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Abstract

We consider the Fractional Vector Error Correction model proposed in Avarucci (2007),
which is characterized by a richer lag structure than the models proposed in Granger (1986)
and Johansen (2008, 2009). In particular, we discuss the properties of the model of Avarucci
(2007) (FECM) in comparison to the model of Johansen (2008, 2009) (FCVAR). Both models
generate the same class of processes, but the properties of the two models are different. First,
opposed to the model of Johansen (2008, 2009), the model of Avarucci has a convenient nesting
structure, which allows for testing the number of lags and the cointegration rank exactly in the
same way as in the standard I(1) cointegration framework of Johansen (1995) and hence might
be attractive for econometric practice. Second, we find that the model of Avarucci (2007) is
almost free from identification problems, contrary to the model of Johansen (2008, 2009) and
Johansen and Nielsen (2012), which identification problems are discussed in Carlini and San-
tucci de Magistris (2017). However, due to a larger number of parameters, the estimation of the
FECM model of Avarucci (2007) turns out to be more complicated. Therefore, we propose a
4-step estimation procedure for this model that is based on the switching algorithm employed in
Carlini and Mosconi (2014), together with the GLS procedure of Mosconi and Paruolo (2014).

We check the performance of the proposed estimation procedure in finite samples by means of

*USI, Lugano, E-mail: federico.carlini@Qusi.ch
tCorresponding author. Tinbergen Institute and University of Amsterdam, Roetersstraat 11, 1018 WB Amster-
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a Monte Carlo experiment and we prove the asymptotic distribution of the estimators of all the
parameters. The solution of the model has been previously derived in Avarucci (2007), while
testing for the rank has been discussed in Lasak and Velasco (for cointegration strength >0.5)
and Avarucci and Velasco (for cointegration strength <0.5). Therefore our paper fills in the
gap for a complete inference based on Avarucci (2007) model.

Keywords: Error correction model, Gaussian VAR model, Fractional Cointegration, Estima-
tion algorithm, Maximum likelihood estimation, Switching Algorithm, Reduced Rank Regres-
sion. JEL: C13, C32.

1 Introduction

The econometrics literature on fractional co-integration has developed rapidly in recent years. An
empirically attractive modeling strategy is to use parametric inference, based on an econometric
model that fully describes the system under consideration. It allows identification of the long-
run and short-run structure of the model, as well as of the common stochastic trends and the
impulse response functions summarizing the system dynamics. Three different Fractional Vector
Error Correction Models (FVECM) have been proposed in the literature due to Granger (1986),
Johansen (2008, 2009) and Avarucci (2007). These models turn out to be almost identical in the
simplest case without short run dynamics, but more generally they are characterized by different
lag structure specifications.

The FCVAR model proposed in Johansen (2008, 2009) has a convenient algebraic structure. The
inference for this model has been developed in Johansen and Nielsen (2012). However, there exist
identification problems in this model, as mentioned in Johansen and Nielsen (2012) and further
discussed in Carlini and Santucci de Magistris (2017).

In this paper we demonstrate that the FECM model proposed by Avarucci (2007) is almost
free from identification problems contrary to the FCVAR model of Johansen (2008, 2009). Also,
designing testing procedures for the lag length and the cointegration rank is straightforward in

FECM, due to the fact that the nesting structure follows the usual structure known for the I(1)



Cointegrated Vector AutoRegressive (CVAR) model. However, the estimation is more complicated
in thie FECM model due to the multiplicative structure of the parameters involved.

We conclude that the model proposed by Avarucci might be more convenient for practitioners
if we design an estimation procedure for this model, which we do in this paper.

We propose a 4 step algorithm, which is based on the approach of Carlini and Mosconi (2014)
that maximizes the profile likelihood function using a switching algorithm and implements the GLS
procedure proposed in Mosconi and Paruolo (2014). We check the performance of the proposed
estimation procedure in finite samples by means of a Monte Carlo experiment and we prove the
asymptotic distribution of the estimators of all the parameters. The solution of the model has
been previously derived in Avarucci (2007), while testing for the rank has been discussed in FLasak
and Velasco (for cointegration strength >0.5) and Avarucci and Velasco (for cointegration strength
<0.5). Therefore our paper fills in the gap for a complete inference based on Avarucci (2007) model.

The remainder of the paper is organized as follows. Section 2 presents the FCVAR model pro-
posed in Johansen (2008, 2009) and the FECM model suggested in Avarucci (2007). In particular
we discuss derivation and we give the solutions of both models. We also present different represen-
tations of FECM. In Section 3 we discuss the identification and the convenient nesting structure
of the FECM model. Section 4 introduces the profile likelihood and a 4 step switching algorithm
to estimate the parameters of the FECM model together with the asymptotic distribution of the
estimators of all the parameters. Section 5 illustrates the small sample properties of our estimation
procedure by means of a Monte Carlo experiment. Section 6 concludes. Appendix A describes how
to estimate a bilinear form with a GLS model. Appendix B presents Figures and Tables of the

Monte Carlo experiment.



2 Model comparison

2.1 Johansen’s FCVAR model

The model of Johansen (2008, 2009), which we denote in this paper as FCVAR, is given by the

following dynamics

AYX, = af'ATULLX, + Xk: DAY X, + e, ¢ ~ 1d(0,9), (1)
j=1
where the vector of variables X; is p—dimensional, the loadings o and the cointegrating relations
are p X r matrices with 0 < < p, I'; are p x p matrices of the short run dynamics and the fractional
difference operator is given by the binomial expansion A% := (1 — L)¢ = 372 ((~1)/ (f) L’ and the
fractional lag operator is defined L, = 1 — AP,

As shown in Johansen (2008, 2009), this model could be derived from the standard VAR model
AY; = aff'LY; + Z?Zl I';AL’Y; + ¢, analysed in Johansen (1995), where the lag operator L is such
that LX; = X;_1, and the difference operator A = 1 — L, in the following way. First replace the
difference operator A and the lag operator L = 1 — A by fractional difference operator A’ and the
fractional lag operator L, = 1—A?, respectively, to obtain AbY; = aﬁ’(l—Ab)YH—E?:l ;ALY A+
g;. Next define Y; = AY°X, to get the model (1).

