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Abstract

We analyze a relational contracting problem, in which the principal

has private information about the future value of the relationship. In

order to reduce bonus payments, the principal is tempted to claim

that the value of the future relationship is lower than it actually is.

To induce truth-telling, the optimal relational contract may introduce

distortions after a bad report. For some levels of the discount factor,

output is reduced by more than would be sequentially optimal. This

distortion is attenuated over time even if prospects remain bad. Our

model thus provides an alternative explanation for indirect short-run

costs of downsizing.
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1 Introduction

In many instances, organizations face difficulties in providing the proper incen-

tives to their members because performance cannot be verified, i.e., enforced

by a court. As noted by the literature on relational contracts, however, the

mutual dependence that repeated interaction between the same parties fosters

may allow contracting parties to overcome these difficulties. This engenders

an implicit, or “relational,” contract between them, whereby the principal

“voluntarily” rewards the agent for his effort. As the worst the agent can do

to the principal is to break off the relationship entirely, the most the principal

can credibly promise as a reward is the value of the entire future relationship

to her.

Our goal here is to analyze the workings of such relational contracts when,

at the time of deciding on rewards, the principal knows more about the future

development, and hence the value, of the relationship. Indeed, management

may e.g. be better informed about the likely evolution of demand for a firm’s

product than workers. In such a context, workers must trust management not

to use its informational advantage against them, e.g. by fraudulently claiming

a threat of future demand contraction to cut their bonus payments or even

let go of them.

We show that an optimal relational contract in such a setting can lead

to a dynamic that has been discussed in the strategic management literature,

which has noted that downsizing often seems less effective than originally

anticipated.1 The prevailing explanation for these implicit downsizing costs

seems to be that surviving employees tend to consider downsizing as a breach

of a “psychological contract” (Love and Kraatz (2009)), and thus switch to

a kind of punishment mode in response. As Cascio (1993) writes: “Study

after study shows that following a downsizing, surviving employees become

narrow-minded, self-absorbed, and risk averse. Morale sinks, productivity

drops, and survivors distrust management.” Love and Kraatz (2009) write:

“Though downsizing was perfectly legal and widely advocated as an efficient

business practice, it connoted opportunism and signaled that a firm was an

untrustworthy actor that might not be counted on to meet its commitments

in the future. Employees clearly interpreted downsizing as a betrayal and

characterized downsizers as untrustworthy.”

1See e.g. Cascio (1993) and Datta, Guthrie, Basuil, and Pandey (2010).
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Yet, there is some evidence to suggest that this “punishment mode” only

lasts for a limited period of time. Indeed, Goesaert, Heinz, and Vanormelin-

gen (2015) show that firm performance tends to drop at the downsizing event,

recovering at best to pre-downsizing levels afterwards. Meuse, Bergmann,

Vanderheiden, and Roraff (2004) and Meuse and Dai (2013) also demonstrate

that, while downsizing firms perform significantly worse than other firms by

several financial measures, this difference gradually vanishes, eventually be-

coming insignificant. Conducting a survey of employees of a large high-tech

firm, Amabile and Conti (1999) find that productivity significantly declined

during and immediately after the downsizing process, recovering again after a

while. The survey paper by Datta, Guthrie, Basuil, and Pandey (2010) quotes

several studies showing that the benefits of downsizing, if any, will materialize

only 2-3 years after the downsizing event.

Our paper provides an alternative explanation for the temporary lack of

effectiveness of downsizing. In this view, implicit downsizing costs do not

indicate a lack of trustworthiness, nor do they result from punishment for a

broken promise. Instead, they will arise as part of the path of play in an

optimal relational contract, acting as a commitment device only to downsize

when it is necessary to do so. As a consequence, these implicit downsizing

costs allow for increased productivity in good times.

More specifically, our model starts from the standard relational-contracting

framework, in which a principal and an agent interact repeatedly over time.

The agent has to exert effort to produce output, which translates into a profit

for the principal. Effort is costly to the agent. By assuming that the agent

is risk neutral and effort costs are linear in the level of effort exerted, we

can interpret our agent as representing the firm’s total workforce, which is

made up of homogeneous workers.2 Only one-period contracts are possible;

these cannot condition on the agent’s effort choice, which, although observ-

able, contains subjective aspects and is hence not contractible. As effort is

perfectly observable by both parties to the relationship, however, continuation

play can depend on the level of effort observed. In particular, the principal

can pay the agent a discretionary bonus for choosing the right level of effort;

this bonus can be enforced by the agent’s threat to leave the relationship if a

2This interpretation presupposes multilateral relational contracts, by which a deviation
in the relationship with one agent is punished by a complete loss of trust in all other
relationships, see Levin (2002).
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bonus payment that was due to him was reneged on. Therefore, the principal

can only credibly commit to a bonus that is at most as high as the expected

value of the continuation of the relationship to her. The principal’s profits,

which are generated by the (publicly observable) output in a given period,

depend on the binary state of the world (“type”) in that period, which is only

privately observed by the principal. The effort level the principal wants to

induce may thus well depend on the current state of the world. The type of

the next period is privately observed by the principal before she decides on

the current period’s bonus. She thus has some private information on the

value of the continuation of the relationship when she decides whether to pay

out the bonus, or to renege, and thus to end the relationship.

Our analysis shows that, even though there is only one-sided private in-

formation, some surplus may optimally be destroyed along the path of play,

leading to implicit downsizing costs. The goal of this arrangement is to deter

the principal from mulcting the agent of the bonus due to him by understating

the value of the continuation of the relationship. Indeed, lest the principal

be tempted by such a deviation, continuation play following a pessimistic an-

nouncement must be rendered sufficiently unattractive. One way of achieving

this goal would be to force the principal to pay the agent a transfer whenever

the continuation value is low. This, however, turns out not to be optimal in

our setting, the reason being that this penalty would hurt a truthful on-path

principal and a lying off-path principal alike. By contrast, a distortion in the

agent’s effort hits an off-path principal, who has falsely claimed that effort

is less productive, more than an on-path principal, who has been honest in

invoking a low productivity of effort. Such an effort distortion reduces output

and profits below levels that would be feasible at this point in time – which

however is optimal because it allows to sustain higher output and profits in

earlier, high-state, periods.

In a next step, we explore in Section 5 how the precise timing of informa-

tion revelation affects our outcomes. First, we assume that the state of the

world is revealed later than in our main model, at the beginning of each re-

spective period, i.e., after the previous period’s bonus payment is sunk. In this

case, private information is not costly, and the principal can credibly promise

the full expected continuation value as a means of providing incentives. This

implies that it is feasible and optimal to make the agent’s compensation in a

period independent of next period’s type. In a second step, we explore the
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effects of the type being revealed earlier than in our main setting, assuming

that next period’s state of the world is observed by the principal already at the

beginning of the current period, before the agent has chosen current-period ef-

fort. Now, the principal’s private information is again costly and truth-telling

conditions constrain profits, albeit due to an issue that has been absent be-

fore: Because a high state of the world in the next period potentially allows

for higher effort – and consequently higher profits – in the current period, the

principal has an incentive to misrepresent tomorrow’s type as high, and sub-

sequently to renege on the promised payment. It turns out that, on account

of this constraint, it is not possible to generate higher profits if tomorrow’s

type is high. Those will only be a function of today’s type, and will always be

constrained by the continuation value that would prevail if tomorrow’s type

was low, irrespectively of whether tomorrow’s type ends up being high or low.

In contrast to before, truth-telling can now also be achieved via fixed pay-

ments made to the agent at the beginning of a period. Put differently, either

effort will be independent of tomorrow’s state of the world, or a high state

tomorrow also triggers higher effort, albeit with a fixed payment made to the

agent before effort is delivered. This payment has to fully make up for the

increased value of production.

Thus, when the principal strives to motivate the agent to exert effort,

she is tempted to claim that the future looks bright and that hence the agent

will be compensated for his hard work. Yet when the principal is supposed

to compensate the agent, she is tempted to claim that the future looks grim

– and that the agent will consequently have to accept lower compensation.

In most of the paper, we focus on the case in which the principal’s type

is iid across periods. In this case, only a distortion in the next period hits an

off-path principal more severely than an on-path principal. Consequently, im-

plicit downsizing costs will only last for one period in this setting, after which

effort increases to its undistorted level even if the firm’s prospects remain

bad. Indeed, the management literature has noted that, at the occurrence of

downsizing events, there is often some overshooting in the reduction of labor

input, as evidenced by the fact that firms tend to increase labor input again

shortly after downsizing, while the firm’s environment has not changed.3

In Section 6, we extend our analysis to (fully or partially) persistent

3See Cascio (1993).
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shocks. In these cases, distortions gradually attenuate over time but only

ever vanish in the limit. The reason is that, with persistent shocks, an off-

path principal is hit more severely by a distortion in any future period, but

the difference in on-path vs. off-path costs diminishes with distance in time.

The idea that repeated interaction endogenously creates some scope for

commitment via implicit contracts has been applied to labor markets by Bull

(1987), as well as MacLeod and Malcomson (1989).4 These early papers ab-

stracted from informational asymmetries, focusing instead on the question of

how incentives can be governed by non-contractual agreements. Levin (2003)

augmented the analysis by introducing informational asymmetries, analyzing

the cases in which the employee privately knows his effort costs (adverse se-

lection), his effort level can only be imperfectly observed (moral hazard), as

well as the case in which the employer privately observes a performance mea-

sure, while not observing the agent’s effort choice directly. Malcomson (2016)

introduces persistent types into Levin’s (2003) adverse-selection model, and

finds that a full separation of types is not possible when continuation pay-

offs are on the Pareto frontier. Malcomson (2015) augments Levin’s (2003)

adverse-selection model by the introduction of different principal-types de-

noting the productivity of the agent’s effort in the current period. At the

time the principal decides on her bonus payment, however, she does not have

any additional information concerning future productivity, in contrast to our

setting. Halac (2012) analyzes the case of a principal who privately knows

the value of her outside option while not being able to observe the agent’s

effort level directly. In Halac (2012), there is no direct productive distortion

in the agent’s not knowing the principal’s private information; in our setting,

by contrast, the first-best level of effort depends on its productivity. In Li and

Matouschek (2013), the principal has one-sided private information as well.

In contrast to our setting, this information pertains to the cost of transferring

surplus to the agent, rather than producing surplus. Furthermore, the private

information pertains to the current period; information about the future is

symmetrically held. This allows Li and Matouschek (2013) to apply recursive

techniques. In contrast to the implicit downsizing costs in our setting, they

find that every optimal equilibrium has the property of being sequentially

optimal as well. The literature on implicit contracts also explores the opti-

4See Malcomson (2012) for an overview of the literature on relational contracts.
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mal behavior of firms in the case of asymmetric information on the marginal

profitability of employment (see Hart (1983), Azariadis (1983), or Grossman

and Hart (1983)). There as well, inefficiently low employment in bad states

of the world serves as a commitment device not to under-report the state

of the world. This, however, is the consequence of an optimal risk-sharing

arrangement between a risk-averse firm and its risk-averse workers.

The rest of the paper is set up as follows: Section 2 introduces the model;

Section 3 reviews some benchmarks, in particular the case of public informa-

tion; Section 4 presents the main results; Section 5 analyzes the impact of

different hypotheses concerning timing, while Section 6 discusses an extension

to persistent shocks. Section 7 concludes. Proofs not given in the text can be

found in the Appendix.

2 The Model

Players. There is one principal (“she”) and one agent (“he”), who are both

risk neutral and who interact repeatedly in periods t = 1, 2, · · · .

Actions. At the beginning of every period t, the principal makes an

employment offer to the agent, consisting of a contractible wage wt ∈ [−w̄, w̄],

where w̄ > 0 is assumed to be large enough. The agent then accepts (dt =

1) or rejects (dt = 0) the employment offer. If he accepts, the wage wt is

immediately paid. (If wt < 0, the agent pays −wt to the principal.) He

subsequently chooses his effort level nt ∈ R+. At the end of the period, the

principal can pay the agent a non-contractible, non-negative, bonus bt ∈ [0, b̄],

where b̄ > 0 is assumed to be large enough. Furthermore, she can send a

non-verifiable cheap-talk message θ̂t ∈ {θl, θh} at this time.5

Information. The public events (i.e. those that can be observed by both

the principal and the agent) in period t are given by ht =
(

wt, dt, yt, bt, θ̂t

)

,

where yt = g(nt). The production function g : R+ → R+ is C2, satisfies

g′ > 0 > g′′ and limn↓0 g
′(n) = ∞, limn→∞ g′(n) = 0. It is commonly known by

the players. A public history of length t−1, ht−1 (for t ≥ 2) collects the public

events up to, and including, time t−1, i.e. ht−1 := (hτ )
t−1
τ=1. We denote the set

of public histories of length t−1 by Ht−1. (We set H0 = {∅}.) In each period,

a strategy for the agent specifies what wage offers to accept as a function

5Given our equilibrium concept (PPE in pure strategies, see below for details), the
restriction to binary messages is without loss.
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of the previous public history, and what level of effort to exert if he accepts

employment as a function of the previous public history and current-period

wages. Formally, it is a sequence of mappings
{

σA
t

}∞

t=1
, where, for each t ∈ N,

σA
t = (dt, nt), and dt : H

t−1 × [−w̄, w̄] → {0, 1}, (ht−1, wt) 7→ dt(h
t−1, wt) and

nt : H
t−1 × [−w̄, w̄]× {0, 1} → R+, (h

t−1, wt, dt) 7→ nt(h
t−1, wt, dt).

The principal additionally knows her type in period t+1, θt+1 ∈ {θl, θh},

before deciding on the bonus payment bt in period t; the agent never learns

the realizations of the principal’s types. The values satisfy θh > θl > 0 and

are commonly known. We write θt = {θτ}
t
τ=1 for the sequence of realizations

of the principal’s types up to, and including, period t. The principal events in

period t are given by ht =
(

wt, dt, yt, θt+1, bt, θ̂t

)

; that is, the principal learns

about her period-t+1 type already in period t, before paying the bonus in the

respective period. A principal history of length t− 1, ht−1 (for t ≥ 2) collects

the principal events up to, and including, time t− 1, i.e. ht−1 := (hτ )
t−1
τ=1. We

denote the set of principal-histories of length t− 1 by Ht−1. We assume that

the principal’s type in period t = 1 is commonly known to be θ1 = θh and thus

set H0 = {θh}. In each period, a pure strategy for the principal specifies his

wage offers as a function of the previous principal history, as well as his bonus

payment and report as a function of the previous history, current-period wages

and output, as well as his type in the next period. Formally, it is a sequence of

mappings
{

σP
t

}∞

t=1
, where, for each t ∈ N, σP

t = (wt, bt, θ̂t), and wt : H
t−1 →

[−w̄, w̄], ht−1 7→ wt(h
t−1), bt : Ht−1 × [−w̄, w̄] × {0, 1} × R+ × {θl, θh} →

[0, b̄], (ht−1, wt, dt, yt, θt+1) 7→ bt(h
t−1, wt, dt, yt, θt+1), with the restriction that

dt = 0 ⇒ bt(h
t−1, wt, dt, yt, θt+1) = 0, and θ̂t : H

t−1 × [−w̄, w̄]× {0, 1} × R+ ×

{θl, θh} → {θl, θh}, (ht−1, wt, dt, yt, θt+1) 7→ θ̂t(h
t−1, wt, dt, yt, θt+1). A pure

public strategy by the principal is a pure strategy which does not condition

on her past private information, which is no longer payoff-relevant. Formally,

a strategy
{

σP
t

}∞

t=1
is said to be a public strategy if, for each period t ∈ N,

it can be written σP
t = (w̃t, b̃t,

˜̂
θt), where w̃t : Ht−1 ×

{

θl, θh
}

→ [−w̄, w̄],

(ht−1, θt) 7→ w̃t(h
t−1, θt), b̃t : H

t−1 × [−w̄, w̄] × {0, 1} × R+ × {θl, θh} → [0, b̄]

and
˜̂
θt : H

t−1 × [−w̄, w̄]× {0, 1} × R+ × {θl, θh} → {θl, θh}.

While θ1 = θh, the principal’s types {θt}
∞
t=2 are i.i.d. across periods (ex-

cept in Section 6); for all t = 2, 3, · · · , the probability that θt = θh is q ∈ (0, 1).

The probability q, as well as the principal’s type in the first period, are com-

mon knowledge.
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Payoffs. If dt = 1, the principal’s period payoff in period t is given by

θtyt−wt− bt; the agent’s is given by wt−ntc+ bt, where c > 0 is his marginal

cost of effort. If dt = 0, principal and agent get their outside option payoffs

in period t, which are set to zero. Both players discount future payoffs with

the discount factor δ ∈ (0, 1).

Our solution concept is perfect Bayesian equilibrium in (pure) public

strategies (PPE), as defined above. There are no long-term contracts or other

means for the principal or the agent to commit to a certain course of action.

In particular, the output yt is assumed to be non-verifiable.

Our objective is to find a PPE that maximizes the principal’s ex ante ex-

pected profit Π1 among all PPE. As expected surplus can be transferred freely

through w1, the fixed wage in the first period, any equilibrium maximizing Π1

also maximizes the players’ joint surplus given the constraints, as shown by

the following proposition, which parallels Levin’s (2003) Theorem 1.

Proposition 1 Suppose there exists a PPE leading to a joint surplus of s ≥ 0.

Then, there exists a PPE giving the principal an expected payoff of π and the

agent an expected payoff of u, for any (π, u) ∈ {(x, y) ∈ R+ : x+ y = s}.

Proof. The proof follows that of Theorem 1 in Levin (2003) and is

therefore omitted. �

As on-path equilibrium actions are completely determined by past type

realizations, we shall replace histories as defined above with the history of

previously reported types, which, on the equilibrium path, coincide with the

history of past type realizations. We shall focus on truth-telling equilibria;

i.e., on the equilibrium path, reported types will coincide with the history of

past type realizations, θt = {θτ}
t

τ=1. By our choice of equilibrium concept,

this is without loss in our main model of Sections 3 3-4. In a slight abuse of

notation, we will thus write w(θt) for wt(h
t−1), and n(θt) for nt(h

t−1, w(θt), 1),

the agent’s effort choice on the equilibrium path in period t given history θt.

