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OPTIMAL COST OVERRUNS:
PROCUREMENT AUCTIONS WITH RENEGOTIATION

FABIAN HERWEG AND MARCO A. SCHWARZ

Abstract. Cost overrun is ubiquitous in public procurement. We argue that this

can be the result of a constrained optimal award procedure: The procurer awards

the contract via a price-only auction and cannot commit not to renegotiate. If

cost differences are more pronounced for a fancy than a standard design, it is

optimal to fix the standard design ex ante. If renegotiation takes place and the

fancy design has higher production costs or the contractor’s bargaining position

is strong, the final price exceeds the initial price. Moreover, the procurer cannot

benefit from using a multi-dimensional auction, i.e., under the optimal scoring

auction each supplier proposes the standard design.
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JEL Codes: D44, D82, H57

1. Introduction

Renegotiation of procurement contracts awarded by public authorities are ubiqui-

tous. The initial contract is awarded via competitive tendering; i.e., via an auction.

The terms of the initial contract, however, are often subject to renegotiation with

the result that the ultimate price is (by far) higher than the price which the parties

initially agreed upon. Prominent recent examples of public procurement projects

that are by far more expensive than initially planned are the Elbphilharmonie, a
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COST OVERRUNS IN PROCUREMENT 2

concert hall in Hamburg, the Big Dig, a highway artery in Boston, and the North-

South metro line in Amsterdam.1 What is often considered as the most severe case

of a cost overrun in modern construction history is the Sydney Opera House.2 The

project was completed 10 years late at a price of 14.6 times the initial price.3 During

the construction of the Sydney Opera House, plenty of design changes had taken

place. For instance, the design of the roof has been changed from a relatively flat

roof to the fancy ribbed ellipsoidal roof, which increased the cost for the roof by

65%. This and other changes that arguably made the Sydney Opera House more

complex are responsible for a part of its cost overrun.4

Next to casual observations, empirical studies document that the prices typically

increase through renegotiation.5 According to public opinion, these cost overruns

are a sign of inefficient project management by bureaucrats or of strategizing politi-

cians and thus a waste of taxpayers’ money. In contrast to this widespread public

opinion, we argue that these seemingly inefficient cost overruns can be the result of

a constrained optimal award procedure that minimizes the expected final price for

the procurer.

In our model, a procurer needs an indivisible good or service, which can take

one of two designs; i.e., a standard (low quality) or a “fancy” (high quality) design

(a bridge with two or three traffic lanes). The good can be delivered by several

suppliers that may differ in their privately known production costs. Moreover, the

ex post efficient design depends on the contractor’s production cost – i.e., on the

1Regarding the Elbphilharmonie the accepted offer from the underwriting group in 2006 was

241 million euro. The final price at the hand-over of keys in 2016 was 789 million euro (Fiedler

and Schuster, 2016). For the Amsterdam metro line the initial budget was set at 1.46 billion euro

in 2002 but the costs had risen to 3.1 billion euro in 2009. Recent estimates suggest that it will be

completed in 2017 (Chang, Salmon, and Saral, 2016). For the Boston highway artery the ultimate

price exceeded the initial price by 1.6 billion US dollar (Bajari, Houghton, and Tadelis, 2014).
2We define as cost overrun the difference between the final price and the initial price at which

the procurement order has been awarded.
3When controlling for inflation, the cost overrun reduces to a factor of 7.5 (Newton, Skitmore,

and Love, 2014).
4See Newton, Skitmore, and Love (2014) and Drew (1999) for more detailed discussions of the

construction and cost increases of the Sydney Opera House.
5Substantial price increases resulting from contract renegotiation are reported by Decarolis

(2014) for Italian procurement contracts and by Bajari, Houghton, and Tadelis (2014) for Cal-

ifornian procurement contracts. German procurement contracts and the their cost increases are

listed by Fiedler and Schuster (2016). They also report that some projects perform exceptionally

well. For instance, the Chemikum, a building of the University of Erlangen-Nuremberg, was com-

pleted a year earlier than planned and at a cost of only 80 million euro instead of the planned 140

million euro.
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cost type of the supplier who has been awarded with the contract. Initially the

procurer runs an auction in order to allocate the contract. Importantly, the contract

specified by the auction is a specific performance contract that can be enforced by

courts. First, we assume that the procurer can collect bids only on prices and thus

has to select one particular design of the good. More precisely, the procurement

contract for the given design is awarded to one supplier via a standard auction, e.g.,

a second-price sealed-bid auction. The design specified in the initial contract may

turn out to be inefficient, given the cost type of the contractor. In this case, we

assume that the parties engage in Coasian bargaining and implement the efficient

design ex post. Renegotiation is expected by the suppliers and thus incorporated in

their bidding behavior. The rent the contractor (the supplier who won the auction)

receives depends on his cost advantage compared to the second-lowest bidder with

regard to the initial design. We assume that cost differences are more pronounced

for the fancy than for the standard design. Under this assumption it is optimal for

the procurer to fix the standard design ex ante because this enhances competition

in the initial auction. In other words, when commitment not to renegotiate is not

feasible, it is optimal for the procurer to choose the standard design ex ante and

to potentially renegotiate to the fancy design ex post. If the cost for producing the

fancy design is higher or if the contractor’s bargaining power is not too weak, the

final (renegotiation) price exceeds the initial price; i.e., a cost overrun occurs.

An important feature of our model is that the outcome is always efficient. The

supplier who can deliver the ex post efficient design at the lowest cost wins the auc-

tion. He benefits most from contract renegotiation and thus bids most aggressively.

This implies that the unique goal of the procurer is rent extraction; i.e., choosing

the initial design such that the expected final price – for the overall efficient design

delivered by the most efficient supplier – is minimized. In other words, the procurer

does not face a rent extraction versus efficiency tradeoff.

Due to the assumption of Coasian bargaining ex post, the ex post outcome is

always efficient in our baseline model. In two extensions, we augment the baseline

model and allow for renegotiation failure. First, we consider the situation where

contract renegotiation takes place under asymmetric information. Focusing on a

simplified model with only two cost types, we show that the type is always re-

vealed via the bid. The procurer optimally specifies the standard design ex ante

and contract renegotiation typically leads to an upward price adjustment. Second,

we analyze what happens when there is an exogenous risk that the renegotiation

breaks down and the parties are stuck with the initial contract. If this risk is rather

low, it is still optimal to choose the standard design ex ante. As the risk becomes
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larger, taking into account the situation when renegotiation fails becomes more im-

portant, so the optimal initial design is likely to be the fancy one. However, as we

demonstrate in an example, upward price adjustments seem to be more likely than

downward price adjustments if renegotiation takes place; i.e., if there had been a

risk of bargaining breakdown but the parties succeed in finding an agreement.

Finally, we allow for multi-dimensional auctions – i.e., scoring auctions. The

procurer now asks for bids containing a price and a design. The supplier who places

the bid leading to the highest score – determined by a commonly known scoring

rule – wins the auction. The procurer’s initial choice is the scoring function, which

we restrict to be linear in price. If the scoring function reflects the procurer’s true

preferences, each supplier offers the optimal design given his cost. In this case,

contract renegotiation can be avoided. The optimal scoring function, however, does

not reflect the procurer’s true preferences. The optimal scoring function is such that

any supplier bids the standard design. The most efficient supplier wins the initial

auction and the parties are likely to agree to implement the fancy design at a higher

price ex post via renegotiation. In other words, a price-only auction for the standard

design outperforms scoring auctions, where suppliers place multi-dimensional bids

containing a price and a design. The reason is that a multi-dimensional auction

allows for differentiation of the suppliers’ bids, which relaxes competition between

suppliers ex ante and thus leads to higher ultimate prices. This finding is in contrast

to the existing literature on scoring auctions that assumes the procurer can commit

not to renegotiate the contract (Dasgupta and Spulber, 1989-1990; Che, 1993; Chen-

Ritzo, Harrison, Kwasnica, and Thomas, 2005).

The main findings are driven by two behavioral assumptions. First, when submit-

ting bids, suppliers foresee eventual contract renegotiation and bid more aggressively

if they can make profits via renegotiation. Second, the procurer is aware of the sup-

pliers’ bidding strategies and designs the initial auction – specifies the initial design

– so that the auction is most competitive. Regarding the first assumption, it is

widely believed in the construction literature that contractors often bid low on a

project and hope to recover the loss through renegotiation (Levin, 1998). This be-

havior is called opportunistic bidding or bid your claims (Mohamed, Khoury, and

Hafez, 2011). That contractors/bidders respond strategically to anticipated ex post

changes is also documented in the economics literature, e.g., Bajari, McMillan, and

Tadelis (2009); Bajari, Houghton, and Tadelis (2014); Iimi (2013). For instance,

Iimi (2013, p. 254) finds that “when submitting bids, firms already foresee certain

ex post adjustments [...] with cost overruns expected, firms would likely undercut

their bids significantly.” Laboratory evidence that bidders who can gain more from
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contract renegotiation bid more aggressively is provided by Chang, Salmon, and

Saral (2016). Regarding the second assumption, there is no direct evidence that

procurers take advantage of the strategic bidding of suppliers and therefore often

initially specify a standard design. There is, however, evidence that procurers often

add extra components during construction (Iimi, 2013).

The paper is structured as follows. After having discussed the related literature,

which is done in the following paragraphs, we introduce the model in Section 2. The

model is analyzed in Section 3. Asymmetric information and the risk of renegotiation

failure are discussed in Section 4, while we extend the baseline model by allowing for

multi-dimensional auctions in Section 5. The final Section 6 summarizes our findings

and concludes. All proofs are deferred to the Appendix A. Further robustness checks

can be found in Appendix B.

Related Literature. Investigation of procurement contracts is an important and

classic topic of contract theory.6 A seminal contribution analyzing procurement and

renegotiation is Tirole (1986). He analyzes the contractual relationship between

a single procurer and a single supplier with a focus on how initial contracts can

enhance non-contractible relationship specific investments.

Dasgupta and Spulber (1989-1990), Che (1993), and Chen-Ritzo, Harrison, Kwas-

nica, and Thomas (2005) analyze procurement auctions for the case that the procurer

can commit not to renegotiate the contract. All three articles show that the opti-

mal scoring auction outperforms price-only auctions. We demonstrate that if this

commitment is absent, the optimal price-only auction outperforms scoring auctions.

