both types of technical progress simultaneously, as in the paper by Peretto and Con-

nolly (2007) for example. However, in that paper horizontal innovations are limited
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due to the presence of fixed costs and growth results from the further development of

existing technologies (productivity growth). In our current paper, we make a similar

attempt and extend the model by integrating patents for new technologies in the same

way as in Romer (1990). This allows continuous sustained horizontal innovations as

well as productivity growth of the existing sectors. The competitive nature of the R&D

sector and the fact that the potential for quality improvements of a given technology

is bounded, lead to the gradual disappearance of older technologies from the econ-

omy and to the emergence of new technologies. This result is sometimes referred to

as the Arrow replacement effect, named after Arrow (1962), and is in fact generating

endogenous structural change in our framework.

The majority of the economics literature on structural change discusses the real-

location of productive factors from some sectors of the economy to others, but the

number of sectors is assumed to be constant, as in Meckl (2002), Huntington (2010),

Laitner (2000). However the rapid technical change leads not only to an overall pro-

ductivity growth but also to a structural transformation of the economy, destroying

older sectors and creating newer ones, as already discussed by Schumpeter (1942) and

formally treated in Boucekkine et al. (2005). It is this aspect that is taken into ac-

count in our approach, in contrast to the papers by Meckl (2002), Huntington (2010),

Laitner (2000). One example for such a model with a dynamic number of sectors is

Chu (2011). There, however, the number of sectors cannot decrease, thus, excluding

the disappearance of sectors as in our model.

The appearance of fundamentally new technologies is usually accounted for by the

concept of General Purpose Technologies (GPTs) that have a broad impact on different

sectors in the economy. Examples for such GPTs are steam-power, electricity and so

on. A literature review of this type of models can be found in Bresnahan (2010).

The difference of our model to this approach is that it is not the significance of an

innovation which leads to structural change (destroying some sectors and introducing
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new ones), but rather the existence of limiting factors that change the structure of the

economy: all technologies are symmetric, but, since the potential for improvement of a

given technology is limited and due to competitive pressure in the R&D sector, older

technologies are driven out of the market. To model such a dynamic transformation

of the economy we fully account for the endogenous formation of patent prices and for

R&D behaviour in the spirit of Nordhaus (1967).

In our model setup, the monopolistic competition in the manufacturing sector to-

gether with free entry in the technology sector affect the patent prices in such a way

that excessive monopolistic profits are not used for asset accumulation but for the de-

velopment of newer technologies by the competitive R&D sector. The overall structure

of R&D in the model resembles the one of venture capital firms: a new technology is

invented by the R&D firm with the intention of its further development up to the point

when it becomes productive and the only stimulus for such a development is the patent

payment from the manufacturing sector. The patent itself is of unlimited duration, but

the endogenous emergence of new technologies limits the time of its usage. Thus, the

infinite duration of patents in this setting does not create obstacles for technological

progress because the technology itself becomes out-dated at some point. The overall

life-cycle of each technology resembles the cycles already mentioned in Albernathy and

Utterback (1985). However, in contrast to Albernathy and Utterback (1985), this cy-

cles occurs at an economy-wide level in our model and we present our arguments in a

more formal setting.

In the model we present below, the setup of the R&D sector resembles the structure

resorted to in optimal control models on the endogenous domain, developed mainly in

Belyakov et al. (2011) but it is closer to the homogeneous version of the multi-product

monopolist from Bondarev (2012). Horizontal and vertical innovations are interrelated,

with the profitability resulting from vertical innovations being the stimulus for inventing

new technologies and the spectrum of horizontal innovations determining the limitation
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for vertical innovations. Structural change, then, is defined as the appearance of new

technologies accompanied by the disappearance of old ones the productivity of which

cannot be improved any further.

The main contribution of our paper is to present a theoretical model of an economy

that grows through structural change that is endogenously determined. New technolo-

gies arrive at some constant speed because of the symmetry of all new technologies, thus

ensuring a constant range of existing technologies. The symmetry of the technologies

leads to equal profitability of newer technologies and to equal incentives to innovate for

all incumbent R&D firms. At the same time, all technologies are developed through

optimal investment plans, which are identical across the whole range of technologies.

As a result, the productivity of the economy grows proportionally to the accumulated

financial capital (assets).

The productivity of newer sectors grows faster than that of older ones since the

abundance of accumulated assets is higher at the time when the new technology is

invented and its development starts. The higher potential of newer technologies for

quality improvements attracts capital into their development that is withdrawn from

older technologies (since potential profits from newer technologies are higher), thus,

creating structural change. To obtain this effect, we assume that that any technology

needs maintenance to be of use, implying that there is some depreciation of productivi-

ties. Finally, profits in the manufacturing sectors with older technologies are dwindling

because labour is reallocated to newer sectors (where it is used more efficiently) and

older sectors disappear from the economy.

The rest of the paper is organized as follows. Section 2 introduces the structure of

the model. Section 3 provides the results and the analysis. Section 4 concludes with

some discussion and possible future extensions. Some of the more tedious mathematical

proofs are given in the Appendices at the end of the paper.
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2 The Model

There are three types of economic agents: households, producers and R&D firms.

The household sector is represented by one household that maximizes the stream

of discounted utilities over an infinite time horizon subject to its budget constraint.

Utility arises from a composite consumption good which consists of the integral over

all existing differentiated products. The solution of the intertemporal optimization

problem gives rise to the usual Euler equation. The modelling of the household sector

is standard in economics and can be found in quite a many contributions (as for example

in the book Grossman and Helpman (1993)).

Producers of the final output have to buy a blueprint, that is a patent, in order

to be able to start the production of the consumption good i. This blueprint also

determines the technology in use. The output sector is characterized by monopolistic

competition and the present value of future profits of the producer of good i is used to

pay for the patent. Thus, the structure of the output sector is similar to the structure

of the intermediate goods producers in the Romer (1990) model. However, in contrast

to Romer (1990), profits in our approach do not arise over an infinite time horizon, but

only over a certain endogenously defined period of time. This results from the fact we

allow for the out-dating of goods, giving rise to endogenous structural change.