In addition, we shall use superscripts h or l to indicate the type in period

t+1, given history θt, writing, for instance, bh (θt) for bt(h
t−1, w(θt), 1, yt, θ

h),

the principal’s on-path bonus payment after history θt, given that θt+1 = θh.

By the same token, we write Π(θt) = Πi(θt−1) for the principal’s expected

on-path profit, and U(θt) = U i(θt−1) for the agent’s expected on-path utility,

at the beginning of period t, given the history of type realizations θt and given

that θt = θi (i ∈ {h, l}).
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Thus, we can write

Π(θt) =d(θt)
[

θtg(n(θ
t))− w(θt)

]

+ q
(

−bh(θt) + δΠh(θt)
)

+ (1− q)
(

−bl(θt) + δΠl(θt)
)

.

for the principal’s expected on-path profits for a given history of types θt, and

U(θt) =d(θt)
[

w(θt)− n(θt)c
]

+ q
(

bh(θt) + δUh(θt)
)

+ (1− q)
(

bl(θt) + δU l(θt)
)

.

for the agent’s expected on-path utility in period t.

The following figure summarizes the timing within each period:

P makes

offer

A chooses nt θtg(nt)
consumed

by P

θt+1

observed

by P

θ̂t announced

and bt paid

to A

3 Some Benchmarks

In this section, we analyze a few natural benchmarks against which to measure

our equilibrium.

First, suppose the principal and the agent acted cooperatively so as to

maximize their joint surplus. Our assumptions on the production function g

immediately imply that, in all periods t, the effort chosen would be equal to

nFB(θt), with nFB(θt) being defined by the first-order condition

θtg
′(nFB(θt)) = c.

For the remainder of the paper, we define nFB
h ≡ nFB(θh) and nFB

l ≡ nFB(θl).

Now, suppose that the agent’s effort choice was not just observable but

also verifiable, while the principal’s type was her private information and both

the principal and the agent maximized their own respective payoffs. Since the

agent’s effort is verifiable, the principal and the agent can write a binding

contract specifying, in each period t and given any history θt, that wt = 0,
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as well as bt = ntc if nt = nFB(θt) and bt = 0 otherwise. This sequence of

contracts implements first-best effort levels, and, since the principal collects

the entire surplus, there is no sequence of contracts generating higher profits.

In particular, as truth-telling gives her first-best profits, the principal has no

incentive to lie.

If the game is played only once, the principal will never pay a positive

bonus, whatever the agent’s effort level may have been. Anticipating this, the

agent chooses n1 = 0, implying y1 = 0. In any equilibrium of the repeated

game, either party can always guarantee itself this static SPE payoff, which

constitutes its minmax-payoff. As we are interested in the best possible PPE

for the principal, it is without loss for us to focus on equilibria in which any

observable deviation triggers this harshest possible punishment.6

3.1 Public Types

In this section, we suppose that the principal’s type is public information,

while the agent’s effort is non-contractible. Thus, we assume that the agent

observes next period’s type at the same time as the principal does, imply-

ing that we here allow the agent to condition his strategy on the principal-

histories rather than only the coarser public histories. In this case, there is

no informational asymmetry; agency problems arise merely on account of the

non-contractibility of effort.

The agent always has the option of rejecting the principal’s offers forever,

guaranteeing him a utility of 0. Therefore, after any history in any equilibrium,

his expected utility will be at least 0, i.e., the following Individual Rationality

constraint must hold, for all histories θt:

U(θt) ≥ 0. (IR)

Furthermore, after pocketing the fixed wages w(θt), the agent must find

it optimal to exert the level of effort he is supposed to exert in equilibrium,

namely n(θt). Thus, his utility when exerting n(θt) must be at least as high

as his utility from exerting any other level of effort. As effort levels are ob-

servable, it is without loss for us to focus on equilibria in which any deviation

by the agent is punished in the harshest possible way, by giving him a contin-

6See Abreu (1988) on the optimality of such simple penal codes.
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uation utility of 0; in such an equilibrium, therefore, any possible deviation is

dominated by a deviation to an effort level of 0. Thus, the agent’s Incentive

Compatibility Constraint is given by

−n(θt)c+ q
(

bh(θt) + δUh(θt)
)

+ (1− q)
(

bl(θt) + δU l(θt)
)

≥ 0. (IC)

It must also be optimal, after any history θt, for the principal to make the

bonus payments she is supposed to make in equilibrium. Indeed, as effort levels

and bonus payments are not contractible, these must be self-enforcing. Again,

we can focus without loss of generality on equilibria in which the principal is

punished with a continuation profit of 0 whenever she does not pay out the

bonus she is supposed to pay out; her best deviation in this case is to paying

a bonus of 0. This yields the following dynamic enforcement constraints

−bh(θt) + δΠh(θt) ≥ 0 (DEh)

−bl(θt) + δΠl(θt) ≥ 0. (DEl)

It is standard to verify that (DEh) and (DEl) can equivalently be combined

into a single constraint,

−
(

qbh(θt) + (1− q)bl(θt)
)

+ δ
(

qΠh(θt) + (1− q)Πl(θt)
)

≥ 0. (DE)

The (DE) constraint states that the future benefits of honoring the relational

contract must be sufficiently large for the principal that she is willing to bear

today’s costs. Whereas these costs manifest themselves in (expected) bonus

payments, the benefits are provided by the discounted difference between on-

and off-path future profits. Since off-path profits, i.e., profits after a deviation,

are zero, the benefits are identical to expected future profits.

Finally, it must be optimal for the principal to offer the equilibrium con-

tract to the agent, i.e., Π(θt) ≥ 0. This, however, is already implied by the

(DE) constraint and our assumption that bonus payments are positive.

Thus, our problem is to maximize Πh(∅), subject to (IR), (IC), and (DE),

through our choice of effort levels n(θt), wage and bonus payments w(θt), bl(θt)

and bh(θt), for all histories θt. The following lemma details some characteris-

tics of an optimal solution.

Lemma 1 Assume that the firm’s type is publicly observable. Then, there
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exists a profit-maximizing equilibrium in which the agent never gets a rent,

that is,

• qbh(θt) + (1− q)bl(θt) = n(θt)c and

• w(θt) = 0 for every history θt.

Furthermore, equilibrium effort only depends on the current state, that is,

n(θt) = n(θt).

The lemma shows that there exists an optimal equilibrium in which the

agent does not get a rent and the (IC) constraint will bind after any history. It

also shows that the equilibrium is stationary. Hence, we can write n(θh) and

n(θl) for the respective equilibrium effort levels in any period t. The reason

for this is that, in the case of observable types, every deviation is observable;

there is therefore no reason to burn any surplus on the equilibrium path of

play.

Note that, as is also the case e.g. in Levin (2003) or MacLeod and Mal-

comson (1989), enforceable effort in any given period does not depend on the

current type but only on expected future profits. Indeed, current output is

already sunk when the principal decides on the bonus payment. Optimal ef-

fort, on the other hand, depends on today’s type. This tension delivers the

intuition for the following proposition, which summarizes a profit-maximizing

equilibrium with public types.

Proposition 2 Assume the firm’s type is publicly observable. Then, there

are levels of the discount factor, δ and δ, with 0 < δ < δ < 1, such that

• n(θh) = nFB
h and n(θl) = nFB

l for δ ≥ δ;

• n(θl) = nFB
l < n(θh) < nFB

h for δ < δ < δ;

• n(θh) = n(θl) ≤ nFB
l for δ ≤ δ.

If δ is high enough, the first best is achievable. For intermediate levels

of the discount factor, nFB
h is no longer enforceable, while nFB

l still is. In

this case, the highest enforceable effort level is chosen in all periods t in

which θt = θh, while nFB
l is enforced in all periods τ in which θτ = θl.

If the discount factor is so low that even nFB
l can no longer be enforced,

the highest enforceable effort level is enacted in all periods. Note that the
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principal’s credibility today depends on next period’s type. Thus, she can

credibly commit to a higher bonus payment if tomorrow’s type is high. If

(DE) binds, it is indeed (strictly) optimal to have bh(θt) > bl(θt) because of

the agent’s risk neutrality.

4 Private Types

Now, let us assume that the principal’s type is her private information. Thus,

she has to be given incentives not to misrepresent her true type. A straight-

forward response would be to make the bonus payment independent of next

period’s type; however, while feasible, such an approach is generally not opti-

mal. In the following, we will explore how asymmetric information on future

profits affects the properties of a profit-maximizing relational contract.

In truth-telling equilibrium, the principal needs sufficient incentives to

reveal her type in every period. Specifically, after any history θt, it must be

optimal for her to pay out bh(θt) (rather than bl(θt)) if tomorrow’s state is

high, and bl(θt) (rather than bh(θt)) if tomorrow’s state is low; other bonus

payments never occur on the path of play and can therefore be deterred by

threatening the principal with a continuation profit of 0. Lest punishment be

triggered, once the principal has paid out bl(θt) at the end of period t, she can

only induce effort nl(θt) in period t+ 1.7

Because, for any strategy choice by the agent, the principal always has

a best response which is a public strategy, we only need to check the princi-

pal’s incentives to deviate to another public strategy. Furthermore, thanks to

discounting, the One-Deviation principle applies in our setting (see Hendon,

Jacobsen, and Sloth (1996)). Therefore, if tomorrow’s state is high but the

principal pays out the low-type bonus (or reports θ̂t+1 = θl, in case they are

7Note that a formal mechanism to transmit messages would not be required, whenever
the size of the bonus depends on tomorrow’s type, i.e. bh(θt) 6= bl(θt). In this case, bonus
payments serve as a message and also determine next period’s equilibrium effort. In our
equilibrium, whenever the principal’s report in period t + 1 does not correspond to the
bonus having been paid in period t, punishment is triggered. When bh(θt) = bl(θt) while
nh(θt) 6= nl(θt), a message is needed to tell the agent which level of effort to choose in
period t+ 1.
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equal) instead, her continuation payoff in period t+ 1 can be written as

Π̃l(θt) =θhg(nl(θt))− wl(θt)

+ q
(

−blh(θt) + δΠlh(θt)
)

+ (1− q)
(

−bll(θt) + δΠll(θt)
)

,

where the second superscript describes the type in period t+ 2.

By the same token, if tomorrow’s state is low but the principal pays out

the high-type bonus instead, her continuation payoff in period t+ 1 is

Π̃h(θt) =θlg(nh(θt))− wh(θt)

+ q
(

−bhh(θt) + δΠhh(θt)
)

+ (1− q)
(

−bhl(θt) + δΠhl(θt)
)

.

Therefore, the principal is willing to tell the truth in equilibrium following

history θt if and only if

−bh(θt) + δΠh(θt) ≥ −bl(θt) + δΠ̃l(θt) (TTh)

−bl(θt) + δΠl(θt) ≥ −bh(θt) + δΠ̃h(θt). (TTl)

As Π̃l(θt) = Πl(θt)+θhg(nl(θt))−θlg(nl(θt)) and Π̃h(θt) = Πh(θt)−θhg(nh(θt))+

θlg(nh(θt)), we can rewrite these constraints as follows:

−bh(θt) + δΠh(θt) ≥ −bl(θt) + δΠl(θt) + δg(nl(θt))
(

θh − θl
)

(TTh)

−bl(θt) + δΠl(θt) ≥ −bh(θt) + δΠh(θt)− δg(nh(θt))
(

θh − θl
)

. (TTl)

Thus, the principal’s objective is to maximize Π(θ1) = θhg(n(θ1)) −

w(θ1) + q
(

−bh(θ1) + δΠh(θ1)
)

+ (1− q)
(

−bl(θ1) + δΠl(θ1)
)

, where θ1 = θ1 =

θh, subject to (DEh), (DEl), (TTh), (TTl), (IR) and (IC) at each history θt.

As we show in Appendix B.1, this optimization problem can be substan-

tially simplified. First, the (DEh) constraint can be omitted because it is al-

ways more tempting for the principal to underreport tomorrow’s type than to

shut down. Furthermore, the agent never gets a rent, and the (IC) constraint

always holds as an equality. Moreover, bh(θt) ≥ bl(θt), which implies that the

principal will never want to claim that the agent’s productivity tomorrow is

higher than it actually is; i.e., the (TTl) constraint can be omitted. Thus, on

the principal’s side, we are left with only the (DEl) and (TTh) constraints.
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We further show in the Appendix that these constraints can equivalently be

combined into one, and that consequently nh(θt) will be independent of θt,

while nl(θt) will only depend on the number i ∈ {0, 1, 2, ...} of consecutive

low shocks after the last high period. Therefore, we write nl
i to describe low-

type effort levels. Thus, the optimization problem boils down to choosing
(

nh, nl
i

)

i∈N
so as to maximize

Πh =
1− δ(1− q)

1− δ

(

θhg(nh)− nhc
)

+
1− δ(1− q)

1− δ
δ(1−q)

∞
∑

i=0

(δ(1− q))i
(

θlg(nl
i)− nl

ic
)

,

subject to

−nhc+ δ
(

qΠh + (1− q)Πl
0

)

≥ δqg(nl
0)
(

θh − θl
)

. (ECh)

and

−nl
ic+ δ

(

qΠh + (1− q)Πl
i+1

)

≥ δqg(nl
i+1)

(

θh − θl
)

(ECli)

for all i ∈ N.

As mentioned above, the (EC) constraints are obtained by combining

(DEl) and (TTh) constraints for the respective effort levels. The left-hand side

of an (EC)-constraint is identical to the left-hand side of the (DE)-constraint

with public types. It weighs the cost of compensating the agent for his effort

costs against discounted expected future profits. With public types, this left-

hand side had to exceed 0 for the principal to be willing to incur the cost of

compensating the agent for his effort costs. With private types, by contrast,

this has to be weakly greater than δqg(nl)
(

θh − θl
)

≥ 0, which is an expression

for the principal’s information rent. Indeed, if (DE) constraints bind, the

principal would like to transfer her entire future profits to the agent. But

this is not feasible if the principal’s type tomorrow is θh (which happens with

probability q), because she always has the option of falsely claiming that the

type is θl. If she does so, she will get θhg(nl) in the next period, rather than

just θlg(nl), which determines the bonus the principal is supposed to pay. As

(EC) shows, it is on account of this information rent that a given level of effort

is harder to implement with private types.

(EC) constraints also imply that optimal efforts are the same in all high

periods. The reason is that there is no trade-off with respect to effort levels in

16



high periods. Choosing them closer to the first-best benchmark both increases

the objective and relaxes the constraint; indeed, making a high period more

attractive makes the principal less inclined falsely to claim to be in a low

period. The effort level in a low period, by contrast, depends on the history,

albeit only via the distance of the current period to the last previous high

period. The reason is that there is a trade-off with respect to the effort level

in a low period. Making a low period less attractive lowers the objective but

relaxes the constraint as it makes it less enticing for the principal falsely to

claim to be in a low period. Thus, the optimal effort level in a given low

period depends on the optimal effort level in the previous period.

In conclusion, the agency problem here consists not only in the non-

verifiability of the agent’s performance measures, but also in the necessity of

preventing the principal from claiming her type to be lower than it actually is

in order to save on her bonus payments. Lying generally does not come for free,

though, because only the respective low-type effort can be implemented in the

subsequent period. Thus, for the same reason as in the case of public types, it

can still be optimal to have bh(θt) > bl(θt), despite the principal’s temptation

to lie. Then, the principal’s tradeoff boils down to a comparison of today’s

benefits of a deviation (a lower bonus payment) with tomorrow’s costs (a

lower output). This aspects adds another dimension to the credibility problem

typical for relational contracts, in a sense that the principal’s credibility is

reduced by the information rent she can always secure herself because of her

private information. As we shall see below, tweaking tomorrow’s costs of lying,

by adjusting the output level given tomorrow’s type is low, can be a way of

boosting the principal’s credibility today.

Our first result shows that if the discount factor is close enough to 1, the

first best can be achieved.

Proposition 3 There exists a δ ∈ (0, 1) such that for all δ ≥ δ, the unique

optimal equilibrium implies first-best effort levels nFB
h /nFB

l .

To get an intuition for the forces at play, recall that the (EC)-constraints

in fact capture two distinct effects. On the one hand, there is the classical

effect coming from the dynamic-enforcement constraints that the principal

would never be willing to make a bonus payment exceeding the discounted

expected value of the continuation of the relationship to her. As we have seen

above, this constraint can only ever bind in our setting if the principal observes
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the next period to be low. On the other hand, there is the need to incentivize

the principal to tell the truth because a higher enforceable bonus when the

next period is high may tempt the principal to lie in order to reduce her bonus

payments in the current period. A straightforward response to this temptation

is a reduction of bh(θt), accompanied by an appropriate increase of bl(θt) to

leave incentives for the agent unaffected. This, however, is restricted by δΠl,

which is the most the principal would be willing to pay given that tomorrow’s

type is low. Yet, as δ, and hence δΠl, increase, it becomes possible to increase

bl without violating (DEl); this in turn reduces the principal’s incentives to

lie. The proposition now shows that, when δ is close enough to 1, the (EC)

constraint will hold, and hence the principal will not have any incentives to

lie or to renege on her bonus payment.

Our next proposition presents the first main result of this paper. It

characterizes an optimal outcome, given that the discount factor is too low to

implement nFB
h but high enough to implement nFB

l .

Proposition 4 There exist discount factors δ and δ, with 0 < δ < δ < 1,

such that, in an optimal equilibrium, for δ ∈ (δ, δ), nh and nl
0 are inefficiently

low: nl
0 < nFB

l < nh < nFB
h , and, for all i ≥ 1, nl

i = nFB
l .