The Granger representation of the model (1) is given in Johansen (2008, 2009):
X, = CAT% + AT 4o, (2)

where 4 is a deterministic component generated by initial values, C = B, (o/,T81) '/, and
t—1

Y," = 3 Tnetn, so Y, is fractional of order zero. Thus the solution of model (1) implies that X;
n=0

is a process integrated of order d (I(d)), while A®X; and ' X; are I(d — b).
In general the cointegration rank r and number of lagged differences k is not known and needs

to be determined. However, the nesting structure, as described in Carlini and Santucci di Magistris



(2017) turns out to be of the following form:

7‘[070 C 7‘[0’1 C ’Ho’z c ... C HO,k
N N N n
7‘[1’0 C 7'[1’1 C HLQ c ... C ’Hly}c
n N N n
N N N n
7'[;070 C 7'[;071 C 7‘[;,;72 c ... C Hp,k
with
Ho1 C  Hpo
'Hog C /Hp,1

Hor C Hpr—1

where #, ;, denotes the hypothesis that the model (1) has cointegration rank r = p and k lagged
differences. Therefore, the joint identification of r and k, if both are unknown, becomes tricky.

It is also shown that there exists a number of equivalent FCVAR models, which causes problems
with identification of fractional parameters d,b and lag length when the cointegration rank r is
known, see Carlini and Santucci di Magistris (2017). They demonstrate that for any k > ko, where

ko denotes the number of lagged differences in the true DGP, the following holds:

e Given kg and k, with k > kg, the number of equivalent sub-models that can be obtained is

k+1
ko + 1

m = ], where [z] denotes the greatest integer less than or equal to x.

e For any k > ko, all the equivalent sub-models are found for parameter values d; = do — jjﬁbo

and bj = bo/(]+ 1) for j =0,1,...,m — 1.

e «, 3 are the same in these models.



Further, they give the number of equivalent sub-models in the following table

kgdk—1]0 1 2 3 4 5 6 7 8 9 10 11 12
0 12 3 4 5 6 7 8 9 10 11 12 13
1 -1 1 2 2 3 3 4 4 5 5 6 6
2 - -1 11 2 2 2 3 3 3 4 4
3 - - - 1111 2 2 2 2 3 3
4 - - - - 11111 2 2 2 2
) - - - - -1 1 1 1 1 1 2 2

Thus there are identification problems regarding the parameters d,b,1';,5 =1,...,k.

2.2 Avarucci’s FECM model

The model of Avarucci (2007), which we denote in this paper as FECM, is given by the following

dynamics
k , k 4
A'Xy = af ATPLX, + Y BILIATP LY, + Y ALIAYX, 4 g e ~iid(0,Q)  (3)
j=1 j=1
where B; = —A;(af'). Avarucci (2007) imposes the restriction X; = 0 for ¢ < 1. This model

is similar to the model of Lobato and Velasco (2006) for testing for fractional unit root in the
univariate framework.

The model of Avarucci (2007) has been derived using a standard assumption in a paramet-
ric framework (see Robinson and Hualde (2003), Dueker and Startz (1998) that the dynamics of

the stationary process can be given by an autoregressive representation. Consider a fractionally



cointegrated system in a triangular form, i.e.

'ATX, =y,
A =me b0 (4)
BIATTV Xy = uy,
The triangular representation (4) can be shown to be equivalent to the FVECM without short

run dynamics, i.e.

AX, = af/ AL X, + VG, (5)

where a = —¢, (8'¢1)"! and B'a = —I,, and r is the cointegration rank. The process u; has the
V AR(k) representation A(L)u; = v;. Then V; is also a VAR(k) process, i.e.: V; = Zle A& itey.
Consider the model (5), then

Vi = AYX, — af'ATPLLX, (6)

can be written as AYX, = af' AL X, + Z§=1 Aj&—; + ¢ and further using (6) AlX, =
A ATVL X, + S AGAYX, — o ATPLLX, ] + e to give finally ATX, = af/ATVLX, +
25:1 AjAdXt_j + Z?:l BjAdibLbXt_j] + €4, where Bj = 7Aj (046').

The model (3) can also be written in another form. The representation proposed below is

coherent with the representation in Johansen (2008). The model (3) can be reformulated as:
k .
AL, =N AL | (AT, — o' Ly) Xy =&y (7)
j=1

This representation emphasizes the nature of the process. In fact, the FECM model is a series
created by connecting two systems: a VAR process identified by the lag polynomial (I —Zle AL
and a FCVAR process identified by the lag polynomial AY~*(A’T, —af'L;). The following scheme

represents the FECM process:

et — A(L)_l —Vi— Hd’b(Lb)_l — X

The input of the system is the Gaussian error term &; transformed in a VAR process V; through




the transfer function A(L)~!. Finally the VAR process V; is transformed into a Fractionally Coin-
tegrated process by means of the transfer function Il;,(Ly) ! := AP=4(AY], — aB'Ly) 1.

In linear system theory, the dynamics of two systems connected in a series can be analysed by
checking the zeros and poles of their transfer functions contemporaneously. Hence, the dynamics of
the FECM can be found by checking the characteristic roots of the polynomials A(z) and I14(y),
where y = 1 — (1 — z)*. This means that we generate fractional cointegration if det(I14;(y)) = 0
has some of the characteristic fractional roots equal to one and '« is a full rank matrix.

The FECM model is characterized by a different (and more complicated) lag structure than the

model proposed in Granger (1986), i.e.:

AlX, = af' AL X+ zk: T, LIAYX, + e, (8)
j=1

and the FCVAR model (1) discussed in the previous section. In fact, FECM model (3) contains
both the usual lags based on a standard lag operator present in Granger’s model (8) and lags using
the fractional lag operator. The latter are different than those present in the FCVAR model (1) of
Johansen. However, in the very particular case of d = b =1 with k = 0 all three models reduce to
the standard ECM. Besides, when k = 0, i.e. the short run dynamics components are not present,
then FCVAR model (3) and FECM model (1) are equal apart for the initial values. The solution
of Johansen’s FCVAR model depends on the initial values, for ¢ < 0, while the FECM model of

Avarucci implicitly has the restriction for which the process starts in ¢ = 0.
The moving average representation (MA) of the FECM model (3) is given in Avarucci (2007).