In particular, there is a continuum of goods indexed by i with an endogenous

spectrum. This spectrum can be extended by horizontal innovations. Each good i

is provided by a single monopolistic producer which is the holder of the most recent

technology in sector i. All products i are fully consumed, as in Ngai and Pissarides

(2007), with financial capital (assets) being the separate good, which is used for R&D

investments. Since there is a varying continuum of final products, we choose labour as

the numeraire, i.e. the wage rate is set equal to one. Thus, all costs, investments and

prices come in terms of labour costs.
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The modelling of the R&D sector follows the microeconomic model of Bondarev

(2012). Firms in the R&D sector are perfectly competitive and invest resources in

order to generate horizontal innovations, i.e. blueprints, allowing the production of

new products. These are sold to the producers in the final output sector. Each new

blueprint, or technology, has zero productivity at the time it is invented but its quality

rises over time due to vertical innovations, resulting from the R&D sector investing

resources in quality improvements. Thus, we differentiate between the invention and the

innovation of a technology. Vertical innovations raise the productivity of the technology

sold to the final output sector, thus, guaranteeing this sector positive profits, but

only over a certain finite period of time. The latter holds because the potential of

a given technology for improvements is limited, implying that it becomes more and

more expensive to raise the productivity, the higher is the level already attained. Or,

formulated differently, one unit of R&D raises the quality of a technology i the less, the

higher is its level. Therefore, at a certain point in time, it is more profitable to invest

one unit of R&D into vertical innovations of a younger, i.e. less developed, good rather

than to spend that unit into the development of an older technology that has a smaller

scope for further improvements. This characteristic of our model makes the profits,

resulting from the production of a certain good, finite and it makes old products to

disappear from the economy and new ones to come into existence.

Next, we continue with the formal description of the households, followed by man-

ufacturing sectors and R&D activities.

2.1 Households

Households are modelled in a similar way as in Peretto and Connolly (2007). The

amount of labour is constant and distributed across the range of final sectors, which
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are in existence:

L =

Nmax(t)∫
Nmin(t)

L(i, t)di,

Nmin(t) < Nmax(t) < N(t), (1)

where:

• L is the total labour in the economy (equal to population),

• L(i) is the employment in sector i,

• N(t) is the number of products or technologies (range) invented up to time t,

• Nmax(t) is the range of manufacturing sectors with positive operating profit (any

new technology does not immediately yield positive productivity),

• Nmin(t) is the range of sectors, which have disappeared from the economy up to

time t.

Strictly speaking, N(t) gives the number of blueprints developed by the R&D sector

that are sold in form of patents to the final goods producers. Since producers of the

final good must acquire one blueprint for each good, the number of blueprints equals the

number of products in the economy and the blueprint also determines the production

technology.

The range of developed sectors is growing over time reflecting the expansion in

the variety of products. However, the range of existing sectors, given by Nmax(t) −

Nmin(t) may grow, decrease or stay constant in time, depending on the characteristics

of the process of expansion of variety of technologies, Ṅ . The labour employed by an

individual sector is not constant. It is redistributed from older sectors to newer ones.

From now on we omit where possible time arguments keeping in mind dynamic

nature of main variables of the model if not stated otherwise.
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The objective function of the household is

JH =

∞∫
0

e−ρtU(C)dt, (2)

with U(C) = lnC being the utility function from composite consumption C consisting

of the continuum of products,

C =

[∫ Nmax

Nmin

C
ε−1
ε

i di

] ε
ε−1

, (3)

with 1 < ε <∞ being the elasticity of substitution between goods.

The flow budget constraint of the household is

ȧ = ra+ L−
∫ Nmax

Nmin

PiCidi, (4)

with L the numeraire so that the wage rate is equal to one and where:

• a is the value of assets being hold by the households, similar to Chu et al. (2012),

• r is the interest rate.

We assume zero depreciation rate of capital for simplicity. Positive depreciation will

not essentially change the results of the paper.

We denote consumption expenditures by E:

E =

∫ Nmax

Nmin

PiCidi , (5)

along the same range of existing sectors to condense notation.

The accumulation of assets comes from the difference between consumption expen-

ditures and income of the household, which is the sum of interest earned for existing

assets and of labour income.
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Consumption of the individual good i is given by (see Appendix A)

Ci = E
P−εi∫ Nmax

Nmin
P 1−ε
j dj

. (6)

The standard Euler equation implies that the optimal growth rate for expenditure

is given by

Ė

E
= r − ρ , (7)

2.2 Goods Producers

Goods producers employ labour and buy technology (a blueprint) from the R&D sector.

With these inputs they produce the goods which they sell to the consumer. Output of

good i is given by:

Yi = Aαi Li , (8)

where 0 < α < 1 determines the productivity of the technology in production. Pro-

duction is linear in labour, since the productivity Ai is the main point of concern here.

The productivity Ai is the result of vertical innovations that raise the quality of a

given technology and that are generated by the R&D sector (see section 2.3 below).

Hence, quality improvement means an increase in efficiency in the sense that final goods

producer can generate more output with one unit of labour input.

The profit of firm i is

Πi = PiYi − Li −Ψ , (9)

where Ψ is a fixed operating cost.1

The only use for output of all goods i is consumption, so that Ci = Yi. The only

product used for investments is financial capital a which is excluded from this spectrum.