Note that, for the first-best solution, the (ECh) and (ECli) constraints

are identical but for the first term, which is nFB
h and nFB

l , respectively. Thus,

as δ decreases, (ECh) starts binding before the (ECli) constraints do. When

this happens, nFB
h is no longer implementable and nh is hence reduced below

first-best levels. Yet, as Proposition 4 shows, nl
0 is reduced below nFB

l as well,

even though (ECl0) does not bind. This “overshooting” relaxes (ECh) and

thus allows for a smaller reduction in nh than would otherwise be necessary.

Because the principal needs to be dissuaded from claiming that next

period’s type is low when it is in fact high, low periods need to be rendered

less attractive, and, in particular, those low periods that follow periods in

which the principal needs a lot of credibility, i.e., high periods. A natural,

surplus-neutral, way of achieving this goal would be to force the principal

to make a transfer to the agent if he claims next period’s type to be low.

However, such a transfer would relax (TTh), but tighten (DEl) to the same

extent. Therefore, (EC) constraints, which are combinations of the respective

(TTh) and (DEl) constraints, would not be relaxed.
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To develop an intuition for this result, it is helpful to split up (ECh)

again and to take a look at its individual components, the (TTh) and (DEl)

constraints for nh:

−bh(nh) + δΠh ≥ −bl(nh) + δΠl
0 + δg(nl

0)
(

θh − θl
)

(TTh)

−bl(nh) + δΠl
0 ≥ 0 (DEl)

Consider an arbitrary effort level nh < nh
FB together with bonuses bh(nh)

and bl(nh) such that (TTh) and (DEl) hold as equalities, i.e., (ECh) binds.

(Indeed, if only one of them was binding, for example (TTh), a first response

would be to reduce bh(nh) by ε > 0 and to increase bl(nh) by q

(1−q)
ε, which

would allow for a further increase in nh..) In order to relax (TTh), one could

pay a rent R to the agent following an announcement of a low state at the

end of the period, an arrangement equivalent to making such a payment at

the beginning of the next period. This reduces the right-hand side of (TTh)

by R, thereby relaxing (TTh) and allowing the principal to increase bh(nh) by

R as well. However, the principal also needs an incentive to pay R. Hence,

the (DEl) constraint becomes −bl(nh)− R + δΠl
0 ≥ 0. As (DEl) was binding

before, bl(nh) must be reduced by R in order to keep (DEl) satisfied. But this

once again increases the right-hand side of (TTh) by R, making it necessary

to reduce bh(nh) by the same amount (and hence to its original level) – and,

at the end, nothing has been gained.

Thus, (ECh), the combination of (TTh) and (DEl) constraints, can only

be relaxed by downsizing costs if those hit a lying off-path principal harder

than a principal who truthfully claims next period’s type to be low. Mere

transfers cannot achieve this goal as we have just seen. However, the distor-

tion of effort levels as proposed by Proposition 4, which can be interpreted as

implicit downsizing costs, hits a lying off-path principal harder than a truthful

principal and therefore relaxes (ECh). To see that, assume that in the situ-

ation considered in the previous paragraph, effort after an announcement of

a low state is reduced by a small ε > 0 in the following period. This reduces

Πl
0 – and consequently bl(nh) – by ε

(

θlg′ − c
)

. However, the right-hand side

of (TTh) is decreased by εδg′
(

θh − θl
)

, which allows for an increase in bh(nh)

by the same amount. Asθlg′(nl
FB)− c = 0, the resulting surplus destruction,

as well as the necessary reduction in bl(nh), are only of second order at nl
FB.

The possible increase of bh(nh), though, is of first order, and (ECh) is even-
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tually relaxed. Therefore, it is optimal to use a reduction of nl
0 in order to

implement a larger nh. Thus, the game exhibits memory, and the equilibrium

is not sequentially optimal, in that nFB
l

(

> nl
0

)

would be implemented if the

game newly started with a low state.

This contrasts with the finding in Li and Matouschek (2013), where every

optimal equilibrium is sequentially optimal. In our iid model, this distortion

in effort levels only lasts a single period, and nl
i = nFB

l for i ≥ 1. This is

due to two reasons. First, reducing nl
i for i ≥ 1 would not allow for a further

increase in nh because the resulting distortions in later periods would hit on-

path and off-path principals alike.8 Second, for discount factors above δ, (ECl)

constraints do not bind and first-best effort levels are feasible. Thus, implicit

downsizing costs indeed optimally arise on the equilibrium path.

Given δ is below δ, ECli constraints also bind for i ≥ 1. This consid-

erably complicates our maximization problem because all (ECli) constraints

potentially interact: A higher nl
i+1 tightens (ECli), whereas a higher nl

i might

require a reduction of nl
i+1 and consequently relax (ECli+1). Therefore, we

have to consider infinitely many constraints. In the following, we derive a

number of properties of effort levels nl
i if δ < δ. Due to the complexity of the

problem, we restrict ourselves to the case qθh ≥ θl:

Proposition 5 Assume qθh ≥ θl. There exists a left-neighborhood of δ such

that optimal effort levels nl
i < nl

FB, i ≥ 1, are characterized by one of the

following cases:

• nl
j = nl

1 for all odd j and nl
ι = nl

2 for all even ι, with nl
1 > nl

2;

• nl
1 > nl

3 > nl
5 > ... and nl

2 < nl
4 < nl

6 < ..., with supj∈N n
l
2j ≤

infj∈N n
l
2j−1;

• qθh = θl ⇔ nl
i = nl

i+1 for all i ≥ 1.

We prove this proposition by Lemmata 10 - 23 in the Appendix. It

shows that, unless qθh = θl, effort levels oscillate, with either a constant or

a decreasing amplitude, starting at their highest level nl
1. If qθh = θl, by

contrast, effort levels nl
i (i ≥ 1) remain constant, as for intermediate discount

factors. We still observe overshooting in this region, as nl
0 is constrained only

by ECh, while ECl0 is slack. Furthermore, nh < nh
FB and nl

0 < nl
1.

8As we shall see in Section 6, distortions last longer when types are (fully or partially)
persistent.
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5 Timing

Here, we vary the timing of the revelation of next period’s type. First, we

show that a later revelation – the type of period t is revealed at the beginning

of period t – increases the principal’s profits compared to our main case. Then,

private information is not costly and the outcome equivalent to the case of

public information. Second, we assume that the principal observes the type

of period t + 1 already at the beginning of period t, before the agent exerts

period-t effort. In this case, private information is costly, but the nature of

the costs and the principal’s response substantially differs. Moreover, our

overshooting result in the previous section relies on there being no possibility

of monetary transfers in between the time of the agent’s effort choice and the

revelation of private information to the principal.

5.1 θt Revealed at Beginning of Period t

Assume that the type of period t is revealed at the beginning of period t

(this is equivalent to having θt+1 revealed in period t, but after bt has been

paid). First, we derive a profit-maximizing equilibrium for the case of public

information. Then, we show that the associated effort and compensation levels

also satisfy the truth-telling constraints under private information.

In contrast to before, the bonus bt is not a function of next period’s type

anymore and hence is certain (on the equilibrium path) at the time of effort

choice. In period t, the agent’s future compensation might still depend on θt+1,

though, through the fixed wage wt+1. But it turns out that it remains (weakly)

optimal to use only certain period-t bonus payments to reward period-t effort.

Here, we consider a quasi-stationary equilibrium in the sense that bonus and

effort are only a function of today’s type. The wage might be a function of

today’s and yesterday’s type, if it is used to provide incentives for yesterday’s

effort. We use left and right superscripts to describe wages (and profits) as

functions of θt−1 (left) and θt (right). For example, if the type in both periods

is high, profit is hΠh and wages are hwh. Profits can thus be written as
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hΠh = θhg(nh)− bh − hwh + δΠ
h

lΠh = θhg(nh)− bh − lwh + δΠ
h

hΠl = θlg(nl)− bl − hwl + δΠ
l

lΠl = θlg(nl)− bl − lwl + δΠ
l
,

with Π
h
= q hΠh+(1−q) hΠl and Π

l
= q lΠh+(1−q) lΠl. The agent’s utilities

are described accordingly.

We maximize Π
h
, subject to the following constraints:9

−nhc+ bh + δU
h
≥ 0 (ICh)

−nlc+ bl + δU
l
≥ 0 (ICl)

−bh + δΠ
h
≥ 0 (DEh)

−bl + δΠ
l
≥ 0. (DEl)

First, we show that it is weakly optimal only to use the bonus to provide

incentives, while setting wages equal to zero: If any fixed wages were strictly

positive, a reduction accompanied by a corresponding increase of the respec-

tive bonus would leave all constraints unaffected (for example, if hwh > 0,

reducing hwh by a small ε > 0 and increasing bh by δqε has no effect on ICh

and DEh) and not decrease profits. Furthermore, as in Lemma 1, we can show

that it is feasible and optimal to set bh = nhc and bl = nlc. Then, the two

remaining constraints are

−nhc+ δ
q
(

θhg(nh)− nhc
)

+ (1− q)
(

θlg(nl)− nlc
)

(1− δ)
≥ 0

−nlc+ δ
q
(

θhg(nh)− nhc
)

+ (1− q)
(

θlg(nl)− nlc
)

(1− δ)
≥ 0,

which are the same as in our main setting with public information. Therefore,

profit-maximizing effort levels are also characterized by Proposition 2, with

9Note that maximizing any other of the above profit streams would yield identical out-
comes because the equilibrium – as we will see below – is now sequentially efficient.
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levels of the discount factor, δ and δ ( 0 < δ < δ < 1), such that nh = nFB
h and

nl = nFB
l for δ ≥ δ; nl = nFB

l < nh < nFB
h for δ < δ < δ; and nh = nl ≤ nFB

l

for δ ≤ δ.

If the type is the principal’s private information, additional truth-telling

constraints, now imposed at the beginning of a period, must hold:

θhg(nh)− bh − hwh + δΠ
h
≥ θhg(nl)− bl − hwl + δΠ

l
(TThh)

θhg(nh)− bh − lwh + δΠ
h
≥ θhg(nl)− bl − lwl + δΠ

l
(TTlh)

θlg(nl)− bl − hwl + δΠ
l
≥ θlg(nh)− bh − hwh + δΠ

h
(TThl)

θlg(nl)− bl − lwl + δΠ
l
≥ θlg(nh)− bh − lwh + δΠ

h
(TTll)

To show that these constraints can be omitted, we plug the results from

the case with public information, hwh = hwl = lwh = lwl = 0 and bh = nhc

and bl = nlc, into the conditions. Then, Π
h
= Π

l
=

q(θhg(nh)−nhc)+(1−q)(θlg(nl)−nlc)
(1−δ)

,

and the constraints become

θhg(nh)− nhc ≥ θhg(nl)− nlc (TThh)

θhg(nh)− nhc ≥ θhg(nl)− nlc (TTlh)

θlg(nl)− nlc ≥ θlg(nh)− nhc (TThl)

θlg(nl)− nlc ≥ θlg(nh)− nhc. (TTll)

These are naturally satisfied for the respective effort levels.

To understand the intuition behind this result, note that in our bench-

mark case, it would also be feasible to make the agent’s compensation indepen-

dent of the realization of next period’s type. But such a payment structure

would leave some slackness in the dynamic enforcement constraints, which

could be utilized in order to increase implementable effort. At some point,

however, truth-telling constraints start to bind, leading to the structure of

the profit-maximizing equilibrium that we have derived in Section 4. Here,

by contrast, the agent’s compensation can be independent of next period’s

type while fully exhausting dynamic enforcement constraints. Thus, imple-

mentable effort cannot be further increased. Therefore, it is optimal to make

the agent’s compensation (conditional on effort) independent of the realization

of next period’s type.
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5.2 θt+1 Revealed at Beginning of Period t

Now, we describe the properties of a profit-maximizing equilibrium for the case

that the type of period t+ 1 is already revealed at the beginning of period t,

before effort nt is chosen by the agent. First, we analyze how this information

structure affects a profit-maximizing equilibrium under public information.

5.2.1 Public Information

If θt+1 is (publicly) revealed at the beginning of period t, nt will be a function

not only of today’s, but generally also of tomorrow’s, type. This is because

enforceable effort in a given period is a function of expected future profits. A

high type tomorrow is associated with higher expected future profits and thus

a higher enforceable effort level today. By standard arguments, it is without

loss to analyze otherwise stationary equilibria. We therefore use superscripts

to indicate equilibrium values as functions of this and next period’s types.

For example, nhh is equilibrium effort in case today’s and tomorrow’s type are

high, nhl is equilibrium effort if today’s type is high and tomorrow’s type is

low, and so on.

Then, on-path profit streams can take one of the four values

Πhh = θhg(nhh)− whh − bhh + δΠ
h

Πhl = θhg(nhl)− whl − bhl + δΠ
l

Πlh = θlg(nlh)− wlh − blh + δΠ
h

Πll = θlg(nll)− wll − bll + δΠ
l
,

where Π
h
≡ qΠhh + (1 − q)Πhl and Π

l
≡ qΠlh + (1 − q)Πll. The agent’s

utilities are defined equivalently. Bonus payments are bounded by dynamic

enforcement constraints,
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−bhh + δΠ
h
≥ 0 (DEhh)

−bhl + δΠ
l
≥ 0 (DEhl)

−blh + δΠ
h
≥ 0 (DElh)

−bll + δΠ
l
≥ 0, (DEll)

whereas effort levels are bounded by incentive compatibility constraints,

−nhhc+ bhh + δU
h
≥ 0 (IChh)

−nhlc+ bhl + δU
l
≥ 0 (IChl)

−nlhc+ blh + δU
h
≥ 0 (IClh)

−nllc+ bll + δU
l
≥ 0. (ICll)

Now, although the bonus is a function of next period’s type, it is certain

at the time of the agent’s effort choice. This is different from the main part

of our paper, where next period’s type is revealed immediately before today’s

bonus is paid, and therefore uncertain at the time of the agent’s effort choice.

Furthermore, for reasons similar to above (Lemma 1), it is feasible and weakly

optimal to set whh = whl = wlh = wll = 0 and let (IC) constraints hold as

equalities. Therefore, bhh = nhhc, bhl = nhlc, blh = nlhc and bll = nllc.

Again, our objective is to maximize Π
h
, now subject to

−nhhc+ δΠ
h
≥ 0 (DEhh)

−nhlc+ δΠ
l
≥ 0 (DEhl)

−nlhc+ δΠ
h
≥ 0 (DElh)

−nllc+ δΠ
l
≥ 0. (DEll)

It is immediate that Π
h
≥ Π

l
, i.e. that a high type is associated with

higher profits. Therefore, θt+1 = θh allows for a credible promise of a higher

bonus, and therefore for the implementation of a higher effort level, in period

t. The desired effort levels if today’s type are high (nhh and nhl) are also larger

than if today’s type is low, which creates a tension if θt = θh but θt+1 = θl. If

25



the discount factor is sufficiently close to 1, none of the constraints bind and

first-best levels nhh = nhl = nFB
h and nll = nlh = nFB

l can be implemented.

For a lower discount factor, (DEhl) will eventually bind, and nhl < nhh = nFB
h .

For even lower discount factors, (DEhh) and/or (DEll) will at some point bind

as well, and so on. These considerations are summarized in Lemma 2.

Lemma 2 Assume θt+1 is publicly revealed at the beginning of period t. Then,

there are levels of the discount factor, δ, δ̃ and δ, with 0 < δ < δ̃ < δ < 1,

such that

• nhh = nhl = nFB
h > nll = nlh = nFB

l for δ ≥ δ;

• nhl < nhh = nFB
h and nll = nlh = nFB

l for δ̃ ≤ δ < δ.

• For δ ≤ δ < δ̃, there are levels of the discount factor δh and δl, such

that

– nhl < nhh < nFB
h for δ < δh;

– nll < nlh = nFB
l for δ < δl ;

• nhl < nhh < nFB
h and nll < nlh < nFB

l for δ < δ; in this case, nll =

nhl < nlh = nhh.

The early revelation of information is costly compared to a later reve-

lation – because no “cross-subsidization” of high future profits to low future

profits is feasible anymore. If information is revealed later (like in the previous

section), the resulting uncertainty allows us to use potential high future profits

to motivate effort also in case future profits are actually low. Here, a binding

(DEhl) constraint cannot be relaxed by a potential slackness of (DEhh), as

would be the case if information was revealed later.

5.2.2 Private Information

If next period’s type is only privately revealed to the principal at the beginning

of the present period, the relevant trade-off in truth-telling equilibrium is

different from the main part of this paper. There, the principal is tempted

to underreport her type because this results in a lower bonus payment to

the agent in the present period, at the cost of a distorted production in the

next period. The current effort level is unaffected by a lie of the principal,
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as the corresponding output has already been realized. If next period’s type

is revealed at the beginning of the present period, however, under-reporting

tomorrow’s type already results in a lower output today. Therefore, a lie is

associated with present and future production inefficiencies. The resulting

costs make the principal’s temptation to under-report her type vanish, and

overshooting as a consequence of downsizing is not needed to induce truth-

telling. Truth-telling constraints can still severely constrain profits, though,

due to an issue that was absent before: Because having a high type in the next

period potentially allows for higher effort, and consequently higher profits,

today, the principal might be tempted falsely to claim that tomorrow’s type

is high – and then to renege on the promised payment. It turns out that

this constraint in fact prevents the principal from achieving higher profits if

tomorrow’s type is high. Profits will only be a function of today’s type, and

will always be constrained by δΠ
l
– no matter if next period’s type is actually

high or low.

To formally derive this result, we keep the notation from our analysis

with public types. Though this restriction is not without loss of generality

here, we continue to focus on the same kind of quasi-stationary equilibria as

with public types, where fixed wages equal zero and (IC) constraints bind.

We will show below that, in contrast to before, the relevant truth-telling

constraints can now either be satisfied by a reduction of effort levels, or by an

ex-ante payment made to the agent. If these payments can be extracted by

the principal at the beginning of the game, such an agreement would indeed

maximize the principal’s profits.