There is only a small extant literature that analyzes auctions without perfect

commitment; i.e., that allows either bidders to renege on their bids or to engage in

contract renegotiation.7 Waehrer (1995), Harstad and Rothkopf (1995), and Roelofs

(2002) allow bidders to withdraw the winning bid ex post. In these models suppliers

are initially uncertain about their costs and thus may underestimate it. The pos-

sibility to default on the initial commitments enhances competition in the auction,

which in turn is beneficial to the procurer.8 Waehrer (1995) also analyzes a scenario

6For an excellent discussion of the standard contract theoretical analysis of procurement see

Laffont and Tirole (1993).
7There is also a small literature that analyzes screening mechanisms if the principal (the pro-

curer) cannot commit not to renegotiate; e.g., Beaudry and Poitevin (1995). This literature typ-

ically assumes that there is only one buyer and one seller and focuses on the constraints limited

commitment power imposes on the implementable allocations.
8The effects of limited liability on more general mechanisms than auctions are investigated by

Burguet, Ganuza, and Hauk (2012).



COST OVERRUNS IN PROCUREMENT 6

where the procurer and the winner renegotiate a new contract. Here, however, rene-

gotiation takes place after the default of the winner and thus the initial contract has

no impact on the outcome of renegotiation.

A similar form of renegotiation is analyzed by Wang (2000) and Shachat and Tan

(2015). In these models the procurer either accepts the lowest bid or rejects all bids.

In case of rejection, the procurer negotiates with the supplier who placed the lowest

bid; i.e., if renegotiation takes place the initial contract concluded by the auction

is not binding. In such a setup renegotiation always leads to lower prices, which is

exactly the opposite from what we study.

The initial contract has an impact on the outcome of renegotiation in Chang,

Salmon, and Saral (2016). Here, suppliers’ production costs have an ex-ante un-

known common component. Some of the suppliers are wealth constrained, while

other have deep pockets and this is private information of each supplier. Allowing

for contract renegotiation is advantageous to wealth-constrained suppliers who can

credibly threaten to default. The prices increase with renegotiation in order to avoid

bankruptcy of the contractor who is faced by unexpectedly high costs. In our model,

the parties agree to a different design of the project ex post, which is often more

costly to produce and thus the final price exceeds the initial price.

A few papers directly deal with the issue of cost overruns. Birulin and Izmalkov

(2013) analyze what shares of a price are optimally paid before and after a potential

extra cost to the supplier realizes when suppliers are protected by limited liability.

This paper is orthogonal to ours, because it does not provide an explanation for cost

overruns but rather assumes its existence.9 Closer to our work is Ganuza (2007).

Here, suppliers are differentiated à la Salop (1979). The buyer does not know her

preferences – her location – but can invest in obtaining a noisy signal. A procure-

ment order for the expected optimal design is awarded via a price-only auction. Ex

post, the buyer’s preferences are common knowledge and the winner of the auction

can make a take-it-or-leave-it renegotiation offer. The main result is that the buyer

under-invests in learning her preferences because this enhances competition in the

initial auction. This is related to our result that the initial design is chosen to en-

hance competition in the initial auction. There are, however, crucial differences.

For instance, in Ganuza (2007) the parties renegotiate the contract because of new

incoming information about the buyer’s preferences. Cost overruns are almost auto-

matic because the ex post optimal design will with probability one be different from

the ex ante design and the contractor has the lowest production cost for the ex ante

9A similar model is analyzed by Birulin (2014).
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design. By contrast, in our model there is no uncertainty about the buyer’s prefer-

ences and depending on the ex ante design, the price will be renegotiated downward

or upward. In other words, cost overruns are the outcome of a strategic decision in

our model. Moreover, Ganuza (2007) analyzes solely price-only auctions, while we

investigate also multi-dimensional auctions.10 A similar model where the procurer’s

preferences are initially unknown and suppliers are horizontally differentiated is an-

alyzed by De Chiara (2015). In his model, the procurer is indifferent between all

initial designs if contract renegotiation is efficient.

Finally, costly renegotiation of incomplete procurement contracts is analyzed by

Bajari and Tadelis (2001) and Herweg and Schmidt (2017). The former paper ana-

lyzes when fixed-price contracts outperform cost-plus contracts, while the latter one

derives conditions so that bilateral negotiations outperform procurement auctions.11

2. The Model

2.1. Players and Payoffs. A procurer P (she), say a government agency, wants

to buy one unit of an indivisible good, e.g., a bridge. The good can be produced

and delivered in one of two designs x ∈ {xL, xH}. Design xL is a standard design of

rather low quality, while xH is a “fancy” design of high quality. The procurer’s gross

valuation of the good is denoted by v(x), with v(xH) > v(xL). Thus, if the procurer

obtains design x at price p, her ex post utility is

(1) u = v(x)− p.

There are n ≥ 2 suppliers that can produce the good required by the procurer. A

supplier’s production cost depends on the design x and his cost type θ ∈ [
¯
θ, θ̄] ≡

Θ, and is denoted by c(x, θ). Ex ante, the cost type θ is private information of

each supplier. The n cost types are drawn independently according to an identical

cumulative distribution function F (θ). Let the corresponding probability density

be f(θ), with f(θ) > 0 for all θ ∈ Θ. When design x is delivered at price p, the

10We conjecture that scoring auctions are optimal in the model of horizontally differentiated

suppliers analyzed by Ganuza (2007). A scoring auction allows the procurer to select the ideal

supplier with a high probability but nevertheless achieves strong competition by handicapping

suppliers that can propose designs closer to the procurer’s ideal one. As we demonstrate, in our

model with vertically differentiated suppliers, the procurer cannot benefit from using a multi-

dimensional auction.
11An empirical analysis of incomplete procurement contracts is provided by Crocker and

Reynolds (1993). They argue that contracts are left incomplete intentionally to economize on

the cost of the ex ante design.
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contractor’s, i.e., the selected supplier’s, ex post payoff is

(2) π = p− c(x, θ).

All parties are assumed to be risk neutral and the outside option utilities are all set

equal to zero.

We assume that a supplier’s cost function is differentiable with respect to the

supplier’s type and satisfies the following assumption.

Assumption 1. For all θi, θj ∈ Θ with θi < θj:

(i) c(xL, θi) < c(xL, θj);

(ii) c(xH , θi)− c(xL, θi) < c(xH , θj)− c(xL, θj).

Part (i) of Assumption 1 is purely labeling; types are ordered according to how

efficient they can produce the standard (low-quality) design xL. According to part

(ii), the cost advantage is increasing in the complexity of the design; i.e., the differ-

ence in production costs between two types is larger for the fancy design xH than

for the standard design xL. This implies that for the implementation of the fancy

design, selecting an efficient supplier is more important. Assumption 1 implies that

the cost for producing design xH is also increasing in the type θ. In order to see

this, note that c(xH , θ) can be written as

(3) c(xL, θ) + [c(xH , θ)− c(xL, θ)].

This does not imply, however, that for any type, production of the fancy design xH

is more expensive than production of the standard design xL.

Finally, we assume that the ex post efficient design, x∗(θ) ∈ argmaxx∈{xL,xH}{v(x)−

c(x, θ)}, for the lowest and the highest type differs. This implies that the ex post

efficient design is

x∗(θ) =







xH for θ < θ̃,

{xL, xH} for θ = θ̃,

xL for θ > θ̃,

(4)

where θ̃ is implicitly defined by v(xH)− c(xH , θ̃) = v(xL)− c(xL, θ̃). Let the social

surplus generated by the ex post efficient design be

(5) S(θ) = max
x∈{xL,xH}

{v(x)− c(x, θ)},

which is decreasing in θ.
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2.2. Award Procedure and Renegotiation. The procurement contract is awarded

to one supplier, called the contractor, via an auction. For now, we focus on sim-

ple price-only auctions.12 In other words, the procurer can collect only price bids

for a given design. For the ease of exposition, we assume that the procurer uses

a second-price sealed-bid auction to award the contract for a pre-specified design

¯
x ∈ {xL, xH}. As we will explain below, the (reduced form) auction game that we

analyze satisfies the assumptions of the revenue equivalence principle and thus the

restriction to second-price auctions is without loss of generality.

When specifying the initial auction, the procurer has only one choice variable,

the initial design
¯
x ∈ X. The procurement order for the good with design

¯
x is

auctioned off between the n suppliers. Each supplier i places a secret price bid pi.

The supplier with the lowest bid is selected as the contractor and the specified price

equals the second lowest bid. If the lowest bid is made by several suppliers, one of

these suppliers is selected at random as the contractor.

With the procurer being restricted to simple auctions and suppliers’ types being

stochastic, the initial design
¯
x may not be optimal given the contractor’s type ex

post. In this case there is scope for renegotiation. We posit that the contractor’s

type is observed by the procurer after the award of the contract and thus the parties

engage in (efficient) Coasian bargaining ex post.

Assumption 2. After the award of the initial contract but before contract renego-

tiation takes place, the contractor’s type θ is observed by the procurer.

In practice, the contractor starts working on the project before the parties agree to

renegotiate. The procurer monitors the contractor and thus obtains an informative

signal – next to the contractor’s bid – about his efficiency. For simplicity we focus

on the extreme case where the contractor’s type is perfectly observed.13 Doubtlessly,

this is a strong assumption but it allows us to simplify the exposition significantly.14

The surplus from renegotiation is split between the procurer and the contractor

12The restriction to price-only auctions is relaxed in Section 5.
13Alternatively the procurer might receive a signal about the contractor’s type due to informa-

tion acquisition which would have been too costly before the selection of a certain supplier.
14If the true type of the contractor is observed ex post, the procurer could use a mechanism that

makes payments contingent on the true type; c.f. Skrzypacz (2013). As one anonymous referee

correctly pointed out, the procurer can implement the first-best allocation without leaving a rent

to suppliers by using a “shoot the liar”-mechanism: The contractor is punished severely for not

having reported the true type ex ante. Such mechanisms are hardly observed in practice. Our

paper is more in the spirit of the literature on incomplete contracts and therefore does not allow

for such mechanisms. We restrict our attention to auctions because those are commonly observed

in practice.
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according to the generalized Nash bargaining solution (GNBS), i.e., the renegotiation

contract is

(6) (x̂, p̂) ∈ arg max
x∈{xL,xH},p∈R

[p− c(x, θ)− dC ]
α × [v(x)− p− dP ]

1−α ,

where α ∈ (0, 1) denotes the contractor’s relative bargaining power ex post.15 The

disagreement payoffs of the two parties are determined by the initial contract (
¯
x,
¯
p):16

dC =
¯
p− c(

¯
x, θ)(7)

dP = v(
¯
x)−

¯
p.(8)

2.3. Timing of the Game. At stage 1, nature draws each supplier’s cost type θ.

The procurer selects the initial design
¯
x ∈ {xL, xH} that she seeks to purchase via

a price-only auction. At stage 2, the auction is executed; i.e., each supplier places

a price bid and the supplier who demanded the lowest price is awarded with the

contract (
¯
x,
¯
p), where

¯
p is the second lowest price bid. At the beginning of stage 3,

the procurer observes the contractor’s cost type and the parties engage in Coasian

bargaining and agree to implement a renegotiation contract (x̂, p̂). The sequence of

events is depicted in Figure 1.