Following his Theorem 2.2, X; has the representation

t—1
Xy = CALW, + C* ATV + ALY "0V, (9)

j=1
where 3777 [|®;]]* < 00, and C' = 81 (e/ B1) e/, and C* = —[B&’ + CBa + Ba'C + CRa'C),
where ®;,7 =1,...,t — 1 are p x p matrices, V; = A(L)"'e; and if ¢ is a generic p x r matrix then

¢:=c(cc)™! and ¢, is a p x (p—r) matrix such that ¢, ¢ = /¢, = 0. Thus, X; and 3’ X, are Type



IT I(d) and I(d — b) processes respectively.
The proof of Theorem 2.2 is largely based on Theorem 8 in Johansen (2008) and the MA

representation (9) is based on the solution (2) given in Johansen (2008, 2009).

Therefore both models generate the same class of processes. However, in the FECM model
proposed by Avarucci (2007), cointegration always occurs if b > 0 unlike in the FCVAR model of
Johansen (2008, 2009), where the system can not be cointegrated for b > 0 if @S’ is a full rank

matrix. Thus, the model of Avarucci (2007) has more natural interpretation of the parameter b.

3 Statistical identification of the Avarucci’s FECM model

3.1 The nesting structure of the Avarucci’s FECM model

The nesting structure of the Avarucci’s FECM model differs from the presented in Section 2 the
nesting structure of the Johansen’s (2008, 2009) FCVAR model and it follows the simple VAR
structure, which makes testing the cointegration rank r and the number of lagged differences k to

be straightforward. If we define the model
k .
Hep: AT, - ZAZ»L")(A”IP —af L)Xy =¢e, r=0,...,p

i=1

then, the nesting structure of the Avarucci’s FECM model is given by

Hoo C Honx C Ho2 C ... C Hog
N N N N

Hio C Hig C Hip C ... C Hig
N N N n
N N N N

Hpo C Hpy C Hpo C ... C Hppr



For example, the inclusion Ho 1 C Ha 2 can be tested by A; = 0 and the inclusion H;; C Ha 1 can
be tested on a rank restriction on the matrix a8’. Moreover, it is simple to prove that the model
Ho,1 is not nested in Ha o because the term af’Ly is zero in Ho ;.

The nesting structure of the Johansen FCVAR model is more complicated as discussed in Section
2, see also Carlini and Santucci de Magistris (2017) for the details. The convenient nesting structure
of Avarucci (2007) FECM model not only makes the testing procedures straightforward, but also
assures identification of the model, contrary to Johansen (2008, 2009), which we discuss in the

following sub-sections.

3.2 Identification of FECM when the lag length is unknown

Recall from Section 2 that in the Johansen’s (2008, 2009) FCVAR model (1) there exists a number
of equivalent models with overspecified lag length. In order to illustrate that this does not happen

in the Avarucci’s (2007) FECM model let us consider the model with just 2 lags:

2
Mo ATV 1, =Y AL | (AL, — af'Ly) Xy =& (10)

Jj=1

where Hy indicates the model with k& = 2 in (7).
Let us demonstrate under which restrictions the two sub-models of Hs: the model with 2 lags

’Héo) and the model with 1 lag ’Hél)

1O . Ado—bo (1,, — (I, + AL + A1L2) (Abo I, - dB’LbO) X, =e,. (11)

HY o ABTh (L, — AL) (AN, — af Ly, ) Xi = & (12)

can be reparameterized as in Carlini and Santucci de Magistris (2017), which would indicate iden-
tification problems.

First note, that in case of a unit root, the sub-model ’Héo) in equation (11) can be written as:
At (1, — AL) (A™1, = 6B/ L, ) (I, — LL) X, = &

10



or equivalently as

Ado=bo (I,, - fllL) (AbOI,, - dB’LbO) AX, = ¢

Therefore,

#O . Ado—bo+1 (Ip - AlL) (AbOIp - oz/}’LbD) X, =< (13)

Now, let us compare the sub-models (12) and (13). It is clear that the equations (13) and (12)
reparametrize when a3’ = af’, Ay = Ay, by = by and dy — by + 1 = dy — by. Hence, ’Héo) = Hél) if
and only if dy + 1 = dy and there is a unit root.

Furthermore, note that under the unit root the model Héo) is a sub-model of the model Ho,
when we impose the restriction Ay + A; — I, = 0. Instead, the sub-model "Hél) is the sub-model of
the model H, when we impose the restriction Ay = 0.

Therefore, the parameter b is always identified. In order to rule out the identification problem for
the parameter d and autoregressive parameters A;, we only need to assume that the characteristic

polynomial

k
I(z) = | I, — ZAjzj
j=1

has roots outside the unit circle, which is already assumed in Avarucci (2007). Therefore the
identification problem for the parameter d and autoregressive parameters A; is not present in the

Avarucci’s FECM model.

3.3 Lack of identification when af’ =0

However, the problem of identification can arise when a8’ = 0. In this situation, (7) is given by
k .
AT, - ZAjLJ X, =&
j=1

and the parameter b is not identified. This particular feature of the model has been used in Lasak
(2010) to propose a sup-test for no cointegration and is common for all fractionally cointegrated

Vector Error Correction models. This identification issue is also relevant in the FCVAR model

11



when the number of lags is k = 0.

3.4 The proof of identification of the Avarucci’s FECM model

In this sub-section we give the proof of identification of the FECM model (3) when the lag length &
of the VAR is known. The proof of identification follows the same steps as in Johansen and Nielsen

(2012).

Theorem 1. Suppose b # 1 and o’ # 0, then the parameters § = vec(d,b, A,..., Ag,a,5,9)

in the model

k
AL =N AL (A, - aB L) X =&
j=1
are identifiable.

Proof

1. A parametric model is identified when fy,(z¢|I;—1) = f5(x¢|[/;—1) implies Ny = A, where
f(z|I;—1) is the conditional density function. In the FECM model the parameter vector is

given by A = vec(d, b, a, 5, A1, ..., A, Q).

2. In the model (3) &; is assumed to be iid. We are interested in the first and the second
moment of f. Hence we have to show that the conditions E\,(x¢|l;—1) = E5(x¢|I;—1) and

vary, (@¢|l—1) = vars(x¢|I;—1) imply Ao = \. The equality for conditional variances requires

that QO =Q.

