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Estimating Survival Times Using Swiss Hospital Data∗

Florian Kuhlmey† and Matthias Minke†

Faculty of Business and Economics, University of Basel

June 8, 2018

Abstract

We compare and evaluate two different approaches to estimate overall survival curves
from censored data of recurrent events: (1) standard survival time analysis, and (2) a
multistate framework that explicitly estimates the mortality rate during censored periods.
With both models, we estimate disease-specific survival curves with data from the Swiss
Federal Statistical Office’s medical statistics on hospitals (MedStat). Using cancer registry
data as a benchmark for overall survival, we find that the accuracy of survival time
estimates based on the multistate model are not superior to the simpler single-risk model.
Although the computationally demanding multistate model is less accurate in predicting
survival times, it may nevertheless be useful if intermediate transitions are the targeted
issues.

JEL classification C41; C53; I12.

Keywords Survival analysis; multistate-model; data simulation; hospital discharge data.

1 Introduction

Mortality continues to be a widely used measure for the success (or failure) of therapies, pre-

ventive measures and even health systems as a whole. Information on cause-specific mortality

rates often guides policy makers and health practitioners in their decisions on how to allocate

health budgets. It is therefore important to obtain accurate estimates of mortality and sur-

vival rates. For cancer, as a leading cause of death, many countries systematically collect data

on new cases, follow patients’ histories, and report outcomes, which are often differentiated

by socio-economic or regional characteristics. In Switzerland, cantonal and national cancer

registries report prevalence, incidence, and survival for all important cancer types. For other

diseases, these data are not always available, and the identification of disease-specific survival

is therefore more challenging.

The statistics on the causes of death register the number of deaths per year attributed to

a specific cause, but because they do not include the time of diagnosis, they do not reveal

∗This paper was supported by the Swiss National Science Foundation (National Research Program 67 “End of
life”, grant number: NWW1513), and by the WWZ-Forum (FV-39). We thank Mehdi Farsi, Beat Hintermann,
Ueli Matter, and Klazien Matter-Walstra for helpful comments and suggestions.
†Address: Peter-Merian-Weg 6, CH-4002 Basel, Switzerland.
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disease-specific survival times, i.e., the time between diagnosis and death. Clinical randomized

controlled trials (RCTs) are essential to determine the (causal) effect of a distinct therapy and

are therefore the basis for approval decisions, but are less appropriate to assess the overall per-

formance of treatments, since they typically do not reflect the average treatment success for the

patient population and for the actual mixture of treatments. Unfortunately, a comprehensive

data set that covers a broad set of diseases does not exist in Switzerland, and the same is true

for many other OECD countries.

We propose to use hospital discharge data to deliver comparable survival curves for differ-

ent diseases. The advantage of hospital data is that it is routinely collected for administrative

purposes and is therefore an inexpensive way for researchers to obtain mortality data. The dis-

advantage is that it only covers events which occur during a patient’s hospitalization episodes.

This implies that the patient-specific observation time will start at the first (in-hospital) di-

agnosis and cease at the end of the last in-hospital spell with either a transition to death or

censoring. Hospital records naturally only keep track of in-hospital spells, and corresponding

patient histories therefore only contain the in-hospital deaths. A linkage of hospital data with

death registries would be a way to overcome this problem, but for privacy reasons, at least in

the Swiss case, this seems infeasible.1

This leaves two options to estimate survival times given this kind of data. The first is

to use the in-hospital mortality as a proxy for overall mortality.2 Technically, this method

requires that one observation per patient is created which uses the date of the patient’s first

hospitalization with a given diagnosis as the onset of risk and the date of the patient’s last

discharge as the event time (in the case of death) or the censoring time (if the patient is

discharged). We label this the ‘single-risk model’, since the only transition that we model is

the patient’s death at some point. The second option is to exploit the complete record of in-

and out-of-hospital spells, where the latter follow as the complementary set of the hospital

spells. This allows us to build a multistate model in which patients can either enter the next

(out-of-) hospital spell or the state of death. We label this model the ‘multistate model’.

The standard single-risk model only is convincing, if there is no selection bias owing to

patients who (do not) die in the hospital. This requires that censoring occurs randomly – an

assumption that does not seem plausible ex ante, since the probability of observing a patient

in the hospital may systematically depend on his or her state of health. It is not even clear a

priori in which direction the systematic censoring would bias the mortality approximation that

is estimated based on in-hospital mortality rates. If patients with a bad health state tend to die

out of hospital (e.g., in a hospice or at home), their probability of being readmitted to hospital

is smaller than for patients with a relatively better health state, and we will underestimate the

1A study that links discharge data with the cancer registry is Ayanian et al. (1993), who analyze (with US
data) differences in the stage of the disease at detection and stage-specific survival in breast cancer patients
with varying insurance coverages.

2Bucholz et al. (2016), for example, investigate differences in long-term outcomes of patients with acute
myocardial infarction (AMI) for Californian data. They find that long-term survival variations between patients
from high-performing hospitals and low-performing hospitals stem from differences in the 30-day mortality that
persist over time.
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true mortality rate. If, on the other hand, a worsening health state increases the probability

of being readmitted, we would overestimate the true mortality rate.

One solution would be to control for patient-specific factors (over time) which drive the

health state. In practice, however, a significant share of patients’ heterogeneity remains un-

observed. Few existing models allow for potentially informative censoring. Among them, e.g.,

Danieli et al. (2012) evaluate different methods to cope with systematic censoring using simu-

lated data to estimate net survival, relative to a baseline survival; Scharfstein & Robins (2002)

use prognostic factors and allow for unmeasured factors to derive unbiased survival rates; and

Wang et al. (2001) allow for informative right-censoring in the presence of recurrent events by

assuming a latent variable model. The latent variable multiplicatively shifts the hazard rate,

i.e., adds frailty to the transition structure.

We propose the aforementioned multistate model as an alternative method to the standard

single-risk time-to-event approach, where we estimate the unobserved out-of-hospital behavior

using the information on patients that are being readmitted. In the sense that we explicitly

estimate the in- and out-of-hospital transition rates by the sequence number of the spell in every

patient’s history, we account for potentially informative censoring after a patient’s last hospital

discharge, without requiring assumptions on the latent variable. Note that each competing

risks experiment considered by the multistate model assumes random censoring. What allows

our model to cope with (potential) informative censoring is the stratification according to the

sequence of in- and out-of-hospital spells, which means we allow for different in- and out-of-

hospital transition rates, that vary over the sequence of admissions.

In the following, we first fit a standard single-risk model to hospital discharge data and

predict survival times for a selection of diseases. In a second step, we develop a multistate

model and therefore consider a more complex setup to include and estimate the out-of-hospital

mortality. Section 2 introduces both models, which we fit in Section 4 to the data described in

Section 3. Finally, we contrast the estimates of both models with available observational data

from the National Institute for Cancer Epidemiology and Registration (NICER) in Section 5.

Section 6 concludes.

2 Methodology

In this chapter, we present two alternative approaches to estimate survival time from incom-

plete data. Incomplete in our context means that we (need to) allow for right-censoring of

observations. The first approach, presented in Section 2.1, is a standard single risk survival

model with piecewise constant hazard rates. We use the thus estimated hazard function to

predict disease-specific survival curves. The second is an approach that we propose in order

to relax the assumption of random censoring inherent in the standard model. It consists of

two parts. In Section 2.2, we present an adaption of the competing risks estimation for un-

observed out-of-hospital mortality from Farsi & Ridder (2006). In Section 2.3, these results

are embedded into a multistate framework and combined with the simulation algorithm from
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Blaser et al. (2015) in order to finally yield disease-specific survival curves.

Although these models can be applied to any survival time data with (potentially) multiple

recurrent observations, we illustrate them for the case of hospital discharges, which implies

the following: The same patient might be observed several times, i.e., over the course of many

hospitalizations. At the end of every hospitalization, we observe whether he or she died or was

discharged, in which case an out-of-hospital spell starts that lasts until the next hospitalization

or the end of our observation time. The point in time in which the patient dies in his or her

last out-of-hospital spell, remains unknown.

2.1 The standard single-risk approach

For the standard single risk approach, we regard the initial hospitalization of a patient as the

start of being at risk, and the end of the last observable in-hospital spell as the end-point of

our analysis. Any transitions between the first and the last hospitalization are discarded. An

illustration of how patient histories are used for this single-risk model, and how this differs

from the use in the multistate model is given in Figure 1 on page 7. If there is only one

hospital spell, the time at risk is the length of this specific hospital spell. There is only one

transition possible in this setup: To move from being alive to being dead. This is, we model

death as a single-risk process. If a patient’s last observable hospitalization ends with death, we

observe the event of interest, whereas if a patient’s last observable hospitalization ends with a

discharge, the patient’s outcome is considered to be censored after that point in time.

To make the single-risk estimation comparable to the multistate framework, outlined later,

we work with a flexible specification and allow for a hazard function that is constant within

each of the i = 1, . . . , I time intervals. This implies that we assume that event times are

exponentially distributed over the given time intervals. We further include a set of patient-

specific time-invariant covariates.