Now, two types of truth-telling constraints arise. First, the principal

might misreport her type and then proceed with play as prescribed by equi-

librium (like in our main case). This yields the constraints

Πhh ≥ Π̃hl (TThh)

Πhl ≥ Π̃hh (TThl)

Πlh ≥ Π̃ll (TTlh)

Πll ≥ Π̃lh, (TTll)
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where

Π̃hh = θhg(nhh)− nhhc+ δ
[

q
(

θlg(nhh)− nhhc+ δΠ
h
)

+ (1− q)
(

θlg(nhl)− nhlc+ δΠ
l
)]

= Πhh − δ
(

θh − θl
) [

qg(nhh) + (1− q)g(nhl)
]

are the principal’s profits in case today’s type is high and tomorrow’s type is

low, but where she falsely reports tomorrow’s type to be high.

The respective values Π̃hl, Π̃lh and Π̃ll are obtained in similar fashion.

The second kind of truth-telling constraints prevent the principal from misre-

porting her type and subsequently shutting down.

These constraints are

θhg(nhh)− nhhc+ δΠ
h
≥ θhg(nhl) (TThh2)

θhg(nhl)− nhlc+ δΠ
l
≥ θhg(nhh) (TThl2)

θlg(nlh)− nlhc+ δΠ
h
≥ θlg(nll) (TTlh2)

θlg(nll)− nllc+ δΠ
l
≥ θlg(nlh) (TTll2)

Note that these kinds of constraints are not needed in our main case.

There, next period’s type is revealed after today’s effort and output have

been realized. They are thus sunk when the principal’s announces next pe-

riod’s type. Therefore, these constraints coincide with the respective dynamic

enforcement constraints.

Finally, (DE) constraints as specified in the previous section with public

information must hold. This yields

Proposition 6 Assume θt+1 is privately revealed at the beginning of period

t. Then, among the class of equilibria in which the agent does not get a rent

and faces binding (IC) constraints, Π
h
is maximized when nhh = nhl ≡ nh

and nlh = nll ≡ nl. Moreover, there exist discount factors δ and δ, with

0 < δ < δ < 1, such that

• nh = nFB
h and nl = nFB

l for δ ≥ δ;

• nl = nFB
l < nh < nFB

h for δ < δ < δ;

• nl = nh ≤ nFB
l for δ ≤ δ

in this equilibrium.
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Importantly, effort is only a function of today’s type. High future profits

cannot be used to implement higher effort today. If this were the case, the

principal would have an incentive to misreport her type and then shut down.

Moreover, the temptation now lies in over-reporting one’s type because this

would be associated with higher productivity.

Note that for discount factors such that the first-best effort cannot be

implemented, it only matters that the principal’s profits not be larger if to-

morrow’s type is high. Instead of equalizing effort levels, we could also have

nhh > nhl, together with a payment to the agent before his effort choice, in

the form of a positive fixed wage whh. Then, TThl2, which is the tighter

constraint, becomes

θhg(nhl)− nhlc+ δΠ
l
≥ −whh + θhg(nhh), (TThl2)

which is satisfied for θhg(nhh) − whh = θhg(nhl) (given dynamic enforcement

constraints hold). Thus, in order to make use of higher future profits and

induce the agent to work harder, the principal immediately has to pay him

for the extra effort. If the principal is able to extract the expected value

of these payments at the beginning of the game, this equilibrium generates

higher expected profits than that of Proposition 6.

6 Persistent Shocks

So far, we have assumed that the principal’s types are iid across periods. In

this section, we show that implicit downsizing costs may also obtain if shocks

are persistent – within our initial setup where θt+1 is revealed to the principal

before the period-t bonus is paid, but after effort has been exerted. First, we

explore permanent shocks. We assume that the principal starts out with a high

type, and that the type remains high for another period with time-invariant

probability q. With probability 1 − q, the type switches to low and remains

low forever. Then, we argue that the case with shocks that are persistent but

not permanent yields similar results.
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6.1 Permanent Shocks

As the problem conditional on the type still being high is stationary, it is

without loss for us to restrict attention to equilibria in which actions do not

depend on calendar time. Therefore, equilibrium high-type effort is constant,

whereas low-type effort depends on the distance in time to the (now perma-

nent) switch from high to low. Thus, equilibrium profits can be written

Πh = θhg(nh)− qbh − (1− q)bl0 − wh + δqΠh + δ(1− q)Πl
0

Πl
i = θlg(nl

i)− bli+1 − wl
i + δΠl

i+1,

where wh and wl
i are defined analogously to nh and nl

i.

The objective is to maximize Πh, subject to the following constraints.

First, the dynamic enforcement (DE) constraints must be satisfied for bh and

all bli:

−bh + δΠh ≥ 0 (DEh)

−bli + δΠl
i ≥ 0∀i ≥ 0. (DEli)

As long as the principal has not announced a switch to the low state, the

following truth-telling constraints must hold in a truth-telling equilibrium:

−bh + δΠh ≥ −bl0 + δΠ̃l
0 (TTh)

−bl0 + δΠl
0 ≥ −bh + δΠ̃h. (TTl)

After claiming that the state has switched to θl, the principal has to claim a

state of θl in all subsequent periods. This gives us

Π̃l
i = θhg(nl

i)−bli+1−wl
i+δ

[

qΠ̃l
i+1 + (1− q)Πl

i+1

]

= Πl
i+

∞
∑

τ=0

(δq)τ g(nl
τ )(θ

h−θl).

Note that our formulation of Π̃l
i takes into account that the principal does not

renege after falsely having announced a switch to state θl in the past. This

requires −bli+ δΠ̃l
i ≥ 0, which holds given the (DEli) constraints and Πl

i < Π̃l
i.

Suppose that the state switches to θl in period t. If it is a profitable
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deviation for the principal falsely to claim that the state has remained θh in

period t, then, by the One-Deviation principle (Hendon, Jacobsen, and Sloth

(1996)), it is a profitable deviation for him to revert to telling the truth by

claiming θt+1 = θl. Yet, if this single deviation is profitable, then it is also

profitable to continue lying in period t + 1. In this case, it will thus also be

profitable to continue lying with probability q while telling the truth with the

counter-probability. This gives

Π̃h = Πh − (θh − θl)
g(nh)

1− δq
.

Finally, the (IC) and (IR) constraints are as before.

Lemma 3 and the first three properties of Lemma 5 go through essentially

unchanged. In Lemma 25 in the Appendix, we further show that (TTl) can be

omitted and (IC) will bind. This implies, inter alia, that bh ≥ bl0, n
hc = qbh +

(1− q)bl0, n
l
ic = bli+1 and that (TTh) and (DEli) are the relevant constraints.

The proof of Lemma 6 goes through essentially unchanged as well. There-

fore, we can equivalently replace (TTh) and (DEl0) by the following (ECh)

constraint

−nhc+ δqΠh + δ (1− q) Πl
0 ≥

(

θh − θl
)

∞
∑

i=0

(δq)i+1 g(nl
i). (ECh)

We furthermore need to keep track of

−nl
ic+ δΠl

i+1 ≥ 0 (DEli)

for all i ≥ 0.

As before, the right-hand side of (ECh) expresses the information rent

the principal can secure herself by falsely claiming that the state is low. With

iid shocks, the principal gets θhg(nl
0) after a lie whereas the agent believes

she gets θlg(nl
0), the principal’s informational advantage extending but to the

next period. Here, by contrast, her informational advantage extends to the

first (random) period after her lie in which the state indeed switches to low.

As the principal maintains her informational advantage from one period to

the next with probability q, the expression for the information rent is now

δq
(

θh − θl
)
∑∞

i=0 (δq)
i g(nl

i), while it was δq
(

θh − θl
)

g(nl
0) before.
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In Lemma 26 in the Appendix, we show that, as before, constraints are

tightened for lower values of δ.

As δ → 1, the left-hand sides of the (ECh) and (DEli)-constraints for

first-best effort levels diverge to infinity, while the right-hand side of (ECh)

converges to q

1−q
(θh − θl)g(nFB

l ) < ∞. Thus, if δ is sufficiently large, the

first-best effort levels nFB
h and nFB

l can be implemented. As δ leaves this

range, it is of interest whether (ECh) or (DEli) constraints start binding

first. Let δl :=
nFB

l
c

θlg(nFB

l
)
denote the discount factor at which (DEli)-constraints

start binding for first-best effort levels, and δh the corresponding discount

factor for the (ECh)-constraint. It can be shown that (ECh) binds first if

q <
θlg(nFB

l
)(nFB

h
−nFB

l )
θhnFB

l (g(nFB

h
)−g(nFB

l
))
; i.e. in this case, δl < δh. For this case, the following

proposition shows that overshooting of the effort reduction may arise with

persistent shocks as well.

Proposition 7 Assume q <
θlg(nFB

l
)(nFB

h
−nFB

l )
θhnFB

l (g(nFB

h
)−g(nFB

l
))

and δ ∈ [δl, δh). Then, nh <

nFB
h . Furthermore, for all i ∈ N, nl

i < nl
i+1 < nFB

l , with lim
i→∞

nl
i = nFB

l .

Whereas we still observe overshooting, the recovery is gradual and never

complete. Recall that in the case of iid shocks, having a distortion is optimal

one period after the announcement of a low state because the off-path costs

(i.e. if the state is in fact high) are larger than the on-path costs (i.e. if the

state is indeed low). Because states are iid, though, costs are the same on

path and off path in subsequent periods; there is thus no gain to imposing

further distortions, as the agent reverts to telling the truth after one lie by

the One-deviation principle.

With persistent shocks, however, falsely claiming that the type is low

forces the principal to stick to announcing the low state forever thereafter. As,

in expectation, the costs imposed by a distortion in effort in any future period

are higher off path than on path as there always is some chance that the type

is still high after T periods (for any T ), it is optimal to keep distorting in all

future periods, as, on account of the concave production function g, it is better

to smooth out distortions. The further in the past the first announcement of

the low state lies, though, the more likely it becomes that the state will indeed

have switched to low in the meantime; i.e., the difference in off-path vs. on-

path costs imposed by the distortion decreases. It is therefore optimal to

distort the less the further past the announcement of the switch to the low
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state one is. As the expected cost difference becomes negligible over time, the

distortion eventually vanishes. As with iid shocks, our optimal self-enforcing

contract is thus not sequentially optimal since nFB
l would satisfy all (DEli)

constraints.

6.2 Partially Persistent Shocks

In this section, we analyze a setting where states evolve according to a Markov

chain with positive autocorrelation. If today’s type is high, the probability

of tomorrow’s type being high is qh. If today’s type is low, this probability

is ql < qh. We shall also write q(θt) for the probability of next period’s type

being high given the current-period type θt. We focus on a subset of the

parameter space for which our solution is qualitatively similar to our previous

results, with overshooting and gradual recovery.

Now, the truth-telling and dynamic enforcement constraints amount to

−bh(θt) + δΠh(θt) ≥ −bl(θt) + δΠ̃l(θt) (TTh)

−bl(θt) + δΠl(θt) ≥ −bh(θt) + δΠ̃h(θt) (TTl)

−bh(θt) + δΠh(θt) ≥ 0 (DEh)

−bl(θt) + δΠl(θt) ≥ 0, (DEl)

with

Πh(θt) =θhg(nh(θt))− wh(θt)

+ qh
(

−bhh(θt) + δΠhh(θt)
)

+ (1− qh)
(

−bhl(θt) + δΠhl(θt)
)

,

Πl(θt) =θlg(nl(θt))− wl(θt)

+ ql
(

−blh(θt) + δΠlh(θt)
)

+ (1− ql)
(

−bll(θt) + δΠll(θt)
)

,

Π̃l(θt) =θhg(nl(θt))− wl(θt)

+ qh
(

−blh(θt) + δΠlh(θt)
)

+ (1− qh)
(

−bll(θt) + δΠll(θt)
)
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and

Π̃h(θt) =θlg(nh(θt))− wh(θt)

+ ql
(

−bhh(θt) + δΠhh(θt)
)

+ (1− ql)
(

−bhl(θt) + δΠhl(θt)
)

.

Note that our formulations of Π̃h(θt) and Π̃l(θt) again make use of the One-

deviation principle (see Hendon, Jacobsen, and Sloth (1996)).

With iid shocks, the principal was tempted to under-report her type

in order to save on her bonus payments today. This led to overshooting

in a single period in the optimal equilibrium. This overshooting induced

costs of lying that were larger than the principal’s costs on the equilibrium

path. Now, we face a similar tradeoff, with an additional component, however:

After a deviation (i.e., reporting a low type although it is actually high), the

probability of observing another high period, implying a larger bonus in the

next period, is higher than if the type had indeed been low. Therefore, the

costs of a deviation, in relation to those arising when the type is indeed low,

increase in next period’s high-type bonus. Therefore, with positive auto-

correlation, the high-type bonus in period t + 1 should be as high as feasible

to deter lying in period t, an effect that does not arise with iid shocks. Since

high-type bonuses are restricted by the respective (TTh) constraints, these will

bind in all subsequent periods. Now, binding (TTh) constraints are optimally

associated with distortions of low-type effort levels, for the same reasons as

above. Therefore, distortions continue in subsequent low periods, albeit at a

decreasing intensity.

To illustrate this claim more formally, we maximize Π(θ1) subject to

the (TTh), (DEl) and (IC) constraints (and omit the (DEh) and (TTl) con-

straints).

Combining (TTh) and (DEl) yields the following (EC) constraints, which

are necessary (but may not be sufficient) for equilibrium:

−qhbh(θt)−
(

1− qh
)

bl(θt) + δqh
(

Πh(θt)− Π̃l(θt)
)

+ δΠl(θt) ≥ 0, (ECh)

−qlbh(θt)−
(

1− ql
)

bl(θt) + δql
(

Πh(θt)− Π̃l(θt)
)

+ δΠl(θt) ≥ 0. (ECl)

It is straightforward to verify that, if δ is large enough, first-best effort

levels satisfy these constraints. In contrast to the case of iid shocks, (ECl)
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might bind for higher discount factors than (ECh) constraints. This is because

autocorrelated shocks make not only first-best, but also implementable, effort

a function of today’s state of the world. We shall, however, focus on the case

that (ECh) binds before (ECl) does, as we did for permanent shocks.

While (ECl) constraints can thus be omitted, (TTh) constraints (which

constitute one part of (ECl) constraints) will bind for all subsequent histories.

Indeed, suppose to the contrary that there exists a subsequent history, θ̂t+τ ,

such that (TTh) at θ̂t+τ is slack, and (EC) binds. Increase bh(θ̂t+τ ) by some

ε > 0 and reduce w(θ̂t+τ ) by q(θ̂t+τ )ε. This relaxes the (EC) constraint at

history θt and leaves all other (EC) constraints unaffected.

From this observation, it follows that we can plug binding (TTh) con-

straints into (EC), and rewrite the latter as

− qhbh(θt)−
(

1− qh
)

bl(θt) + δ
(

qhΠh(θt) + (1− qh)Πl(θt)
)

≥δqh
(

θh − θl
) {

g(nl(θt)) + δ
(

qh − ql
) [

g(nll(θt)) + δ
(

qh − ql
) (

g(nlll(θt)) + ...
)]}

.

By the same argument as in the proof of Lemma 7, it follows that nh(θt) will

be the same for all θt. By the same token, low-type effort can be written as

nl
i, where the i indicates the number of consecutive low periods immediately

preceding period t along a given history θt.

Furthermore having (IC) constraints hold as equalities and using U(θt) =

0 for all θt, we solve

max
nh,nl

i

Πh =
(

1− δ(1− ql)
)

(

θhg(nh)− nhc
)

+ δ(1− qh)
∑∞

i=0

(

δ(1− ql)
)i (

θlg(nl
i)− nl

ic
)

(1− δ) (1− δ (qh − ql))
,

(1)

subject to

−nhc+ δqhΠh + δ
(

1− qh
)

Πl
0 ≥ δqh

(

θh − θl
)

∞
∑

i=0

[

δ
(

qh − ql
)]i

g(nl
i) (ECh)

Proposition 8 The solution to the constrained maximization problem (1) has

the following features: There exists a δh < 1 such that

• for δ ≥ δh, nh = nFB
h and nl

i = nFB
l for all i;
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• for discount factors in some left neighborhood of δh, nh < nFB
h . Further-

more, for all i ∈ N, nl
i < nl

i+1 < nFB
l , with lim

i→∞
nl
i = nFB

l .

Proposition 8 suggests that recovery may be gradual and never complete,

as in the case of permanent shocks. The solution to the maximization un-

derlying this proposition constitutes an equilibrium for parameter values such

that the (ECl) and (TTl) constraints hold at the solution. While we can show

that this is the case for an open, non-empty, subset of the parameter space,

we leave a complete characterization of this subset outside the scope of this

paper.

Concerning the intuition of this result, recall that with persistent shocks,

falsely claiming that the type is low forces the principal to stick to announcing

the low state forever thereafter. This is not the case with persistent, imper-

manent, shocks. Indeed, by the One-deviation-principle (Hendon, Jacobsen,

and Sloth (1996)), the costs of a deviation today are increasing in the size

of tomorrow’s high-type bonus bh – because the likelihood of having to pay

bh is larger off the equilibrium path. Therefore, tomorrow’s high-type bonus

blh is set as high as feasible, bounded as it is by the respective truth-telling

constraint. This truth-telling constraint is again relaxed by a large high-type

bonus the day after tomorrow, bllh, and so on. In contrast to the iid case,

these consecutively binding truth-telling constraints make it optimal to dis-

tort later nl
i as well. Because of discounting and the decreasing difference

between on-path and off-path likelihoods of having to pay high-type bonuses,

these distortions decrease with i, and eventually vanish, as for permanent

shocks.

7 Conclusion

We have shown that the phenomenon of implicit downsizing costs can be ex-

plained as an optimal commitment device for a principal not opportunistically

to misrepresent her private information. In order to prevent downsizing when

it is not necessary, an optimal relational contract imposes a cost on the prin-

cipal whenever she announces bad news. These costs manifest themselves in

a reduction of performance below feasible levels. Our model thus provides a

novel perspective on the phenomenon of implicit downsizing costs, which we

view as complementary to the psychological aspects being advanced by the

36



strategic-management literature.