3. We use the decomposition I, = 83’ + 3.8, where ' = (8'8)71f and 5 = (8" BL)"'8/ to
identify the parameters o and 8 defining & = o33y and Ef = B(BhB)~! so that aff’ = &ﬂ:’.

4. The equality for conditional means requires that
M (2) = (I = Az — - = ARF) (1 = 2) %% (1 = 2)* L, — apfp(1 — (1 — 2)™) =

= (I~ Az = = A2 (1 - )= 2L - &B (1 - (1 - 2)%) = T15(2)

12



If £k > 0 and r > 0 then it is implied that A‘; :flj,j =1,...,k,dyo =d,by = b,ap = & and
Bo = B when by = b # 1.

5. Ifbg=b=1then (I, — AYz — - — A%2F) (1 = 2)I, — (1 — (1 = 2)) = (I, — Ayz — - - —
ApZ*)((1=2)I, —apB'(1— (1 —z)) is not generally solved by A% = Ajj=1,...,kap=aand
By = B. In fact, by the theory of matrix polynomials in Dennis at al. (1976), this problem

can be easily explained. Suppose that you have a given matrix polynomial
B(2) =1, — Byz—...— B2"
and Bj,j =1,...,k are p x p fixed square matrices and we want to decompose it as
(I, = D1z — ... Dy_12F 1) (I, — O12)

where Cy is called the right solvent of the matrix polynomial B(z). We define the latent

values as the values z1,..., 2y such that |B(z;)] = 0 and the right latent vectors as the
vectors vi,...,Upr such that B(z;)v; = 0 where z; is a latent value. If B(z) has p linearly
independent right latent vectors vy , ..., v, corresponding to latent roots 21, ..., 2p, then C; :=

QAQ™! is a right solvent, where Q = [v1,...,v,] and A = diag(z1,...,2,), see Dennis et al.
(1976). Therefore, in general the right solvent is not unique (because we can find many
z1,...,%p that satisfy the requirement of the theorem) and there exist different matrices
D§-l),j =1,....k— 1,C£l) for I = 1,...,p that satisfy the decomposition of B(z). For this
reason, when by = b = 1 the matrices Aj,j=1,...,k (the Dj,j =1,...,k — 1 matrices in

the example) and « and § (the C; matrix in the example) are not identified.

6. Suppose now r = 0, then the parameters (d, Ay, ..., Ag) are just identified and it follows the

same argument as in Johansen and Nielsen (2012).

This proof shows that an identification problem occurs when the DGP value of the cointegration gap
parameter bg is equal to 1. This identification issue can naturally affect the asymptotic distributions

of the parameters of the model. We will discuss in Section 4.2 the consequences of the identification

13



issue on the estimation method proposed.

4 Estimation of the Avarucci’s FECM model

In this section we use a profile likelihood approach to estimate the parameters of the FECM model.
We concentrate the likelihood function on the parameters ¢» = (d,b)’ as in Johansen and Nielsen

(2012). The profile maximum likelihood estimator is

arg max br (1), (14)

where K is a compact set defined as K = {n < b < d < d} for some values 7 > 0 and d > 0 and

1 1
lr(y) = ~5F log det(Q2) + T log(27).

Hence, the parameters «, 5 and A;,j = 1,...,k are considered as nuisance parameters.
To maximize the likelihood function we use the same idea as in Johansen and Nielsen (2012). For
any combination of ¥, we maximize the likelihood function with respect to the nuisance parameters

o, Band Aj,j =1,...,k with a numerical routine based on a switching algorithm described below.

4.1 The switching algorithm

For any given values of ¥ = (d,b)’, we estimate
AX; — aff ATPLX + AL @ ) (I @ B)AYTPLLZy — AN Z, = ¢

Now we can use the switching algorithm to maximize the likelihood with respect to .

14



Note that

X1
A A, A A Z de
pXpk N ! 2 k pkil N
. Xt_k -

We run the following switching algorithm:

Step 1. For given values of a, 3,2, we estimate A in the following equation
AX, — af/ AT LX, = AJAYZ, — (Ip @ ) (I, @ B)AYC Ly Z) + &

The parameters A are estimated with ordinary least squares.

Step 2. Given values of A, 3,€), we estimate « in the following equation:

Xy

AlX, — ANZ, = (1, 0 —Al(Ir1 ® a)(Tpyr @ B)ATL, + &
Zy

Using the Mosconi and Paruolo algorithm explained in the Appendix, we estimate o with generalized
Xi
least squares by imposing H, = [I, : —A], Wy = (Ij41 ® B/)AYbL, and K is the matrix

Zy
such that (Ij4+1 ® o) = Kvec(a).

Step 3. For given values of A, «, ), we estimate § in the following equation

Xy

AX, — AN Zy = (I, : —Al(Ir1 @ ) (Ir41 @ B)AL, + &
Z

Again, the Mosconi and Paruolo algorithm is needed to estimate § with generalized least squares
Xi
after imposing Hg = [I, : —A](Ix+1 ® a), Wy = A4=°L, where K is the matrix such that

Zy
(Ix1 ® B') = Kvec(p).

15



Step 4. For given values of A, «, 5 we estimate {2 as

L
Q:?t_zletei

and then we evaluate the likelihood.

We iterate Step 1 - Step 2 - Step 3 and Step 4 until convergence. Finally, we optimize the

likelihood function (14) with respect to ¢ = (d, b)’ to calculate the ML estimator ).

4.2 Estimation and Identification issues

As explained in Section 3, the identification issue in the FECM model arises when the DGP value
bop = 1. In particular, the identification issue is relevant for the matrices o, f and A4;,5 =1,...,k,
because they are shown not to be unique when by = 1. We maximize the profile likelihood function
with respect to ¥ = (d,b)’. Hence, the maximum likelihood estimator v is always identified, but
the estimated nuisance parameters &, B and Aj,j =1,...,k are not identified.