Let t denote the time that has passed since the onset of the risk. Formally, if t is in the ith

interval, the hazard function µ(t) takes the following form:

µ(t) = exp(Xβ)µi ∀ ti−1 < t ≤ ti, (1)

where µi is the baseline hazard rate during the ith interval. The vector X consists of all

time-invariant and patient-specific covariates (such as biographical information, time- and year-

dummies, or information on the treatment), and β is the coefficient vector. Each µi and β are

to be estimated.

Interval borders are given by ti−1 and ti. They indicate the start and end of the time interval

i, respectively, such that ti− ti−1 describes its length.3 The initial admission to a hospital, i.e.,

the start of the first observation, marks the onset of the risk for every patient such that t0 = 0.

For t in the jth time interval (i.e., for tj−1 < t < tj) and piecewise constant hazards within

3The time ti−1 is the ending time of the interval i− 1 and ti the starting time of the interval i+ 1.
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each of these intervals, the survival function reads:

S(t) = exp

(
− exp (Xβ)

(
j−1∑
i=1

µi(ti − ti−1) + µj(t− tj−1)

))
. (2)

This equation gives the survival probability until time t of a patient with individual characteris-

tics X and translates hazard rates into a probability, accounting for the effect of covariates and

allowing for piecewise constant hazard rates over a set of intervals. (For a more general treatise

of the connection between hazard rates and probabilities, also in the context of a multistate

model, see, e.g., Beyersmann et al. 2012, Section 2.1.)

To estimate the hazard rates and parameters of the covariates, we maximize a log-likelihood

function based on the probability density functions (pdfs) of all observed transitions and on

information of patients who survived until the censoring date. The contribution of a patient

who is observed for the length of t to the log-likelihood function therefore reads as

`(t) =

f(t) if death in hospital

S(t) if censored,
(3)

where f(t) ≡ µ(t)S(t) is the pdf of a patient who dies at t, with µ(t) being the hazard function

from (1) and S(t) the survival function from (2). If a transition occurs (i.e., if the patient

dies at t), the pdf is defined as the product of µ(t) with the probability that no transition

occured before t. Concerning the second case, let T be the patient-specific maximum time

at risk (before being right-censored). If the patient is censored (i.e., if t > T ), then only the

information that he or she has not died until then is contributed to the log likelihood function.

The log likelihood function follows as

logL(β, µ1, . . . , µI) =
N∑
n=1

`(tn), (4)

where N is the number of observations and tn indicates the length of the nth observation

(patient), i.e., the time at risk.4 The contribution of each patient case depends on the event

type at the end of the observation period (death or censoring) as defined in (3).

After fitting the above model, the survival curve S(t) can be derived by subsituting the

estimated values into (2).

2.2 The multistate approach: Obtaining the hazard rates

Farsi & Ridder (2006) exploit information on rehospitalizations to formulate a maximum like-

4We are inexact with indexing and have only now introduced the patient-specific index n = 1, . . . , N in the
definition of the likelihood function, whereas we left it out above (e.g. in the definition of equation 3). We did
this in order to accentuate what is important at each step: When defining(3) it was made clear that this index
refers to a specific patient’s contribution to the likelihood function. However, in this respect, the summation of
all contributions is crucial, which is why we have subsequently introduced the n index. This approach carries
over to the remainder of the paper.
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lihood estimator of the unobserved out-of-hospital mortality by modeling two independent

sequential competing risks processes: (1) when initially hospitalized patients might die or be

discharged alive, and (2) when discharged they might die outside the hospital or be rehospital-

ized. For both sets of competing risks, the authors formulate likelihood functions for all four

events and consequently estimate four hazard rate functions for Californian hospital data on

the treatment of acute myocardial infarction (AMI). The aim of their analysis is to account

not only for the in-hospital mortality as a quality indicator, but also for the unobserved out-

of-hospital mortality. Their concern is that studies often use the in-hospital mortality rates or

the probability of death within some (short) time span after discharge as a quality indicator

or outcome variable of interest.5 The problem, however, is that hospitals can to some extent

influence the observed in-hospital mortality through their discharge policy, and that in-hospital

mortality and post-discharge mortality is a function of discharge policies. To see this, consider

two hospitals. It is possible that both deliver equal quality but differ as to their observed

in-hospital mortality, because one of the two discharges faster and thus the time span during

which death would be observed is shorter. A meaningful quality indicator sould therefore in-

corporate the effect of the discharge policy, which is the motivation of the study by Farsi &

Ridder (2006).6

We extend their approach for multiple in- and out-of-hospital spells in order to accom-

modate chronic or progressive diseases. Technically, we rewrite the likelihood function such

that it reflects a stratification of the data according to the sequence number of the in- and

out-of-hospital spells. That is, we estimate a sequence of hazard rates for the spell-specific

discharge, in-hospital mortality, readmission, and out-of-hospital mortality. In a second step,

these competing risks processes are then combined into a multistate model of sequential in-

and out-of-hospital episodes, and the absorbing state of being dead. We now have explicit

estimates for the out-of-hospital transitions, but still cannot easily derive overall survival rates

that comply with them – for the simple reason that the original data naturally lacks these tran-

sitions. We therefore simulate a cohort of patients (in the next section) who move through the

multistate model in accordance with the estimated transition rates. This simulation, finally,

reveals the estimated overall survival times.

The hospital discharge data used in this paper allows us to follow patients over the course

of many years and therefore to generate patient histories, as illustrated in Figure 1 for two

different patients. There are three kinds of states in which a patient may be: hospitalized

(IH), out of hospital (OH), or dead (D). Let t measure the time spent in a given state, and

let τ be the aggregate time passed since the first observation. That is, t is reset to 0 once a

transition occurs, and τ is the sum of all patient-specific spell lengths. The current spell in or

out of the hospital is indexed with l = 1, 2 . . . , L, where L is the number of strata considered.

5Recent examples of such applications are found in Rahman et al. (2016) who use the 30-days-post-discharge
mortality as outcome, in Martini et al. (2014) who construct the outcome using the total of in-hospital and
30 days post-discharge mortality rates, in Evans & Kim (2006) where the in-hospital mortality and 7-14-day
overall mortality serve as outcome variables, and in Daysal (2012) who uses the in-hospital mortality of heart
attack patients.

6A paper that discusses the (non-)independence of mortality and readmission rates is Laudicella et al. (2013).
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Patient 1: In-hospital death during second hospitalization.

Hospital record

Single-risk model

Multistate model

0 𝜏T

𝐼𝐻1 𝐼𝐻2

𝐼𝐻1 𝐼𝐻2𝑂𝐻1

T: censoring time

Discharge:
alive
death

Single-risk model:
censoring
failure
time at risk

Multistate model:
rehospitalization

OH-spell
with rehosp.
with censoring

(potential OH death)

𝐼𝐻1 𝐼𝐻2 𝐼𝐻3Hospital record

Single-risk model

Multistate model

0 𝜏T

𝐼𝐻1 𝐼𝐻3𝑂𝐻1 𝐼𝐻2 𝑂𝐻2 𝑂𝐻3

Patient 2: Three hospitalizations, discharged alive.

Figure 1: Illustration of patient histories.

��
��
IHl

��
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HHH
HHHj

λIHl (t)

µIH
l (t)

(a) Transitions from in-hospital.

��
��
OHl

��
��
IHl+1

��
��
Death

��
��

��*

HHH
HHHj

λOH
l (t)

µOH
l (t)

(b) Transitions from out-of-hospital.

Figure 2: Competing risks processes for the lth in- and out-of-hospital spells.

It is assumed that a patient’s history starts with the initial hospitalization with a specific

diagnosis, i.e., IH1 must necessarily occur before OH1.

To illustrate the basic idea on how we can exploit the complete history of each patient to

estimate survival curves, consider Figure 2. During the lth in-hospital spell, IHl, a patient

dies with a rate µIHl (t) or is discharged with rate λIHl (t) if he or she had spent time t in that

state (see panel (a)). Death and discharge are competing risks for exiting the hospital spell.

If discharged alive, a patient enters the lth out-of-hospital spell, OHl. An out-of-hospital spell

ends with either rehospitalization or death (see panel (b)). Note again that time t is reset to

zero after each transition. Therefore, the hazard rates in panel (b) describe the hazards after

having spent time t in that state.

Unlike the single-risk setup used in the previous section, in the multistate model a transition

to death, after a given elapse of time after the first hospitalization, might occur in any one of

the 2L non-absorbing states. We will keep Figure 2 in mind as a reference for the following

formal outline, where we develop an extended version of Farsi & Ridder (2006). For further

details and derivations regarding the identification of the unobserved out-of-hospital mortality,

please refer to their original paper.
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In-hospital spells

To estimate hazard rates for exits from the in-hospital spells, we assume piecewise constant

hazard rates over i = 1, . . . , IIH intervals. This means that each of the L in-hospital spells is

divided into I time intervals. We estimate hazard rates for I × L intervals and spells, each

indicated by the subscript pair i, l. If a patient is not censored, all transitions are observed

such that the hazard functions for death and discharge at time t read as

µIHl (t) = exp(Xβ)µIHi,l ∀ ti−1 < t ≤ ti and (5)

λIHl (t) = exp(Xγ)λIHi,l ∀ ti−1 < t ≤ ti, (6)

respectively. X is the same vector of time-invariant and patient-specific covariates as used in

(1) and β and γ are the respective coefficient vectors. The interval- and spell-specific constant

hazard rates are µIHi,l and λIHi,l . We assume that both transition processes share the same

interval lengths. Interval borders are given by ti−1 and ti for all i, with t0 = 0.