Dozens of studies have analyzed the consequences of downsizing. While

some have found downsizing to have the intended effect, such as e.g. a reduc-

tion of organizational slack, streamlined operations, or enhanced effectiveness,

others find negative effects on firm performance (see Guthrie and Datta (2008)

or Datta, Guthrie, Basuil, and Pandey (2010) for summaries of these stud-

ies). Guthrie and Datta (2008) explore the firm properties that affect the

consequences of downsizing. In line with the results of our model – where

downsizing costs do not occur if the agent’s performance is verifiable (see

Section 3) – they find that the negative effects may be more pronounced in

those cases where relational contracts seem to be more important. Indeed, in

their study, downsizing subsequently reduces firm profitability overall, but this

negative effect is almost entirely driven by industries with high research and

development (R&D) intensity, high growth, and low capital intensity. Fur-

thermore, Guthrie and Datta (2008) state that employee effort components

such as “creativity and initiative” (p. 112) are important in these industries,

and that those are “associated with organizational variability and enhanced

discretion, increasing the relative benefits derived from employee initiatives

and contributions” (p.112). Since these aspects cannot be easily measured

and hence specified in formal, court-enforceable, contracts, we would argue

that they indicate a larger importance of relational contracts in the respective

industries.

In our model, implicit downsizing costs increase the principal’s commit-

ment power, and consequently profits, in good states of the world. After a

while, however, these costs vanish, either completely (in the case of iid shocks)

or gradually (in the case of persistent shocks). A few studies have also ex-

plored this dynamic component when analyzing the consequences of down-

sizing. They find evidence that performance reductions following downsizing

are indeed only temporary. Thus, Meuse, Bergmann, Vanderheiden, and Ro-

raff (2004) compare firms that downsized with those that did not. They find

that firms engaging in big layoffs performed substantially worse immediately

after the layoffs, but this difference in performance eventually vanished. Us-

ing a similar approach, Meuse and Dai (2013) show for a different data set

that the downsizing firms performed significantly worse on a number of fi-

nancial indicators during the year downsizing occurred. The differences in

performance, however, grew smaller in subsequent years, becoming statisti-
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cally insignificant in the third year after the downsizing. Amabile and Conti

(1999) conduct a survey of employees in a Fortune 500 high-tech firm, find-

ing significant productivity declines during and immediately after downsizing.

Productivity recovered again after a while, however.

Finally, note that, in our model, we explore the employment of one agent

who exerts effort. We chose this approach for reasons of tractability, and in

order better to relate our approach to “standard” relational contracting mod-

els. Due to linear effort costs, though, one could also interpret our effort levels

as the aggregate labor input by a firm’s workforce. When one relates our the-

oretical results to empirical observations, the overshooting in our effort levels

might thus be construed either as the principal reducing her workforce by more

than would be sequentially efficient, or as the principal reducing the number

of workers to the efficient number (or even keeping more than the sequentially

efficient number of workers) while asking for less effort from the remaining

workers. The latter seems to correspond to the “punishment” discussed in

the management literature (an exception is Cascio (1993), who reports that

following downsizing, some “managers ended up replacing some of the very

people they had dismissed”, p. 98). Thus, while two very distinct real-world

phenomena, the reduction of the number of employees on the one hand and

the reduction of effort by employee on the other hand, map into a reduction

of n in our model, our analysis would suggest that given a firm engages in

downsizing, it should optimally be accompanied by some sort of temporary

turmoil. To further align our theoretical results with the empirical observa-

tions we have discussed, note that in reality, employment is also affected by

many aspects outside the scope of our model. For example, keeping a worker

on causes fixed per-period costs of employment, while firing and/or replacing

a worker is costly as well.10 Whereas fixed per-period costs of employment ac-

crue in every period, separation and replacement costs accrue only once for a

given employment relationship. This would suggest that temporary variations

of total labor input would rather be effected by changes in individual effort

levels, while the workforce is kept stable in order to economize on replacement

costs. Long-term changes in desired labor input, on the other hand, would

10For example, Dube, Freeman, and Reich (2010) report that costs to replace a worker in
California (including recruitment, selection and screening, as well as the costs of learning
on the job and separation costs) amount to between $ 2,000 and $ 7,000. Muehlemann and
Leiser (2018) show that in Switzerland, the average hiring costs amount to about 16 weeks
of wages.
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tend to involve a larger focus on adjusting the size of the firm’s workforce.

In this view, our theoretical results are in line with the observations from

the downsizing literature if shocks are (at least partially) persistent. Indeed,

in this case, it would likely be optimal to cut the firm’s workforce after the

type changes from high to low, while the temporary overshooting might be

accomplished by individual effort reductions.
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Appendix

A Proofs for Section 3

Proof of Lemma 1

We shall first show that there exists an optimal equilibrium such that U(θt) =

0 for all histories θt. If U(θ1) > 0, reduce w(θ1) by U(θ1). For t > 1, assume

to the contrary that, in an optimal equilibrium, U i(θt) > 0 for some history θt

and i ∈ {h, l}. Now, reduce wi(θt) by U i(θt) and increase the respective bonus

in the previous period, bi(θt), by δU i(θt). Since −bi(θt) + δΠi(θt) and bi(θt) +

δU i(θt) remain unchanged, this change leaves the agent’s (IC) constraints

as well as all of the principal’s constraints at history θt and all predecessor

histories unaffected. Furthermore, the principal’s profits at history θt as well

as in all predecessor histories remain unchanged. We can thus without loss

focus on equilibria such that U(θt) = 0 for all histories θt.

Now, suppose that there exists a history θτ after which the (IC) constraint

does not bind. Note that a non-binding (IC) constraint implies that either

bh(θτ ) > 0 or bl(θτ ) > 0. Thus, there exists an ε > 0 such that, if either

bh(θτ ) is reduced by ε
q
or bl(θτ ) by ε

1−q
, the (IC) constraint is still satisfied.

If w(θτ ) is at the same time increased by ε, the (DE) constraint for history

θτ is relaxed, and all constraints for all other histories θt are unaffected by

this change. This adjustment potentially increases profits if (DE) for history

θτ binds, and leaves profits unaffected if (DE) for history θτ is slack, hence is

optimal. Thus, we have shown that there exists an optimal equilibrium with

the property that w(θt) = 0, U(θt) = 0, and qbh(θt) + (1 − q)bl(θt) = n(θt)c

for all histories θt.

To prove the final part of the Lemma, we first rewrite the (DE) constraint:

−n(θt)c+ δ
(

qΠh(θt) + (1− q)Πl(θt)
)

≥ 0. (DE)

In addition, note that effort levels will never exceed the first best (oth-

erwise, a reduction would increase profits without violating any of the con-

straints). Now, assume that there are histories θτ̃ and θτ , with nh(θτ̃ ) >

nh(θτ ). If the profits being produced in the continuation play following
(

θτ , θh
)

are higher, it is possible to implement nh(θτ̃ ) with the continuation play fol-
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lowing
(

θτ , θh
)

. In this case, the principal can therefore increase her profits

following history
(

θτ , θh
)

by increasing the current period’s effort level to

nh(θτ̃ ), while leaving the continuation play unchanged. Now, suppose that

it is not possible to implement nh(θτ̃ ) with the continuation play following
(

θτ , θh
)

. This implies that the profits created by the continuation play follow-

ing
(

θτ , θh
)

are lower than the continuation play following
(

θτ̃ , θh
)

. Further-

more, because nh(θτ̃ ) is enforceable, it is possible to replace the continuation

play following
(

θτ , θh
)

with the continuation play following
(

θτ̃ , θh
)

, thereby

relaxing the (DE) constraint in τ . It thus becomes possible to increase nh(θτ )

to nh(θτ̃ ). This increases both the principal’s current and future profits. A

similar argument applies to the low state. Hence, equilibrium effort only de-

pends on the current state. �

Proof of Proposition 2

To ease the notational burden, we write nh ≡ n(θh) and nl ≡ n(θl). The

Lagrangian for the firm’s problem can be written as

L =
(

θhg(nh)− nhc
)

(

1 +
δq

1− δ

)

+
(

θlg(nl)− nlc
) δ(1− q)

1− δ

+ λDEh

[

−nhc+
δ

1− δ

[

q(θhg(nh)− nhc) + (1− q)(θlg(nl)− nlc)
]

]

+ λDEl

[

−nlc+
δ

1− δ

[

q(θhg(nh)− nhc) + (1− q)(θlg(nl)− nlc)
]

]

,

where λDEi
denotes the Lagrange multiplier associated with the (DE)-constraint,

given the current type is θi ∈ {θl, θh}.

By strict concavity of g, the first-order conditions are both necessary and

sufficient for an optimum. By the Inada Conditions on g, optimal effort levels

are interior, and hence characterized by ∂L
∂ni = 0, as well as λDEi

∂L
∂λDEi

= 0, for

both i ∈ {h, l}. One computes

∂L

∂nh
=
(

θhg′(nh)− c
)

[

1 +
δ

1− δ
q(1 + λDEh

+ λDEl
)

]

− λDEh
c;

∂L

∂nl
=
(

θlg′(nl)− c
) δ

1− δ
(1− q)(1 + λDEh

+ λDEl
)− λDEl

c.

As nh ≥ nl at an optimum, we know that λDEh
= 0 implies λDEl

= 0.
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As our system of equations characterizing the solution
(

nh, nl, λDEh
, λDEl

)

is

(jointly) continuous in
(

nh, nl, λDEh
, λDEl

, δ
)

, the solutions
(

nh, nl, λDEh
, λDEl

)

can be written as continuous functions of δ. Thus, profits Πh and Πl are con-

tinuous in δ.

The left-hand sides of the (DEi) constraints are increasing in δ,11 hence

maximum enforceable effort increases in δ as well.

For δ → 1, (DEi) are satisfied for first-best effort levels, since θg(nFB(θ))−

nFB(θ)c > 0 for both θ ∈ {θh, θl}. Thus, there exists a δ̄ ∈ [0, 1) such that

λDEh
= λDEl

= 0 for all δ > δ̄. For δ = 0, no positive effort can be enforced.

Thus, δ̄ > 0. Moreover, by continuity of the (DEi)-constraints in δ, for every

pair of effort levels (nh, nl) between zero and the respective first-best effort

levels nFB
l and nFB

h , there exists a discount factor δ(nh, nl) such that the con-

straint (DEh) holds for δ ≥ δ(nh, nl) and is violated for δ < δ(nh, nl). Set

δ̄ = δ(nFB
h , nFB

l ). Since nFB
l < nFB

h , (DEl) holds with slackness at nl = nFB
l

for δ = δ̄. Let nh(δ) be defined by θhg′(nh(δ)) = c1−δ(1−q)
δq

; as g′ is continu-

ous, strictly decreasing and takes on all values in (0,∞), nh(δ) exists and is

unique; furthermore, the Inverse Function Theorem implies that it is a con-

tinuous function of δ. As the partial derivative of (DEh) with respect to nh

is always strictly negative at nh = nFB
h , we have that nh(δ) < nFB

h . Clearly,

the solution n̂h to the optimization problem in which only (DEh) is imposed

entails n̂h ∈ [nh(δ), nFB
h ]. Direct computation shows the partial derivative of

(DEh) with respect to nh to be strictly negative on (nh(δ), nFB
h ), while its

partial derivative with respect to δ is strictly positive and, since δ ≤ δ̄ < 1,

bounded. Therefore n̂h is a continuous function of δ, and thus, by continuity

of (DEl) in (nh, δ), there exists a δ ∈ (0, δ̄) such that (DEl) continues to hold

with slackness for all δ ∈ (δ, δ̄]. This implies nl = nFB
l < nh < nFB

h . For

δ ≤ δ, both (DE) constraints bind, and hence nh = nl. �

B Proofs for Section 4

B.1 Preliminaries for the iid Model

The object of this subsection is to simplify the problem by eliminating some

of the constraints while deriving some structural properties of an optimal

11This can be shown formally by an argument analogous to the one underlying the proof
of Lemma 9.
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equilibrium. We begin with the simple observation that (DEh) can be omitted.

Lemma 3 For any history θt, the (DEh) constraint can be omitted.

Proof. Adding (DEl) and (TTh) gives−bh(θt)+δΠh(θt) ≥ δg(nl(θt))
(

θh − θl
)

.

Since the right hand side is positive, this implies (DEh). �

The following lemma will be useful to derive some characteristics of an

optimal equilibrium.

Lemma 4 For any history θt with nh(θt) 6= nl(θt), (TTh) and (TTl) are not

both binding.

Proof. Assume there is a history θτ where both constraints bind simulta-

neously even though nh(θτ ) 6= nl(θτ ). Then, (TTh) implies bh(θτ ) = bl(θτ ) +

δΠh(θτ ) − δΠ̃l(θτ ). Plugging this into the binding (TTl) constraint yields

g(nl(θτ ))
(

θh − θl
)

= g(nh(θτ ))
(

θh − θl
)

. Since θh − θl > 0 and g is strictly

increasing, this contradicts the claim that both constraints bind for nh(θτ ) 6=

nl(θτ ). �

Now, we can substantially simplify the problem by establishing some

structural properties of an optimal equilibrium.

Lemma 5 There exists an optimal equilibrium with the properties that, for

every history θt,

• U(θt) = 0,

• Πh(θt) ≥ Π̃l(θt),

• bh(θt) ≥ bl(θt),

• the (TTl) constraint can be omitted,

• n(θt)c = qbh(θt) + (1− q)bl(θt) and w(θt) = 0.

Proof. We start with proving the first two parts. Suppose to the contrary

that there exists a history θt of length t ≥ 1 and an equilibrium such that,

following history θt, the principal is strictly better off in this equilibrium than

in any equilibrium satisfying points 1.-2. We show by construction that this

cannot be the case.
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1. Assume that, in an optimal equilibrium, U i(θt) > 0, i ∈ {h, l} for some

history θt of length t. Reduce wi(θt) by U i(θt) and increase the respective

bonus in the previous period, bi(θt), by δU i(θt). Since −bi(θt) + δΠi(θt)

and bi(θt) + δU i(θt) remain unchanged, this change leaves the agent’s

(IC) and (IR) constraints as well as all of the principal’s constraints

at history θt and all predecessor histories unaffected. Furthermore, the

principal’s profits at history θt as well as in all predecessor histories

remain unchanged.

Repeat this step for all histories of length t and of length t+ 1.

2. Assume that Πh(θt) < Π̃l(θt). Replace play after (θt, θh) by play after

(θt, θl). This leads to on-path profits of Π̂h(θt) = Π̃l(θt). Set bhnew(θ
t) =

blnew(θ
t) = n(θt)c, while increasing w(θt) by δq

(

Π̂h(θt)− Πh(θt)
)

+

q
(

bhold(θ
t)− bhnew(θ

t)
)

+ (1 − q)
(

blold(θ
t)− blnew(θ

t)
)

. (By Step 1. and

the fact that (IC) at history θt holds, this increase is weakly larger than

qδ
(

Π̂h(θt)− Πh(θt)
)

.) (TTh), (TTl) and (IC) at history θt now hold

with equality. Previous constraints remain unchanged, with the excep-

tion of previous (IC)-constraints, which are relaxed. It remains to be

shown that the (DEl)-constraint at history θt continues to hold. As the

proof of Lemma 6 shows, the fact that (DEl) and (TTh) previously held

at history θt, together with Step 1, implies

−n(θt)c+ δ
{

q
[

Πh(θt)− Π̃l(θt)
]

Πl(θt)
}

≥ 0.

As Πh(θt) < Π̃l(θt), this implies −n(θt)c+ δΠl(θt) ≥ 0, which was to be

shown.

Furthermore, we can show (for later use) that, for histories θt such that

nh(θt) ≤ nl(θt), Πl(θt) ≥ Π̃h(θt). To the contrary, assume that Πl(θt) <

Π̃h(θt). Replace play after (θt, θl) by play after (θt, θh). This leads to on-

path profits of Π̂l(θt) = Π̃h(θt). Set bhnew(θ
t) = blnew(θ

t) = n(θt)c, while

increasing w(θt) by δ(1− q)
(

Π̂l(θt)− Πl(θt)
)

+ q
(

bhold(θ
t)− bhnew(θ

t)
)

+

(1 − q)
(

blold(θ
t)− blnew(θ

t)
)

. (TTh), (TTl) and (IC) at history θt now

hold with equality. Previous constraints remain unchanged, with the

exception of previous (IC) and (IR) constraints, which are relaxed. It

remains to be shown that (DEl)-constraint at history θt continues to

hold. As the proof of Lemma 3 shows, the fact that (DEl) and (TTh)
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previously held at history θt, together with Step 1, implies

−n(θt)c+ δ
{

q
[

Πh(θt)− (θh − θl)g(nl(θt))
]

+ (1− q)Πl(θt)
}

≥ 0.

As Πl(θt) < Πh(θt)− (θh − θl)g(nh(θt)) = Π̃h(θt), this implies

−n(θt)c + δΠh(θt) ≥ δ(θh − θl)
(

qg(nl(θt) + (1− q)g(nh(θt))
)

.

As nh(θt) ≤ nl(θt), this implies −n(θt)c+ δΠh(θt) ≥ δ(θh− θl)g(nh(θt)),

or −n(θt)c+ δΠ̂l(θt) ≥ 0, which was to be shown.

After Operation 2., we have to repeat Operations 1. As Operations 1. leave

profits and effort levels unchanged, there is no need to repeat Operation 2.

after that. Furthermore, we can repeat these operations for all histories of

length t and after that for all histories of length t − 1, t − 2, · · · . Finally,

assume U(θ1) > 0. Reducing w(θ1) by U(θ1) increases Π(θ1) and only affects

the agent’s first-period (IR) constraint, which continues to hold.