By simple algebra, we note that if by = 1 then the FECM model with k lags is a reparameteri-
zation of the FCVAR model where b=1, d > 1 (d = dp + 1) and k lags. In fact, the characteristic

polynomial of the FECM model when b = 1 is given by the following expression

k k+1

AL =Y A (L= 2, —aBz) = (11— 21> 0,20
j=0

Jj=1

while the characteristic polynomial of the FCVAR model when b = 1 is given by the following

expression:

k k+1

(1—2), =af/(1—2)%12 — ij(l —2)%7 = (1 - 2)%! Z Wjzd.
=0

j=1

Furthermore, the FCVAR model with b = 1 is an identified model. Hence, we could test in the
FECM framework the hypothesis Hy : b = 1. The asymptotic distribution of this hypothesis has

to be derived because this is a case of hypothesis testing in which the nuisance parameters are not
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identified. A reference that describe in more detail this problem is Hansen (1996). If the hypothesis
Ho : b =1 is not rejected, then we study the FCVAR in which d > 1.

In the Monte Carlo experiment, we have generated a FECM model with b =1, b= 0.99, b = 1.01
and T' = 100,000 observations. When we estimate the model (setting the initial values of «, 8 and
A to their true values), the switching algorithm converge very slowly and the number of iterations
is approximately of an order of 10°. These non-identified and almost-non-identified FECM models

make the proposed estimation procedure very difficult to manage in the proximity of by = 1.

4.3 Initial values

Using the switching algorithm it is important to have a good initial guess for parameters «, 8 and

the matrix A. Hence we use as initial guess for these parameters the estimates from the equation

AMX, — af ATPLL X, + EATNLLZ, — ANYZ, = ¢y

~

obtained with Conditional Sum of Squares (CSS) profile likelihood method. We get d, b, &, 3, A,

(1

by maximizing the profile likelihood function (or profile CSS) with a reduced rank regression. In
fact, this model can be estimated with a profile likelihood depending on the parameters d,b. Hence,

we maximize

£() = log det (; Zéxw)é;(w) - = log(2n)

over a compact parameter set K = {n < b < d < d} for some values d > 1 > 0.
The estimates A, @ and 3 are used as initial guess to start up the switching algorithm. The

estimates d and b are used as initial values in the optimization routine.

4.4 Asymptotic properties

The switching algorithm proposed in Section 4.1 gives us the estimates of all the parameters of
the FECM model. We summarize the asymptotic properties of these estimates in Theorem 2 and

Theorem 3 and prove them in the Apppendix C.
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Theorem 2. The estimator B is consistent. The asymptotic distribution of B is mixed Gaussian

with the optimal convegence rate, hence B— B € Op (T‘b) ,b>0.5.

Theorem 3. The estimators CZ, 3, a, Aq,... ,Ak are root-T consistent and have an asymptotic

joint normal distribution.

Theorem 2 indicates that the asymptotic distribution of the estimator of the cointegrating
relationship 3 in FECM model is equal to the distribution of the ML estimator of this paramater
in Johansen and Nielsen (2012), Lasak (2008) and GLS in Robinson and Hualde (2003). It is also
similar to Johansen (1995) for b = 1 fixed. Since § remains mixed normal, we can test for the
values of cointegration vector using Wald test that will be x? distributed. Theorem 3 implies that

the standard inference rules for other estimators would be valid as well.

5 Simulation experiment

The Monte Carlo exercise is conducted with a simulation of the FECM model using the Jensen
(2014)’s algorithm to generate the FCVAR model two times. The FECM model can be generated

in two steps: in the first step invert a FCVAR,; model with 0 lags to obtain Y}, given by
Y= (I, — A1 oL — ... — Ay oL") ey

In the second step generate the process
X; = (A%, — apByA% 0 L, ) 7Y

again with the Jensen (2014) algorithm. We developed a new routine that transforms the param-
eters of the VAR model into the parameters of the FCVAR model when d = b = 1. With these
transformed parameters, we generate the process X;.

We run three Monte Carlo experiments. In the first experiment we generate N = 1500 Monte
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Carlo replications of the following data generating process

(I, — A1 oL — Ag g L?)(A%™ I, — ap B A% Ly VX, = &4

where ¢; ~ 1.i.d.N(0,Qp) and ¢t = 1,...,T. The numerical parameters of the DGP are

—-0.2 0.2 0.2 0
Ag=[A1,0: A2p] =

0 03 -03 -0.3

-0.3 1 1 0
ap = Bo = Qo =
0.3 —-0.4 0 1

and the values of dy and by are chosen such that the inverse roots y of the determinant |(1 —
y)I, — aoByy| = 0 are outside the fractional circle Cp, as described in Johansen (2008). The
parameters in Ay are chosen such that the inverse roots z of the lag polynomial calculated as
|I, — A1,z — As2,02| = 0 are outside the unit circle. Furthermore, we have chosen parameters for
which no identification issues occur.

For each run of the Monte Carlo simulation we fit the FECM model with two lags, given by

(I, — AiL — Ay L*)(AL, — af AP L) Xy = &4 (15)

using the switching algorithm discussed in Section 4.1.

When we maximize the likelihood function, the first experiment is to use as initial values for
the parameters d and b the true data generating process values dy and by, while the initial values in
the switching algorithm for «, 8 and 2 are imposed to be ag, By and Q4. The maximization routine
climbs the likelihood function within the values d € [0.01,2] and b € [0.01,2] in order to avoid
negative - or close to zero - d and b estimates. Further, we impose in the maximization routine the
restriction d > b because in the FECM this inequality must be satisfied.

We introduce two parameters to control the convergence of the switching algorithm. The first
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parameter is the maximum number of iterations of the switching algorithm N%¢". The program
stops when a number of N*¢" chosen is reached. The second parameter is a tolerance number Tol.
The program stops when the absolute value of the likelihood at step k& + 1 minus the likelihood
value at step k is less than Tol. In the Monte Carlo we have set these two parameters to be
N#ter = 20,000 and Tol = 1078,

To simplify the exposition, we introduce new notation for the elements of the matrices in model.

The elements of the matrices are

o — (651 B _ 1 Q _ w11 w12 A _ agll) ag

(1) (
fe%) B1 Wal W2 az; Qg

1 2 2
2) agl) agQ)

1 2 2
2) aél) aéz)

where wyy = wy;. When we estimate the FECM model the vectors 5* = [87 : 83]' and &* = [af : o]
are normalized by calculating & = g7&* and B = i . B*

We present the Monte Carlo results when we simulate the process with dg = 0.8, by = 0.6 and
T = 100,000. The results of the sample statistics of the distributions of the estimated parameters
are reported in Table 3.1. Figure 3.1 displays the plots of the densities of the estimates of the
parameters in Eq. 15. These densities are calculated with a non-parametric method and they are
smoothed by a Gaussian Kernel.