✲

• Nature draws θ1, ..., θn.

• Procurer selects
¯
x and

auctions off contract.

• Suppliers submit bids.

• Lowest bidder wins contract (
¯
x,
¯
p),

where
¯
p is the second lowest bid.

• Contractor’s cost type is

observed by procurer.

• Parties may renegotiate

to a new contract (x̂, p̂).

Figure 1. Timeline.

As equilibrium concept, we employ perfect Bayesian equilibrium in symmetric

strategies.

3. The Analysis

3.1. Contract Renegotiation and Bidding Behavior. We start the analysis

with the renegotiation game. Suppose the procurer awarded a supplier with cost

type θ with the contract (
¯
x,
¯
p). If the design

¯
x is not the efficient design given the

contractor’s cost type,
¯
x 6= x∗(θ), then there is scope for renegotiation. For instance,

if
¯
x = xL and the contractor’s type θ < θ̃, the social surplus can be increased by

15For a detailed description of the Nash bargaining solution see Muthoo (1999). A non-

cooperative foundation for the Nash bargaining solution is provided by Binmore, Rubinstein, and

Wolinsky (1986).
16Exactly the same findings are obtained with an alternative bargaining game, where the GNBS

is replaced by a take-it-or-leave-it offer game. With probability α the contractor can make a

take-it-or-leave-it offer in the renegotiation game, while with probability (1− α) the procurer can.
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adjusting the design from
¯
x = xL to x∗(θ) = xH . The additional surplus is split

between the two parties according to their relative bargaining power. The outcome

of renegotiation is characterized in the following lemma.

Lemma 1 (Renegotiation outcome). Suppose Assumption 2 holds and let the con-

tractor’s type be θ. Ex post, for any initial contract (
¯
x,
¯
p), the procurer and the

contractor agree to trade design x̂ = x∗(θ) at price

p̂(
¯
x,
¯
p, θ) =

¯
p+ α[v(x∗(θ))− v(

¯
x)] + (1− α)[c(x∗(θ), θ)− c(

¯
x, θ)].

A supplier taking part in the auction is aware that the contract may be renego-

tiated ex post. In particular, he knows that if he wins the auction, he may obtain

additional profits generated by contract renegotiation. These additional profits from

renegotiation are incorporated in a supplier’s bidding behavior. Supplier θ’s ex post

payoff from being awarded with the procurement contract (
¯
x,
¯
p) is

π(
¯
x,
¯
p, θ) = p̂(

¯
p, θ)− c(x∗(θ), θ)

=
¯
p+ α[v(x∗(θ))− c(x∗(θ), θ)]− αv(

¯
x)− (1− α)c(

¯
x, θ).(9)

It is important to note that the outcome of the final stage of the game, the

renegotiation game, is deterministic – it is fully determined by the GNBS. For a

given initial design
¯
x, the reduced form auction game simplifies to a standard auction.

Defining an adjusted type

(10) ψ(θ|
¯
x) = c(

¯
x, θ)− α

{
[v(x∗(θ))− c(x∗(θ), θ)]− [v(

¯
x)− c(

¯
x, θ)]

}
,

allows us to write a supplier’s profit from winning as π =
¯
p−ψ. Importantly, there is

a one-to-one mapping from the type θ into an adjusted type ψ. Under any standard

auction format, the lowest adjusted type, which is also the lowest true type, will win

the auction. For a given initial design
¯
x, the revenue equivalence principle holds;

i.e., the expected initial price is identical for all standard auction formats. The final

allocation is also independent of the used auction format because Lemma 1 holds

irrespective of how the initial contract was determined.17

As explained above, we illustrate our findings for the case of a second-price auc-

tion. Here, the price bid affects directly the probability of winning the auction but

only indirectly the price the supplier receives when being awarded with the contract.

Thus, placing the lowest feasible bid that allows the supplier to break-even, even

when he is awarded with the contract at a price equal to his bid, is optimal. The

equilibrium bidding behavior is formally described in the next lemma.

17In Appendix B we formally establish that the revenue equivalence principle holds in our model.
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Lemma 2 (Outcome of the auction). Suppose that Assumptions 1 and 2 hold and

that the procurement order for design
¯
x ∈ {xL, xH} is awarded via a second-price

sealed-bid auction. In the unique equilibrium in undominated strategies, each sup-

plier uses the bidding function

¯
p(
¯
x, θ) = c(

¯
x, θ)− α

{
[v(x∗(θ)− c(x∗(θ), θ)]− [v(

¯
x)− c(

¯
x, θ)]

}
,

which is continuous and strictly increasing in θ. The supplier with the lowest type

wins the auction.

It is important to note that – according to Lemma 2 – the auction selects the

most efficient supplier. In other words, productive efficiency is always guaranteed

by a second-price auction even if contract renegotiation is feasible. This relies on

the assumption that a more efficient type has not only lower production costs for

producing design
¯
x but also generates a higher surplus by adjusting the design via

contract renegotiation. Moreover, by Lemma 1, the ex post design is always efficient.

Hence, overall efficiency is always achieved; i.e., the most efficient type delivers the

efficient design. This implies that the procurer’s problem is solely a problem of rent

extraction. She wants to procure the efficient design from the efficient supplier at

the lowest feasible price. There is no tradeoff between rent extraction and efficiency.

3.2. Constrained Optimal Auction. The procurer solely cares about the ulti-

mate price she has to pay for the good. The initial price – i.e., the price specified in

the procurement contract, is determined by the auction and depends on the cost of

the second lowest type, type θ2. It is given by

(11)
¯
p(
¯
x, θ2) = αv(

¯
x) + (1− α)c(

¯
x, θ2)− αS(θ2).

The ultimate price, paid by the procurer and received by the contractor, depends

not only on the second lowest type but also on the lowest type θ1. The procurer’s

ex post utility, for given realizations of θ1 and θ2, is

u(
¯
x, θ1, θ2) = v(x∗(θ1))−

¯
p(θ2)− α[v(x∗(θ1))− v(

¯
x)]

− (1− α)[c(x∗(θ1), θ1)− c(
¯
x, θ1)]

= (1− α)S(θ1) + αS(θ2)− (1− α)[c(
¯
x, θ2)− c(

¯
x, θ1)].(12)

The first part of the procurer’s ex post utility can be written as S(θ2)+(1−α)[S(θ1)−

S(θ2)]; i.e., the procurer obtains the whole surplus generated by the second most

efficient type due to the competitive award procedure. On top of that, the procurer

obtains the share 1 − α of the rents that are generated by the excess efficiency of

type θ1 compared to type θ2. This, however, is only half the story. Different supplier

types benefit differently from contract renegotiation ex post. The most efficient
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type benefits more from contract renegotiation than the second most efficient type

because he can produce design
¯
x at lower cost. Therefore, the contractor obtains

a rent which equals his advantage from contract renegotiation as compared to type

θ2, plus the share α of the additional surplus that he generates, α[S(θ1)− S(θ2)].

Now, we can state the first main finding of the paper.18

Proposition 1. Suppose that Assumptions 1 and 2 hold. Then, the procurer opti-

mally chooses design
¯
x = xL. Renegotiation takes place if and only if θ1 < θ̃. If this

is the case, the ultimate price exceeds the initial price – i.e., p̂ >
¯
p, if and only if

either (i) c(xH , θ
1) ≥ c(xL, θ

1), or (ii) c(xH , θ
1) < c(xL, θ

1) and α > α̂(θ1), where

α̂(θ1) ≡
c(xL, θ

1)− c(xH , θ
1)

v(xH)− v(xL) + c(xL, θ1)− c(xH , θ1)
∈ (0, 1) .

The contractor’s bid already reflects that renegotiation may take place. In other

words, part of the contractor’s profits made by contract renegotiation are competed

away in the initial auction. The profits from renegotiation that are not competed

away can be decomposed into two parts. The first part is the additional surplus

the contractor generates compared to the second most efficient supplier, S(θ1) −

S(θ2). The second part, c(
¯
x, θ2) − c(

¯
x, θ1), is due to the fact that the contractor’s

disagreement payoff is higher than the one of the second most efficient supplier;

i.e., the contractor can produce
¯
x at lower costs than all other suppliers. From the

procurer’s perspective, the first part is a random variable, which does not depend

on her choice variable, the initial project design
¯
x. The second part, on the other

hand, depends on the initial design. The more complex the initial design is, the

larger is the difference in disagreement payoffs between suppliers of different types.

Hence, in order to minimize this difference, the procurer optimally specifies the

standard (low-quality) design ex ante.19 If the type of the winner of the auction is

sufficiently efficient (low), then contract renegotiation takes place and the parties

agree to trade the fancy design xH ex post. If the fancy design is more costly to

produce for any type, renegotiation always leads to a price increase. If the winner,

type θ1, can produce the fancy design at lower cost than the standard design, then

contract renegotiation leads to a price increase only if the contractor’s bargaining

18If the procurer can specify a maximum bid R – i.e., only price bids p ≤ R are allowed in the

second-price auction – and this maximum bid is publicly announced before suppliers place their

bids, it is still optimal for the procurer to specify
¯
x = xL initially (Herweg and Schwarz, 2016).