1This cost may be treated as resulting from the fact that the firm has to buy a blueprint so that it

can produce the good. We assume Ψ to be equal across sectors and do not elaborate on its relationship

to the patent price to make exposition simpler.
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Firm i, therefore, sets its price to (see Appendix A)

Pi =
ε

ε− 1
A−αi . (10)

This is the price defined only for the products in the range Nmax − Nmin. However,

since we have fixed operating costs the profit is nonnegative not immediately from the

time of invention of technology i, but after some time. At the same time after the

product of the given sector i becomes out-dated, the demand for it will decrease down

to the point, where no positive profits may be made. All products out of the range

Nmax −Nmin thus have a price of zero:

Pi =


0, t < τmax(i), τmax(i) : Πi = 0, Π̇i > 0,

ε
ε−1A

−α
i , τmax(i) < t ≤ τmin(i), τmin(i) : Πi = 0, Π̇i < 0,

0, t > τmin(i).

(11)

Here and throughout the paper we use the following notation:

• τmin = N−1min(i), time when product (technology) i becomes out-dated and profit

of manufacturing decreases below zero;

• τmax = N−1max(i), time when product (technology) i becomes profitable and man-

ufacturing sector starts production of positive amounts;

• τ0 = N−1(i), time when technology i is invented through horizontal innovations

process.

Inserting (6) and (10) into (8) yields labour demand as,

LDi =
ε− 1

ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

. (12)
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Labour employed in sector i is thus a function of the relative productivity of labour in

sector i. Repeating the arguments made with respect to the price formation, we get a

piecewise-defined labour demand:

LD(i) =



0, t < τmax(i), τmax(i) : Πi = 0, Π̇i > 0,

ε−1
ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

, τmax(i) < t ≤ τmin(i), τmin(i) : Πi = 0, Π̇i < 0,

0, t > τmin(i).

(13)

The technology is acquired by the goods producers in the form of a patent and

the pricing for this patent follows Nordhaus (1967), Romer (1990) and Grimaud and

Rouge (2004). The price of the patent (blueprint) equals the total value of profits

which can be derived from it. The manufacturing firm can extract positive profits only

for a limited period of time. Thus the patent price is defined as:

pA(i)
def
=

τmin∫
τmax

e−r(t−τ0)Πidt. (14)

The date at which patent i starts, τmax, is endogenously determined by the productivity

threshold necessary to gain positive profits, while the effective duration of the patent

is endogenously determined from the demand for the manufactured product i, by the

point in time, τmin, when the final producer can no longer earn positive profits. Thus,

the duration of the patent is determined by two zero-profits conditions.

Further, the patent price is independent of time. It only depends on the ratio of

the level of productivity in sector i in time points τmax, τmin. We state this result in

Proposition 1.

Proposition 1 The price of the patent pA(i) is not a function of time.

The proof of this proposition is given in Appendix B.
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2.3 R&D Sector

The general structure of the R&D sector follows the lines of the paper Bondarev (2012)

with homogeneous technologies. In this paper we adopt independent R&D structure,

following major endogenous growth literature. Results are the same for in-house R&D

management by large multiproduct firms2 in the spirit of Lambertini (2003), which in

fact dominates the TFP growth (see Acemoglu and Cao (2015)).

There are two types of R&D: Productivity-improving (vertical) innovations and

variety-expanding (horizontal) innovations. Both types of R&D use financial capital

as the only input. Thus, the total sum of both kinds of R&D investments at any time

forms the demand for assets in the economy:

u(t) +

N(t)∫
Nmin(t)

g(i, t)di = aD(t) , (15)

where

• u(t) are horizontal innovations investments at time t;

• g(i, t) are vertical innovations investments at time t for technology i within the

range of invented and not out-dated technologies, [Nmin(t), N(t)];

• aD(t) is the total demand for assets.

Both types of investments are optimally set as strategies of associated firms in their

optimal control problems. This makes our model different from the classical Romer’s

case: R&D firms’ decisions take into account future potential profits, rather than only

the current revenues from selling patents to final producers.

We first describe the problem of R&D investments in horizontal innovations and

then proceed to vertical innovations.

2this holds true as long as technologies are symmetric
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2.3.1 Horizontal innovations

The creation of new technologies (horizontal innovations) follows the setup of Peretto

and Connolly (2007). We assume that new technologies appear due to knowledge

creation mechanisms that are governed by private initiatives of competitive R&D firms.

New technologies are created through R&D investments, u(t), chosen optimally by the

firms:

Ṅ = δu(t) , (16)

where the dot denotes the time derivative. These are financed from the assets of the

households a(t) and represent a part of the total assets demand aD in (15). The

equation above may be interpreted as a transformation rule of financial assets (being

used for investments) into the extension of the existing range of technologies N(t).

The incentive for horizontal innovations is the potential profit from selling the tech-

nology to manufacturing firms. We assume that the horizontal R&D firm which invents

technology i later develops it through vertical innovations. The two-step sequential op-

timization is equivalent to the joint optimization in this setup, see Bondarev (2014) for

example. Thus, the value of horizontal R&D consists solely in expected future profits

from vertical innovations:3

VN = max
u(•)

∞∫
0

e−rt
(
πR(i)|i=Nδu(t)− 1

2
u2(t)

)
dt. (17)

Here, the profit of developing the next technology i = N , πR(i)|i=N , equals the value

of vertical innovations into technology i, which is given by:

πR(i)|i=N = pA(N)− 1

2

τmin(N)∫
τ0(N)

e−r(t−τ0)g2(N, t)dt , (18)

3In this sense, we differ between the invention of a new technology and its economic use.
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with g(N, t) investments into the development of technology N during the phase when

technology i has non-zero productivity. The fact that the value of a horizontal inno-

vation depends only on the next technology is equivalent to the result of Chu (2011)

on the presence of an Arrow replacement effect : each new technology is owned by a

separate R&D firm.

Since the patent price is time-independent from Proposition 1, the expected to-

tal profit from developing the next technology is also not a function of time, but of

the technology position in the technologies’ space i and, thus, the value function of

horizontal innovations is state-dependent for i = N .

The form of optimal investments into horizontal innovations is given in Proposition

2.