To show that bh(θt) ≥ bl(θt) for all histories θt, assume to the contrary

that there exists a history θt such that bh(θt) < bl(θt). Because of part 2, this

implies that (TTh) is slack. Increase bh(θt) by a small ε > 0 and reduce bl(θt)

by q

1−q
ε. This leaves all (IC) constraints unaffected and relaxes the (DEl)

and (TTl) constraints at history θt. (TTh) is tightened, while nonetheless

remaining slack as long as bh(θt) < bl(θt). Finally, all constraints and profits

at predecessor histories remain unchanged.

We now show that the (TTl) constraint can be omitted and the (IC)

constraint will bind. If nh(θt) ≤ nl(θt), it immediately follows from the fact

that bh(θt) ≥ bl(θt) and Πl(θt) ≥ Π̃h(θt) that (TTl) can be omitted. So

suppose that nh(θt) > nl(θt), and suppose that the (TTl) constraint binds.

By Lemma 4, this implies that the (TTh) constraint is slack. We can therefore

increase bh(θt) by a small ε > 0 while decreasing w(θt) by qε. This leaves

all previous constraints and profits unaffected yet relaxes the current (IC)

and (TTl) constraints (while tightening the current (TTh) constraint and

leaving the current (DEl) constraint unaffected). Now suppose that the (IC)

constraint is slack. If bl(θt) > 0, we can decrease bh(θt) > 0 and bl(θt) > 0

by some ε > 0, while increasing w(θt) by ε. This leaves all previous profits

as well as all previous and current constraints unaffected, with the exception

of the current (DEl)-constraint, which is relaxed. If now bl(θt) = 0 and the

(IC) and (TTl) constraints are slack, we can decrease bh(θt) by some ε > 0,
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while increasing w(θt) by ε
q
. This leaves all previous constraints and profits

unaffected, yet relaxes the current (TTh) constraint (while tightening the

current (TTl) and (IC) constraints and leaving the current (DEl) constraint

unaffected). If bl(θt) = 0 and the (TTl) constraint binds, we can replace play

after (θt, θl) by play after (θt, θh) while setting bhnew(θ
t) = blnew(θ

t) = n(θt)c

and increasing w(θt) by (1 − q)(Πl
new(θ

t) − Πl
old(θ

t)) + qbhold(θ
t) − n(θt)c. As

Πl
new(θ

t) = Π̃h(θt) ≥ Π̃h(θt) −
bh
old

(θt)

δ
= Πl

old(θ
t), and bhold(θ

t) ≥ n(θt)c by the

(IC) constraint, the increase in w(θt) is positive. Therefore, previous (IC)

and (IR) constraints are relaxed while all other previous constraints remain

unaffected by our change. Furthermore, the current (TTh), (TTl) and (IC)

constraints all hold with equality by construction. It remains to show that the

current (DEl) constraint continues to hold, i.e. that −n(θt)c + δΠl
new(θ

t) =

−n(θt)c + δΠ̃h(θt) ≥ 0. Yet, the binding (TTl) implies that δΠl
old(θ

t) =

−bhold(θ
t) + δΠ̃h(θt) ≥ 0, which implies that the current (DEl) constraint will

hold after our change, as bhold(θ
t) ≥ n(θt)c

q
≥ n(θt)c by the (IC) constraint.

Because U(θt) = w(θt) − n(θt)c + qbh(θt) + (1 − q)bl(θt) = 0, a binding

(IC) constraint implies that w(θt) = 0 for all histories θt. �

The following lemma shows that the (DEl) and (TTh) constraints can be

combined into one.

Lemma 6 Maximum profits in the problem in which (TTh) and (DEl) are

replaced by the following constraint (EC) equal maximum equilibrium profits:

−n(θt)c+ δ
(

qΠh(θt) + (1− q)Πl(θt)
)

≥ δqg(nl(θt))
(

θh − θl
)

. (EC)

Optimal bonus payments are given by bh(θt) = bl(θt) = n(θt)c if

n(θt)c ≤ δΠl(θt), and bh(θt) = 1
q

[

n(θt)c− δ(1− q)Πl(θt)
]

> δΠl(θt) = bl(θt)

otherwise.

Proof. By Lemma 5, we can without loss focus on equilibria in which

n(θt)c = qbh(θt) + (1− q)bl(θt) (B.1)

at every history θt. Using (B.1) and multiplying (TTh) with q and adding it

to (DEl) yields (EC).

To prove that (EC) implies (TTh) and (DEl) given (B.1), assume that we

are at an optimum satisfying the properties of Lemma 5 and that (EC) holds.
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We shall now show that it is always possible to find non-negative bonus pay-

ments bh(θt) and bl(θt) such that (B.1) holds, and that (DEl) and (TTh) are

both satisfied. Toward this purpose, we set bl(θt) = min
{

δΠl(θt), n(θt)c
}

≥ 0.

First suppose that n(θt)c ≤ δΠl(θt). In this case, we set bh(θt) = n(θt)c.

Now, (DEl) will trivially hold (with slackness if n(θt)c < δΠl(θt)). Using

bh(θt) = n(θt)c in (TTh) yields δΠh(θt) ≥ δg(nl(θt))
(

θh − θl
)

+δΠl(θt), which

is implied by the second part of Lemma 5. Now suppose that n(θt)c > δΠl(θt).

In this case, we set bh(θt) = 1
q

[

n(θt)c− δ(1− q)Πl(θt)
]

> 0. Clearly, (DEl)

will trivially hold with equality (because bl(θt) = δΠl(θt)). Substituting bh(θt)

into (TTh) yields 1
q
times (EC). �

While effort dynamics in the case of public types are completely sta-

tionary (see Lemma 1), this is no longer the case with private types, as the

following lemma shows. In order to state this lemma, we define, for every

history θt := (θh, θ2, θ3, · · · , θt), the function

i(θt) :=

{

0 if θt = θh

max
{

ι ∈ N : θt−ι+n = θl ∀n ∈ {0, · · · , ι}
}

+ 1 if θt = θl
,

which indicates the number of consecutive low periods immediately preceding

period t along a given history θt.

Lemma 7 There exists an optimal equilibrium with the property that, for

every two histories θt and θ̃t̃, nh(θt) = nh(θ̃t̃). Furthermore, for every history

θt, nl(θt) = nl
i(θt).

Proof. Consider an optimum satisfying the properties of Lemmas 5 and

6. Suppose that there exists a history θt such that Πh(θt) < maxθ̂τΠ
h(θ̂τ ).

Replace the continuation play following
(

θt, θh
)

by the continuation play fol-

lowing
(

θ̃, θh
)

, where θ̃ ∈ argmaxθ̂τΠ
h(θ̂τ ). By virtue of our iid assumption,

this is feasible. This increases profits and relaxes some (EC) constraints with-

out tightening any previous ones. This establishes that Πh(θt) = Π
h
for all θt

(if two different continuation plays lead to argmaxθ̂τΠ
h(θ̂τ ), we select one to

be played after all histories
(

θt, θh
)

). Therefore, there exists an optimum in

which for any history θt, nh(θt) = nh and nl(θt) = nl
i(θt). �

In the following, we shall write nh := n(θt) for all θt such that θt = θh;

we shall write nl
i = nl

i(θt) = n(θt+1) for all θt+1 = (θt, θl). By the same token,

we shall write Πh and Πl
i for the corresponding optimal profits. These results

allow us to restate our problem as on page 16 in the main text.
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The following two lemmata summarize further aspects of an optimal equi-

librium: Effort levels are always weakly below first-best levels, and profits are

weakly increasing in the discount factor δ.

Lemma 8 There exists an optimal equilibrium with the property that

nl
i ≤ nFB

l and nh ≤ nFB
h .

Proof. Consider an optimum satisfying the properties of Lemmas 5, 6

and 7. Suppose there exists a history θt such that n(θt) > nFB(θt). Reduce

n(θt) by a small ε > 0. This increases profits and relaxes the (EC) constraints

at all predecessor histories. �

Lemma 9 For every history θt, maximal profits Π(θt) are weakly increasing

in δ. Furthermore, a higher δ relaxes (EC) constraints.

Proof. Consider a given discount factor δ̂ and the associated sequence of

optimal actions
(

nh(δ̂), nl
i(δ̂)
)

i∈N
. We first show that a higher δ relaxes (EC)

constraints; i.e., for any discount factor δ̃ > δ̂, previously optimal actions nh(δ̂)

and nl
i(δ̂) continue to satisfy the (EC) constraints. We show this by induction

over the number of periods, starting from the first period, in which the dis-

count factor rises from δ̂ to δ̃. First, suppose only the discount factor between

the first and the second period rises. The (EC) constraint in the first period

can be written as −nhc+δq
[

Πh − g(nl
0)
(

θh − θl
)]

+δ(1−q)Πl
0 ≥ 0. In Lemma

5 we showed that, at our optimum, Πh(θt) ≥ Πl(θt) + g(nl(θt))
(

θh − θl
)

for

all histories θt. Since Πl(θt) ≥ 0, the term in square brackets is non-negative.

Hence, (EC) in period 1 becomes slacker, and the actions that were optimal

at the discount factor δ̂ can still be enforced at the higher discount factor δ̃.

By Lemma 8, these actions lead to (weakly) higher profits. The argument for

the induction step is analogous. �

B.2 Proofs of Propositions 3–5

Proof of Proposition 3

The (EC) constraint to enforce first-best effort levels is given by

−nFB(θt)c+ δ
(

qΠh,FB + (1− q)Πl,FB
0

)

− δqg(nFB
l )

(

θh − θl
)

≥ 0.
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The left-hand side can be bounded from below by

− nFB(θt)c+ δqΠh,FB − δqg(nFB
l )

(

θh − θl
)

≥− nFB(θt)c+ δq
(

θhg(nFB
h )− nFB

h c
)

(

1− δ (1− q)

1− δ

)

− δqg(nFB
l )

(

θh − θl
)

.

Since θhg(nFB
h )− nFB

h c > 0 by assumption and because g(nFB
l ) is finite, this

expression diverges to infinity as δ → 1. Since, by Lemma 9, (EC) constraints

are relaxed by larger values of δ, the claim follows. �

Proof of Proposition 4

Define δ ∈ (0, 1) as the smallest discount factor such that (ECh) holds as an

equality for first-best effort levels nh = nFB
h and nl

i = nFB
l , for all i ∈ N; i.e.,

δ is the smallest discount factor such that

−nFB
h c+ δ

(

qΠh,FB + (1− q)Πl,FB
)

= δqg(nFB
l )

(

θh − θl
)

.

Note that given first-best effort levels, (ECh) is continuous in δ. Furthermore,

δ > 0 follows from no effort being enforceable for δ = 0. Because nFB
h > nFB

l ,

all (ECl) constraints are slack at δ for first-best effort levels.

Now, consider the relaxed problem of maximizing Πh subject only to

(ECh). The Lagrange function for this problem is given by

L = Πh + λECh

[

− nhc+
δq

1− δ(1− q)
Πh + δ

((

θl − qθh
)

g(nl
0)− (1− q)nl

0c
)

+
∞
∑

τ=1

(δ(1− q))τ+1 (θlg(nl
τ )− nl

τc
)

]

where Πh = 1−δ(1−q)
1−δ

(

θhg(nh)− nhc
)

+1−δ(1−q)
1−δ

δ(1−q)

[

∞
∑

i=0

(δ(1− q))i
(

θlg(nl
i)− nl

ic
)

]

.

By our assumptions on g, the objective function and the constraint are twice

continuously differentiable in the choice variables
(

nh, nl
i

)

i∈N
. If θl ≥ qθh, the

Lagrangian is strictly concave in the choice variables, and the first-order con-

ditions are necessary and sufficient for an optimum. If θl < qθh, the first-order

conditions are necessary for a global optimum.12

12In this case, one can show that a global optimum exists and that it entails nh ∈ (0, nh

FB
)
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The first-order conditions for our reduced problem are given by

∂L

∂nh
=
(

θhg′(nh)− c
)

(

1− δ(1− q)

1− δ
+ λECh

δq

1− δ(1− q)

)

− cλECh = 0;

∂L

∂nl
0

= δ(1−q)
(

θlg′(nl
0)− c

) 1− δ(1− q)

1− δ
(1 + λECh)−λEChδqg

′(nl
0)
(

θh − θl
)

= 0 if nl
0 > 0;

λECh[−nhc+
δq

1− δ(1− q)
Πh

+δ
((

θl − qθh
)

g(nl
0)− (1− q)nl

0c
)

+
∞
∑

τ=1

(δ(1− q))τ+1 (θlg(nl
τ )− nl

τc
)

] = 0.

Furthermore, optimality requires ∂L

∂nl

i

= 0, implying θlg′(nl
i) = c, for all

i ≥ 1.

Thus, once (ECh) binds and hence λECh > 0, θhg′(nh)−cmust be positive

for the respective first-order condition to hold; nh will thus be below its first-

best level. In addition, if nl
0 > 0, θlg′(nl

0)−cmust be positive for the first-order

condition to hold, so that nl
0 will be below its first-best level as well. Effort

levels nl
i are at their efficient level nFB

l for all i ≥ 1.

Let nh(δ) be defined by θhg′(nh(δ)) = c1−δ(1−q)
δq

. As g′ is continuous,

strictly decreasing and takes on all values in (0,∞), nh(δ) exists and is unique;

furthermore, the Inverse Function Theorem implies that it is a continuous

function of δ. Moreover, define ñl(δ) by g′(ñl(δ)) = c(1−q)1−δ(1−q)
1−δ

[

1−δ(1−q(1−q))
1−δ

θl − qθh
]−1

and nl(δ) by

nl(δ) =

{

ñl(δ) if 1−δ(1−q(1−q))
1−δ

θl − qθh > 0

0 otherwise.

Again, as g′ is continuous, strictly decreasing and takes on all values in (0,∞),

nl(δ) exists and is unique; furthermore, the Inverse Function Theorem implies

by substituting the binding (ECh) constraint into the objective. Indeed, considering nl
0 as

a function of nh, one shows that this objective function is strictly concave in nh, strictly
increasing for nh close to 0, and, given that we can impose without loss that nl

0 ≤ nl

FB
by

Lemma 8, decreasing at nh = nh

FB
. Of course, as the global optimum satisfies the first-order

conditions, the properties we derive from them apply to the optimum in this case as well.
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that it is a continuous function of δ. Clearly, the solution (n̂h, n̂l
0)(δ) to the

problem in which only (ECh) is imposed entails (n̂h, n̂l
0)(δ) ∈ I, where I :=

[nh(δ), nFB
h ]× [nl(δ), nFB

l ].13 Direct computation shows the partial derivatives

of (ECh) with respect to nh and nl
0 respectively to be strictly negative a.e. on

I, while, because δ ≤ δ̄ < 1, its partial derivative with respect to δ is bounded.

Hence, it is feasible to have a policy (n̂h, n̂l
0) that is continuous in δ, implying

that the optimal profits Π̂h in this problem are a continuous function of δ. As

(nh, nl
0) impacts the (ECli) constraints only via the profits Πh, and since these

constraints are continuous in Πh, all (ECli) constraints hold for the solutions

of this reduced problem in a neighborhood of δ.14 By the argument underlying

the proof of Lemma 9, the (ECh) constraint becomes tighter as the discount

factor δ decreases. Thus, Π̂h(δ) is (weakly) increasing. We can thus take δ as

low as the discount factor at which the (ECli) constraints, i ≥ 1, just hold as

an equality for nl
i = nFB

l , and nh = n̂h and nl
0 = n̂l

0, as characterized by the

Kuhn-Tucker system above.

It remains to show that nh > nFB
l . Suppose to the contrary that nh ≤

nFB
l . Yet this solution is dominated by n̂h = n̂l

0 = nl
i = nFB

l , which leads to

higher profits and is feasible since all (ECli)-constraints (for i ≥ 1) hold for

nl
i = nFB

l even for the initial nh and nl
0. �

Proof of Proposition 5

By definition of δ, some ECli (i ≥ 1) will bind in some left-neighborhood of

δ, while ECl0 remains slack. In this neighborhood, the profit-maximizing nl
i

(i ≥ 1) are obtained by maximizing Πl
1.

Thus, we maximize

Πl
1 =

∞
∑

τ=1

(δ(1− q))τ−1 (θlg(nl
τ )− nl

τc
)

+ δqΠh 1

1− δ(1− q)

subject to

−nl
ic+δqΠh (1 + δ(1− q))+δ

((

θl − qθh
)

g(nl
i+1)− (1− q)nl

i+1c
)

+δ2(1−q)2Πl
i+2 ≥ 0

13One shows that nl < nFB

l
(nh < nFB

h
) by showing that the partial derivative of (ECh)

with respect to nl
0 (nh) is always strictly negative at nl

0 = nFB

l
(nh = nFB

h
).

14As the only exception, there is a direct impact of n̂l
0 in (ECl0). Yet, as n̂l

0 ≤ nFB

l
,

(ECl0) is slacker than the other (ECli) constraints, and thus continues to hold as well.
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for all i ≥ 1. We proceed in several steps.

Lemma 10 For any i ≥ 1, Πl
1 ≥ Πl

i.

Proof. Suppose to the contrary that Πl
j > Πl

1, for some j > 1. For all

i ≥ 1, replace ni by nj+i−1. (This operation is feasible because all (ECli) were

satisfied by assumption.) Thus, our previous Πl
1 cannot solve our maximiza-

tion problem. �

Lemma 11 nl
1 ≥ nl

i∀i

Proof.Suppose to the contrary that there is a j > 1 with nl
j > nl

1. Re-

place nl
j with nl

1 and the continuation play following nl
j with the continuation

play following nl
1. This is clearly feasible and (weakly) profitable (as Πl

j ≤ Πl
1

by Lemma 10). �

Lemma 12 For all odd i ≥ 1, Πl
i ≥ Πl

i+2 and nl
i ≥ nl

i+2.