The contribution of a patient exiting his or her lth hospital spell during the jth time interval

to the likelihood function can be derived from the probability density function

f IHl (t) =SIHl (t) ·

µIHl (t) if death

λIHl (t) if discharged,
(7)

where SIHl (t) ≡ exp
(
−
∑j−1

i=1 (ti − ti−1)κi,l − (t− tj−1)κj,l
)

is the probability that the lth spell

does not end before t, with κi,l ≡ exp (Xβ)µIHi,l +exp (Xγ)λIHi,l being the hazard to exit the lth

hospital spell (to either discharge or death) within the ith interval, and the sum over both of

the competing risks reflects the cumulative incidence of no exit until t. Hence, the probability

density function is equal to the hazard rate of the corresponding observed event multiplied by

the probability of no event before t. Note that this is conceptually the same as the single-risk

setup.7 The log-likelihood for n = 1, . . . , N IH
l patients entering the lth in-hospital spell is then

given by:

logLIHl (β,γ, µIH1,l , . . . , µ
IH
I,l , λ

IH
1,l , . . . , λ

IH
I,l ) =

NIH
l∑

n=1

log f IHl,n (tnl ), (8)

where tnl describes the failure time of patient n during his or her lth in-hospital spell, and

f IHl,n (tn) is the probability density function (7) that considers the patient-specific failure event

7In an analogy to the single-risk setup, we can consider right-censored events. Consider a patient who is
either censored or observed to transit at time t. The contribution of this patient to the log-likelihood function

reads as `IH(t) =
[
SIH
l (t)

]C [
f IHl (t)

]1−C
, where C takes the value of 1 if a patient is censored (and zero

otherwise). SIH
l (t) is the probability of observing no transition until t. If t is the censoring time, this is

the contribution of such an observation to the log-likelihood. The last part, f IHl (t), is given by (7) as the
contribution to the log-likelihood function of a patient failing at t in his or her lth IH-spell, if not censored.
For our application, however, censoring is not a problematic issue for in-hospital spells, since we observe the
end of the hospital spell for almost all spells. For out-of-hospital spells, censoring is a likely event, since every
spell that ends with death is observed as being censored; see below for more details.
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at time tn in spell l of patient n. The joint log-likelihood function for all patients in any of the

L in-hospital spells is then given by:

logLIH
(
β,γ,

{
µIHi,l

}
∀i,l ,

{
λIHi,l

}
∀i,l

)
=

L∑
l=1

NIH
l∑

n=1

log f IHl,n (tnl ). (9)

We use curly brackets to indicate a list of all hazard rates that exist for the indicated subindices.

Equation (9) will later be the basis for the estimation of spell- and interval-specific hazard rates

and the covariate-related set of coefficients β and γ.

Out-of-hospital spells

We wish to identify the reason why and the time when subjects leave an out-of-hospital spell.

More precisely, we are interested in two competing risks that can end such a spell: Rehospital-

ization or death. If patients’ courses were completely observable beyond their discharge from

hospital, we would observe out-of-hospital deaths and could therefore estimate the readmis-

sion and out-of-hospital mortality rate in analogy to the in-hospital exit rates. With hospital

discharge data, however, a researcher can (1) only observe hospitalizations and (2) only those

that occur within the observed time frame [0, Tl], whereas the spell-specific censoring time Tl

varies at the patient level. Deaths – the second of the competing risks that we aim to model –

and hospitalizations after Tl are not observed. Both events are observed as right-censored.

To estimate the hazard rates of both competing risks with incomplete data, we need to

adjust the likelihood function accordingly. Farsi & Ridder (2006) show that the out-of-hospital

mortality rate can – over a discrete time interval – be identified from the probability of read-

mission and the probability of being censored. They limit their analysis to one out-of-hospital

spell (i.e., they do not stratify patients over several hospitalizations) and analyze the regression

coefficients of such estimations. We extend their method in two directions. We first present a

stratified version of their model before describing in the next section how the estimation results

of the multiple competing risks setups can be merged to generate the overall survival rate.

Every patient who is discharged alive from a hospital spell enters an out-of-hospital spell.

This implies that we need to stratify the out-of-hospital spells to L different strata as in the in-

hospital case, indexed by l = 1, . . . , L. Further, we assume that the hazard rates are piecewise

constant over IOH intervals, indexed by i = 1, . . . , IOH such that the tis define the out-of-

hospital interval lengths. The number of strata in the out-of-hospital case have to be matched

with the in-hospital case (to being later able to usefully combine them to one multistate model).

The number of intervals that are considered in the in- and out-of-hospital data, on the other

hand, might be different. The piecewise constant rates hazard functions for death outside

hospital and rehospitalization at time t in interval i during the lth spell read

µOHl (t) = exp(Xδ)µOHi,l ∀ ti−1 < t ≤ ti and (10)

λOHl (t) = exp(Xη)λOHi,l ∀ ti−1 < t ≤ ti, (11)

9



respectively. Both are estimated in the maximum likelihood function below. Depending on

whether a patient is observed as being censored or not, he or she contributes differently to the

log-likelihood function.

If a patient is rehospitalized, his or her contribution is given by the pdf at the time of the

transition. As formulated above, Tl is the patient- and spell-specific censoring time. It measures

the time from the last observed hospital discharge until the end of the observable time frame

in the data; i.e., it measures the time span in which a rehospitalization may potentially be

observed. Whenever we observe that a patient’s spell ends before Tl, i.e. if t ≤ Tl, the patient

gets rehospitalized. The probability density function of observing a hospitalization at t ≤ Tl

given that no hospitalization or death has already occurred is

fOHl (t | t ≤ Tl) =SOHl (t)λOHl (t), (12)

where SOHl (t) ≡ exp
(
−
∑j−1

i=1 (ti − ti−1)κi,l − (t− tj−1)κj,l
)

with now κi,l ≡ exp (Xδ)µOHi,l +

exp (Xη)λOHi,l . Similar to the in-hospital spell, κi,l describes the total hazard to exit the lth

out-of-hospital spell during the ith interval – due to either hospitalization or death, while only

the former can be observed.

If a patient is not rehospitalized, we use the Farsi & Ridder method to identify the out-

of-hospital mortality rate. The idea is to write the probability of no hospitalization until Tl

in two parts.8 In our version that has been extended for multiple spells, the probability of a

patient being censored in his or her lth spell during the jth interval can be written as

Pr(t > Tl) =SOHl (t) (13)

+

j−1∑
i=1

exp (Xδ)µOHi,l
κi,l

[exp(−κi,lti−1)− exp(−κi,lti)]

+
exp (Xδ)µOHj,l

κj,l
[exp(−κj,ltj−1)− exp(−κj,lt)] .

The first line on the right-hand side of (13) is the probability that a patient has not been

re-admitted to hospital until t and is still alive (SOHl (t) as defined above). This means that

no transition from the current out-of-hospital spell until t occurred. The second and third

lines yield the probability that a patient died out of hospital until t. It is the integral of the

probability density function of dying between zero and t; here in a dissolved form for piecewise

constant hazards over j intervals until t. The sum of both probabilities – i.e., of not having

ended the out-of-hospital spell and of not having died until t – yields the probability that

no hospitalization occurred until t. Note that the events underlying both probabilities are

not observed. But the sum of these probabilities can be estimated from the data: It is the

probability of being censored at t.

8The necessary identifying assumptions for this approach to work are (1) that no other hospitals outside our
data exist, i.e. if a patient is rehospitalized, we will see him, and (2) hazard rates are assumed to be piecewise
constant.
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We therefore have identified two sets of equations for two sets of unknown (piecewise con-

stant) hazard rates. Both are estimated simultanously in one likelihood function: If a patient

is hospitalized, the contribution is given by equation (12); if a patient is not hospitalized, he

or she contributes (13), such that

`OHl,n (tnl ) =

Pr(tnl > T nl ) if censored

fOHl (tnl | tnl ≤ T nl ) if hospitalized
(14)

is the contribution of patient n, where n = 1, . . . , NOH
l and NOH

l is the number of patients

entering the lth out-of-hospital spell.9 We use the structural forms for the two sets of equations

to formulate a spell-specific likelihood function which allows us to estimate the out-of-hospital

mortality even though these transitions are not contained in the data:

logLOHl (δ,η, µOH1,l , . . . , µ
OH
I,l , λ

OH
1,l , . . . , λ

OH
I,l ) =

NOH
l∑
n=1

log `OHl,n (tnl ). (15)

Here, too, δ and η are independent of the spell number. The joint log likelihood function for

out-of-hospital events for all L spells is given by

logLOH
(
δ,η,

{
µOHi,l

}
∀i,l ,

{
λOHi,l

}
∀i,l

)
=

L∑
l=1

NOH
l∑
n=1

log `OHl,n (tnl ), (16)

where, again, we use curly brackets to indicate a list of all hazard rates that exist for the

indicated sub-indices.