19If α = 1, i.e., the contractor has all the bargaining power, the procurer is indifferent between

¯
x = xL and

¯
x = xH . In this case the revelation of the contractor’s type is irrelevant and we are in

the standard framework: The payoffs are pinned down by the utility of the least efficient type in

combination with the incentive constraints; i.e., all types are revealed truthfully (Myerson, 1981).
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power at the renegotiation stage is not too weak. If the procurer’s bargaining power

is strong, then a cost underrun occurs.

The next result is readily obtained by noting that the probability of contract

renegotiation is given by prob(reneg) = 1− [1− F (θ̃)]n.

Corollary 1. Contract renegotiation is more likely (in the sense of set inclusion),

the more suppliers participate in the auction.

When renegotiation is inefficient or there is a risk it might break down, however,

there is a tradeoff and the optimal ex ante design is not necessarily the standard

one any more, as we demonstrate in Subsection 4.2.

4. Asymmetric Information and Breakdown of Renegotiation

We derived our findings under a couple of strong assumptions. In particular, we

assumed that renegotiation takes place under symmetric information, which implies

that there is no risk that renegotiation may fail. In this section we address this

issue by first relaxing Assumption 2 and second by introducing an exogenous risk of

renegotiation failure.

4.1. Renegotiation with Asymmetric Information. In this subsection we as-

sume that contract renegotiation may take place under asymmetric information.

More precisely, the procurer does not observe the contractor’s cost type before the

two parties engage in contract renegotiation; i.e., we relax Assumption 2. The pro-

curer may be able to deduce the contractor’s type from the bids, which she observes.

In order to keep this signaling model as simple as possible, we restrict attention to

the case of binary types θ ∈ {θ1, θ2} ≡ Θ. As before the types are independently

drawn from the same distribution. Let prob(θ = θ1) = q ∈ (0, 1).

The good can be delivered in one of two designs, x ∈ {xL, xH}, with v(xH) >

v(xL). The type θ orders suppliers according to their efficiency in the production of

the standard design xL:

(13) c(xL, θ1) < c(xL, θ2).

Moreover, we assume that the efficient design is different across the two types

x∗(θ) =







xH for θ = θ1;

xL for θ = θ2.
(14)

First, this assumption implies that c(xH , θ2) > c(xL, θ2). Second, it implies that

(15) c(xH , θ2)− c(xL, θ2) > v(xH)− v(xL) > c(xH , θ1)− c(xL, θ1).
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Finally, (13) and (14) imply that S(θ1) > S(θ2). The above assumptions correspond

to Assumption 1 from the general model with a continuum of types.

Now, contract renegotiation takes place under asymmetric information and thus

we cannot apply the GNBS in order to determine the outcome of renegotiation.

Instead, we posit that the contractor can make a take-it-or-leave-it (TIOLI) offer

with probability α ∈ (0, 1). With the converse probability, 1 − α, the procurer can

make a TIOLI offer at the renegotiation stage.

The equilibrium concept we employ is perfect Bayesian equilibrium in pure strate-

gies. The analysis will focus mainly on separating equlibria. In a separating equilib-

rium the two types place different bids in the auction and thus the type is revealed

to the procurer before renegotiation takes place.

For the sake of the argument suppose the procurer sets
¯
x = xL. In a separating

equilibrium, the procurer can perfectly deduce the contractor’s type from his bid.

If the contractor’s type is θ2, there is no scope for renegotiation. Suppose the

contractor’s type is θ1. If he can make the offer at the renegotiation stage, he offers

x̂ = xH at

(16) p̂C =
¯
p+ [v(xH)− v(xL)],

which is accepted by the procurer. If, on the other hand, the procurer can make the

offer, she offers x̂ = xH at

(17) p̂P =
¯
p+ [c(xH , θ1)− c(xL, θ1)].

The offer is accepted by type θ1. Note that this offer would be rejected by type θ2.

Thus, the final expected price of a supplier of type θ1 is

(18) p̂ =
¯
p+ α[v(xH)− v(xL)] + (1− α)[c(xH , θ1)− c(xL, θ1)].

At the auction stage, each supplier of type θ1 takes into account that contract

renegotiation will occur. A candidate for equilibrium bidding strategies are the bids

that allow a supplier just to break-even if the bid determines the price at which the

supplier has to deliver the good:

¯
p(θ|xL) =







c(xH , θ1)− α[v(xH)− v(xL)]− (1− α)[c(xH , θ1)− c(xL, θ1)] if θ = θ1;

c(xL, θ2) if θ = θ2.

(19)

Notice that
¯
p(θ1, xL) <

¯
p(θ2, xL); i.e., if there is a supplier of type θ1, then a type

θ1 wins the auction. As we show in the appendix, none of the supplier types has an

incentive to deviate from the above bidding strategy.
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If, on the other hand, the procurer specifies
¯
x = xH initially, then the candidate

bidding function for a separating equilibrium is:

¯
p(θ|xH) =







c(xH , θ1) if θ = θ1;

αc(xL, θ2) + (1− α)c(xH , θ2) + α[v(xH)− v(xL)] if θ = θ2.
(20)

Again, it can be shown that
¯
p(θ1|xH) <

¯
p(θ2|xH). Hence, irrespective of the initial

design, if there is a supplier of type θ1, then a supplier of this type wins the auction.

The procurer optimally specifies
¯
x = xL if and only if E[u(xL, θ

1, θ2)] > E[u(xH , θ
1, θ2)],

which is equivalent to

(21) c(xH , θ2)− c(xL, θ2) > c(xH , θ1)− c(xL, θ1).

The above inequality is always satisfied under the imposed assumptions.

Proposition 2 (Asymmetric Information). Suppose the contractor’s type is not

observed ex post and that θ ∈ {θ1, θ2}. Then, there are separating equilibria with

bidding functions (19) and (20). For these bidding strategies, the procurer optimally

specifies the standard design
¯
x = xL initially. Contract renegotiation to the fancy

design xH takes place with probability 1− (1− q)n. In case of contract renegotiation,

there is a cost overrun if and only if either (i) the contractor can make the TIOLI

offer, or (ii) the procurer can make the TIOLI offer and c(xH , θ1) > c(xL, θ1).

Moreover, a pooling equilibrium does not exsist.

Proposition 2 shows that the finding of Proposition 1 is not an artifact due to

Coasian bargaining ex post. With more than two types, however, we cannot expect

to obtain a fully separating equilibrium. In particular, more efficient types will

have an incentive to mimic less efficient types that do not differ with respect to

the efficient design. In such a case the procurer may make a renegotiation offer

which is accepted only by sufficiently efficient types. Now, a tradeoff between rent

extraction and efficiency may arise. This tradeoff is absent in our baseline model with

renegotiation under complete information but also in the model with asymmetric

information and only two types.

4.2. Risk of Breakdown of Renegotiation. In the baseline model and in the

simple model with binary types and asymmetric information, the efficient design is

always implemented ex post. In the following, we will show that our main findings

are robust toward introducing frictions of contract renegotiation. In order to do so,

we augment the baseline model with a continuum of types.

We model the imperfection of contract renegotiation in the following simple way.

With fixed exogenous probability b ∈ [0, 1) the parties cannot reach an agreement



COST OVERRUNS IN PROCUREMENT 17

ex post – i.e., renegotiation fails. In this case the initial contract (
¯
x,
¯
p) is executed.

With the converse probability 1− b the parties reach an agreement and the outcome

is determined by the GNBS. The parameter b measures how intricate or how costly

contract renegotiation is. For b = 0 the model collapses to the one previously

analyzed.20

The analysis of the model with a risk of renegotiation breakdown proceeds by the

same steps as the analysis of Section 3.

Proposition 3. Suppose that Assumptions 1 and 2 hold and that renegotiation fails

with probability b ∈ [0, 1). The procurer optimally chooses the design
¯
x that solves

max
¯
x

Eθ1,θ2

[

b[v(
¯
x))− c(

¯
x, θ2)]− (1− α)(1− b)[c(

¯
x, θ2)− c(

¯
x, θ1)]

]

.

The procurer now faces a tradeoff. On the one hand, as before, she wants to

minimize the cost advantage that the most efficient supplier has in comparison to

the second most efficient supplier in the production of design
¯
x. This is achieved by

setting
¯
x = xL. On the other hand, the procurer has an incentive to choose as initial

design the design that is optimal when the second most efficient supplier obtains

the contract. This is intuitive because if renegotiation fails the procurer obtains

the surplus that is generated by the second most efficient type. This is likely to

be achieved by the fancy design xH . If b is sufficiently low, the former concern

dominates the latter and
¯
x = xL is optimal. As the risk of renegotiation failure

increases, the optimal ex ante design becomes (weakly) more complex.21

If
¯
x = xH is optimal, then ex post renegotiation may lead to a downward price

adjustment even if the conditions for upward price adjustments from Proposition

1 are met. How likely upward and downward price adjustments are, is intricate

to characterize without further assumptions on the type distribution, the feasible

designs, and the cost functions. Therefore, we will present the results of a simple

numerical example in the following.

Example 1. Let the procurer’s gross benefit be v(xH) = 2 and v(xL) = 1. The cost

functions are c(xH , θ) = 3θ and c(xL, θ) = θ. The types of the n ≥ 3 suppliers are

drawn independently from the uniform distribution with support [0, 1]. The ex post

20Ganuza (2007) uses the same approach to model transaction costs of contract renegotiation.

In his interpretation there are transaction costs associated with renegotiation and these costs are

stochastic. With probability 1 − b the transaction costs are zero, while with probability b the

transaction costs are prohibitively high so that renegotiation does not take place.
21We can interpret b as a bargaining inefficiency multiplier. As renegotiation becomes more

costly, the optimal ex ante design becomes (weakly) more complex.
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efficient design is x∗(θ) = xH for θ ≤ 1/2 and x∗(θ) = xL for θ ≥ 1/2; i.e., the

marginal type is θ̃ = 1/2.

The procurer optimally specifies design
¯
x = xL initially if and only if

(22) b̂ ≤
2− 2α

n− 1− 2α
∈ (0, 1].

As long as the risk of renegotiation failure is not too high, the procurer prefers

to specify the standard design ex ante. The stronger the contractor’s bargaining

power α, the lower is the critical threshold b̂; i.e., a strong bargaining position of the

contractor makes it less likely that
¯
x = xL is optimal.