Proposition 2 With the value of the horizontal innovations given by (17), the optimal

investments are proportional to the expected profit from the development of the next

invented product

u∗ = δπR(i)|i=N , (19)

and are constant for symmetric technologies.

The proof amounts to constructing the standard Hamilton-Jacobi-Bellman (HJB) equa-

tion for this problem. This can be found in the Appendix C.

Horizontal expansion is obtained as a function of the profits resulting from the

development of the next-to-be-invented product:

N(t) = δ2πR(i)|i=N t+N0. (20)

At the same time, both horizontal and vertical R&D are using the assets accumulated

by households. Thus, the financial market clearing condition must hold:
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aS(t) = aD(t)∀t, (21)

which gives together with (15) and (19):

N(t)∫
Nmin(t)

g(i, t)di+ δπR = aS(t) , (22)

where we make use of the constancy of horizontal investments from Proposition 2 and

the aS(t) term is the total supply of financial assets coming from households. It contains

the cost of capital r, see (4).

This may be used to define total investments into vertical innovations (given by the

integral term):

N(t)∫
Nmin(t)

g(i, t)di = G(t),

G(t) = aS(t)− u(t), (23)

where g(i, t) are investments into the improvement of productivity in sector i and G(t)

denotes total assets available for vertical innovations. The G(t) is thus the function of

the cost of capital r(t) and profit from inventions πR(i, t).

2.3.2 Vertical innovations

Productivity-improving innovations (vertical innovations) lead to a rise in efficiency of

technologies that have zero productivity upon their invention. This productivity can

be developed through specific investments for every product.

Profits from R&D result from sales of blueprints to manufacturing firms. These

sales come in the form of patents for each new technology i and all of the invest-

ments into the development of each new technology (vertical innovations) are financed

16



from this patent payment. Costs of R&D are costs of development of the productiv-

ity through technology-specific investments gi. These investments are financed from

financial capital a just as for horizontal innovations.

The profit associated with the development of technology i is given by:

πR(i) = pA(i)− 1

2

τmin∫
τ0

e−r(t−τ0)g2(i, t)dt, (24)

with investments going into the increase of productivity:

Ȧ(i, t) = γg(i, t)− βA(i, t) , (25)

where γ is the efficiency of investments into the productivity increase (equal for all

sectors) and β is the cost of supporting the productivity at the current level. The

presence of the parameter β also reflects the fact that one unit of R&D raises the

quality of a given technology more when the level of quality is still low. Hence, the

more a given technology has already been impoved, by vertical R&D investment, the

more difficult it becomes to generate an additional increase in its quality. This results

from the fact that the potential of a given technology for improvement is limited.

At any time, there exists a range of N(t)−Nmin(t) of new technologies and, thus,

exactly this range of vertical R&D investments. It should be noted that the range of

the manufacturing sector is different and is given by Nmax(t)−Nmin(t).

In order to assure that vertical R&D investments are chosen optimally, the R&D

sector solves a dynamical problem of optimal investment plans subject to the availabil-

ity of resources (the price for assets r is the same and constant in equilibrium, see 2.4

for the formal proof).
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The optimization problem for vertical R&D investments, then, reads:

V = max
g

∞∫
0

e−rtdt

N(t)∫
Nmin(t)

pA(i)di−
∞∫
0

e−rt
N(t)∫

Nmin(t)

1

2
g2(i, t)didt, (26)

s.t. (27)

∀i ∈ [Nmin, N ] ⊂ R+ : Ȧ(i, t) = γg(i, t)− βA(t), (28)

N(t)∫
Nmin(t)

g(i, t)di = G(t), (29)

with G(t) = aS(t) − δπR determined by the financial market clearing condition (22).

For those technologies, which are outside of the operating range, i < Nmin there is no

development, since the price of the patent, pA, pays only for the development of the

technology during the operational time, t ∈ [τmax(i), τmin(i)].

Applying the Maximum Principle, we derive optimal investments as a function of

the shadow costs of investments, ψ(i, t), with the latter being a function of the patent

price:

ψ̇(i, t) = (r + β)ψ(i, t)− ∂pA(i)

∂A(i)
,

g∗(i, t) = γψ(i, t)−

N(t)∫
Nmin(t)

γψ(i, t)di−G(t)

N(t)−Nmin(t)
. (30)

We now establish auxiliary Proposition 3 which will help us to obtain the symmetric

solution of the model:

Proposition 3 The effect of a rise in productivity with respect to the price of the

patent is the same for all technologies,

∀i :
∂pA(i)

∂Ai
= CA = const. (31)
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Where the notation ∂pA(i)
∂Ai

means the differentiation of an integral, see for example

Flanders (1973) for treatment. The proof can be found in the Appendix D.

Using Propositions 1 and 3 it can be demonstrated that the shadow costs of invest-

ments are the same across all existing technologies:

ψ(i, t) = ψ∗ =
CA
r + β

. (32)

Then, investments into productivities of all the existing technologies are symmetric:

g∗(t) =
G(t)

N(t)−Nmin(t)
, (33)

but the dynamics of the productivities differ by the depreciation rate:

Ȧ(i, t) = γ
G(t)

N(t)−Nmin(t)
− βA(i, t). (34)

To fully define the vertical innovations dynamics, we make use of the same argu-

ments as for final prices and for labour demand to obtain the optimal investments plans

for each i in piecewise form:

g∗(i, t) =


0, t < τ0(i),

G(t)
N(t)−Nmin(t) , τmin(i) > t > τ0(i),

0, t > τmin(i).

(35)

Then, the associated evolution paths of the technologies are given by:

Ȧ(i, t) =


0, t < τ0(i),

γ G(t)
N(t)−Nmin(t) − βA(i, t), τmin(i) > t > τ0(i),

−βA(i, t), t > τmin(i).