2.3 The multistate approach: Obtaining the survival curve

Once we have estimated interval- and spell-specific hazard rates and the covariates’ effects

β,γ, δ, and η, we want to translate these estimates into a unifying metric, i.e., the survival

rate. In a standard single-risk framework with a hazard function λ(t) one can simply obtain

S(t) as described by equation (2). This is, however, not possible in a competing risks framework

as there is more than one possible failure that can occur in any point in time t.

What additionally complicates our analysis is that we allow the hazard rates for all of the

L in- and out-of-hospital transitions to be different. This precludes the use of more standard

multistate models (such as the illness-death model with recovery) where hazard rates are as-

sumed to follow a (semi-)Markov process.10 Stratification according to the sequence number

of in- and out-of-hospital spells allows to relax the Markov-assumption in the sense that the

9Note that as in the in-hospital case we added at this point the spell- and patient-specific indices l and n to
the observation time t, which we previously ignored to ease presentation.

10Non-Markov processes in multistate models are scarce and standard software packages are basically not
available (for a review see Willekens & Putter 2014, p. 384). An exception is Meira-Machado et al. (2006)
who develop history-dependent estimates of hazard rates for a three-state illness-death-model. Their approach,
however, relies on the observation of all transmissions and does not consider multiple spells.
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Figure 3: Multistate model.

sequence number of spells serves as proxy for characteristics such as disease progression. This

implies that we allow for underlying path dependency – at least to the degree that we allow

the hazard rates that apply to the, say, 5th hospital spell to be different from the hazard rates

that apply to the first hospitalization.

Our multistate framework is illustrated in Figure 3. Since we defined the onset of the risk

as the first hospitalization, every history starts with IH1, which is followed by the first out-

of-hospital spell OH1 or death. For example, the spell OH1 might end with either the second

hospital spell IH2 or death.

There are (2L+1) states and (4L−1) transitions that can occur at any time t: A patient can

(theoretically) be in any one of the L in- or out-of-hospital spells, or he or she could be dead,

which is the only absorbing state. When the patient is in any of the 2L transitory states, he or

she can either die or move to the next transitory state. An exception is the last out-of-hospital

spell for which we assume that no rehospitalization is possible, and that patients simply die

in accordance with the out-of-hospital mortality rate for the last spell. This implies that we

have to pick a sufficiently high L such that only as few patients as possible are affected by this

inconsistency. This is also the reason why we only need to model (4L− 1) transitions.

To obtain the overall disease-specific survival rate, we have to rely on a simulation since

the out-of-hospital deaths are not observed in our original data. We use the estimated hazard

rates from the previous section and simulate a cohort of patients that moves through a mul-

tistate model as depicted in Figure 3. This yields transition times for every simulated patient

and therefore reveals the in- and out-of-hospital mortality. The simulation thus allows us to

translate the estimated hazard rates and the given structure of our multistate model into an

overall survival rate.

To perform this Monte-Carlo-like simulation, we use a corrected version11 of an algorithm

developed by Blaser et al. (2015). An important advantage of this package is that we can

11While working on this study, we discovered several errors in the Blaser et al. (2015) code, which we corrected.
An updated version of the R package has in the meantime been uploaded on CRAN.

12



incorporate time-varying and spell-specific hazard rates (i.e., we can capture the intervalization

as modeled for estimation). To put the algorithm to work, we set up a patient cohort of size

N IH
1 with cohort characteristics X. Both N IH

1 and X are chosen to match the size of the

initial patient-population and the distribution of the covariates in the data. The estimation

results from the previous section are then used to set up a hazard rate matrix for all possible

transitions as well as a variance-covariance matrix for any of the possible transitions of the

hazard rate matrix.

The hazard rate matrix H(t) is a function of time t and of all estimated coefficients from

the previous section: β,γ, δ,η,
{
µhi,l
}
∀i,l,h ,

{
λhi,l
}
∀i,l,h, where h ∈ {IH,OH}. It is given by

H(t) =



OH1 IH2 . . . IHL OHL D

IH1 λIH1 (t) 0 . . . 0 0 µIH1 (t)

OH1 0 λOH1 (t) . . . 0 0 µOH1 (t)

IH2 0 0 . . . 0 0 µIH2 (t)
...

...
...

. . .
...

...
...

IHL 0 0 . . . 0 λIHL (t) µIHL (t)

OHL 0 0 . . . 0 0 µOHL (t)


. (17)

The rows list the states from which a transit may occur, and columns, the states into which

transitions are possible. Consequently, for L in- and L out-of-hospital spells, there are 2L

possible transitions from in-hospital states and 2L − 1 transitions from out-of-hospital. This

sums to the total of 4L− 1 hazard functions, as input for the hazard matrix H(t). Recall that

t measures the corresponding length of spell for every transitory state (i.e., t is reset to zero in

every row). Put differently, H(5 days) gives the matrix of the hazard rates for all transitions

after being in any of the transitory spells for 5 days.

The algorithm of this package then draws (for every simulated patient) transition times

for every possible transition and constructs the corresponding transition history for any given

patient. The draws of the transition times follow the timing pattern implied by the hazard

rates for the respective transitions. For a translation of the individual failure events into an

aggregate time frame, some additional steps are needed. Suppose there is a realized history

{IH1, OH1, IH2, OH2, D} with transition times {tIH1 , tOH1 , tIH2 , tOH2 }, implying that this patient

died during his or her second out-of-hospital spell after staying for tOH2 time units in that

spell. We define τ as the total survival time after the initial hospitalization, such that τ :=

tIH1 + tOH1 + tIH2 + tOH2 . By tracking τ for every simulated patient, we can count the number of

deceased individuals at any given point in time and the survival rate S(τ) is then simply the

number of deceased individuals over the total number of the initial patient cohort.

This approach leaves room for two sources of uncertainty: one stemming from choosing

a finite cohort size, and one from parameter uncertainty, since we have to rely on estimated

hazard rates and covariate-coefficients. Concerning the former, we advocate using the original

number of patients. Concerning the latter, the Blaser et al. (2015) algorithm allows us to

13



additionally plug in a variance-covariance matrix for each of the defined transitions. For every

non-zero entry of the hazard matrix (17), we therefore also fed in a variance-covariance matrix

that contains on its diagonal the variance of each estimated parameter from the previous step.

3 Data

For our analysis we use two sources of data. The first is the Swiss medical statistics of hospitals

(MedStat), which we use to fit both the single-risk model of Section 2.1 and the multistate

model as presented in Section 2.2. The second source is the cancer registry of the Swiss National

Institute for Cancer Epidemiology and Registration (NICER). It serves as an independent data

source of survival times for a limited range of cancer types and as a benchmark for our survival

estimates.

MedStat

We use case-level data from the Swiss medical statistics of hospitals (MedStat) which covers

almost all hospitalizations in Switzerland and is maintained by the Swiss Federal Statistical

Office. Although these data have been collected since 1998, we use only data from 2001

onwards, which allows us to exclude patients in our 2001-cohort who have had treatments due

to the disease of interest before 2001 (see below for more details). Each case is indexed by an

anonymous identifier based on the patient’s given name, family name, sex, and date of birth.

The encryption method claims to unambiguously assign cases to individuals in 99.7% of cases.12

This allows us a reasonably precise construction of individuals’ entire hospitalization histories

between the first and last observable hospital admission during a 10-year13 observation period.

For each hospital admission, information is recorded on spell length, patients’ 5-year age-group,

sex, place of residence, canton of treatment, main and up to 49 secondary diagnoses (ICD-10

codes), main and secondary treatments (CHOP codes), intensive care unit (ICU) use, and the

prescription of expensive drugs.14

For inclusion we use several criteria: We (1) consider only hospitalization between 2001

and 2014, which delivers 19,705,990 individual spells. Of this number, we exclude (2) spells of

patients living outside Switzerland (2.2% of the cases), (3) newborns (5.2% of the remaining

cases), (4) spells comprising mental health issues (7.3% of the remaining cases), (5) spells of

12See https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.

assetdetail.230439.html, last accessed June 2018
13The encryption yields a stable identification code over that time span (see https://www.bfs.admin.

ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.assetdetail.230439.html, last accessed June
2018).

14For detailed information on all variables included in MedStat see https://www.bfs.admin.ch/bfs/de/

home/statistiken/gesundheit/erhebungen/ms.assetdetail.1922896.html, last accessed June 2018. For
information on the International Statistical Classification of Diseases (ICD) and the ICD-10 classification
for diagnoses, see http://apps.who.int/classifications/icd10/browse/2014/en, last accessed June 2018.
For information on CHOP codes, which classify (surgical) treatments in Switzerland, see https://www.bfs.

admin.ch/bfs/de/home/statistiken/gesundheit/gesundheitswesen.assetdetail.483959.html, last ac-
cessed June 2018.