For b > b̂ the procurer sets
¯
x = xH . In this case, if renegotiation takes place, it

leads to a downward adjustment of the price; i.e., a cost underrun. This happens if

θ1 > θ̃. Thus, the conditional probability (conditional on renegotiation taking place)

for a cost underrun is ρD = prob(θ1 > θ̃) = 1
2n
. This conditional probability is

rather low already for a moderate number of competitors; e.g., for n = 6 we have

ρD ≈ 1.6%.

For b ≤ b̂ the procurer specifies
¯
x = xL. Now, if renegotiation takes place, the price

is adjusted upwards and thus we observe a cost overrun. The conditional probability

for a cost overrun is ρU = prob(θ1 < θ̃) = 1− 1
2n
. This conditional probability is high

already for a moderate number of competitors; e.g., for n = 6 we have ρU ≈ 98.4%.

The example illustrates that even when there is a risk of renegotiation failure –

and thus a rational for the procurer to choose a more complex design than xL – ex

post adjustments leading to a cost underrun are unlikely to occur. The procurer

selects
¯
x = xH only if b is rather high, which implies that it is unlikely that the

parties are able to renegotiate the contract. Moreover, even when the parties are

able to renegotiate, contract renegotiation takes place only if the most efficient type

is rather inefficient, i.e., only if θ1 > θ̃, which is a rather unlikely event.

5. Scoring Auctions

So far we assumed that the procurer has to specify the good she wants to procure

completely ex ante, i.e., before the auction takes place. In the auction, the procurer

collected bids only on prices and the supplier who offered the lowest price has been

awarded with the contract. Different types of suppliers do not only have different

production costs but also differ in the optimal design – i.e., the design that maximizes
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the joint surplus. Therefore, it may be profitable for the procurer to ask suppliers

for bids on price and design.22

5.1. The Model with Multi-Dimensional Auctions. In the following we con-

sider a second-score auction.23 Each supplier places a bid containing a price p ∈ R

and a design x ∈ {xL, xH}. Each bid (x, p) is mapped into a single score. The

supplier who placed the bid giving rise to the highest score wins the auction and is

required to match the highest rejected score – i.e., the second highest score. The out-

come (
¯
x,
¯
p) determines a binding specific-performance contract between the procurer

and the winner (the contractor). Nevertheless, this contract can be renegotiated af-

ter the auction as before.

The procurer does not choose a design when particularizing the auction. She

specifies a scoring function, G : {xL, xH} × R → R, that maps bids into a single

score. We focus on quasi-linear scoring functions of the form

G(x, p) = g(x)− p,

which implies that the procurer effectively chooses ∆g ≡ g(xH)− g(xL).

If the procurer can commit not to renegotiate the contract, the optimal quasi-

linear scoring function implements the second-best allocation (Che, 1993). Here,

the procurer cannot commit not to engage in contract renegotiation. However, as

we will show below, if the scoring function represents the procurer’s true preferences,

i.e., g(x) ≡ v(x), contract renegotiation can be avoided.

5.2. The Analysis of Multi-Dimensional Auctions. As before, we solve the

game by backward induction. The outcome of the renegotiation game is independent

of the award procedure. In other words, Lemma 1 still holds and the implemented

design will always be ex post efficient. Thus, the ex post utility of a supplier of type

θ who has been awarded procurement contract (
¯
x,
¯
p) is

π(
¯
x,
¯
p, θ) = p̂(

¯
x,
¯
p, θ)− c(x∗(θ), θ)

=
¯
p+ αS(θ)− αv(

¯
x)− (1− α)c(

¯
x, θ).(23)

Optimal bidding behavior in the second-score auction is described by the following

result.

22Scoring auctions where bids are multi-dimensional (e.g., price and quality) are analyzed by

Che (1993) and Asker and Cantillon (2008). An excellent short review of this literature is provided

by Asker and Cantillon (2010).
23We show that our results hold for first-score auctions in Appendix B.
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Lemma 3. Suppose that Assumptions 1 and 2 hold. The (reduced) second-score

auction game has a dominant strategy equilibrium. The equilibrium bid of each

supplier of type θ is

xb(θ) ∈ argmax
x∈X

{g(x)− αv(x)− (1− α)c(x, θ)} ,

pb(θ) = αv(xb(θ)) + (1− α)c(xb(θ), θ)− αS(θ).

By Lemma 3, each supplier bids the optimal design, xb(θ) = x∗(θ), if the scoring

function represents the procurer’s true preferences – i.e., if v(x) ≡ g(x). If, on the

other hand, the scoring function does not reflect the true preferences of the procurer,

then it is likely that suppliers propose designs that are not efficient.

According to Lemma 3, the score offered by a supplier of type θ amounts to

G(θ) ≡ g(xb(θ))− pb(θ)

= g(xb(θ))− αv(xb(θ))− (1− α)c(xb(θ), θ) + αS(θ).(24)

As before, the most efficient type places the bid that leads to the highest score and

thus wins the auction. Thus, there is no tradeoff between rent extraction and effi-

ciency as there is for scoring auctions with commitment (Che, 1993); the procurer’s

problem is solely a problem of rent extraction.

Lemma 4. Suppose that Assumption 1 holds. Then for all θ1 < θ2 it holds that:

G(θ1) > G(θ2).

The winner of the auction, type θ1, has to match the second highest score but is

otherwise free in its choice of (
¯
x,
¯
p). Thus, the winner of the auction chooses the

initial contract (
¯
x,
¯
p) in order to maximize

¯
p+ αS(θ1)− αv(

¯
x)− (1− α)c(

¯
x, θ)

subject to g(
¯
x) −

¯
p = G(θ2). Hence, the initial contract specifies

¯
x(θ1, θ2) = xb(θ1)

and
¯
p(θ1, θ2) = g(xb(θ1))−G(θ2). The ultimate price paid by the procurer is

(25) p̂(θ1, θ2) = g(xb(θ1))− g(xb(θ2)) + αv(xb(θ2)) + (1− α)c(xb(θ2), θ2)

− αS(θ2) + α[v(x∗(θ1))− v(xb(θ1))]

+ (1− α)[c(x∗(θ1), θ1)− c(xb(θ1), θ1)].

5.3. The Optimality of Price-Only Auctions. We use equation (25) to derive

the procurer’s ex post utility – for given realizations of θ1 and θ2 –, which is given
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by

u(θ1, θ2) = v(x∗(θ1))− p̂(θ1, θ2)

= (1− α)S(θ1) + αS(θ2)

+ {g(xb(θ2))− αv(xb(θ2))− (1− α)c(xb(θ2), θ2)}

− {g(xb(θ1))− αv(xb(θ1))− (1− α)c(xb(θ1), θ1)}.(26)

If the designs chosen by the most efficient and the second most efficient type are

the same, i.e., xb(θ1) = xb(θ2), equation (26) is highly reminiscent to equation (12)

from the case of price-only auctions. In general, the first part of the procurer’s ex

post utility reflects that the procurer obtains the whole surplus generated by the

second most efficient type due to the competitive award procedure. In addition she

obtains the share 1 − α of the rents that are generated by the excess efficiency of

type θ1 compared to type θ2. As before, the procurer has to leave a rent to the most

efficient type which reflects type θ1’s advantage in the initial auction compared to

type θ2. Notice that the sum of the two terms in curly brackets is always negative.

This advantage is now more complex than simply the difference in production costs

for design
¯
x due to the applied scoring auction.

The procurer chooses the scoring function g(·) – or more precisely the difference

∆g = g(xH)− g(xL) – that maximizes her expected payoff E[u(θ1, θ2)]. As it turns

out, the optimal scoring auction coincides with the optimal price-only auction.

Proposition 4. Suppose that Assumptions 1 and 2 hold. Then, any optimal quasi-

linear scoring rule specifies

∆g ≤ α[v(xH)− v(xL)] + (1− α)[c(xH ,
¯
θ)− c(xL,

¯
θ)].

Each supplier type θ bids xb(θ) = xL. Renegotiation takes place if and only if θ1 < θ̃.

If this is the case, the ultimate price exceeds the initial price – i.e., p̂−
¯
p > 0, if and

only if either (i) c(xH , θ
1) ≥ c(xL, θ

1), or (ii) c(xH , θ
1) < c(xL, θ

1) and α > α̂(θ1).

According to Proposition 4, if the buyer is unable to commit not to renegotiate,

she cannot benefit from using a scoring auction. A scoring auction by its multi-

dimensionality allows suppliers to differentiate their bids, which reduces price com-

petition. In other words, a more efficient supplier can offer a design that leads to

a higher score than a less efficient supplier. By doing so the more efficient supplier

may be able to win the auction even if his price bid is relatively high. This makes

the usage of a scoring auction expensive and thus less attractive to the procurer.

Hence, a price-only auction where the procurer collects price bids for a given design
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is optimal. The given design is rather simple, so that the differences between suppli-

ers regarding their costs for delivering this design are relatively low. This enhances

the competition at the auction stage and leads to a very low initial price. Even

though the ex post price can be significantly higher than the initial price, the effect

on the initial price dominates.

The following result follows immediately from Proposition 4.

Corollary 2. Suppose that Assumptions 1 and 2 hold and that c(xL,
¯
θ) ≤ c(xH ,

¯
θ).

Then, a scoring function that is independent of the proposed design, i.e., ∆g = 0, is

optimal.

Instead of fixing an initial design, the procurer can also use a scoring auction

where suppliers are free to propose any x ∈ {xL, xH}. The award of the contract,

however, is solely based on the price bid – i.e., the supplier who placed the lowest

price bid is awarded with the contract. According to Corollary 2 such a scoring

auction is optimal if the fancy design has higher production costs than the standard

design for all supplier types (this is a sufficient but not a necessary condition).

Finally, note that if the scoring function represents the procurer’s true preferences,

each supplier θ bids the efficient design x∗(θ). In this case, there is no scope for

renegotiation. Avoiding renegotiation, however, is not in the procurer’s interest.

This is due to the fact that we assume efficient – Coasian – bargaining ex post and

that the gains from renegotiation are incorporated in the initial price bids.

5.4. Multi-Dimensional Auctions and Asymmetric Information. Consider

the binary types model of Subsection 4.1; i.e., the procurer cannot directly observe

the contractor’s cost type before renegotiation takes place. The difference to Sub-

section 4.1 is that we now allow the procurer to run a multi-dimensional auction.

