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Likelihood based inference for an Identi�able Fractional

Vector Error Correction Model

Federico Carlini∗, Katarzyna �asak†

27 September 2018

Abstract

We consider the Fractional Vector Error Correction model proposed in Avarucci (2007),

which is characterized by a richer lag structure than the models proposed in Granger (1986)

and Johansen (2008, 2009). In particular, we discuss the properties of the model of Avarucci

(2007) (FECM) in comparison to the model of Johansen (2008, 2009) (FCVAR). Both models

generate the same class of processes, but the properties of the two models are di�erent. First,

opposed to the model of Johansen (2008, 2009), the model of Avarucci has a convenient nesting

structure, which allows for testing the number of lags and the cointegration rank exactly in the

same way as in the standard I(1) cointegration framework of Johansen (1995) and hence might

be attractive for econometric practice. Second, we �nd that the model of Avarucci (2007) is

almost free from identi�cation problems, contrary to the model of Johansen (2008, 2009) and

Johansen and Nielsen (2012), which identi�cation problems are discussed in Carlini and San-

tucci de Magistris (2017). However, due to a larger number of parameters, the estimation of the

FECM model of Avarucci (2007) turns out to be more complicated. Therefore, we propose a

4-step estimation procedure for this model that is based on the switching algorithm employed in

Carlini and Mosconi (2014), together with the GLS procedure of Mosconi and Paruolo (2014).

We check the performance of the proposed estimation procedure in �nite samples by means of

∗USI, Lugano, E-mail: federico.carlini@usi.ch
†Corresponding author. Tinbergen Institute and University of Amsterdam, Roetersstraat 11, 1018 WB Amster-

dam, Email: k.a.lasak@uva.nl.
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a Monte Carlo experiment and we prove the asymptotic distribution of the estimators of all the

parameters. The solution of the model has been previously derived in Avarucci (2007), while

testing for the rank has been discussed in �asak and Velasco (for cointegration strength >0.5)

and Avarucci and Velasco (for cointegration strength <0.5). Therefore our paper �lls in the

gap for a complete inference based on Avarucci (2007) model.

Keywords: Error correction model, Gaussian VAR model, Fractional Cointegration, Estima-

tion algorithm, Maximum likelihood estimation, Switching Algorithm, Reduced Rank Regres-

sion. JEL: C13, C32.

1 Introduction

The econometrics literature on fractional co-integration has developed rapidly in recent years. An

empirically attractive modeling strategy is to use parametric inference, based on an econometric

model that fully describes the system under consideration. It allows identi�cation of the long-

run and short-run structure of the model, as well as of the common stochastic trends and the

impulse response functions summarizing the system dynamics. Three di�erent Fractional Vector

Error Correction Models (FVECM) have been proposed in the literature due to Granger (1986),

Johansen (2008, 2009) and Avarucci (2007). These models turn out to be almost identical in the

simplest case without short run dynamics, but more generally they are characterized by di�erent

lag structure speci�cations.

The FCVAR model proposed in Johansen (2008, 2009) has a convenient algebraic structure. The

inference for this model has been developed in Johansen and Nielsen (2012). However, there exist

identi�cation problems in this model, as mentioned in Johansen and Nielsen (2012) and further

discussed in Carlini and Santucci de Magistris (2017).

In this paper we demonstrate that the FECM model proposed by Avarucci (2007) is almost

free from identi�cation problems contrary to the FCVAR model of Johansen (2008, 2009). Also,

designing testing procedures for the lag length and the cointegration rank is straightforward in

FECM, due to the fact that the nesting structure follows the usual structure known for the I(1)
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Cointegrated Vector AutoRegressive (CVAR) model. However, the estimation is more complicated

in thie FECM model due to the multiplicative structure of the parameters involved.

We conclude that the model proposed by Avarucci might be more convenient for practitioners

if we design an estimation procedure for this model, which we do in this paper.

We propose a 4 step algorithm, which is based on the approach of Carlini and Mosconi (2014)

that maximizes the pro�le likelihood function using a switching algorithm and implements the GLS

procedure proposed in Mosconi and Paruolo (2014). We check the performance of the proposed

estimation procedure in �nite samples by means of a Monte Carlo experiment and we prove the

asymptotic distribution of the estimators of all the parameters. The solution of the model has

been previously derived in Avarucci (2007), while testing for the rank has been discussed in �asak

and Velasco (for cointegration strength >0.5) and Avarucci and Velasco (for cointegration strength

<0.5). Therefore our paper �lls in the gap for a complete inference based on Avarucci (2007) model.