14

https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.assetdetail.230439.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.assetdetail.230439.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.assetdetail.230439.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.assetdetail.230439.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.assetdetail.1922896.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/erhebungen/ms.assetdetail.1922896.html
http://apps.who.int/classifications/icd10/browse/2014/en
https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/gesundheitswesen.assetdetail.483959.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/gesundheit/gesundheitswesen.assetdetail.483959.html


Table 1: Summary statistics of MedStat 2001-2014.

Observations 15,079,338
Patients 5,631,757
In-hospital deaths 330,181

Mean (Std. Dev.) Median
Duration in hospital (days) 7.573 (13.064) 4
Spells per patient 2.672 (2.971) 2

Share in %
Rehospitalized 54.1
Patients dead 5.9
Female 55.7
Swiss nationality 84.2

Disease category
C: Cancer 6.7
G: Nervous system 3.1
I: Circulatory system 12.7
J: Respiratory system 4.6
K: Digestive system 9.1
S: Injuries 9.5

Comorbidities
0 32.5
1 15.6
2 12.4
3 9.6
4 7.5
5 or more 16.7

Age
20 to 30 9.1
30 to 40 12.7
40 to 50 11.8
50 to 60 14.5
60 to 70 17.1
70 to 80 18.5
80 to 90 13.6
90 to 100 2.6

patients without nationality, or with the ID number “0” (0.3% of the remaining cases), (6)

patients below the age of 20 (9.2% of the remaining cases), and finally (7) cases marked as

double entry due to year-change during the spell or with a length of stay of zero days or longer

than two years (1.7% of the remaining cases). This leaves 15,079,338 observations.

Descriptive statistics of the hospital spells that comply with our inclusion criteria are shown

in Table 1. In our analysis, we focus on cancer and diseases of the digestive system, defined as

ICD-10 categories C and K, respectively, which represent 6.7% and 9.1% of the main diagnoses.

Our selection of diseases out of these two categories is displayed in Table 2. Diseases are iden-

tified by ICD-10 codes of main and secondary diagnoses.15 We are ultimately interested in the

15A comment on the coding principles of the ICD system: As mentioned above, ICD – the International
Statistical Classification of Diseases – is a hierarchical system that describes a disease using a combination of
a leading letter that is followed by 2 to 5 numbers. In our selection and definition of diseases, we use different
levels of aggregation. Take the example of a lung cancer located at the main bronchus. The corresponding

15



average survival times of patients admitted with a specific disease after initial hospitalization

due to that disease. Typically, a patient’s hospitalization history does not consist of only one,

but many diagnoses. We therefore face the problem of how to assign a patient to a specific

disease. We chose the following procedure: We search every case’s principal and first 10 of the

49 reported secondary diagnoses for a specific disease. If we find the diagnosis, we search for

subsequent spells of the respective patient, which allows us to construct the patient’s history.

Hospitalizations before this initial diagnosis-specific spell are disregarded. This implies that if

a patient has more than one of the diseases of interest, he or she will be included in each of

the disease-specific patient cohorts.16

For the multistate model, we construct out-of-hospital spells based on discharge dates and

subsequent readmission dates. If a readmission does not occur within the observed time span,

the out-of-hospital spell is censored and this case contributes to the hazard rate estimation that

no rehospitalization occurred until this point in time. The data on the in-hospital spells is used

to estimate the in-hospital mortality and discharge rate, and the data on the out-of-hospital

spells is the input to estimate hazard rates of rehospitalization and out-of-hospital deaths. All

are then combined in the simulations to determine the disease-specific survival curves reported

below.

The out-of-hospital hazard rate estimates are found to be sensitive to the time horizon over

which patients are (potentially) observable. Our approach to account for this problem is to

work with patient cohorts for which the observable time horizon is equally long. The relative

cohort sizes can be deduced from Table 2. This ensures that, in principle, the probability of

being observed once again after discharge (i.e. of being rehospitalized) is equally distributed. A

cohort consists of all patients who are initially hospitalized in a given year and are subsequently

followed up during a given time span. There is a trade-off between the length of follow-up and

the number of cohorts that we consider. Since we are interested in the first diagnosis of a

given disease, we use the first three years (1998-2000) to exclude patients from later cohorts

who were already treated for this disease before.17 Since the follow-up period must be of equal

length for all cohorts, and in order to have a reasonable follow-up period (to make statements

about medium- to long-term survival), we choose a follow-up period of 7 years. This implies

that we consider 7 cohorts and include patients initially treated in the years 2001 to 2008. The

first cohort is followed until the end of 2007, and the last until the end of 2014. This cohort

ICD-10 code is C34.0. The “C” indicates a malignant neoplasm, the first two numbers indicate that this
neoplasm is located at the bronchus or lung, and the “.0” specifies the precise location at the main bronchus.
For cancer, we define diseases by the first two digits. But we also use a higher aggregation level: diagnoses
beginning with K7 are used to indicate (chronic) liver diseases—and consequently comprise a broader range of
diseases (e.g. K70 alcoholic liver disease, K71 toxic liver disease, K73 chronic hepatitis).

16An alternative approach would be to define a hierarchy of diagnoses and assign every patient’s history to
only one disease according to this hierarchy. This would ensure that every patient is only used once. Every
patient would be attributed to only one condition and we would ignore potential other diseases of interest that
this patient might have. However, we are not aware of a natural hierarchy of diseases that could be applied
here.

17Note that during the initial years of record-keeping, not all hospitals participated. For the analysis of chronic
diseases (see below), the data for the first cohorts may be biased, because they contain some individuals who
are not ‘true’ newly diagnosed, but who where diagnosed before and not reported.
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Table 3: Available cancer survival data from NICER.

ICD code Cancer site Multistate model convergence

C16 Stomach X
C18* Colon X
C20* Rectum X
C22 Liver and intra-hepatic bile ducts X
C25 Pancreas X
C33* Trachea
C34* Bronchus and lung X
C50 Breast X
C56 Ovary
C92* Myeloid leukaemia X
C94* Other leukaemias of specified cell type

* NICER groups survival data for some cancer types into subcategory pairs: C18/C20, C33/34, C92/C94.

approach ensures that out-of-hospital censoring remains comparable over the years.

NICER data

As a benchmark for both the single-risk and the multistate approach, we consult registry data

on overall survival times for a selected range of cancer types. These data come from the

Swiss National Institute for Cancer Epidemiology and Registration (NICER). NICER does not

depend solely on hospital records, but collects data on newly diagnosed cancer cases and follows

patients over time. The registry provides an ideal data source for comparative studies as it

covers patients’ whole history of patients, in particular it includes both in- and out-of-hospital

deaths. It differentiates between cause-specific deaths (i.e., only deaths that can be attributed

to a specific cancer) and the crude overall death rate (i.e., all-cause deaths of persons diagnosed

with a specific cancer). MedStat does not contain any information on (single) causes of death

other than those recorded in the diagnoses. We therefore compare the estimates based on the

MedStat to the crude survival measure from the NICER data. A major shortcoming of the

NICER data, however, is its limited availability for only a number of cancer types (further

issues are discussed in Section 5). Table 3 lists the availability of NICER data and cancer

types for which we have a multistate estimate of out-of-hospital hazard rates and therefore an

estimate of survival times. The multistate estimation is not available for all cancer types listed

by the NICER. The reason is that the estimation of out-of-hospital mortality hazards did not

converge for all diseases, e.g. because of a too small N or not sufficient readmissions.
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4 Results

4.1 Single-risk model

For the estimation of the single-risk model as developed in Section 2.1, we specify the hazard

function (1) as

µ(t) = exp(old βold + male βmale +
2008∑
y=2002

cohorty βy)µi ∀ ti−1 < t ≤ ti, (18)

where i = 1, . . . , 8 indicate time intervals. We choose the time intervals such that we capture

potential breaks of the hazard rate and mimic the interval structure of the multistate model.

In the multistate model we work with 6 in- and out-of-hospital spells with 3 time intervals

over each spell (for further details see the next section). In the single-risk process, we discard

the intermediate transitions and focus on the single event of interest – a transition to being

dead. This implies that there is no 1-to-1 relationship of the intervalization between the two

models. The vector of covariates is given by X = [old,male, cohort2002, . . . , cohort2008]. The

dummy variables indicate patients above the age of 65, and of male sex, and cohorty is 1 if a

patient was first diagnosed in year y. We estimate this model for all cancer types that have a

tick-mark in Table 3.

The results of a log-likelihood estimation are summarized in Table 4. Each column refers to

the estimation of (18) for patients initially hospitalized for the cancer category code indicated

in the column header. The effect of a dummy being 1 for the hazard rate of dying is given

by exp(βx) for any x from the vector of covariates X such that a positive [negative] value

implies a higher [lower] mortality. For all diseases, being old substantially increases mortal-

ity. Males exhibit statistically significant higher mortality rates than women for half of the

cancer categories. Concerning the year-effects, recall that we considered the cohorts of 2001

to 2008. Consequently, a significantly negative sign for any of the later cohorts indicates that

the mortality risk was lower when compared to the 2001 cohort. Whether the 2008 cohort

has a different mortality rate than the, say, 2006 cohort cannot be deduced. We find that for

some diseases there was no significant mortality reduction (C16, C22, C34) for later cohorts,

whereas for others mortality decreased – at least compared to the 2001 cohort. Decreases in

mortality are especially pronounced for colon cancer (C18) and breast cancer (C50). Whether

this implies that treatments became much more successful over the past decade for these con-

ditions or whether the reduction in mortality reduction is due to unobserved heterogeneity of

the patient cohort (i.e., that just a different set of patients gets those diagnoses that look equal

to us) cannot be said with certainty.