Again, we restrict attention to quasi-linear scoring rules. The next result establishes

that the bidding functions from the case with Coasian bargaining ex post are also

part of an equilibrium when renegotiation potentially takes place under asymmetric

information (type maybe revealed via the bid).

Proposition 5. The suppliers’ equilibrium bids (xb(θ), pb(θ)) specified in Lemma 3

remain equilibrium bids under renegotiation with asymmetric information. More-

over, a pooling equilibrium does not exist.

This implies that the optimal scoring function is not affected by relaxing the

assumption of Coasian bargaining ex post; i.e., relaxing Assumption 2. In other
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words, the scoring function derived in Proposition 4 is also optimal in the case

where the procurer has to deduce the contractor’s type from the bid.24

6. Conclusion

We analyzed competitive procurement mechanisms in an environment where the

procurer is unable to commit not to renegotiate the contract ex post. Moreover,

the cost function of the supplier who has been awarded with the initial contract is

publicly observed ex post. Hence, if the initial design turns out to be ex post ineffi-

cient the parties adjust the initial design to the ex post efficient one; i.e., the parties

engage in Coasian bargaining. We showed that the constrained optimal award pro-

cedure is a price-only auction. The procurer awards the contract for the standard

design via a price-only auction. Ex post, the fancy design may be implemented via

contract renegotiation. If this is the case, the ultimate price typically is higher than

the initial price determined by the auction.

The findings of the paper rely on a couple of assumptions that often will not all be

satisfied in practice. Hence, we do not argue based on these results that most of the

projects with severe cost overruns that we observe in practice are always the result of

efficient award procedures. However, our main assumption that commitment not to

renegotiate is not feasible seems to be realistic. For instance, complex construction

projects often cannot be executed exactly the way as initially specified, so contract

renegotiation has to take place. This paper shows that severe cost overruns are not

necessarily a sign of inefficient award procedures or project completion.

Appendix A. Proofs and Calculations

Proof of Lemma 1. First, we show that the parties agree to trade x∗(θ). In contra-

diction, let (x̂, p̂) with x̂ 6= x∗(θ) be the outcome of renegotiation. The resulting

generalized Nash product is

(A.1) GNP (x̂, p̂) = [p̂− c(x̂, θ)− dC ]
α × [v(x̂)− p̂− dP ]

1−α .

Consider the alternative contract with design x∗(θ) and price p∗ = p̂ + v(x∗(θ)) −

v(x̂). By construction, the procurer is indifferent between the two contracts. The

contractor’s net payoff under the alternative contract is

(A.2) p∗ − c(x∗(θ), θ)− dC .

24This is less clear if there is a risk of breakdown of renegotiation: When the risk of such a

breakdown is high, scoring auctions where different types propose different designs are better at

implementing the ex post efficient design, which is likely to be in the procurer’s interest.
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Hence, the contractor prefers the alternative contract if and only if

p̂+ v(x∗(θ))− c(x∗(θ), θ)− v(x̂)− dC ≥ p̂− c(x̂, θ)− dC

⇐⇒ v(x∗(θ))− c(x∗(θ), θ) ≥ v(x̂)− c(x̂, θ),(A.3)

which holds by the definition of x∗(θ) and the fact that
¯
x does not maximize the social

surplus. Thus, GNP (x∗(θ), p∗) > GNP (x̂, p̂) a contradiction to the assumption that

(x̂, p̂) is the outcome of renegotiation.

Taking the partial derivative of the generalized Nash product with respect to p

yields

(A.4)
∂GNP

∂p
= α

[
v(x∗(θ))− p− v(

¯
x) +

¯
p

p− c(x∗(θ), θ)−
¯
p+ c(

¯
x, θ)

]α

− (1− α)

[
p− c(x∗(θ), θ)−

¯
p+ c(

¯
x, θ)

v(x∗(θ))− p− v(
¯
x) +

¯
p

]1−α

.

We set the partial derivative equal to zero and solve for the renegotiation price

(A.5) p̂ =
¯
p+ α[v(x∗(θ))− v(

¯
x)] + (1− α)[c(x∗(θ), θ)− c(

¯
x, θ)].

�

Proof of Lemma 2. It is a well-known result that in a second-price auction it is a

(weakly) dominant strategy for each bidder to bid his type. Placing a bid equal to

the type, corresponds to placing a price bid so that the profit equals zero in our

setup. Placing a higher bid reduces the probability of winning the auction without

affecting the price
¯
p. A lower bid is not optimal because in the additional cases

where the supplier now wins the auction, he makes losses.

It remains to be shown that θ1 < θ2 implies
¯
p(
¯
x, θ1) <

¯
p(
¯
x, θ2). This property

of the bidding function follows immediately from Assumption 1. Note that S(θ) ≡

maxx{v(x)− c(x, θ)} and thus S(θ1) > S(θ2) by Assumption 1. �

Proof of Proposition 1. The procurer’s expected utility ex ante is

(A.6) E[u(
¯
x, θ1, θ2)] = E

[
(1− α)S(θ1) + αS(θ2)− (1− α)[c(

¯
x, θ2)− c(

¯
x, θ1)]

]
.

The expected utility is maximized by the design
¯
x ∈ {xL, xH} that minimizes

(A.7) E[c(
¯
x, θ2)− c(

¯
x, θ1)].

By Assumption 1 the above expression is minimized for
¯
x = xL.

Renegotiation takes place if and only if θ1 < θ̃. From Lemma 1 it is readily

obtained that p̂−
¯
p > 0 if and only if

(A.8) α[v(xH)− v(xL)] + (1− α)[c(xH , θ
1)− c(xL, θ

1)] > 0,
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which completes the proof. �

Proof of Corollary 1. The result is shown in the main text. �

Proof of Proposition 2. The proof proceeds in three steps. First, we posit that the

procurer specifies
¯
x = xL initially. Thereafter, we posit that

¯
x = xH . Finally, we

show that there does not exist a pooling equilibrium. For the analysis we distinguish

two cases,
¯
x = xL and

¯
x = xH .

Case (I): Procurer sets
¯
x = xL

The offers made at the renegotiation stage are derived in the main text, which

allow us to derive the expected profits. At the auction stage, the expected profit of

a supplier of type θ is

π(
¯
p, xL, θ) =






¯
p+ α[v(xH)− v(xL)] + (1− α)[c(xH , θ1)− c(xL, θ1)]− c(xH , θ1) if θ = θ1;

¯
p− c(xL, θ2) if θ = θ2.

(A.9)

A candidate for equilibrium bidding strategies are the bids that allow a supplier

just to break-even if the bid determines the price at which the supplier has to deliver

the good.

¯
p(θ|xL) =







c(xH , θ1)− α[v(xH)− v(xL)]− (1− α)[c(xH , θ1)− c(xL, θ1)] if θ = θ1;

c(xL, θ2) if θ = θ2.

The bid of type θ1 can be written as

(A.10)
¯
p(θ2|xL) = c(xL, θ1)− α

{
[v(xH)− c(xH , θ1)]− [v(xL)− c(xL, θ1)]

}

︸ ︷︷ ︸

>0 by x∗(θ1)=xH

.

This implies
¯
p(θ1, xL) <

¯
p(θ2, xL); i.e., if there is a supplier of type θ1, then a type

θ1 wins the auction.

Incentives to deviate: Does the bidding strategy (19) constitute an equilibrium?

First, consider a supplier of type θ2. When bidding
¯
p(θ2|xL) the supplier can win

only if all competitors are also of type θ2. In this case he wins with probability 1/n.

The expected profit is π = 0.

(i) Bidding p >
¯
p(θ2|xL): The supplier never wins and thus makes a zero profit

with certainty.

(ii) Bidding p ∈ (
¯
p(θ1, xL),

¯
p(θ2|xL)): The supplier wins the auction if all com-

petitors are of type θ2. The price is
¯
p = c(xL, θ2). Behavior at the renegoti-

ation stage depends on the out-of-equilibrium belief of the procurer. If the

procurer believes that a supplier who bids p ∈ (
¯
p(θ1, xL),

¯
p(θ2|xL)) is of type

θ2, she does not make an offer at the renegotiation stage. If she believes that
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the supplier is with positive probability of type θ1, then she offers
¯
x = xH at

price p̂P . This offer is accepted by a type θ1 contractor but rejected by our

type θ2 contractor. If the contractor can make an offer, he does not propose

to change the design (changing the design decreases the generated surplus).

Hence, irrespective of who can make the offer and the procurer’s belief the

initial contract is executed. The expected utility of the considered supplier

is π = 0.

(iii) Bidding p ≤
¯
p(θ1|xL): Due to similar arguments as made in case (ii) the ini-

tial contract is always executed (either renegotiation fails or is not proposed

in the first place). Now, however, the supplier wins for sure. If there is a

competitor of type θ1, then the initial and final price is
¯
p =

¯
p(θ1|xL). At this

price the supplier of type θ2 makes a loss and thus his expected profit from

this bid is negative as well.

To sum up, a supplier of type θ2 has no incentives to deviate.

Now, we consider a supplier of type θ1. When bidding
¯
p(θ1|xL) the supplier makes

a strictly positive profit if all competitors are of type θ2. If at least one rival is of

type θ1 all the expected rents from contract renegotiation are competed away.

(i) Bidding p >
¯
p(θ2|xL): The supplier never wins and thus makes a zero profit.

(ii) Bidding p ∈ (
¯
p(θ1, xL),

¯
p(θ2|xL)): The supplier wins if all rivals are of type

θ2 the price is
¯
p = c(xL, θ2). If the supplier won the auction and can make

the TIOLI offer, he offers x̂ = xH at p̂ = p̂C . This offer is accepted by the

procurer. If, on the other hand, the procurer can make the TIOLI offer,

she either offers x̂ = xH at p̂ = p̂P or does not propose a renegotiation

contract. Depending on her beliefs about the supplier’s type, the former or

the latter strategy is optimal. In both cases, the contractor does not benefit

from contract renegotiation. He benefits only if he can make the offer. Thus,

bidding p ∈ (
¯
p(θ1, xL),

¯
p(θ2|xL)) is not strictly preferred to bidding

¯
p(θ1|xL).