(36)
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2.4 Markets clearing

2.4.1 Final goods and capital markets

Now, we are in the position to demonstrate that total expenditures per capita do not

grow in time and are constant. For this, consider the final goods market clearing

condition:

E(t) =

N∫
Nmin

P (i, t)C(i, t)di =

N∫
Nmin

P (i, t)Y (i, t)di =
ε

ε− 1

N∫
Nmin

L(i, t)di =
ε

ε− 1
L.

(37)

Since technology cancels out from product prices, final goods market clearing reduces

to the proportionality of expenditures to a fraction of labour income. Total labour is

assumed to be constant so that total expenditures are also constant. This follows from

the choice of labour as the numeraire: prices of final goods adjust in a way such that

expenditures stay constant, although consumption grows.

Using Ė = 0 and the Euler equation, we can derive the interest rate in equilibrium:

Ė

E
= r − ρ = 0→ r = ρ. (38)

The real interest rate is constant, since financial assets are the only good unaffected by

labour while prices movements cancel out.

The optimal evolution of assets can be found by solving (4) for a with Ė = 0.

Further, using E = Lε/(ε− 1), we obtain the change in assets as

ȧ = ra− 1

ε− 1
L, (39)

which can be solved to obtain the assets as a function of time,

a(t) = ert
(
a0 −

1

(ε− 1)r
L

)
+

1

r(ε− 1)
L. (40)
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Assets accumulation is positive as long as the initial assets of households are sufficiently

large:

a0 >
1

ε− 1

1

r
L. (41)

As long as (41) holds, assets increase exponentially. Since horizontal investments are

constant(see Proposition 2) we have

∀t : G(t) > 0, (42)

and since N(t)−Nmin(t) ≥ 0 by definition, we also have

∀t ∈ [τ0(i), τmin(i)] : g∗i (t) > 0. (43)

2.4.2 Labour market clearing

Labour market clearing condition is given if the following holds:

N∫
Nmin

LD(i, t)di = L = L

N∫
Nmin

A
−α(1−ε)
i

N∫
Nmin

A
−α(1−ε)
j dj

di,

N∫
Nmin

A
−α(1−ε)
i

N∫
Nmin

A
−α(1−ε)
j dj

di =

N∫
Nmin

A
−α(1−ε)
i di

N∫
Nmin

A
−α(1−ε)
j dj

= 1. (44)

But this last condition is automatically satisfied, hence the labour market is cleared.

We should also like to point out that our focus is on the relation that exists between

structural change and endogenous growth with both vertical and horizontal innovations

and on the question of whether such a model can produce a balanced growth path

and, if so, by which properties it is characterized. Therefore, we neglect adjustment

mechanisms that make the economy reallocate labour and investment expenditures

from one sector to another one.
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3 Analysis and results

To finally solve for vertical innovations as well as for the range of existing sectors, we

need the following results, derived above:

• Total expenditures are constant by (37);

• The evolution of assets is given by (40);

• Horizontal innovations are linear functions of time, given by (20).

3.1 Variety expansion

In what follows we demonstrate that structural change in the economy can be repre-

sented as a 1-dimensional shift operator over t of size δπR, that is the range of existing

sectors is constant but its composition varies.

First, note that (34) can be explicitly solved only after Nmin(t) has been determined.

This is the range of out-dated sectors at time t. This quantity is determined by the

zero profit condition of the manufacturing sector with this index:

Nmin(t) :
1

ε− 1
L

A
α(ε−1)
Nmin

Nmax∫
Nmin

A
α(ε−1)
j dj

−Ψ = 0. (45)

The definition of Nmax(t) follows the same form with the only difference that this

is the index of a sector which enters the market:

Nmax(t) :
1

ε− 1
L

A
α(ε−1)
Nmax

Nmax∫
Nmin

A
α(ε−1)
j dj

−Ψ = 0. (46)

Comparing (45) and (46) leads to the following Proposition.
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Proposition 4 The productivity of the oldest operational sector, ANmin, is equal to

the productivity of the newest operational sector, ANmax, at the time when the first is

leaving the economy and the latter is entering its operational phase:

ANmin =

(Ψ/L)(ε− 1)

Nmax∫
Nmin

A
α(ε−1)
j dj

1/α(ε−1)

= ANmax . (47)

At the same time, the productivity of each sector grows within its operational phase,

Ai(τmin(i)) > Ai(τmax(i)). (48)

For any sector i these two relations are fulfilled at times τmin(i) and τmax(i), re-

spectively, denoting the time of the disappearance of the sector and the time of its

appearance in the economy. In both moments profits of the sector are zero, but the

overall accumulated productivity differs. At t = τmax the profit of sector i grows,

Π̇(i) > 0, while at t = τmin the profit decreases, Π̇(i) < 0. This makes the difference

between Nmax and Nmin.

It can be shown that the sign of the derivative of the profit function depends on

the relation

Π̇(i) Q 0⇔ Ȧ(i)

A(i)
−

 Nmax∫
Nmin

Ȧ(j)

A(j)
dj

 Q 0. (49)

Note that this implies Ṅmax−Ṅmin = 0. At the same time, the profit evolves differently

for these two technologies:

Π̇(Nmin) < 0, Π̇(Nmin) > 0. (50)
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We first compute the derivative of the profit for an arbitrary technology:

Π̇(i) =
A(i, t)α(ε−1)

Nmax∫
Nmin

A
α(ε−1)
j dj

α(ε− 1)

Ȧ(i, t)

A(i, t)
−

Nmax∫
Nmin

Ȧ(j, t)

A(j, t)
dj

+

A(i, t)α(ε−1)

Nmax∫
Nmin

A
α(ε−1)
j dj

A(Nmax, t)Ṅmax − A(Nmin, t)Ṅmin

Nmax∫
Nmin

A
α(ε−1)
j dj

 . (51)

Making use of (47), we get

Π̇(i) =
A(i, t)α(ε−1)

Nmax∫
Nmin

A
α(ε−1)
j dj

α(ε− 1)

Ȧ(i, t)

A(i, t)
−
Nmax∫
Nmin

Ȧ(j, t)

A(j, t)
dj

+(Ψ/L)(ε− 1)(Ṅmax−Ṅmin)

 .