Proof. We proceed by induction over i. That Πl
3 ≤ Πl

1 follows from

Lemma 10. For the induction step, suppose that Πl
j ≥ Πl

j+2, for some odd

integer j. We have to show that Πl
j+2 ≥ Πl

j+4. Suppose to the contrary that

Πl
j+2 < Πl

j+4. Now, for all i ≥ j + 2, replace nl
i by nl

i+2. This is feasible

if nl
j+1 ≤ nl

j+3. Therefore, our operation increases Πl
j+2 and hence Πl

1. If

nl
j+1 > nl

j+3, by contrast, we distinguish two cases: (1.) If Πl
j+1 ≤ Πl

j+3, we

can replace nl
i by nl

i+2 for all i ≥ j + 1. This replacement is feasible and

weakly increases Πl
1. (2.) If, however, Πl

j+1 > Πl
j+3, we replace nl

i+2 by nl
i

for all i ≥ j + 1. This is feasible if nl
j ≥ nl

j+2. If, however, nl
j < nl

j+2, we

can replace nl
i+2 by nl

i for all i ≥ j. Because, by the induction hypothesis,

Πl
j ≥ Πl

j+2, this increases Π
l
1.

Suppose that nl
j < nl

j+2 for some odd integer j. Replace all nl
i+2 by nl

i

for all i ≥ j. This is clearly feasible and (weakly) profitable (as Πl
j ≥ Πl

j+2).�

Lemma 13 For all even i ≥ 2, Πl
i ≤ Πl

i+2 and nl
i ≤ nl

i+2.

Proof. Suppose to the contrary that Πl
j+4 < Πl

j+2 for some even integer

j. Then, we can replace all nl
i+2 by nl

i for all i ≥ j + 2. This is feasible as

nl
j+1 ≥ nl

j+3 by Lemma 12. Suppose that nl
j > nl

j+2 for some even integer

j. Replace all nl
i by nl

i+2 for all i ≥ j. This is clearly feasible and (weakly)

profitable (as Πl
j+2 ≥ Πl

j). �
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Lemma 14 nl
i 6= nl

i+2 ⇒ nl
j 6= nl

j+2∀j ≤ i.

Proof. Suppose to the contrary that nl
i 6= nl

i+2 but nl
j = nl

j+2 for some

integer j < i. Consider the biggest such integer j, i.e., nl
j+1 6= nl

j+3. First,

assume that j is even, i.e., j + 1 is odd and, by Lemma 12, nl
j+1 > nl

j+3.

Replace all nl
ι+2 by nl

ι for all ι ≥ j + 1. This is feasible as nl
j = nl

j+2 and

(weakly) profitable (as Πl
j+1 ≥ Πl

j+3). Second, assume that j is odd, i.e., j+1

is even and, by Lemma 13, nl
j+1 < nl

j+3. Replace all n
l
ι by nl

ι+2 for all ι ≥ j+1.

This is feasible as nl
j = nl

j+2 and (weakly) profitable (as Πl
j+1 ≤ Πl

j+3). �

Lemma 15 nl
i = nl

i+2 ⇒ nl
j = nl

j+2∀j ≥ i.

Proof. Suppose to the contrary that nl
i = nl

i+2 but nl
j 6= nl

j+2 for some

integer j > i. Consider the smallest such integer j, i.e., nl
j−1 = nl

j+1. First,

assume that j−1 is even, i.e., j is odd and, by Lemma 12, nl
j > nl

j+2. Replace

all nl
ι+2 by nl

ι for all ι ≥ j. This is feasible as nl
j−1 = nl

j+1 and (weakly)

profitable (as Πl
j ≥ Πl

j+2). Second, assume that j − 1 is odd, i.e., j is even

and, by Lemma 13, nl
j < nl

j+2. Replace all nl
ι by nl

ι+2 for all ι ≥ j. This is

feasible as nl
j−1 = nl

j+1 and (weakly) profitable (as Πl
j1 ≤ Πl

j+2). �

Lemma 16 nl
1 = nl

2 ⇒ nl
i = nl

1∀i ≥ 1.

Proof. By Lemma 13, nl
1 = nl

2 ⇒ nl
j = nl

1 for all even j. Hence,

by Lemma 15, nl
ι = nl

ι+2 for all odd ι ≥ 3. Suppose to the contrary that

nl
1 > nl

3. Replace nl
3 with nl

1 and the continuation play following nl
3 with the

continuation play following nl
1. This is feasible and (weakly) profitable (as

Πl
j ≤ Πl

1 by Lemma 10). �

Lemma 17 Assume there is one i for which the (ECli) constraint is slack.

Then, the (ECli+1) constraint binds.

Proof. To the contrary, assume that the (ECli+1) constraint is slack.

Increase nl
i+1 by a small ε > 0. This is feasible and increases Πl

1. �

Lemma 18 Assume there is one odd i > 1 for which the (ECli) constraint is

slack. Then, nl
j = nl

FB∀j ≥ 1.

Proof. Suppose (ECli) is slack for i odd, with i > 1. Then, there must

exist an optimum with ni+j = nj∀j ≥ 1. This implies that Πl
i+1 = Πl

1, Π
l
i+2 =
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Πl
2, ..., Π

l
2i−1 = Πl

i−1. By Lemma 13, Πl
2 ≤ Πl

4 ≤ ... ≤ Πl
i+1 ≤ Πl

i+3 ≤ ....

Since Πl
i+1 = Πl

1 ≤ Πl
i+3 = Πl

3 ≤ Πl
i+5 = Πl

5 ≤ ... ≤ Πl
2i = Πl

i ≤ ... ≤ Πl
1,

Πl
j = Πl

1 for all even j.

By Lemma 12, we have Πl
1 ≥ Πl

3 ≥ ... ≥ Πl
i = Πl

2i = Πl
1, and hence

Πl
j = Πl

1 for all odd j. Thus, nl
j = nl

1 for all j ≥ 1. Therefore, the Lagrange

parameters satisfy λj = λj+1 = 0 for all j, and nl
1 = nl

FB. �

Lemma 18 implies that, in our left-neighborhood of δ, all odd-numbered

constraints will bind, i.e. the Lagrange parameters satisfyλj > 0 for all odd

integers j.

Lemma 19 Assume there is one even i for which the (ECli) constraint is

slack. Then, the (EClj) constraints are slack for any even j. Moreover, nl
j =

nl
j+2 = ... = nl

1 for all odd j, and nl
ι = nl

ι+2 = ... = nl
2 for any even ι.

Proof. Suppose (ECli) is slack for i even. Then, there must exist an

optimum with ni+j = nj∀j ≥ 1. This implies that Πl
i+1 = Πl

1, Πl
i+2 =

Πl
2, ..., Π

l
2i−1 = Πl

i−1. By Lemma 13, Πl
2 ≤ Πl

4 ≤ ... ≤ Πl
i ≤ Πl

i+2 = Πl
2, and

hence Πι = Πl
2 for all even ι. It follows that (EClι) is slack for all even ι.

Thus, nl
ι = nl

2 for all even ι.

By Lemma 12, we have Πl
1 ≥ Πl

3 ≥ ... ≥ Πl
i+1 = Πl

1, and hence Πl
j = Πl

1

for all odd j. Thus, nl
j = nl

1 for all odd j. Therefore, the Lagrange parameters

λι = λι+2 = 0 for all even ι. �

The previous lemmata imply that there are two possibilities for an op-

timum. Either, all even (ECli) constraints are slack, in which case nl
j = nl

1

for all odd j and nl
ι = nl

2 for all even ι. Otherwise, all (ECli) constraints will

bind. In the following, we characterize effort levels nl
i (i ≥ 1) for the latter

possibility.

Lemma 20 Assume all (ECli) constraints bind. Then, either nl
1 = nl

3 =

nl
5 = ... and nl

2 = nl
4 = nl

6 = ..., or nl
1 > nl

3 > nl
5 > ... and nl

2 < nl
4 < nl

6 < ....

Proof. To the contrary, assume that nl
j+2 > nl

j for j even, but that

nl
j+3 = nl

j+1. By Lemma 15, this implies that nl
j+2 = nl

j+4 = ... and nl
j+3 =

nl
j+5 = ..., and in particular also that Πl

j+2 = Πl
j+4. But then, (EClj) can not

bind, a contradiction. The same logic can be applied to show that nl
j+2 < nl

j

for j odd, but that nl
j+3 = nl

j+1, is not feasible. �

Lemma 21 nl
i > nl

j ⇒ Πl
i ≥ Πl

j.
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Proof. Suppose to the contrary that there exist integers i and j such

that nl
i > nl

j yet Π
l
i < Πl

j. Then,

Πl
j−Πl

i =
(

θlg(nl
j)− cnl

j

)

+δqΠh+δ(1−q)Πl
j+1−

[(

θlg(nl
i)− cnl

i

)

+ δqΠh + δ(1− q)Πl
i+1

]

=
[(

θlg(nl
j)− cnl

j

)

−
(

θlg(nl
i)− cnl

i

)]

+ δ(1 − q)
(

Πl
j+1 − Πl

i+1

)

≥ 0. Be-

cause nl
i > nl

j,
[(

θlg(nl
j)− cnl

j

)

−
(

θlg(nl
i)− cnl

i

)]

< 0. Therefore, Πl
j+1 −

Πl
i+1 > 0. Hence, replacing the history nl

i by nl
j and the continuation play af-

ter nl
i by the continuation play after nl

j is feasible, and also strictly profitable.

�

Lemma 22 Suppose all (ECli) constraints bind. Then, supj∈N n
l
2j ≤ infj∈N n

l
2j−1.

Proof. Suppose to the contrary that supj∈N n
l
2j > infj∈N n

l
2j−1. Then, by

Lemmata 12 and 13, this implies lim supj∈N n
l
2j > lim infj∈N n

l
2j−1. Therefore,

there exists an integer i such that nl
2i > nl

2i−1 ≥ nl
2i+1. By Lemma 21, this

implies that Πl
2i > Πl

2i+1. Yet, as all constraints (EClι), and in particular

(ECl2i − 2), are binding, nl
2i > nl

2i−1 and Πl
2i > Πl

2i+1 implies that nl
2i−2 >

nl
2i−1, which, by Lemma 21, implies Πl

2i−2 > Πl
2i−1. As furthermore Πl

2i ≥

Πl
2i−2 by Lemma 13 and all constraints, in particular (ECli−2) and (ECli−3),

are binding, we can conclude that nl
2i−2 > nl

2i−3 and thus, by Lemma 21,

Πl
2i−2 > Πl

2i−3. Iterating this argument finally yields nl
2 > nl

1, a contradiction

to Lemma 11. �

Lemma 23 nl
1 = nl

2 ⇔ qθh = θl.

Proof. Recall that for δ < δ, the values nl
i, i ≥ 1, can be obtained by

maximimizing

Πl
1 =

∞
∑

τ=1

(δ(1− q))τ−1 (θlg(nl
τ )− nl

τc
)

+ δqΠh 1
1−δ(1−q)

, s.t. (ECli) con-

straints for i ≥ 1, and treating Πh as a constant. The Lagrange function of
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this problem is

L =
∞
∑

τ=1

(δ(1− q))τ−1 (θlg(nl
τ )− nl

τc
)

+ δqΠh 1

1− δ(1− q)

+ λ1

[

− nl
1c+

δq

1− δ(1− q)
Πh + δ

((

θl − qθh
)

g(nl
2)− (1− q)nl

2c
)

+
∞
∑

τ=3

(δ(1− q))τ−1 (θlg(nl
τ )− nl

τc
)

]

+ λ2

[

− nl
2c+

δq

1− δ(1− q)
Πh + δ

((

θl − qθh
)

g(nl
3)− (1− q)nl

3c
)

+
∞
∑

τ=4

(δ(1− q))τ−2 (θlg(nl
τ )− nl

τc
)

]

...

and first-order conditions are
∂L

∂nl

1

=
(

θlg′(nl
1)− c

)

− λ1c = 0
∂L

∂nl

2

= δ(1−q)
(

θlg′(nl
2)− c

)

+λ1δ
((

θl − qθh
)

g′(nl
2)− (1− q)c

)

−cλ2 = 0
∂L

∂nl

3

= (δ(1− q))2
(

θlg′(nl
3)− c

)

(1 + λ1)+λ2

[

δ
((

θl − qθh
)

g′(nl
3)− (1− q)c

)]

−

cλ3 = 0
∂L

∂nl

4

= (δ(1− q))3
(

θlg′(nl
4)− c

)

(

1 + λ1 +
λ2

δ(1−q)

)

+λ3δ
((

θl − qθh
)

g′(nl
4)− (1− q)c

)

−

cλ4 = 0
...
∂L

∂nl

1

= 0 yields that nl
1 < nl

FB for λ1 > 0 which holds for δ < δ. Plugging

λ1 =
(θlg′(nl

1
)−c)

c
into ∂L

∂nl

2

= 0 yields

δ(1− q)θl
(

g′(nl
2)− g′(nl

1)
)

+

(

θlg′(nl
1)− c

)

c
δ
(

θl − qθh
)

g′(nl
2)− cλ2 = 0.

Therefore qθh > θl implies nl
1 > nl

2. To show that qθh = θl ⇒ nl
1 = nl

2, we

first assume that λ2 = 0 and verify later that it holds.

If λ2 = 0, the condition gives nl
1 = nl

2. Furthermore, if λ2 = 0, Lemma 19

implies that nl
1 = nl

3 = ... and nl
2 = nl

4 = .... Then, Πl
1 =

(θlg(nl

1
)−nl

1
c)+δ(1−q)(θlg(nl

2
)−nl

2
c)

1−(δ(1−q))2
+

δqΠh 1
1−δ(1−q)

, and the (binding) (ECl1) constraint equals

−nl
1c+

δq

1−δ(1−q)
Πh + δ

((

θl − qθh
)

g(nl
2)− (1− q)nl

2c
)

+ (δ(1−q))2

1−(δ(1−q))2

[(

θlg(nl
1)− nl

1c
)

+ δ(1− q)
(

θlg(nl
2)− nl

2c
)]

= 0

Plugging
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δq

1−δ(1−q)
Πh

= nl
1c− δ

((

θl − qθh
)

g(nl
2)− (1− q)nl

2c
)

− (δ(1−q))2

1−(δ(1−q))2

[(

θlg(nl
1)− nl

1c
)

+ δ(1− q)
(

θlg(nl
2)− nl

2c
)]

into (ECl2) gives

(

g(nl
1)− g(nl

2)
)

δ
(

θl − qθh − qδ(1− q)
(

θh − θl
))

+ c
(

nl
1 − nl

2

)

≥ 0.

For qθh = θl and nl
1 = nl

2, the left hand side equals zero, hence (ECl2) is

satisfied. �

This concludes the proof of Proposition 5. �

C Proof of Proposition 6 in Section 5

First, we show that nhh = nhl ≡ nh and nlh = nll ≡ nl. To do so, we

omit (TT) constraints and solve the problem only subject to (TT2) and (DE)

constraints. Then, we show that the solution to this relaxed problem also

satisfies (TT) constraints.

The reduced problem maximizes Π
h
, subject to

−nhhc+ δΠ
h
≥ 0 (DEhh)

−nhlc+ δΠ
l
≥ 0 (DEhl)

−nlhc+ δΠ
h
≥ 0 (DElh)

−nllc+ δΠ
l
≥ 0. (DEll)

θhg(nhh)− nhhc+ δΠ
h
≥ θhg(nhl) (TThh2)

θhg(nhl)− nhlc+ δΠ
l
≥ θhg(nhh) (TThl2)

θlg(nlh)− nlhc+ δΠ
h
≥ θlg(nll) (TTlh2)

θlg(nll)− nllc+ δΠ
l
≥ θlg(nlh) (TTll2)

Note that effort is never above the respective first-best effort level. Now,

assume to the contrary that nhh > nhl. If (DEhl) binds, plugging−nhlc+δΠ
l
=

0 into (TThl2) yields θhg(nhl) ≥ θhg(nhh) which is violated for nhh > nhl. If

(DEhl) does not bind, increase nhl by a small ε > 0. This operation increases
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Π
h
, relaxes (TThl2), and does not violate (TThh2), (DEhl) or any other

constraint. Continue until either nhh = nhl or (DEhl) binds. In the latter case,

recall that (TThl2) is violated for a binding (DEhl) constraint and nhh > nhl.

Next, assume nhh < nhl. If (DEhh) binds, plugging −nhhc + δΠ
h
= 0

into (TThh2) yields θhg(nhh) ≥ θhg(nhl) which is violated for nhh < nhl. If

(DEhh) does not bind, increase nhh by a small ε > 0. This operation increases

Π
h
, relaxes (TThh2), and does not violate (TThl2) and (DEhh) or any other

constraint. Continue until either nhh = nhl or (DEhh) binds. In the latter

case, recall that (TThh2) is violated for a binding (DEhh) constraint and

nhh > nhl.

Thus, we have shown that nhh = nhl ≡ nh in this reduced problem.

Accordingly, it can be shown that nlh = nll ≡ nl. Taking this into account,

the remaining constraints in the reduced problem are

−nhc+ δΠ
h
≥ 0 (DEhh)

−nhc+ δΠ
l
≥ 0 (DEhl)

−nlc+ δΠ
h
≥ 0 (DElh)

−nlc+ δΠ
l
≥ 0. (DEll)

Together with Π
h
=
(

θhg(nh)− nhc
)

+ δqΠ
h
+ δ(1 − q)Π

l
and Π

l
=

(

θlg(nl)− nlc
)

+ δqΠ
h
+ δ(1 − q)Π

l
, this implies that nh ≥ nl and Π

h
>

Π
l
, which allows us to omit (DEhh) and (DElh), and leaves the remaining

constraints

−nhc+ δΠ
l
≥ 0 (DEh)

−nlc+ δΠ
l
≥ 0. (DEl)

Therefore, effort levels to this constrained maximization problem are

given by discount factors, δ and δ, with 0 < δ < δ < 1, with

• nh = nFB
h and nl = nFB

l for δ ≥ δ

• nl = nFB
l < nh < nFB

h for δ < δ < δ

• nl = nh ≤ nFB
l for δ ≤ δ

To complete the proof, we have to show that these effort levels do not violate

any of the (TT) constraints. These amount to
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(

θhg(nhh)− nhhc+ δΠ
h
)

−
(

θhg(nhl)− nhlc+ δΠ
l
)

− δ
(

θh − θl
) [

qg(nlh) + (1− q)g(nll)
]

≥ 0 (TThh)

−
[(

θhg(nhh)− nhhc+ δΠ
h
)

−
(

θhg(nhl)− nhlc+ δΠ
l
)]

+ δ
(

θh − θl
) [

qg(nhh) + (1− q)g(nhl)
]

≥ 0 (TThl)

(

θlg(nlh)− nlhc+ δΠ
h
)

−
(

θlg(nll)− nllc+ δΠ
l
)

− δ
(

θh − θl
) [

qg(nlh) + (1− q)g(nll)
]

≥ 0 (TTlh)

−
[(

θlg(nlh)− nlhc+ δΠ
h
)

−
(

θlg(nll)− nllc+ δΠ
l
)]

+ δ
(

θh − θl
) [

qg(nhh) + (1− q)g(nhl)
]

≥ 0. (TTll)

Plugging nhh = nhl = nh and nlh = nll = nl into the (TT) constraints, re-

arranging and making use of Π
h
− Π

l
=
(

θhg(nh)− nhc
)

−
(

θlg(nl)− nlc
)

,

yields an equivalence of (TThh) and (TTlh), as well as of (TThl) and (TTll).