The remainder of the paper is organized as follows. Section 2 presents the FCVAR model pro-

posed in Johansen (2008, 2009) and the FECM model suggested in Avarucci (2007). In particular

we discuss derivation and we give the solutions of both models. We also present di�erent represen-

tations of FECM. In Section 3 we discuss the identi�cation and the convenient nesting structure

of the FECM model. Section 4 introduces the pro�le likelihood and a 4 step switching algorithm

to estimate the parameters of the FECM model together with the asymptotic distribution of the

estimators of all the parameters. Section 5 illustrates the small sample properties of our estimation

procedure by means of a Monte Carlo experiment. Section 6 concludes. Appendix A describes how

to estimate a bilinear form with a GLS model. Appendix B presents Figures and Tables of the

Monte Carlo experiment.
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2 Model comparison

2.1 Johansen's FCVAR model

The model of Johansen (2008, 2009), which we denote in this paper as FCVAR, is given by the

following dynamics

∆dXt = αβ′∆d−bLbXt +

k∑
j=1

Γj∆
dLjbXt + εt, εt ∼ iid(0,Ω), (1)

where the vector of variables Xt is p−dimensional, the loadings α and the cointegrating relations β

are p×r matrices with 0 ≤ r ≤ p, Γj are p×p matrices of the short run dynamics and the fractional

di�erence operator is given by the binomial expansion ∆d := (1− L)d =
∑∞
j=0(−1)j

(
d
j

)
Lj and the

fractional lag operator is de�ned Lb = 1−∆b.

As shown in Johansen (2008, 2009), this model could be derived from the standard VAR model

∆Yt = αβ′LYt +
∑k
j=1 Γj∆L

jYt + εt analysed in Johansen (1995), where the lag operator L is such

that LXt = Xt−1, and the di�erence operator ∆ = 1 − L, in the following way. First replace the

di�erence operator ∆ and the lag operator L = 1−∆ by fractional di�erence operator ∆b and the

fractional lag operator Lb = 1−∆b, respectively, to obtain ∆bYt = αβ′(1−∆b)Yt+
∑k
j=1 Γj∆

bLjbYt+

εt. Next de�ne Yt = ∆d−bXt to get the model (1).

The Granger representation of the model (1) is given in Johansen (2008, 2009):

Xt = C∆−d+ εt + ∆
−(d−b)
+ Y +

t + µt, (2)

where µt is a deterministic component generated by initial values, C = β⊥(α′⊥Γβ⊥)−1α′⊥ and

Y +
t =

t−1∑
n=0

τnεt−n, so Y
+
t is fractional of order zero. Thus the solution of model (1) implies that Xt

is a process integrated of order d (I(d)), while ∆bXt and β
′Xt are I(d− b).

In general the cointegration rank r and number of lagged di�erences k is not known and needs

to be determined. However, the nesting structure, as described in Carlini and Santucci di Magistris
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(2017) turns out to be of the following form:

H0,0 ⊂ H0,1 ⊂ H0,2 ⊂ . . . ⊂ H0,k

∩ ∩ ∩ ∩

H1,0 ⊂ H1,1 ⊂ H1,2 ⊂ . . . ⊂ H1,k

∩ ∩ ∩ ∩
...

...
...

. . .
...

∩ ∩ ∩ ∩

Hp,0 ⊂ Hp,1 ⊂ Hp,2 ⊂ . . . ⊂ Hp,k

with

H0,1 ⊂ Hp,0

H0,2 ⊂ Hp,1
...

...

H0,k ⊂ Hp,k−1

,

where Hp,k denotes the hypothesis that the model (1) has cointegration rank r = p and k lagged

di�erences. Therefore, the joint identi�cation of r and k, if both are unknown, becomes tricky.

It is also shown that there exists a number of equivalent FCVAR models, which causes problems

with identi�cation of fractional parameters d, b and lag length when the cointegration rank r is

known, see Carlini and Santucci di Magistris (2017). They demonstrate that for any k ≥ k0, where

k0 denotes the number of lagged di�erences in the true DGP, the following holds:

• Given k0 and k, with k ≥ k0, the number of equivalent sub-models that can be obtained is

m = [ k + 1
k0 + 1 ], where [x] denotes the greatest integer less than or equal to x.

• For any k ≥ k0, all the equivalent sub-models are found for parameter values dj = d0− j
j + 1b0

and bj = b0/(j + 1) for j = 0, 1, ...,m− 1.

• α, β are the same in these models.
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Further, they give the number of equivalent sub-models in the following table

k0 ↓ k → 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 - 1 1 2 2 3 3 4 4 5 5 6 6

2 - - 1 1 1 2 2 2 3 3 3 4 4

3 - - - 1 1 1 1 2 2 2 2 3 3

4 - - - - 1 1 1 1 1 2 2 2 2

5 - - - - - 1 1 1 1 1 1 2 2

Thus there are identi�cation problems regarding the parameters d, b,Γj , j = 1, . . . , k.