(52)

Noting that the maximum profit for any sector i is reached at the point of Π̇(i) = 0, it

follows that the growth of Nmin and Nmax is equal and given by:

Π̇(i) = 0⇔

Ȧ(i, t)

A(i, t)
−

Nmax∫
Nmin

Ȧ(j, t)

A(j, t)
dj

 =
Ψ

αL
(Ṅmax − Ṅmin). (53)

However, the bracket in the lefthand side has to be equal to zero since the growth

rate of productivity of sector i and the average growth rate of productivity in the

economy are identical. Since all the technologies are symmetric except for the time of

their invention, it is straightforward to state that the maximum profit for the given

industry is reached at the point where its productivity grows at the average rate of the

economy. Otherwise, there will be still room for improvements of the technology or

the technology is already out-dated. From this it follows that Ṅmax − Ṅmin = 0. This

proves conjectured (49) and is stated in the following Proposition.

Proposition 5 New sectors emerge to operational phase at the same speed as older
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sectors disappear from the economy, Ṅmax − Ṅmin = 0.

Moreover, it shows that the range of existing sectors in the economy is constant if

Ṅmax = Ṅmin = Ṅ . However, the last identity has yet to be proven.

Indeed, for the economy to be consistent it is necessary that older sectors do not

disappear faster than newer sectors emerge. This is given by the condition Ṅmax −

Ṅmin = 0. At the same time, for all the productivities to grow at the same rate it is

necessary that the range N − Nmin stays constant. Otherwise, condition (47) would

be violated, since newer technologies would grow faster or slower than older ones if the

range was not constant. Thus, we have

Proposition 6 Structural change in the economy with homogeneous technologies is

represented by the (left) shift operator with shift size δπR. The expansion of variety of

technologies is linear and equals the (constant) rate of structural change:

Ṅmax = Ṅmin = Ṅ = δπR. (54)

For the case of a constant shift length,4 the structural change is illustrated by Figure

1.

4When heterogeneous technologies are assumed, γ(i) 6= const the shift length may increase or

decrease and variety expansion is non-linear since profits of R&D are not constant across technologies.
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Figure 1: Linear variety expansion

3.2 Productivity growth

With the results of the last subsection, we can now determine the time τmax(i) when

sector i enters the market. The latter is obtained from the following two conditions:

τmax(i) :
1

ε− 1
L

A(i, τmax)
α(ε−1)

Nmax(τmax)∫
Nmin(τmax)

A(j, τmax)

α(ε−1)

dj

−Ψ = 0, (55)

Ȧ(i, t)

A(i, t)
−

Nmax∫
Nmin

Ȧ(j, t)

A(j, t)
dj > 0, (56)
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while the time of disappearance of the sector is determined by the pair:

τmin(i) :
1

ε− 1
L

A(i, τmin)α(ε−1)

Nmax(τmin)∫
Nmin(τmin)

A(j, τmin)

α(ε−1)

dj

−Ψ = 0, (57)

Ȧ(i, t)

A(i, t)
−

Nmax∫
Nmin

Ȧ(j, t)

A(j, t)
dj < 0. (58)

Comparing these two conditions (for the same technology i) we can see that the

growth of each technology within the time of operation, t ∈ [τmax(i), τmin(i)] is the

same:

∀i ∈ [Nmin, Nmax] :
A(i, τmax(i))

α(ε−1)

A(i, τmin(i))α(ε−1)
=

Nmax(τmax(i))∫
Nmin(τmax(i))

A(j, τmax(i))

α(ε−1)

dj

Nmax(τmin(i))∫
Nmin(τmin(i))

A(j, τmin(i))

α(ε−1)

dj

. (59)

The productivity growth of each technology is monotonic and proportional to all

the others since the time this technology becomes profitable. Combination of (47) and

(59) allows to notice that the average productivity grows in time, while the growth

rates for all operating technologies are the same. As a result we obtain positive output

growth despite a constant range of sectors in operation. This is widely known as

the magistrale property of the dynamic system: from the time τmax(i) onwards each

individual technology growth is independent of its time of invention. Proposition 7

states this result.

Proposition 7 The productivities of all technologies grow at the same average speed

during the time period of operational activity of the technology,

Ȧ(i) = ˙̄A = γ
G

N −Nmin

− βĀ, ∀i ∈ [Nmin, Nmax],∀t ∈ [τmax(i), τmin(i)], (60)

with Ā denoting the average level of productivity.
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Since N −Nmin = const and since G(t) is given by assets minus horizontal invest-

ments, the evolution of each technology during its operating time can be recovered. It

is illustrated by Figure 2 for some plausible parameters values.

Figure 2: Convergence of productivities to the magistrale

3.3 Output growth

To obtain the output growth rate, recall that aggregate output is given by:

Y =

Nmax∫
Nmin

 A(i, t)αε

Nmax∫
Nmin

A(j, t)α(ε−1)

 di =

Nmax∫
Nmin

A(i, t)αεdi

Nmax∫
Nmin

A(j, t)α(ε−1)dj

. (61)
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The growth of output, then, is:

Ẏ =

(
Nmax∫
Nmin

Ȧ(i, t)αεdi

)
Nmax∫
Nmin

A(j, t)α(ε−1)dj −
Nmax∫
Nmin

A(i, t)αεdi

(
Nmax∫
Nmin

Ȧ(j, t)α(ε−1)dj

)
(
Nmax∫
Nmin

A(j, t)α(ε−1)dj

)2 (62)

We now can state our last Proposition:

Proposition 8 The growth rate of the economy is constant and proportional to the

growth rate of the productivities of operational technologies times the range of existing

sectors (size of the shift operator),

Ẏ

Y
= α

˙̄A

Ā
(Nmax −Nmin) > 0. (63)

Proof is done by direct computation and can be found in the Appendix E.