Therefore, the remaining (TT) constraints are

δ
[(

θhg(nh)− nhc
)

−
(

θhg(nl)− nlc
)]

≥ 0 (TThh)

δ
[(

θlg(nh)− nhc
)

−
(

θlg(nl)− nlc
)]

≤ 0 (TThl)

For δ > δ, these conditions hold strictly (the latter because nFB
l max-

imizes θlg(nl) − nlc), for δ ≤ δ and hence nl = nh they hold as equalities.

�
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D Proofs for Section 6

D.1 Permanent Shocks

First, note that an equivalent result to Lemma 4 is immediate: (TTh) and

(TTl) cannot both bind in the same period if
∑∞

τ=0(δq)
τg(nl

τ ) 6=
g(nh)
1−δq

. Fur-

thermore, we can show that there exists an optimal equilibrium with the

property n(θt) ≤ nFB(θt), i.e., a result equivalent to Lemma 8 obtains.

Indeed, suppose to the contrary that n(θt) > nFB(θt) for some history

θt. Then, reduce n(θt) by some ε > 0, while increasing w(θt) in such a way

as to leave the principal’s profits unchanged. This relaxes the (IR) and (IC)

constraints at history θt and at all predecessor histories, while all (DE) and

(TT) constraints remain unchanged. Thus, reducing n(θt) cannot do any

harm.

We now prove

Lemma 24 The effort levels satisfy nh ≥ supi∈N n
l
i.

Proof: Suppose to the contrary that a policy σ =
(

nh, nl
i

)

i∈N
such that

nh < supi∈N n
l
i =: n̄l is optimal. Then, as n(θt) ≤ nFB(θt), the policy σ̂ =

(

n̂h, n̂l
i

)

i∈N
given by n̂h = n̂l

i = n̄l, ŵh = ŵl
i = 0, and b̂h = b̂li = n̄c, for all i ∈ N

leads to higher profits Π̂h > Πh and Π̂l ≥ Πl
i (i ∈ N), where Π̂h (Πh) and Π̂l

(Πl
i) are the profits associated with policy σ̂ (σ), respectively. As policy σ

satisfies all (DEli)-constraints, we have that −nl
ic + δΠ̂l ≥ −nl

ic + δΠl
i ≥ 0.

This implies −n̄lc+ δΠ̂l ≥ 0, i.e., the policy σ̂ satisfies all (DEli)-constraints.

Moreover, (TTh) and (TTl) hold with equality. This is a contradiction to

policy σ being optimal. �

Now, we are ready to prove

Lemma 25 There exists an optimal equilibrium with the properties that, for

every history θt,

• the (TTl) constraint can be omitted,

• n(θt)c = qbh(θt) + (1− q)bl(θt) and w(θt) = 0.

Proof. Lemma 24 implies that, if both (TTh) and (TTl) bind, nh = nl
τ = n̄

for all τ ∈ N. In this case, bh = bl0 ≥ n̄c.

Now, if there exists a τ ∈ N such that nh > nl
τ , Lemma 24 implies that

g(nh)
1−δq

>
∑∞

τ=0(δq)
τg(nl

τ ). Suppose that (TTl) binds. As
g(nh)
1−δq

>
∑∞

τ=0(δq)
τg(nl

τ ),
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(TTh) is slack. We can therefore increase bh by a small ε > 0 while decreasing

wh by qε. This leaves all constraints and profits unaffected yet relaxes the

(IC) and (TTl) constraints (while tightening the (TTh) constraint and leaving

the (DEli) constraints unaffected). Now suppose that the (IC) constraint is

slack. If bl0 > 0, we can decrease bh > 0 and bl0 > 0 by some ε > 0, while

increasing wh by ε. This leaves profits as well as all constraints unaffected,

with the exception of the (DEl0)-constraint, which is relaxed. If now bl0 = 0

and the (IC) and (TTl) constraints are slack, we can decrease bh by some

ε > 0, while increasing wh by ε
q
. This leaves all constraints and profits unaf-

fected, yet relaxes the (TTh) constraint (while tightening the (TTl) and (IC)

constraints and leaving the (DEl0) constraint unaffected). If bl0 = 0 and the

(TTl) constraint binds, we can replace nl
τ by nh for all τ ∈ N while setting

bhnew = blτ,new = nhc. The (TTh), (TTl) and (IC) constraints all hold with

equality by construction. It remains to show that the (DEli) constraints con-

tinue to hold, i.e. that −n̄c + δΠl
i,new = −n̄c + δΠ̃h ≥ 0. Yet, the binding

(TTl) implies that δΠl
0,old = −bhold(θ

t) + δΠ̃h(θt) ≥ 0, which implies that the

(DEli) constraints will hold after our change, as bhold ≥
nhc
q

≥ nhc by the (IC)

constraint.

Because Uh = wh − nhc + qbh + (1− q)bl0 = 0, a binding (IC) constraint

implies that wh = 0. By the same token, U l
τ = wl

τ −nl
τc+ blτ+1 = 0, a binding

(IC) constraint implies that wl
τ = 0 for all τ ∈ N. �

We are now ready to show the equivalent of Lemma 9.

Lemma 26 Maximal profits Πh and Πl
i (i ∈ N) are weakly increasing in δ.

Furthermore, a higher δ relaxes the (ECh) and (DEli)-constraints.

Proof. Suppose the discount factor rises from δ̂ to δ̃ > δ̂. The actions

that were optimal at δ̂ continue to satisfy all (DEli) for δ̃. By Lemma 8, these

actions lead to weakly higher profits. It thus only remains to show that (ECh)

is relaxed as δ increases. For this, we compute the derivative D of (ECh) with

respect to δ, which works out as

D = q

[

Πh + δΠh′

− (θh − θl)
∞
∑

i=0

(1 + i)(δq)ig(nl
i)

]

+ (1− q)
[

Πl
0 + δΠl′

0

]

.

As

Πh =
1

1− δq

[

θhg(nh)− nhc+ δ(1− q)Πl
0

]

,
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we have

Πh′

=
1− q

1− δq
[Πl

0 + δΠl′

0 ] +
q

(1− δq)2
[

θhg(nh)− nhc+ δ(1− q)Πl
0

]

.

Furthermore, as

Πl
0 =

∞
∑

i=0

δi
(

θlg(nl
i)− nl

ic
)

,

we have

Πl
0 + δ(1− δq)Πl′

0 =
∞
∑

i=0

(1 + (1− δq)i)δi
(

θlg(nl
i)− nl

ic
)

.

Inserting this gives us

(1− δq)2D = q(θhg(nh)−nhc)+ (1− q)
∞
∑

i=0

(1 + (1− δq)i) δi
(

θlg(nl
i)− nl

ic
)

− q(θh − θl)(1− δq)2
∞
∑

i=0

(1 + i)(δq)ig(nl
i).

To show that D ≥ 0, it is sufficient to show that

q(θhg(nh)−nhc)+(1−q)
∞
∑

i=0

(1 + (1− δq)i) δi
(

θlg(nl
i)− nl

ic
)

−q(θh−θl)g(n̄l) ≥ 0,

where we have used that
∑∞

i=0(1 + i)(δq)i = 1
(1−δq)2

and supi∈N n
l
i =: n̄l. We

can rewrite this as

q

[

θh(g(nh)− g(n̄l))−

(

nh −
∞
∑

i=0

(1 + (1− δq)i)δinl
i

)

c

+θl

(

g(n̄l)−
∞
∑

i=0

(1 + (1− δq)i)δig(nl
i)

)]

+
∞
∑

i=0

(1 + (1− δq)i)δi(θlg(nl
i)− nl

ic) ≥ 0.

By Lemma 24, we know that nh ≥ n̄l; by Lemma 8, this implies that
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θhg(nh)− nhc ≥ θhg(n̄l)− n̄lc. Thus, it is sufficient for D ≥ 0 that

q

[

θlg(n̄l)− n̄lc−
∞
∑

i=0

(1 + (1− δq)i)δi(θlg(nl
i)− nl

ic)

]

+
∞
∑

i=0

(1+(1−δq)i)δi(θlg(nl
i)−nl

ic) ≥ 0,

which was to be shown. �

Proof of Proposition 7

We first omit (DEl) constraints and show ex post that they hold at the solu-

tions of the relaxed problem. Denoting by λ the Lagrange parameter associ-

ated with the (ECh) constraint, the Lagrange function equals

L =
θhg(nh)− nhc+ δ(1− q)

∑∞

i=0 δ
i
(

θlg(nl
i)− nl

ic
)

1− δq
(1 + δqλ)

+ λ

[

−nhc+
∞
∑

i=0

δi+1
[(

(1− q) θl −
(

θh − θl
)

qi+1
)

g(nl
i)− (1− q)nl

ic
]

]

,

yielding first-order conditions

∂L

∂nh
=

θhg′(nh)− c

1− δq
(1 + δqλ)− λc = 0 (D.2)

∂L

∂nl
i

=δi+1

{

(

θlg′(nl
i)− c

)

(

(1− q)

1− δq
(1 + δqλ) + λ (1− q)

)

−λqi+1
(

θh − θl
)

g′(nl
i)

}

= 0 (D.3)

δ < δh implies λ > 0. Hence, condition (D.2) gives nh < nFB
h , whereas

(D.3) gives nl
i < nFB

l . Condition (D.3) also implies that lim
i→∞

nl
i = nFB

l : Since

q < 1, lim
i→∞

qi+1 = 0, hence θlg′(nl
i)− c = 0.

To show that nl
i < nl

i+1, rewrite conditions (D.3) for nl
i and for nl

i+1 as
(

θlg′(nl
i)− c

)

(1−q)
1−δq

= −λ
[

(1−q)
1−δq

(

θlg′(nl
i)− c

)

− qi+1
(

θh − θl
)

g′(nl
i)
]

(

θlg′(nl
i+1)− c

)

(1−q)
1−δq

= −λ
[

(1−q)
1−δq

(

θlg′(nl
i+1)− c

)

− qi+2
(

θh − θl
)

g′(nl
i+1)
]

.

Dividing the first by the second equality yields the necessary condition

θlg′(nl
i)− c

θlg′(nl
i+1)− c

=

(1−q)
1−δq

(

θlg′(nl
i)− c

)

− qi+1
(

θh − θl
)

g′(nl
i)

(1−q)
1−δq

(

θlg′(nl
i+1)− c

)

− qi+2 (θh − θl) g′(nl
i+1)

,
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which becomes

qi+1
(

θh − θl
) g′(nl

i)
(

θlg′(nl
i+1)− c

)

−
(

θlg′(nl
i)− c

)

qg′(nl
i+1)

(

θlg′(nl
i+1)− c

)

[

(1−q)
1−δq

(

θlg′(nl
i+1)− c

)

− qi+2 (θh − θl) g′(nl
i+1)
] = 0

The denominator of this expression must be different from zero:
(

θlg′(nl
i+1)− c

)

> 0 because nl
i+1 < nFB

l . The term in squared brackets

must be strictly negative: It captures the partial derivative of the left hand side

of the (ECh) constraint with respect to nl
i+1. If it were positive, a larger value

of nl
i+1 (which is feasible) would relax the (ECh) constraint, contradicting

that it binds. Therefore, the term is zero if and only if its numerator is zero,

yielding

(

θlg′(nl
i+1)− c

)

(

θlg′(nl
i)− c

) = q
g′(nl

i+1)

g′(nl
i)

.

As q < 1, this implies
(θlg′(nl

i+1
)−c)

(θlg′(nl

i
)−c)

<
g′(nl

i+1
)

g′(nl

i
)
. This is equivalent to

g′(nl
i) > g′(nl

i+1), which yields nl
i+1 > nl

i due to the strict concavity of g(·).

Finally, note that the derived nl
i satisfy all (DEli) constraints, −nl

ic +

δΠl
i+1 ≥ 0. Since nl

i+1 > nl
i∀i, Π

l
i+1 >

θlg(nl

i
)−nl

i
c

1−δ
, hence it is sufficient to show

that

−nl
ic+δ

θlg(nl

i
)−nl

i
c

1−δ
≥ 0, that is −nl

ic+δθlg(nl
i) ≥ 0, holds. Because δ ≥ δl,

this condition would hold for nl
i = nFB

l . Because g(·) is strictly increasing and

concave, and because g(0) = 0, −nFB
l c+ δθlg(nFB

l ) ≥ 0 implies that this also

holds for all nl
i < nFB

l . �

D.2 Impermanent Shocks—Proof of Proposition 8

Note that

Πl
0 =

∞
∑

i=0

(

δ(1− ql)
)i (

θlg(nl
i)− nl

ic
)

+ δql
(

θhg(nh)− nhc
)

+ δ(1− qh)
∑∞

i=0

(

δ(1− ql)
)i (

θlg(nl
i)− nl

ic
)

(1− δ) (1− δ (qh − ql))
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and that the (ECh) constraint can be rewritten to

− nhc+ δΠh
qh − δ

(

qh − ql
)

1− δ(1− ql)
+ δ

(

1− qh
)

∞
∑

i=0

(

δ(1− ql)
)i (

θlg(nl
i)− nl

ic
)

≥ δqh
(

θh − θl
)

∞
∑

i=0

[

δ
(

qh − ql
)]i

g(nl
i) (ECh)

Denoting by λ the Lagrange parameter associated with the (ECh) con-

straint, the Lagrange function equals

L =
(

1− δ(1− ql)
)

×

(

θhg(nh)− nhc
)

+ δ(1− qh)
∑∞

i=0

(

δ(1− ql)
)i (

θlg(nl
i)− nl

ic
)

(1− δ) (1− δ (qh − ql))

×

(

1 + δ
qh − δ

(

qh − ql
)

1− δ(1− ql)
λ

)

+ λ

[

− nhc+ δ
(

1− qh
)

∞
∑

i=0

(

δ(1− ql)
)i (

θlg(nl
i)− nl

ic
)

−δqh
(

θh − θl
)

∞
∑

i=0

[

δ
(

qh − ql
)]i

g(nl
i)

]

,

yielding first-order conditions

∂L

∂nh
=
(

θhg′(nh)− c
)

(

1− δ(1− ql)
)

(1− δ) (1− δ (qh − ql))

(

1 + δ
qh − δ

(

qh − ql
)

1− δ(1− ql)
λ

)

−λc = 0

(D.4)

∂L

∂nl
i

=δi+1

{

(

θlg′(nl
i)− c

)

(

(

1− δ(1− ql)
)

(1− qh)

(1− δ) (1− δ (qh − ql))

(

1− ql
)i
(1 + λ)

)

−λqh
(

qh − ql
)i (

θh − θl
)

g′(nl
i)

}

= 0 (D.5)

The existence of a δh, with λ = 0 for δ ≥ δh, follows from the enforce-

ability of first-best effort levels for δ → 1.

Now, consider a left neighborhood of δh where nh
FB and nl

FB do not

satisfy (ECh), and thus λ > 0. Condition (D.4) gives nh < nFB
h , whereas
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(D.5) gives nl
i < nFB

l . Condition (D.5) also implies that lim
i→∞

nl
i = nFB

l : Since
(

qh − ql
)i

< 1, lim
i→∞

(

qh − ql
)i

= 0, hence lim
i→∞

(

θlg′(nl
i)− c

)

= 0.

To show that nl
i < nl

i+1, rewrite conditions (D.5) for nl
i and for nl

i+1 as

(

θlg′(nl
i)− c

)

(

1− δ(1− ql)
)

(1− qh)
(

1− ql
)i

(1− δ) (1− δ (qh − ql))

=− λ

[

(

θlg′(nl
i)− c

)

(

1− δ(1− ql)
)

(1− qh)

(1− δ) (1− δ (qh − ql))

(

1− ql
)i
− qh

(

qh − ql
)i (

θh − θl
)

g′(nl
i)

]

(

θlg′(nl
i+1)− c

)

(

1− δ(1− ql)
)

(1− qh)
(

1− ql
)i+1

(1− δ) (1− δ (qh − ql))

=− λ

[

(

θlg′(nl
i+1)− c

)

(

1− δ(1− ql)
)

(1− qh)

(1− δ) (1− δ (qh − ql))

(

1− ql
)i+1

− qh
(

qh − ql
)i+1 (

θh − θl
)

g′(nl
i+1)

]

Dividing the first by the second equality and reformulating yields the

necessary condition

(

θlg′(nl
i+1)− c

)

(

θlg′(nl
i)− c

) =

(

qh − ql
)

(1− ql)

g′(nl
i+1)

g′(nl
i)

.

As
(qh−ql)
(1−ql)

< 1, this implies
(θlg′(nl

i+1
)−c)

(θlg′(nl

i
)−c)

<
g′(nl

i+1
)

g′(nl

i
)
. This is equivalent to

g′(nl
i) > g′(nl

i+1), which yields nl
i+1 > nl

i due to the strict concavity of g(·).�
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