The second set of estimated coefficients specifies the hazard rates during each of the inter-

vals. The seven cut-offs which determine the eight intervals are set to 1 day, 7 days, 21 days, 90

days, 365 days, 730 days, and 1,460 days. Recall that we follow cohorts for six subsequent years

such that the maximum follow-up time is seven years (six years plus the rest of the year of the

first diagnosis). The hazard during the first day of hospitalization is measured by the constant.
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For example, in the case of C16, it is given by µ1 = exp(−5.304) = .005. For the 2nd to the

8th interval, shifteri indicates the effect on the hazard rate during the ith time interval relative

to the first day of hospitalization. For a patient diagnosed with C16, the hazard rate during

the second interval (i.e., for days 2 to 6) is given by µ2 = exp(−5.304 − 0.394) = 0.0034, and

accordingly for the remaining intervals. A negative sign therefore indicates a lower mortality

rate during an interval relative to the first day of hospitalization. As we can see, we have the

same pattern for the range of diseases, namely that the mortality rate decreases over time.

This indicates that if people die, they die shortly after their first hospitalization.

We use the estimation results to predict the survival times of the patients in our sample who

are initially hospitalized with the cancer types listed in Table 3. That is, we use the interval-

specific hazard rates to compute the survival function S(t) using its fundamental relationship

with the hazard rates given in equation (2). In Section 4.4, the survival rates obtained using

this approach are then compared to the multistate model estimates and the observed mortality

rates from the NICER data in Figure 9 on page 32.

4.2 Multistate model: Estimation

The model from Section 2.2 is specified as follows. We set L = 6, i.e., we stratify the data into

patients in their 1st, 2nd, 3rd, 4th, 5th, and (more than) 6th in- or out-of-hospital spell. The

approach thus allows for some history-dependence in the sense that transition probabilities

may be different for every spell number. The number of intervals which divide a given spell

into parts is set to three, i.e., IIH = IOH = 3, which implies that two cut-off points need to be

chosen for every likelihood function. The cut-offs for in-hospital spells are set at the 25 and

75 percentile of the in-hospital spell length (see Table 2), for out-of-hospital spells after two

and four years.18 We maximize two log-likelihood functions separately: Equation (9) serves

to estimate the hazard rates and covariate-coefficients of the competing risks to end the in-

hospital spells, and equation (16) for the out-of-hospital case. Covariates are the same as in

the single-risk case discussed above. As indicated in Section 2.2, we assume the effect of the

covariates to be equal for every spell, but differ between in- and out-of-hospital spells.

The hazard functions describing the rates according to which a patient dies or is discharged

during the ith interval (i.e., ∀ ti−1 < t ≤ ti) in his or her lth in-hospital spell are given by

µIHl (t) = exp(old βold + male βmale +
2008∑
y=2002

cohorty βy)µIHi,l and (19)

λIHl (t) = exp(old γold + male γmale +
2008∑
y=2002

cohorty γy)λIHi,l , (20)

respectively. The hazard rates that govern the lth out-of-hospital spell of a patient in the ith

18For C50, we use 500 and 1,000 days as cut-offs which ensure convergence.
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interval to end by death or rehospitalization are expressed as

µOHl (t) = exp(old δold + male δmale +
2008∑
y=2002

cohorty δy)µOHi,l and (21)

λOHl (t) = exp(old ηold + male ηmale +
2008∑
y=2002

cohorty ηy)λOHi,l , (22)

respectively. The former two equations are specifications of (5) and (6), the latter two corre-

spond to (10) and (11).

Each log-likelihood function requires to specify a total of 2 × I × L hazard rates for the

competing risks, as well as 2×length(X) estimates for the coefficients of the covariates (i.e., the

vectors β,γ as well as δ,η). The maximization of (9) and (16) with as many variables requires

a large data set. To improve the convergence for smaller data sets, however, one can reduce the

number of hazard rates that need to be estimated – at the cost of reduced flexibility. Instead

of I × L hazard rates for both the IH or OH cases, it is sufficient to estimate only I + L− 1

hazards, if we restrict the hazards of subsequent spells to being shifted linearly for all the

intervals of that spell. With I = 3 and L = 6, we need three estimates for the first spell plus

five additional estimates for shifters that describe hazard rate levels in the subsequent spells.

The procedure is as follows: For any of the four possible transition types (discharge, death

IH, rehospitalization, death OH), a I × L matrix of hazard rates needs to be specified. For

example, the hazard matrix for being discharged alive from an in-hospital spell has the following

form:

Spell number
ΛIH =

In
te

rv
al λIH1,1 λIH1,2 λIH1,3 λIH1,4 λIH1,5 λIH1,6

λIH2,1 λIH2,2 λIH2,3 λIH2,4 λIH2,5 λIH2,6

λIH3,1 λIH3,2 λIH3,3 λIH3,4 λIH3,5 λIH3,6

(23)

Corresponding matrices exist also for the other three transition types: For the in-hospital

mortality, the hazard matrix consists of all µIHi,l and is labeled MIH ; for the out-of-hospital

spells the matrices are labeled ΛOH for rehospitalizations and MOH for out-of-hospital deaths.

Instead of estimating 18 different hazard rates for every hazard matrix, we only estimate hazard

rates for the first spell plus one shifter for each of the five subsequent spells. This means that we

estimate λIH1,1 , λIH2,1 , and λIH3,1 (the three hazards for the first spell) as well as λIH2 , λIH3 , . . . , λIH6

(the shifters of the hazard rate for the subsequent spells). Any of the hazard rates of one of

the subsequent spells is then computed by λIHi,l≥2 = λIHi,1 · λIHl . The same procedure is applied

to specify MIH . All in-hospital hazard rates are then estimated maximizing (9) – which also

yields estimates for β and γ. For the second log-likelihood function, (16), finally, we also use

this method to identify ΛOH and MOH (along with δ and η). For each of the four transition

types and for all diseases listed in Table 2, the estimated disease-specific hazard rates of the

first spell are plotted in Figure 4.
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(a) In-hospital spells: λIHi,1 (‘alive’) and µIHi,1 (‘dead’).

C16

C18

C20

C22

C25

C34

C50

C61

C92

K7
0 .05 .1 .15 .2 0 .05 .1 .15 .2

alive dead

1st interval 2nd interval 3rd interval

(b) Out-of-hospital spells: λOHi,1 (‘alive’) and µOHi,1 (‘dead’).
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Figure 4: Hazard rate estimations for the intervals of the first spells.

Decoding of ICD-10 keys. C16: Malignant neoplasm (MN) of stomach, C18: MN of colon, C20: MN of rectum,
C22: MN of liver and intrahepatic bile ducts, C25: MN of pancreas, C34: MN of bronchus and lung, C50: MN
of breast, C61: MN of prostate, C92: Myeloid leukaemia, and K70-K77: Diseases of liver.
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(a) In-hospital spells: λIHl (‘alive’) and µIHl (‘dead’).
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(b) Out-of-hospital spells: λOHl (‘alive’) and µOHl (‘dead’).
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Figure 5: Estimations for the hazard rate shifters of subsequent spells.

Decoding of ICD-10 keys. C16: Malignant neoplasm (MN) of stomach, C18: MN of colon, C20: MN of rectum,
C22: MN of liver and intrahepatic bile ducts, C25: MN of pancreas, C34: MN of bronchus and lung, C50: MN
of breast, C61: MN of prostate, C92: Myeloid leukaemia, and K70-K77: Diseases of liver.
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Figure 4(a) depicts the hazards that end the first hospital spell during each of the three

intervals. The left plot contains the hazard rates for leaving the hospital alive (λIHi,1 ); the plot

on the right-hand side shows the baseline hazard rates for dying during the first hospital spell

(µIHi,1 ). The hazard rate for leaving the hospital alive is clearly decreasing in the spell length

for all diseases, whereas the propensity to die is remarkably stable. For all diseases, dying

is less likely then being discharged as is indicated by the absolute value of the hazard rates.

Note that the hazard rates are estimated quite accurately, as can be verified by the narrow

95% confidence bands for most of the estimates (the bars in the Figure). All hazard rates are

(significantly) greater than zero.

The two panels in Figure 4(b) show the hazard rates for the competing risks in the first

out-of-hospital spell. Again, the left of these panels describe the hazards to leave the out-of-

hospital spell alive (i.e. to be rehospitalized, labeled by λOHi,1 ); and the right graph contains

the out-of-hospital mortality (µOHi,1 ). The absolute value of any hazard is much smaller when

compared to the in-hospital hazards illustrated in (b): This mirrors the much longer out-of-

hospital spells. The estimates also indicate a decreasing hazard of being rehospitalized over

time. The pattern of the hazard rates for dying out-of-hospital, however, is different: hazards

start very low in the first interval, then increase substantially in the second interval (relatively

speaking), only to decrease to an intermediate level in the third interval.