(iii) Bidding p <
¯
p(θ1|xL): Now, the supplier wins for sure. In the additional

cases where the supplier now wins, he makes an expected profit of at most

zero. If contract renegotiation takes place, the offered contracts are the same

as in case (ii).

A type θ1 supplier has no incentive to deviate.

The proposed equilibrium is not the unique separating equilibrium. As it is well-

known, the second-price auction has many equilibria and this holds true also in our

model with asymmetric information at the renegotiation stage.
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Procurer’s expected profit: The procurer’s realized profit depends on the most

efficient type θ1 and the second most efficient type θ2. We denote the expected

profit by E[u(
¯
x, θ1, θ2)]. We distinguish three cases.

(i) θ1 = θ2 = θ2: In this case, renegotiation does not take place and the pro-

curer’s utility amounts to

u(xL, θ2, θ2) = v(xL)− c(xL, θ2)

= S(θ2).(A.11)

(ii) θ1 = θ2 = θ1: In this case, renegotiation takes place. The procurer obtains

xH at price p̂ (in expectations) and the initial price is
¯
p =

¯
p(θ1, xL). Thus,

the procurer’s utility is

(A.12) u(xL, θ1, θ1) = v(xH)− c(xL, θ1)− α[c(xH , θ1)− c(xL, θ1)]

+ α[v(xH)− v(xL)]− α[v(xH)− v(xL)]− (1− α)[c(xH , θ1)− c(xL, θ1)],

which can be simplified to

u(xL, θ1, θ1) = v(xH)− c(xH , θ1)

= S(θ1).(A.13)

(iii) θ1 = θ1 and θ2 = θ2: In this case, renegotiation takes place as well but the

initial price is
¯
p =

¯
p(θ2, xL). Thus, the procurer’s utility is

u(xL, θ1, θ2) = v(xH)− c(xL, θ2)− α[v(xH)− v(xL)]

−(1− α)[c(xH , θ1)− c(xL, θ1)]

= (1− α)S(θ1) + αS(θ2)− (1− α)[c(xL, θ2)− c(xL, θ1)].(A.14)

Case (II): Procurer sets
¯
x = xH

Now, there is no scope for renegotiation for type θ1. If the contractor is of type

θ2 and can make the TIOLI renegotiation offer, he proposes x̂ = xL at

(A.15) p̂C =
¯
p− [v(xH)− v(xL)].

The offer is accepted by the procurer. If the procurer can make the offer, she offers

x̂ = xL at

(A.16) p̂P =
¯
p− [c(xH , θ2)− c(xL, θ2)].

This offer is accepted by type θ2. The expected final price of a supplier of type θ2 is

(A.17) p̂ =
¯
p− α[v(xH)− v(xL)]− (1− α)[c(xH , θ2)− c(xL, θ2)].
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At the auction stage, the expected profit of a supplier of type θ is

π(
¯
p, xH , θ) =






¯
p− c(xH , θ1) if θ = θ1;

¯
p− α[v(xH)− v(xL)]− (1− α)[c(xH , θ2)− c(xL, θ2)]− c(xL, θ2) if θ = θ2.

(A.18)

The candidate for an equilibrium bidding function is:

¯
p(θ|xH) =







c(xH , θ1) if θ = θ1;

αc(xL, θ2) + (1− α)c(xH , θ2) + α[v(xH)− v(xL)] if θ = θ2.

The bid of type θ2 can be written as

(A.19)
¯
p(θ2|xH) = c(xH , θ2) + α[v(xH)− c(xH , θ2)]− α[v(xL)− c(xL, θ2)].

Note that
¯
p(θ1|xH) <

¯
p(θ2|xH) is equivalent to

(A.20) α
{
[v(xL)− c(xL, θ2)]− [v(xH)− c(xH , θ2)]

}
< c(xH , θ2)− c(xH , θ1).

The left-hand side of (A.20) is positive because x∗(θ2) = xL. Thus, if condition

(A.20) is satisfied for α = 1, then it is satisfied for all α ∈ (0, 1). For α = 1

inequality (A.20) is equivalent to

(A.21) v(xL)− c(xL, θ2) < v(xH)− c(xH , θ1),

which is always satisfied (S(θ2) < S(θ1)).

This result implies that if there is a supplier of type θ1, then a supplier of type θ1

wins the auction.

Incentives to deviate: Does the bidding strategy (20) constitute an equilibrium?

First, we consider a supplier of type θ2. When bidding
¯
p(θ2|xH) the supplier wins

only if all competitors are also of type θ2 and he is the one who is selected randomly.

In this case, renegotiation takes always place but the expected profit equals zero.

(i) Bidding p >
¯
p(θ2|xH): The supplier never wins and thus makes a zero profit.

(ii) Bidding p ∈ (
¯
p(θ1, xH),

¯
p(θ2|xH)): Now the supplier wins with certainty if all

competitors are of type θ2. The initial price is
¯
p =

¯
p(θ2|xH). If the contractor

can make the renegotiation offer, he offers x̂ = xL at p̂ = p̂C . In this case

he makes a positive profit. If the procurer can make the TIOLI offer, she

either offers x̂ = xL at p̂ = p̂P or no renegotiation contract (depending on

her out-off-equilibrium beliefs). In either case, the contractor does not make

any profit at the renegotiation stage and thus makes a loss. Overall, the

price
¯
p =

¯
p(θ2|xH) is such that the positive profits and the negative profits

just cancel out in expectation. The supplier’s expected profit from this bid

is zero.
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(iii) Bidding p ≤
¯
p(θ1|xH): Now, the supplier may win also in cases where some

competitors are of type θ1. In these cases, however, the supplier makes a loss

in expectations. The renegotiation offers are the same as in case (ii) but the

initial price can be
¯
p =

¯
p(θ1|xH).

A supplier of type θ2 has no incentives to deviate.

Now, we consider a supplier of type θ1. When bidding
¯
p(θ1|xL) the supplier makes

a strictly positive profit if all competitors are of type θ2. If at least one rival is of

type θ1 all the expected rents from contract renegotiation are competed away.

(i) Bidding p >
¯
p(θ2|xH): The supplier never wins and thus makes a zero profit.

(ii) Bidding p ∈ (
¯
p(θ1, xH),

¯
p(θ2|xH)): The supplier wins only if all competitors

are of type θ2. If the supplier wins and the procurer can make a TIOLI offer,

the procurer’s offer depends on her out-off-equilibrium beliefs. If she believes

the contractor is of type θ1, she does not make an offer. If she believes he

is of type θ2 (with positive probability), she offers x̂ = xL at p̂ = p̂P . This

offer, however, is rejected by the supplier of type θ1 because

(A.22)
¯
p− c(xH , θ2) + c(xL, θ2)− c(xL, θ1) <

¯
p− c(xH , θ1).

(iii) Bidding p ≤
¯
p(θ1|xH): For such a bid the supplier wins the auction for

sure. In the additional cases where he wins, the initial (and final) price is

¯
p = c(xH , θ1). Renegotiation does not take place or is unsuccessful by similar

reasoning as in case (ii). Hence, in the additional cases where the supplier

wins, he makes a zero profit.

A supplier of type θ1 has no strict incentive to deviate.

Procurer’s expected profit: The procurer’s realized profit depends on the most

efficient type θ1 and the second most efficient type θ2. We distinguish three cases.

(i) θ1 = θ2 = θ2: In this case, renegotiation takes place and the initial price is

¯
p =

¯
p(θ2|xH). The procurer’s (expected) utility is

u(xH , θ2, θ2) = v(xL)− c(xL, θ2)

= S(θ2).(A.23)

(ii) θ1 = θ2 = θ1: In this case, renegotiation does not takes place. The initial

and final price is
¯
p = c(xH , θ1). Thus, the procurer’s utility is

u(xH , θ1, θ1) = v(xH)− c(xH , θ1)

= S(θ1).(A.24)
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(iii) θ1 = θ1 and θ2 = θ2: In this case, renegotiation does not take place and the

initial and final price is
¯
p =

¯
p(θ2|xH). Thus, the procurer’s utility is

u(xH , θ1, θ2) = v(xH)− αc(xL, θ2)− (1− α)c(xH , θ2)− α[v(xH)− v(xL)]

= (1− α)S(θ1) + αS(θ2)− (1− α)[c(xH , θ2)− c(xH , θ1)].(A.25)

Comparison of profits: The procurer optimally specifies
¯
x = xL if and only if

E[u(xL, θ
1, θ2)] > E[u(xH , θ

1, θ2)], which is equivalent to

(A.26) c(xH , θ2)− c(xL, θ2) > c(xH , θ1)− c(xL, θ1).

The above inequality is always satisfied under the imposed assumptions, which

proves the first part of the proposition.

Pooling equilibria: It remains to be shown that there does not exist a pooling

equilibrium. To see this consider the case
¯
x = xL. The only candidate for a pooling

equilibrium is the bid
¯
p = c(xL, θ2). There is no scope for renegotiation for type θ2

and thus this type never makes a renegotiation offer. If a type θ1 wins and can make

the offer, he proposes x̂ = xH at price p̂ =
¯
p + v(xH) − v(xL). This is accepted by

the procurer. If the procurer can make the offer, the optimal offer – independent of

her belief – is x̂ = xH at price p̂ =
¯
p + c(xH , θ1) − c(xL, θ1). This offer is accepted

by a contractor of type θ1 but rejected by a contractor of type θ2. In expectations a

type θ1 contractor makes a strictly positive profit at the renegotiation stage. Hence,

he has an incentive to place a bid p < c(xL, θ2). This increases his probability of

winning – from 1/n to 1 – without affecting his (expected) profit in case he wins the

auction.

A similar argument can be made also for the case
¯
x = xH .

�

Proof of Proposition 3. If renegotiation takes place, then the outcome is character-

ized by Lemma 1. The expected ex post utility of the contractor from contract (
¯
x,
¯
p)

is

π(
¯
x,
¯
p, θ) = (1− b)[p̂(

¯
p, θ)− c(x∗(θ), θ) + b[

¯
p− c(

¯
x, θ)]

=
¯
p+ (1− b)α[S(θ)− v(

¯
x)]− [1− α(1− b)]c(

¯
x, θ).(A.27)

From the above expression the next result is readily obtained.