Hence, the economy with a constant range of changing technologies exhibits positive

output growth rate that is proportional to the average growth rate of the productiv-

ities of operating technologies. The latter is always positive and proportional to the

growth of assets G(t). Thus, the growth rate of the economy is constant for a constant

range of sectors. The overall evolution of this economy can be grasped from the 3-d

reconstruction at Figure 3, where Q(t) denotes the total productivity of the economy:

Q(t) =

∫ Nmax

Nmin

A(i, t)di. (64)

4 Conclusion

In this paper we have presented an endogenous growth model of a closed decentralized

economy allowing for endogenous structural change, where old sectors permanently

disappear and new sectors come into existence. The out-dating of sectors happens due
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Figure 3: Reconstruction of the economy with endogenous structural change

to the presence of the limited potential of a given technology for quality improvement

and due to competitive pressure in the R&D sector. Thus, we are able to present a

model that can replicate the real-world phenomena of structural change and ongoing

growth by allowing for vertical and horizontal innovations simultaneously.

The overall R&D process is determined by the profits resulting from selling patents

to the final goods producers in a given sector. These patents transform monopolistic

profits of the manufacturing sector into the resources used for innovative activity in the

spirit of Romer (1990). However, the inclusion of productivity growth for all new tech-

nologies makes it possible to account for the endogenous process of out-dating of sectors

and associated technologies. This result is possible due to the careful consideration of

the patent price for a technology as the total additional profit of the manufacturing

sector, and not just as the price for the increase in productivity, as in Peretto and Con-

nolly (2007). The evolution of the economy is proportional to the productivity growth

in the same way as in the aforementioned paper, but we are able to model structural

change as an endogenous phenomenon.

In real economies, patents for technologies do not last forever but are limited to

grant incentives for new innovations, following the arguments established already by

Nordhaus (1967). Thus, it seems natural that an endogenously determined patents
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duration should foster structural change through competitive pressure in the R&D

sector. The study of Chu et al. (2012) already stressed the importance of the degree of

patent protection for the relative speed of vertical and horizontal innovations. However,

it was not able to model structural change as an endogenous phenomenon because

patents are of an infinite duration in that model.

The key assumption for sustained growth in our framework is the unlimited nature

of horizontal innovations and the fact that all of the technologies are symmetric and

homogeneous. It would be of interest to extend the model to heterogeneous technolo-

gies. This would take into consideration non-constant growth rates that depend on the

structure of the space of ideas and on the speed of horizontal innovations.

In the current form, our model does not include any notion of government and

taxation and, thus, policy implications cannot be drawn. However, the construction of

a model with endogenous structural change is necessary to improve our understanding

of the optimal governance of technical change with regard to topical environmental

issues, such as climate change for example. Assuming that technologies differ with

respect to their pollution intensity, the central authority would possibly want to speed

up structural change. However, it is often argued that newer technologies are harder

to develop. Taking into account that aspect would lead to heterogeneous innovations

in our model. Thus, in order to bring the framework closer to environmental concerns,

the heterogeneity of technologies regarding the environment and regarding investment

efforts should be modelled. This is considered to be a prospect for future research with

the concept of structural change as suggested in the present paper.
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Appendices

A Households and firms optimality conditions

A.1 Derivations for the household

The derivation of equation (6): The Lagrangian of the household is

L =

[∫ Nmax

Nmin

C
ε−1
ε

i di

] ε
ε−1

− λ
(∫ Nmax

Nmin

PiCidi− rK + K̇ +W

)
. (A.1)

The first order condition for consumption good i is

C
− 1
ε

i C
1
ε = λPi . (A.2)

check power of C Taking the F.O.C. for i and for j and substituting in yields

Ci = Cj

(
Pi
Pj

)−ε
. (A.3)

Substituting this back into the equation for expenditure, equation (5) yields

Cj

(
1

Pj

)−ε ∫ Nmax

Nmin

P 1−ε
i di = E , (A.4)

which can be rearranged to yield expression (6).
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A.2 Derivations for the manufacturing sector

The derivation of equation (10): The output by an individual firm Yi equals to the

consumption of that good Ci, so that we can insert equation (6) into the profit function:

Πi = PiYi − Li −Ψ = PiYi − YiA−αi −Ψ

= PiE
P−εi∫ Nmax

Nmin
P 1−ε
j dj

− E P−εi∫ Nmax
Nmin

P 1−ε
j dj

A−αi −Ψ. (A.5)

We use further the assumption of zero mass of each individual product in the price

index

∂
∫ Nmax
Nmin

P 1−ε
j dj

∂Pi
= 0, (A.6)

which is usual when the continuum of goods is employed, see for example Peretto and

Connolly (2007). Maximizing profit with respect to the price under this non-atomic

assumption yields

∂Πi

∂Pi
=

E∫ Nmax
Nmin

P 1−ε
j dj

(1− ε)P−εi −
E∫ Nmax

Nmin
P 1−ε
j dj

P−ε−1i (−ε)A−αi = 0 . (A.7)

The price is thus

Pi =
ε

ε− 1
A−αi . (A.8)

B Proof for Proposition 1

1. Using equation (14) we can write the price of a patent i as

pA(i) =

∫ ∞
N−1(i)

e−r(t−N
−1(i))Πidt, (B.1)

where N−1(i) is the time when technology i is invented.
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2. Denote τ0(i) = N−1(i), τmax(i) = N−1max(i), τmin(i) = N−1min(i), as the time of

the invention of a technology, of it becoming profitable and of it going out of

production, respectively.