We now turn to the consequences of stratifying our data for the sequence number of the

respective in- or out-of-hospital spell to allow for a sort of history dependence by explicitly

allowing the transition patterns to differ across spells. The fact that this assumption is im-

portant can be verified when inspecting Figure 5, which contains the estimates of the hazard

rate shifters for the subsequent spells. The structure of this figure is the analogous as for

Figure 4: Graph (a) depicts in-hospital spells with regard to the shifters for ending the second,

third, . . . , sixth in-hospital spell alive (the left-hand panel) or dead (the right-hand panel);

while graph (b) depicts the shifters for leaving the subsequent out-of-hospital spells alive or

dead. A value of one means that the hazard rates for a spell are the same as for the first spell,

and a value below one (above one) implies lower (higher) hazards in the respective spell when

compared to the first spell. The fact that stratification is important can be seen from most

hazard rate shifters being different from 1.

Consider, for example, breast cancer (C50). For the hazard rates to end one of the sub-

sequent in-hospital spells (i.e., with l > 1), the left plot of graph (a) reveals that the hazard

rates to be discharged alive are relatively constant (the plot indicates shifters between 0.8 and

1.1). However, the hazard rate of breast cancer patients to die during a subsequent spell is

increasing and doubles for the sixth spell, as can be verified from the right plot in graph (a).

Without stratification we would estimate a mean exit rate for all spells and that would, in the

case of breast cancer, bias the estimates of the baseline hazard (i.e., the hazard of the first

spell) upward.

The effect of the covariates is summarized in Figures 6 and 7. Refer to the former: While

in-hospital, being old imposes a strong negative effect on the hazard rate of being discharged
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Figure 6: Effect of covariates on the hazard rates for in-hospital spells.

Interpretation. Parameter values are multiplied with the corresponding hazard rate. A level of 1 therefore
means no change in the hazard rate, a level below (above) 1 implies a lower (higher) hazard rate if the dummy
is 1.
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(a) rehospitalized: δ (b) death: η

Figure 7: Effect of covariates on the hazard rates for out-of-hospital spells.

Interpretation. Parameter values are multiplied with the corresponding hazard rate. A level of 1 therefore
means no change in the hazard rate, a level below (above) 1 implies a lower (higher) hazard rate if the dummy
is 1.
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alive whereas it increases the hazard rate of dying. This is true for all diseases (except for

C92 and C50). It translates into a longer expected spell-length with a higher probability of

dying during hospitalization. The former effect is driven by the relatively high discharge rate

compared with the death rate, while the latter effect is simply determined by the sign of the

coefficient of the dummy ‘old’. Males tend to have shorter stays but exhibit a higher risk

of dying. The cohort-year effects reveal (increasingly) shorter stays, but do not identify a

significant reduction of in-hospital mortality (beyond what is implied by the higher hazard

rates for being discharged alive). Turn now to Figure 7, which summarizes the effect of the

covariates on the out-of-hospital spells. Old patients tend to have a lower hazard rate for

being rehospitalized and a higher hazard rate for dying out of the hospital, whereas the gender

effect reduces to slightly higher hazard rates for rehospitalization (exceptions are C61, C92,

and K70-K77). The year of the first diagnosis reveals that no effect on the rehospitalization

hazard rates can be identified, but that the later cohorts tend to have a higher risk of dying.

4.3 Multistate model: Survival curves

To obtain disease-specific survival curves, we employ the algorithm of Blaser et al. (2015) as

described in Section 2.3, which requires the use of all the estimated hazard rates and coefficients

obtained in the previous section. We model a total of 10 in-hospital and 10 out-of-hospital

spells. That is, we start with an initial patient cohort and let individuals belonging to the

cohort be subject to up to 20 nested competing risks experiments. For the specification of the

matrix of the hazard functions, we set transition hazards for spells larger than or equal to 6

to the estimated and fitted hazards of the sixth stratum. Compared to (17), the hatted values

now indicate that the hazards are fitted:

H(t) =



OH1 IH2 . . . OH6 IH7 . . . IH10 OH10 D

IH1 λ̂IH1 (t) 0 . . . 0 0 . . . 0 0 µ̂IH
1 (t)

OH1 0 λ̂OH
1 (t) . . . 0 0 . . . 0 0 µ̂OH

1 (t)

IH2 0 0 . . . 0 0 . . . 0 0 µ̂IH
2 (t)

...
...

...
. . .

...
...

. . .
...

...
...

IH6 0 0 . . . λ̂IH6 0 . . . 0 0 µ̂IH
6 (t)

OH6 0 0 . . . 0 λ̂OH
6 . . . 0 0 µ̂OH

6 (t)

...
...

...
. . .

...
...

. . .
...

...
...

IH10 0 0 . . . 0 0 . . . 0 λ̂IH6 (t) µ̂IH
6 (t)

OH10 0 0 . . . 0 0 . . . 0 0 µ̂OH
6 (t)



(24)

The cohort characteristics as described by the covariate vector X are replicated for the

simulated cohorts to comply to the cohorts’ averages. The size of the artificial cohort is set

to equal the size of the observed cohort from the MedStat. Finally, parameter uncertainty

is reflected by additionally specifying variance-covariance matrices for each of the non-zero

entries of (24) as described in the model section above. In the interest of space, we dispense
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Figure 8: 7-year survival after treatment of chronic diseases in Swiss hospitals (2001-2008
cohorts).

Decoding of ICD-10 keys. C16: Malignant neoplasm of stomach, C18: Malignant neoplasm of colon, C20:
Malignant neoplasm of rectum, C22: Malignant neoplasm of liver and intrahepatic bile ducts, C25: Malignant
neoplasm of pancreas, C34: Malignant neoplasm of bronchus and lung, C50: Malignant neoplasm of breast,
C61: Malignant neoplasm of prostate, C92: Myeloid leukaemia, and K70-K77: Diseases of liver.

with the presentation of the extensive versions of this variance-covariance matrices. Equipped

with these estimation results, we simulate the transitions of artificial cohorts in the 21-states

multistate model. We do this for every disease and finally compute survival curves, which are

depicted in Figure 8.

4.4 Contrasting the multistate and the single-risk model

Figure 9 allows us to compare the predicted survival rates of the multistate model (solid

lines) against the prediction of the single-risk model (dashed lines) and the observed survival

by NICER (circles). The thin solid and dashed lines depict the 95% confidence bands of the

estimated survival rates. We report survival rates for 60 months after the initial hospitalization

or diagnosis. Both models reproduce the NICER survival rates relatively well in many cases.

When comparing them, however, the multistate model appears to perform worse on average

than the single-risk model, although it delivers a superior or at least equally good prediction
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for C18, C20, and C92. Especially for the smaller samples, the multistate model has broader

confidence bounds. Possible causes and implications of our results are discussed in the next

section.

5 Discussion

Looking at the survival times predicted by the multistate model, one cannot conclude that it

performs better on average than the prediction of the single-risk approach; in fact, for some

diseases it performs worse. That is, taking the hospitalization history of a patient into account

does not pay off in terms of an increased accuracy of the prediction. If, however, one is

interested in the intermediate transitions and how these are affected differently by the set of

covariates, the multistate model might still be the model of choice. The question occurs why

the multistate model does not increase the precision compared to the single-risk model, despite

the use of more information.

As a general rule for the proposed multistate model, the selected diseases require (1) a

sufficiently high mortality and (2) a sufficiently high rehospitalization rate that (3) occur in a

sufficiently short time frame. All three criteria were identified heuristically and were used to

guide the selection of diseases for which the estimated multistate survival rates are sufficiently

close to the NICER observation. We consider nine types of cancer (ICD-10 category C) as well

as chronic liver diseases (coded as K70-K77 in ICD-10). This selection covers predominant

chronic diseases in terms of mortality (for this and other descriptives, see Table 2). The single-

risk approach is less dependent on the aforementioned criteria, which can be a strong argument

in favor of it. Overall, Figure 9 reveals a surprisingly good fit of the single-risk model, if we

consider the initial doubts on the suitability of this approach for hospital discharge data. A

direct implication is that the in-hospital mortality seems to be quite a well suited predictor for

overall mortality – at least for our selection of chronic (and quite severe) diseases.