Lemma 5. The symmetric equilibrium bidding strategy is

¯
p(θ) = (1− b)α[v(

¯
x)− S(θ)] + [1− α(1− b)]c(

¯
x, θ).
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The above lemma can be proven by the usual steps (as in the proof of Lemma 2).

The most efficient type θ1 wins the auction and the initial price is determined by

the second most efficient type θ2, which is given by

(A.28)
¯
p(θ2) = (1− b)α[v(

¯
x)− S(θ2)] + [1− α(1− b)]c(

¯
x, θ2).

The final price is given by

(A.29) p̂(θ1, θ2) = α(1− b)v(
¯
x)− α(1− b)S(θ2) + [1− α(1− b)]c(

¯
x, θ2)

+ α[v(x∗(θ1))− v(
¯
x)] + (1− α)[c(x∗(θ1), θ1)− c(

¯
x, θ1)].

The procurer’s ex post utility for given realizations of θ1 and θ2 is

(A.30) u(
¯
x, θ1, θ2) = b[v(

¯
x)−

¯
p(θ2)] + (1− b)[v(x∗(θ1)− p̂(θ1, θ2)].

Inserting the expressions for p̂ and
¯
p in the procurer’s utility and rearranging yields

(A.31) u(
¯
x, θ1, θ2) = (1− b)[(1− α)S(θ1) + αS(θ2)]

− (1− b)(1− α)[c(
¯
x, θ2)− c(

¯
x, θ1)] + b[v(

¯
x)− c(

¯
x, θ2)].

Noting that the procurer maximizes E[u(
¯
x, θ1, θ2)] by choosing

¯
x completes the proof.

�

Supplementary Calculations to Example 1. When choosing
¯
x = xL, the procurer’s

expected payoff is

(A.32) Eθ1,θ2

[

b(1− θ2)− (1− α)(1− b)(θ2 − θ1)

]

.

On the other hand, when choosing
¯
x = xH , her expected payoff amounts to

(A.33) Eθ1,θ2

[

b(2− 3θ2)− (1− α)(1− b)3(θ2 − θ1)

]

.

Thus, the procurer optimally chooses
¯
x = xL iff

(A.34) Eθ1,θ2

[

b(2θ2 − 1) + (1− α)(1− b)2θ2 − (1− α)(1− b)2θ1
]

≥ 0,

which is equivalent to

(A.35) 2(1− α + αb)Eθ2 [θ
2] ≥ 2(1− α)(1− b)Eθ1 [θ

1] + b.

By using the distribution of the lowest and the second lowest type realization (order

statistics), the expected values are

(A.36) Eθ1 [θ
1] =

1

1 + n
Eθ2 [θ

2] =
2

1 + n
.

Hence,
¯
x = xL is optimal iff

(A.37) b ≤
2− 2α

n− 1− 2α
=: b̂.
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�

Proof of Lemma 3. Each supplier has an incentive to place the bid (xb, pb) that max-

imizes the score G(x, p) subject to the supplier’s break-even constraint.

Bidding a lower score reduces the probability of winning without affecting the

concluded contract in case the supplier wins the auction. As in a second-price

auction, the concluded contract is independent of the bid placed by the winner.

Bidding a higher score increases the probability of winning. In the additional cases

where the supplier now wins, he has to match a score at which he makes losses.

Hence, the optimal bid solves:

max
x,p

g(x)− p

s.t. p+ αS(θ)− αv(x)− (1− α)c(x, θ) ≥ 0.

The solution is xB(θ) and pb(θ), which concludes the proof; see also Che (1993). �

Proof of Lemma 4.

G(θ2) =g(x
b(θ2))− αv(xb(θ2))− (1− α)c(xb(θ2), θ2) + αS(θ2)

< g(xb(θ2))− αv(xb(θ2))− (1− α)c(xb(θ2), θ1) + αS(θ1)

≤ g(xb(θ1))− αv(xb(θ1))− (1− α)c(xb(θ1), θ1) + αS(θ1)

= G(θ1).

The first inequality follows from Assumption 1 and the second inequality holds by

the definition of xb(·). �

Proof of Proposition 4. The procurer’s payoff maximization problem can be restated

as a minimization problem. The optimal scoring function minimizes

(A.38) Eθ1,θ2

[
{
g(xb(θ1))− αv(xb(θ1))− (1− α)c(xb(θ1), θ1)

}

−
{
g(xb(θ2))− αv(xb(θ2))− (1− α)c(xb(θ2), θ2)

}
]

.

By the definition of xB(·), the term (A.38) is (weakly) larger than

Eθ1,θ2

{

(1− α)[c(xb(θ2), θ2)− c(xb(θ1), θ1)}

]

.(A.39)

Hence, it is optimal that xb(θ2) = xb(θ1) = xL. In this case, (A.38) coincides with its

lower bound and the lower bound is minimized. That the lower bound is minimized

for xb(θ2) = xb(θ1) = xL follows from Assumption 1(ii).

A supplier of type θ places a design bid xb(θ) = xL iff

(A.40) α[v(xH)− v(xL)] + (1− α)[c(xH , θ)− c(xL, θ)] ≥ g(xH)− g(xL).
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By Assumption 1(ii), if the above inequality holds for θ =
¯
θ, then it holds for all

θ ∈ Θ. This establishes the first part of the proposition. The statement regarding

the price adjustment follows directly from the proof of Proposition 1.

�

Proof of Corollary 2. The result follows directly from Proposition 4. �

Proof of Proposition 5. As in Subsection 4.1, we assume that there are two different

types, θ ∈ {θ1, θ2}, and rather than applying the GNBS, we assume that the con-

tractor can make a TIOLI offer with probability α ∈ (0, 1) and the procurer can do

so with a probability 1 − α. Again, we assume that c(xL, θ1) < c(xL, θ2) and that

the efficient design is different across the two types

x∗(θ) =







xH for θ = θ1;

xL for θ = θ2.

Recall that these assumptions imply

c(xH , θ2) > c(xL, θ2),

c(xH , θ2)− c(xL, θ2) > v(xH)− v(xL) > c(xH , θ1)− c(xL, θ1),

and S(θ1) > S(θ2).

As equilibrium concept, we employ perfect Bayesian equilibrium in pure strategies.

Now, we proceed with the actual proof. Suppose each supplier with type θ bids

xb(θ) ∈ argmax
x∈X

{g(x)− αv(x)− (1− α)c(x, θ)} ,

pb(θ) = αv(xb(θ)) + (1− α)c(xb(θ), θ)− αS(θ).

Then, the procurer can perfectly deduce the contractor’s type from his bid and/or

the initial contract. There are up to four different cases: (i) xb(θ1) = xb(θ2) = xH , (ii)

xb(θ1) = xb(θ2) = xL, (iii) x
b(θ1) = xH , x

b(θ2) = xL, and (iv) xb(θ1) = xL, x
b(θ2) =

xH . For cases (i) and (ii), the analysis is analogous to the analysis of price-only

auctions in Subsection 4.1, where (xb(θ), pb(θ)) as specified in Lemma 3 are optimal.

Case (iii): Suppose that xb(θ2) = xL and xb(θ1) = xH . In equilibrium, there will

be no renegotiation. Type θ2 does not want to deviate, because then he would make

losses. If a supplier with type θ1 imitates type θ2 and all other suppliers are type θ2

(otherwise he could not win the auction if all others play their equilibrium strategy),

he would win the auction with a probability 1
n
, and could make a TIOLI offer with

probability α. Hence, he would make an expected profit of α
n
[v(xH) − v(xL) −

c(xH , θ1) + c(xL, θ2)]. If he played his equilibrium strategy, his profits in that case

would be g(xH)− pb(θ1)− g(xL) + pb(θ2) = g(xH)− g(xL)− [c(xH , θ1)− c(xL, θ2)].
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Because xb(θ1) = xH , we have g(xH) − g(xL) − [c(xH , θ1) − c(xL, θ2)] ≥ α[v(xH) −

v(xL)] − α[c(xH , θ1) − c(xL, θ2)] >
α
n
[v(xH) − v(xL) − c(xH , θ1) + c(xL, θ2)]. Thus,

deviation is not profitable. In fact, because the inequality is strict, there does not

exist a pooling equilibrium.

Now we show that case (iv) does not exist. Suppose that xb(θ2) = xH . Thus,

g(xH)− αv(xH)− (1− α)c(xH , θ2) ≥ g(xL)− αv(xL)− (1− α)c(xL, θ2) ⇔ g(xH)−

g(xL) ≥ α[v(xH) − v(xL)] + (1 − α)[c(xH , θ2) − c(xL, θ2)]. Because c(xH , θ2) −

c(xL, θ2) > c(xH , θ1)− c(xL, θ1), it follows that x
b(θ1) = xH .

�

Appendix B. Revenue equivalence

Here we show that the procurer’s expected utility is the same for all standard

auctions and their corresponding scoring auctions. In particular, this implies that

all of our findings hold for first-price auctions and first-score auctions. We rely on

the findings of Asker and Cantillon (2008).

First, let us define a supplier’s pseudotype,

(B.1) k(θ) = max
x

{
g(x)− c(x, θ) + α{[v(x∗(θ))− c(x∗(θ), θ)]− [v(x)− c(x, θ)]}

}
,

and let z(k, (k−) be the allocation rule, i.e., the probability that a supplier with

pseudotype k is awarded the contract, given the other players have the pseudotypes

k− (and play their equilibrium strategies). Let z(k) denote the expected probability

that a supplier with pseudotype k is awarded the contract.

Proposition 6 (Asker and Cantillon (2008), Theorem 2). Any two scoring auctions

with a quasi-linear scoring rule G(x, p) that use the same allocation rule z(k, (k−),

and yield the same expected payoff for the lowest pseudotype minθ

{
k
}
generate the

same expected utility for the buyer.

Proof. With our definition of pseudotypes, our setting is included in Asker and

Cantillon (2008), except for the assumption in Asker and Cantillon (2008) that the

scoring rule be strictly increasing in the quality (i.e., the design). However, all

arguments leading up to their Theorem 2 do not rely on that assumption. �

It follows immediately:

Corollary 3. First- and second-price auctions with the same ex-ante design generate

the same expected utility for the buyer in our setting.

Corollary 4. First- and second-score auctions with the same quasi-linear scoring

rule G(x, p) generate the same expected utility for the buyer in our setting.

Thus, our results carry over to first-price and first-score auctions.
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