The biases of the Monte Carlo estimates are smaller than an order of magnitude of 10~3 and
the standard deviations are smaller than 0.1. We analyzed if the Monte Carlo sample distributions
were normal with a Jarque-Bera test and we do not reject the hypothesis for some of the elements
in the matrix A and the fractional parameters d and b.

We tried to check if the switching algorithm is robust with respect to different initial values and
the results are still the same when the sample size is 7' = 100, 000. If the sample size is T' = 10, 000
then the initial values for «, 8 and Q are crucial if we want to find the global maximum of the
likelihood function.

The algorithm behaves differently depending on the choice of dy and by. In fact, if we simulate

a model where dy = by = 0.9, we need over 20,000 iterations of the switching algorithm to converge,
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which is related to the identification of the model discussed in Section 3.

In the second Monte Carlo experiment we fix d = dp and b = by and let the switching algorithm
find the estimates of all other parameters. In Figure 3.2 and Table 3.2 the results are shown when
the DGP takes values dy = by = 0.6 and «q, By, Ap as before and T = 100,000. We notice that in
this set up we could not reject the null hypothesis of normality for all the parameters but 5.

In the third Monte Carlo experiment we fit the model

(I — ALL — Ay L) (AL, — TIAT L) X, = &

where

Hll H12
I =

1_[21 H22

i.e. matrix IT has a full column rank and we run the switching algorithm fixing d = dy and b = by.
In Figure 3.3 and Table 3.3 the Monte Carlo results are shown when the DGP has dy = by = 0.6
and «ay, By, Ap as before and T" = 100,000. We do not reject the null hypothesis of normality for all

the estimated parameters with a Jarque-Bera test.

6 Conclusions

In this paper we discuss two fractionally cointegrated models: a FCVAR model proposed in Johansen
(2008, 2009) and the FECM model proposed in Avarucci (2007) and Avarucci and Velasco (2010).
They both generate the same class of processes, but due to different lag structures their properties
differ significantly. The FECM model turns out to be characterised by a more convenient nesting
structure, that allows a straightforward way for testing the cointegration rank and the number of
lagged differences to be included as short run parameters. Further, the identification problems are
far less severe in FECM model than in the FCVAR model. On the other hand, the estimation
of FECM is more complicated due to the presence of two different parts that model the short

run dynamics and the restriction that relates their parameters. Thus, we propose an estimation
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procedure, which is based on the suggestion of Carlini and Mosconi (2014) that maximizes the
likelihood function using a switching algorithm and the GLS procedure of Mosconi and Paruolo
(2014). We prove the asymptotic distribution of the estimators of all the parameters and we
illustrate by means of Monte Carlo experiment the performance of our procedure in finite samples.
We find that close to the DGPs chosen in the Monte Carlo simulations, the estimated parameters
cf, ZALOQ, Aj, 7 = 1,2 are normally distributed, whilst B has a fat-tailed distribution, which confirms
the asymptotic theory developed. The solution of the model has been previously derived in Avarucci
(2007), while testing for the rank has been discussed in Lasak and Velasco (for cointegration strength
>0.5) and Avarucci and Velasco (for cointegration strength <0.5). Therefore our paper fills in the

gap for a complete inference based on Avarucci (2007) model.

Appendix A

The following algorithm describes how to estimate a bilinear form with a GLS model. Further
details can be found in Mosconi and Paruolo (2014).

Consider the following equation
Y,=HOW;+¢ t=1,...,T

e ~ 1dN(0,9), wec(d) = K7

where Y; and W; are respectively p, x 1 and p,, x 1 vectors, H and 6 are respectively p, x r and

Pw X r matrices. Then, we can estimate v as
= (K'(HQ ' H ® Syw)K) " K vec(S,y Q1 H)

where Sy, = Zle W W/ and S,y = Zle WY, .
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Appendix B

Figure 1: Distributions of the parameters when the DGP parameters are dy = 0.8, by = 0.6.
N = 1,500 Monte Carlo replications and Y;,t = 1,...,100000.
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Table 1: Sample statistics of the Monte Carlo distributions when dy = 0.8 by = 0.6, T = 100000

observations and N = 1500 Monte Carlo replications.

d b a1 9 I}
Bias 0.0000  0.0012 0.0001  -0.0005 0.0000
Std.Dev 0.0038  0.0135 0.0214  0.0206 0.0024
Skew. -0.1404  0.0117  -0.3912  0.3018 0.0546
Kurtosis 3.1239  3.0231 3.3295  3.2352 3.3915

p-value JB test 0.0514 >0.5000  0.0010 0.0010  0.0084
(1) (1) (1) (1)

a11 Q12 G2 A2
Bias 0.0001  0.0000 0.0002  0.0000
Std.Dev 0.0103  0.0049 0.0096  0.0054
Skew 0.2826  -0.2777  -0.1961  0.1228
Kurtosis 3.1502  3.1095 3.1846  3.0136

p-value JB test  0.0010 0.0010 0.0052 0.1434
(2) (2) (2) (2)

a1 a1 A1 A2
Bias 0.0000  0.0000 0.0000  -0.0002
Std.Dev 0.0081  0.0046 0.0033  0.0030
Skew 0.2360 -0.0388  0.0532  0.0482
Kurtosis 3.3815  3.0897 29097  2.8717

p-value JB test 0.0010 >0.5000 >0.5000 0.4295

24



Figure 2: Distributions of the Monte Carlo simulations when dy = by = 0.6 are fixed in the switching

algorithm. The generated FECM paths have 7' = 100000 observations.
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Table 2: Sample statistics of the Monte Carlo distributions dy = by = 0.6 kept fixed in the switching

algorithm with 7' = 100000 and N = 1750 Monte Carlo replications.

d oy (o7 B1
Bias - -0.0005  0.0002 0.0000
Std.Dev - 0.0097  0.0081 0.0023
Skew. - -0.1066  0.0750 0.0655
Kurtosis - 3.0495  2.9494 3.4033
p-value JB test - 0.1671  0.3867 0.0031
aif ey ey a4y
Bias 0.0004 -0.0002 -0.0002  0.0001
Std.Dev 0.0068  0.0038  0.0060 0.0035
Skew 0.0432  -0.0834 -0.0087  0.0745
Kurtosis 2.8009 29927  3.0914 3.0576

p-value JB test  0.4818  0.3513  >0.5000  0.3810
@) @) @) 2)