3. Note that N ≥ Nmax ≥ Nmin implies τ0(i) ≤ τmax(i) ≤ τmin(i) as long as N(t) is

a non-decreasing function. This last is true as long as u(t) ≥ 0, which is required

by the formulation of the horizontal innovations problem, (16).

4. The profit of a manufacturing firm in sector i is given by (9). Substituting for

prices, labour and technology in it, one gets:

Πi = PiYi − Li −Ψ =
ε

ε− 1
A−αi Aαi Li − Li −Ψ =

(
ε

ε− 1
− 1

)
Li −Ψ =

1

ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

−Ψ. (B.2)

5. The profit is nonnegative only within the interval t ∈ [τmax(i), τmin(i)] such that

the patent price is defined also for that interval.

6. Inserting this into the patent price one gets:

pA(i) =

τmin(i)∫
τmax(i)

e−r(t−τ0(i))

1

ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

−Ψ

 dt. (B.3)

7. Formally, taking the definite integral amounts to the difference between two values
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of the antiderivative:

pA(i) = F|t=τmin(i)

e−r(t−τ0(i))

1

ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

−Ψ


−

− F|t=τmax(i)

e−r(t−τ0(i))

1

ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

−Ψ


 . (B.4)

8. Without explicit computation of this expressions it is straightforward to see that

the resulting patent price is not a function of time, but a difference of two values

of such a function at fixed points in time:

pA(i) = F(i, τmin(i), τmax(i)) 6= f(t), (B.5)

since τmin(i), τmax(i) are functions of the technology index i and are not time-

varying. �.

C Proof of Proposition 2

The HJB equation for the problem given by (17), (16) is:

rV = max
u(•)

{
δπR(i)|i=Nu(t)− 1

2
u2(t) +

∂V

∂N
δu(t)

}
. (C.1)

Taking F.O.C. we have

u∗ = δπR(i)|i=N + δ
∂V

∂N
. (C.2)

Substituting back into the HJB equation, we find that it can be satisfied only for

V = const., as long as πR(i, t)|i=N is constant.
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This last has to be constant, since there is a free entry condition for vertical inno-

vations: if some of the technologies yielded higher profits, all of the resources would go

into the development of only those more profitable technologies. However, the invest-

ments are symmetric, thus, requiring constant and equal profits across technologies.

Hence, we have

u∗ = δπR(i)|i=N = δπR. (C.3)

�.

D Proof of Proposition 3

Using Fubini’s theorem from (B.3) we can put differentiation sign under the integration

term:

∂pA(i)

∂Ai
=

∂

 τmin(i)∫
τmax(i)

e−r(t−τ0(i))

1
ε
E

A
−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

−Ψ

 dt


∂Ai

=

τmin(i)∫
τmax(i)

e−r(t−τ0(i))

Eε
∂A

−α(1−ε)
i

∂Ai

Nmax∫
Nmin

A
−α(1−ε)
j dj

 dt = −
τmin(i)∫

τmax(i)

e−r(t−τ0(i))

Eε α(1− ε)A1−α(1−ε)
i

Nmax∫
Nmin

A
−α(1−ε)
j dj

dt.
(D.1)

Taking the integral in the same way as in Proposition 1, we have

∂pA(i)

∂Ai
= F|t=τmax(i)

e−r(t−τ0(i))
1

ε
E

α(1− ε)
Nmax∫
Nmin

A
−α(1−ε)
j dj

A
1−α(1−ε)
i

−

− F|t=τmin(i)

e−r(t−τ0(i))
1

ε
E

α(1− ε)
Nmax∫
Nmin

A
−α(1−ε)
j dj

A
1−α(1−ε)
i

 . (D.2)
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This amounts to some function of the increase in productivity Ai from time τmax(i)

until τmin(i). With symmetric technologies this growth would be the same for all i,

although the points in time τmin(i), τmax(i) will be different. Note that this expression

does not depend on the variable Ai, but only on the level of it at two fixed points in

time. This proves that ∂pA(i)/∂Ai = c �.

E Proof of Proposition 8

The direct calculation of output growth rates yields

Ẏ

Y
=

d/dt

(
Nmax∫
Nmin

A(i, t)αεdi

)
Nmax∫
Nmin

A(i, t)αεdi

−
d/dt

(
Nmax∫
Nmin

A(j, t)α(ε−1)dj

)
Nmax∫
Nmin

A(j, t)α(ε−1)dj

Ṅmin=Ṅmax=

=

Nmax∫
Nmin

(
Ȧ(i, t)αεdi

)
Nmax∫
Nmin

A(i, t)αεdi

−

Nmax∫
Nmin

(
Ȧ(j, t)α(ε−1)

)
dj

Nmax∫
Nmin

A(j, t)α(ε−1)dj

=

= αε

Nmax∫
Nmin

A(i, t)αε−1Ȧ(i, t)di

Nmax∫
Nmin

A(i, t)αεdi

− α(ε− 1)

Nmax∫
Nmin

A(j, t)α(ε−1)−1Ȧ(j, t)dj

Nmax∫
Nmin

A(j, t)α(ε−1)dj

=

= αε

Nmax∫
Nmin

Ȧ(i, t)

A(i, t)
di− α(ε− 1)

Nmax∫
Nmin

Ȧ(j, t)

A(j, t)
dj = α

Nmax∫
Nmin

Ȧ(i, t)

A(i, t)
di.

Using Ȧ(i, t) = G/(N −Nmin)− βA(i, t) and A(i, t) = Ā we get,

Ẏ

Y
= α

Nmax∫
Nmin

Ȧ(i, t)

A(i, t)
di = α

G

N −Nmin

Nmax∫
Nmin

A(i, t)−1di− α
Nmax∫
Nmin

βdi =

= α
G

N −Nmin

Nmax −Nmin

Ā
− αβ(Nmax −Nmin) = α (Nmax −Nmin)

˙̄A

Ā
. (E.1)
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