An identifiable disadvantage of our multistate model which we noticed is its relative inflex-

ibility concerning time intervals to divide the out-of-hospital spells. Time intervals are crucial

here for theoretical considerations. To illustrate, suppose there was only one time interval

over which individuals face two competing risks. The probabilities of an exit into the two

states, given a transition occurs, are λ
λ+µ

and µ
λ+µ

, respectively. A direct implication is that

the expected time that an individual remains in any given state is equal for both competing

risks, and only the share of the population that ends up in either state can be different (and is

given by the respective fraction). For our case, this implies that the expected length of an, say,

out-of-hospital spell is the same for readmissions or deaths: If (observed) readmissions occur

shortly after discharge, so does (and must) death. A way to attenuate this problem is to allow

for more than one interval, so that the strict relationship between the expected duration in

the two possible states is relaxed. Increasing the flexibility of transition patterns by increasing

the number of intervals would improve the estimation, but complicates the convergence of the

(out-of-hospital) log-likelihood maximization.
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Figure 9: Evaluation of the multistate framework for survival up to 60 months after the initial
admission.

y-axis: Survival as a percentage of the initial patient population. x-axis: Months after the initial hospitalization
for the multistate and naive estimation; months after the initial diagnosis for NICER data.
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Indeed, the choice of intervals for the multistate estimation is mainly driven by convergence

considerations. These restrictions to the choice of intervals affected both the number of cut-offs

and its structure. We found a persistent pattern for all diseases, that the estimation of the

competing risks process for out-of-hospital spells only converged for a low number of cut-offs

which span over relatively long periods of time. Namely, convergence was attained for three

intervals per spell and cut-offs after two and four years (expect C50 where we used 500 and

1,000 days). This implies that the variation in the hazard rates before a total elapsed time of 2

years is mainly captured in the estimates of hazards for in-hospital spells. For in-hospital spells,

we generally experienced fewer convergence issues and used the 25% quartile and the median

of durations as cut-offs to define intervals. We therefore may not be able to accurately estimate

survival rates outside of hospital shortly after discharge. In general, there is a trade-off between

the number of intervals (determining the accuracy) and the efficiency of the estimation: more

intervals do allow for a more precise account of the time structure underlying the competing

risk processes, but come at the cost of estimating a larger number of parameters. This is in

particular true for our complex multistate frame, as remember: the number of baseline hazard

rates equals I × L, hence an additional time interval leads to L additional parameters being

estimated. With our assumption of a proportional shift of hazards for the subsequent spells, an

additional interval requires estimation of only one additional hazard; still, we did not achieve

convergence for more than three intervals.

To increase our understanding of the source of the inaccuracy, we finally run a substantially

simplified version of the multistate model. For this, to estimate the out-of-hospital rates,

we only considered at most two admissions of a patient. Thus, we define the first observed

admission as onset of risk which runs until the latest point in time that we observe the patient,

as in the single-risk case. This point in time is then either the time of discharge or death

during the initial admission, if no readmission occurs; or it is the time of death or discharge

after the last observed readmission, if a readmission occurred. The process is similar to the

single-risk process except that we make use of the information that at least one intermediate

hospitalization occurred. The transitions therefore still form a competing risks process, and

the out-of-hospital mortality rates were estimated explicitly. The log-likelihood maximization

of this model was successful for C16 and C34 with cut-offs at 4 and 80 days for the out-of-

hospital process, and the intervals are therefore much shorter than in the previous analysis

with multiple out-of-hospital spells. The outcome of this model is depicted with a blue solid

line in Figure 10. We observe a somewhat improved fit for early time periods (taking NICER

data as the benchmark). One interpretation is that allowing for potential breaks in the hazard

function soon after discharge account for the true process more accurately.19 On the other

hand, it appears that this improvement in the fit for small t entails less precision in the fit for

larger t, as one can see that the blue solid line diverges from the NICER circles for later months.

One must still be cautious in accepting this interpretation, as we were not able to verify the

pattern for different or more time intervals. It could therefore also be the case that what we

19It is not possible to verify whether there are any structural breaks in the out-of-hospital mortality rates,
as the underlying event is not observable.
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Figure 10: Sensitivity analysis for survival up to 60 months after initial admission.

y-axis: Survival as a percentage of the initial patient population. x-axis: Months after the initial hospitalization
for the multistate and naive estimation; months after the initial diagnosis for NICER data.

see here is due to a change in the data structure attributable to the disregarded intermediate

transitions.

In our set of diseases, breast cancer (C50) sticks out: Mortality is estimated much higher

than reported by NICER. In the single-risk case, one could explain such failure with either a

violation of the assumption of random censoring or with significant survival improvements over

the last decade, which are reflected in the NICER data but not in our cohort data (see below).

In the multistate case, the bad performance might come from the combination of an in-hospital

mortality rate that is low and a (for the algorithm) misleading pattern of rehospitalizations.

Concerning the multistate model, recall that, while out-of-hospital, a patient may be rehos-

pitalized or die, which are the only two transitions possible. For C50, 76% of the survivors

are rehospitalized after the first admission, and 50% of these rehospitalizations occur within a

period of 6 months after the initial hospitalization (as opposed to 82 % and 1 month for C34).

The estimated hazard rates for C50 correctly reflect the share of rehospitalizations, but they

fail when it comes to the timing of events. This might be considered as an example of the

insufficient flexibility of the intervalization in the multistate model, as discussed above. Alter-

natively, we might conclude that the typical history of a breast cancer patient no longer fits

our implicit definition of a severe and chronic disease, but might more accurately be described

as an acute disease.

The assessment of how well both models perform also relies crucially on the assumption that

NICER reports the true survival rates. This assumption might be challenged for two reasons
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in particular. First, the NICER data are incomplete as they currently only comprise data from

21 of the 26 Swiss cantons. This implies that survival figures for the excluded quarter of the

Swiss population are extrapolated by NICER. Though regional variation in the incidence and

the course of diseases might exist, we believe that the relative homogeneous populations and

health systems across cantons limit this potential source of bias.

Second, the reported numbers from NICER have not been calculated using the cohort

approach but using the period approach. In our simulation, however, we used the cohort

approach. That means, we follow a cohort of patients after their diagnosis and simply observe

when they die, where a cohort of patients consists of all the patients first diagnosed in a specific

year. The period approach differs from the cohort approach in the following way: Instead of

following a cohort of patients, it considers deaths that occur in a specific time period. To

deduce survival times, it looks back in history only as far as necessary, which implies that

it is tailored to deliver survival time estimates for the latest respective group of patients.20

We used the cohort approach for two reasons: The cohort approach allows to identify survival

improvements over time; and our estimation strategy to identify the rehospitalizations required

to have an equal time frame for every patient during which a rehospitalization might happen

(see the discussion on page 17). A problem occurs if mortality changes significantly over

time, since in that case we would be comparing apples and oranges. For our set of diseases,

Table 4 shows that for some diseases significant mortality reductions are indeed observed. This

appears to be particularly relevant for the case of breast and colon cancer. For both we find

substantial treatment improvements after 2004 which implies that the reported survival curves

from NICER are upward biased in these cases as they do not consider the worse survival rates

during the first of our cohorts.

Another reason why the survival rates deduced from our data may differ from NICER

regards the definitions of the onset of risk. The cancer registries observe patients since their

first diagnosis with the respective cancer. This diagnosis might origin from either an ambulatory

or an inpatient examination or treatment and determines the onset of the risk. MedStat, on

the other hand, naturally only considers diagnoses made during a hospital spell. Survival rates

from both data sources, therefore, are only comparable if not too much time elapses between

the patient’s first diagnosis and his or her first hospitalization that also reports that diagnosis.

Whether or not this is the case depends on the disease and how it is usually treated.21

20For the present paper, NICER delivered data for the period 2008–2013. To determine survival after, say, 4
years, patients diagnosed between 2004 and 2009 were observed within the 2008–2013 time frame. To determine
2-year survival, no patient diagnosed before 2006 was considered, for 1-year survival no patient diagnosed before
2007 was considered, and so on. Our cohort approach in fact uses ‘older’ survival times: one-year survival implies
that we observed patients diagnosed between 2001 and 2008 who died in the consecutive year; i.e., we did not
consider the mortality of patients who died in 2010 or later after being diagnosed for 1 year.

21In the case of breast cancer, for example, the clinical guidelines stipulate a surgery (implying a hospital
admission) after the diagnosis is confirmed (cf. http://www.senologie.ch/images/pdf/2003-38-368.pdf,
last accessed June 2018).
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6 Conclusion

We compare two possible methods for estimating survival times from hospital discharge data:

A single-risk model and a multistate model that takes intermediate transitions into account.

For the latter, we extend the approach by Farsi & Ridder (2006) for a multiple of hospitaliza-

tion sequences. We employ the multistate model to estimate spell-specific hazard rates which

we use as input to simulate predictions of survival times based on an algorithm from Blaser

et al. (2015). Finally, we contrast the predicted survival times of both the single-risk and the

multistate model with observational data from the Swiss cancer registry.

We find that the survival time estimates based on the multistate model are not superior

in accuracy to the estimates of the simpler single-risk model. The overall performance of

the multistate model depends on the structure of the hospital discharge data. Our estimates

approximate the NICER data reasonably well, provided that the diseases at hand exhibit (1)

a sufficiently high mortality rate, (2) a sufficiently high rehospitalization rate, and (3) the

transitions occur in a short time frame. This precludes diseases which have a mild course.

If, however, one is interested in the intermediate transitions and how these are affected

differently by the set of covariates, the multistate model can still be useful. For example, the

model could be applied to study the effect of interventions at the patient level, not only on

mortality, but also on readmissions after a specific hospitalization spell. The multistate model’s

application to such inquiries may therefore provide guidance regarding the hospital resource

evaluation, the efficacy of certain health policies, and offer policy makers help when planning

hospital capacities.
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