@11 a12 o1 (2o
Bias 0.0002  -0.0001 -0.0000 -0.0001
Std.Dev 0.0054  0.0038  0.0032 0.0030
Skew 0.0200 0.0748  0.0591 0.0374
Kurtosis 2.9412 2.9225 2.8213 2.9423

p-value JB test >0.5000 0.3455 0.1802  >0.5000
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Figure 3: Distributions of the Monte Carlo simulations when dy = by = 0.6 are fixed in the switching

algorithm. The generated FECM paths have T' = 100, 000 observations.
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Table 3: Sample statistics of the Monte Carlo distributions dy = by = 0.6 kept fixed and 7" = 100000,

N = 1750 Monte Carlo replications and estimation of the matrix II.

11 T12 T21 T22
Bias - 0.0005  0.0000 0.0002 0.0003
Std.Dev 0.0098 0.0041 0.0081 0.0034
Skew. -0.1072  0.0678 0.0755 -0.0877
Kurtosis 3.0452 3.0158 2.9507 2.9101

p-value JB test  0.1663 0.4993 0.3846 0.2338
(1) (1) (1) (1)

a1y @12 @21 )
Bias 0.0004  0.0000 -0.0001 0.0002
Std.Dev 0.0068  0.0038  0.0060 0.0035
Skew 0.0428 -0.0699 -0.0070  0.0829
Kurtosis 2.8821  3.0308  3.0953 3.0458

p-value JB test  0.4444  0.4578 >0.5000  0.3315
(2) () () (2)

@11 a12 o1 (2o
Bias 0.0002  0.0000  0.0000  -0.0001
Std.Dev 0.0054  0.0038  0.0033 0.0030
Skew 0.0202  0.0642  0.0589 0.0379
Kurtosis 2.9403 29068  2.8339 2.9455

p-value JB test >0.5000 0.3859 0.2123  >0.5000
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Appendix C

Here we provide proofs of the asymptotic distribution of the estimators of all the parameters ob-
tained from the procedure proposed in Section 4.1.

C.1 Model. Consider the model with one lag

AlX, = af'ATPLX, 4V,

Vi = AV +ey.
Multiplying by I, — AL and using (I, — AL)V; = &; we find
AlX, = af/ AL Xy — AaB/ AL X, + ATAX, 4 &y (16)

C.2 Representation. For the model (16) the representation is given by equation (9) in Section
2.2 and can be written as

X, = AN (CyV, + A Zy,),

where 77, is stationary. Inserting

Vi=(I, — AgL) ey = (I, — Ao) 'er + A Afey ;= (I, — Ag)'er + AZyy
1=0

where Zy; is stationary, we find

X; = A% {Cy(I, — Ap) et + CoAZy; + A% Zy,}, (17)

Note that By X; = ByA~%+b 7, is fractional of order dy — by.
C.3 Likelihood. We let X be a notation for all parameters, and A\d are all the parameters except

d. We want to find expressions for Dge(A\d) say, and use the notation

Dd5t(/\0) = Ddat(ko\d) |d=d0 .
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We first define £,() and the (conditional given initial values) likelihood function,
setting Q0 = Q :
5 o) = AKX, — aB ALY 4 AaB AT L, LY, — AAX,

T
—2logL(A) = tr{Q" ) e(Ne(N)'}
t=1
We next insert the X; from (17):

et(N) = ATDICH(I, — Ag)ler + CoAZy + A 7y} (18)
—af AN L L (T, — Ag) e + CoAZy + AP 7y}
+Aaf AT L L{C (I, — Ag) ey + CoAZoy + A™ Zy,}

— AN LIC (T, — Ap) " ter + CoAZy + AP 7y, ).

C.4 The asymptotic distribution of B We normalize the usual way as 8 = B¢ + Po1r0, and

first set all other the parameters equal to their true value. We find

et(Mo\0) = {Co(I, — Ag) ter + CoAZy + AP0 714}
—ao(By +0'B1o) AT Ly {Co(I, — Ag)ter + CoAZoy + A Zy,}
+A00¢0(ﬂ6 -+ e/ﬂlo)AiboLboL{Co(Ip - A0)71€t + CoAth + Abo th}

—A()L{Co([p - Ao)_lé't + COAZ% + Ab"th}.
Differentiating with respect to 6 we find two terms

Doet(No\O)|o=p, = —ao(df) B oA Ly {Co(I, — Ag) ter + CoAZy + AP0 714}

+A00(0(d@)/ﬁﬁ_oA_bOLboL{Co(Ip - Ao)_lé"t + COAZQt + AbOZH}

In this expression we keep the most nonstationary terms, which determine the asymptotic behaviour
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of the score function, and find, using Dges(Ng) = Dget(Ao\0)|o=0,

Doer(No) =~ —ag(d) B o{Co(I, — Ag) (AT — 1)e;}
+A0a0(d9)/ﬂi0{00(1p — Ao)_l(A_bO — 1)5:‘.

= —(I, — Ag)ag(d) B, Co(I, — Ag) (AT — 1)e.

Note that the Avarucci model has the adjustment coefficients &y = (I, — Ag)ag such that &, =

ol (I, — Ag)~" and we could define Cy = Cy(I, — Ap)~'. The score function then becomes

—QT_bO_1/2D9 log L()\o)

T
= tr{(d0)' B oCo(l, — Ag) T2y (A% — 1)eyef Q5 (I, — Ao)ao}
t=1

1
2 4r{(d8) B8oCo / Way 1 (dW) Qg do ).
0

where

Spy = T UHU2(A 1)y B, i (w),
T T 1
T Srue; = T*bo*l/QZ(A*bo—nete;%/o Who—1(dW)’
t=1 t=1

T T
TS SpeSre = TS (A7 — De{(A — 1)e)
t=1 t=1

1
D /
— / Wbo,1Wb071du
0

Note that CoWj,_1 depends on &, ,W and is independent of @' W, so the limit of the score

function is mixed Gaussian. The information is found as the limit

T
T2t {Q5" Y~ Doer(No) Doet(Xo)'}

t=1

1
B {05 a0 (d6) B, Co / Wy 1 Wi, 1 duClB10(d0)ah}.
0
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A Taylors expansion shows that (provided the estimator is consistent) we find for all matrices df

T
tr{(d)' B oCoT™ "> S} " ao}
t=1
~ T ~ ~
~  —tr{(dF) B oCoT ™" S1.487,,CoB1o(0 — 6)}
t=1

hence

T T
%0 —0) =~ [BoCoT ™Y S48, CoB10l " BLoCol™ "> SreiQ o

t=1 t=1

1 1
2 (81000 /O Who 1 Wi, _1duClB 1ol B0Co /O Wi (dW)' 025 L1

C.5 The asymptotic distribution of d. First all parameters are set to their null value except

d, and we note that all terms have the difference A% 9 :

et(Mo\d) = ATDICH(I, — Ag)tes + CoAZy + AP 714}
— Ao BN Ly {Co(I, — Ag) " ter + CoAZyy + AP 714}
+AD Ao By AT Ly L{Co (I, — Ag) Yt + CoAZyy + AP Zy,}

7Ad7doA0L{Co(Ip — Ao)il{:‘t + COAZQt —+ AbOZM}.
We also note that the in the second and third terms, we can use 5)Cy = 0, so we are left with

et(Mo\d) = ADICH(I, — Ag)ter + CoAZy + AP 714}
— Ao 0 B0 Ly, Zt
+Ad_d0A00zoﬁéLb0 LZ]_t

,Ad*dOAoL{C’o(Ip — Ag) ey + CoAZy + A 7y, )
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All nonstationary term vanishes and Dget(\o) is stationary. It follows that the score
T
T~'2Dglog L =T~ *tr{> " Daer(No)ei "}
t=1
asymptotically Gaussian, and the information is found as the limit of
T

tr{T" 3 " Dae¢(Xo)Dacr(Xo) ' }.

t=1

Thus the asymptotic distribution of T7/2(d — do) is Gaussian.
C.6 The asymptotic distribution of b. The derivatives are found as follows. First all parameters

are set to their null value except b,:

et(Mo\b) = {Co(I, — Ao) et + CoAZy + A 714}
—apByAT Ly {Co(I, — Ag) et + CoAZy + A 714}
+ Ao ByA Ly L{Co (I, — Ag) ‘et + CoAZyy + AP Zy,}

—AoL{Co(Ip - Ao)_lft + CQAZQt + AbOth}.
Again we employ 8,Coy = 0 and find

et(Mo\b) = {Co(I, — Ao) ‘et + CoAZy + A 714}
—Oéoﬂ(/)A_bLbAbOZH
+AgapByATP Ly LAY 7y,

—AgL{Co(I, — Ag)ter + CoAZy + AP Zy,}.
Taking derivative with respect to b we find

Dyer(Mo\D)|p=b, = (I, — Ao)ao By Dy A~ 72|, Zy,
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Thus Dpet(Ao) is stationary and the asymptotic distribution of b is Gaussian. The information is

found as

T
tr{T7"> " Dyes(Mo)Dyer(No)' Q')

t=1

and the off diagonal elements are

T
tr{T"> " Dyer(Ao) Dagi(Xo)' '}

t=1

This shows that we get a joint Gaussian limit distribution of T%/2(d — dg, b — bo).

A small comment in the end: we know that

() = ol
1 n=>0
7Tn(o) =
0 n=1,2,
for small d we have
(n—1)!
n(d) = d R

such that Dér,,(d)|4=0 = 0 for n = 0, and

D r (d — do)|a=dy, = Dp(d)|a=o = 1/n,n =1,2,...

Thus and Z; we find

D& or (d—do)|a—ay Zt = Zt1+ Zs—2/2+ Zy_3/3+ ...

Thus if Z; is stationary, then also D%~ %, (d — do)|d=d, Z¢ is stationary.
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C.7 The asymptotic distribution of @ and A. We fix all the parameters but « to their true

values and we get
ei(Mo\) = ATNLCH(I, — Ag)te, + CoAZy + A 7y} (19)
—afy Ly, {Zu}
+AoaBy Ly, L{Z1+}

—A()L{Abozlt + CO(IP — Ao)_1€t + CoAZQt}.
Taking the derivative with respect to a we get
Daei(Mo\a) = —daByLy, Z11 + AodaBy Ly, L(Z1:) (20)

Thus D,e:(Ao) is stationary and the asymptotic distribution of & is Gaussian. In fact, it follows

that the score

T
T-Y2D,log L = T*l/%r{z Daet(Mo)e 5t}

t=1
asymptotically Gaussian, and the information is found as the limit of
T
tr{T™" " Daet(Xo) Dact(Xo) 2 '}

t=1

We fix the parameters to their true values but A and we get

Et()\o\a) = Ad_dO{CO(Ip — Ao)_1€t + C()AZ% + AbOth}
—a0BoLu,{Z1:}
+A04056Lb0L{th}

—AL{A™ Zy; + Co(I, — Ag) et + CoAZay }.
Taking the derivative with respect to A we get

DA€,5(/\0\04) = —dAaOB(’)LbOLth — dAL{AbOZU + Co(Ip — Ao)_lé‘t + CoAZQt}
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Thus D4e¢(Ng) is stationary and the asymptotic distribution of A is Gaussian. In fact, it follows

that the the score
T

T72Dylog L = T7?tr{d  Daci(Mo)e '}

t=1

asymptotically Gaussian, and the information is found as the limit of
T
tr{T~"Y " Daci(Mo)Dac(Xo)'Q '}
t=1
The off diagonal elements
T T
tr{T™"> " Daci(Mo)Dace(Xo)' Q"1 tr{T ™" " Dacr(No) Dagi(Xo)' '}
t=1 t=1
T T

tr{T~" " Dact(Mo) Dyer(Xo)' Qg ' 1 tr{T™" > Dacs(Xo)Dacs(X0)' '}

t=1 t=1

T
tr{T ™) Dagi(Xo) Doer(Mo)' Q5 '}
=1

are product of stationary components.

Hence the asymptotic distribution of Tl/zvec(d — dp, b— bo, & — ay, A-— Ap) is Gaussian.
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