2.2 Avarucci's FECM model

The model of Avarucci (2007), which we denote in this paper as FECM, is given by the following

dynamics

∆dXt = αβ′∆d−bLbXt +

k∑
j=1

BjL
j∆d−bLbXt +

k∑
j=1

AjL
j∆dXt + εt εt ∼ iid(0,Ω) (3)

where Bj = −Aj(αβ′). Avarucci (2007) imposes the restriction Xt = 0 for t < 1. This model

is similar to the model of Lobato and Velasco (2006) for testing for fractional unit root in the

univariate framework.

The model of Avarucci (2007) has been derived using a standard assumption in a paramet-

ric framework (see Robinson and Hualde (2003), Dueker and Startz (1998) that the dynamics of

the stationary process can be given by an autoregressive representation. Consider a fractionally
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cointegrated system in a triangular form, i.e.

ξ′∆dXt = u1t,

β′∆d−bXt = u2t,
with d− b ≥ 0. (4)

The triangular representation (4) can be shown to be equivalent to the FVECM without short

run dynamics, i.e.

∆dXt = αβ′∆d−bLbXt + Vt, (5)

where α = −ξ⊥(β′ξ⊥)−1 and β′α = −Ir, and r is the cointegration rank. The process ut has the

V AR(k) representation A(L)ut = vt. Then Vt is also a V AR(k) process, i.e.: Vt =
∑k
j=1Ajξt−j+εt.

Consider the model (5), then

Vt = ∆dXt − αβ′∆d−bLbXt, (6)

can be written as ∆dXt = αβ′∆d−bLbXt +
∑k
j=1Ajξt−j + εt and further using (6) ∆dXt =

αβ′∆d−bLbXt +
∑k
j=1Aj [∆

dXt−j − αβ′∆d−bLbXt−j ] + εt to give �nally ∆dXt = αβ′∆d−bLbXt +∑k
j=1Aj∆

dXt−j +
∑k
j=1Bj∆

d−bLbXt−j ] + εt, where Bj = −Aj(αβ′).

The model (3) can also be written in another form. The representation proposed below is

coherent with the representation in Johansen (2008). The model (3) can be reformulated as:

∆d−b

Ip − k∑
j=1

AjL
j

(∆bIp − αβ′Lb
)
Xt = εt. (7)

This representation emphasizes the nature of the process. In fact, the FECM model is a series

created by connecting two systems: a VAR process identi�ed by the lag polynomial (I−
∑k
j=1AjL

j)

and a FCVAR process identi�ed by the lag polynomial ∆d−b(∆bIp−αβ′Lb). The following scheme

represents the FECM process:

εt → A(L)−1 → Vt → Πd,b(Lb)
−1 → Xt

The input of the system is the Gaussian error term εt transformed in a VAR process Vt through
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the transfer function A(L)−1. Finally the VAR process Vt is transformed into a Fractionally Coin-

tegrated process by means of the transfer function Πd,b(Lb)
−1 := ∆b−d(∆bIp − αβ′Lb)−1.

In linear system theory, the dynamics of two systems connected in a series can be analysed by

checking the zeros and poles of their transfer functions contemporaneously. Hence, the dynamics of

the FECM can be found by checking the characteristic roots of the polynomials A(z) and Πd,b(y),

where y = 1 − (1 − z)b. This means that we generate fractional cointegration if det(Πd,b(y)) = 0

has some of the characteristic fractional roots equal to one and β′α is a full rank matrix.

The FECM model is characterized by a di�erent (and more complicated) lag structure than the

model proposed in Granger (1986), i.e.:

∆dXt = αβ′∆d−bLbXt−1 +

k∑
j=1

ΓjL
j∆dXt + εt, (8)

and the FCVAR model (1) discussed in the previous section. In fact, FECM model (3) contains

both the usual lags based on a standard lag operator present in Granger's model (8) and lags using

the fractional lag operator. The latter are di�erent than those present in the FCVAR model (1) of

Johansen. However, in the very particular case of d = b = 1 with k = 0 all three models reduce to

the standard ECM. Besides, when k = 0, i.e. the short run dynamics components are not present,

then FCVAR model (3) and FECM model (1) are equal apart for the initial values. The solution

of Johansen's FCVAR model depends on the initial values, for t < 0, while the FECM model of

Avarucci implicitly has the restriction for which the process starts in t = 0.

The moving average representation (MA) of the FECM model (3) is given in Avarucci (2007).

Following his Theorem 2.2, Xt has the representation

Xt = C∆−d+ Vt + C∗∆−d+b+ Vt + ∆−d+2b
+

t−1∑
j=1

ΦjVt−j , (9)

where
∑∞
j=0 ||Φj ||2 < ∞, and C = β⊥(α′⊥β⊥)−1α′⊥, and C

∗ = −[β̄ᾱ′ + Cβ̄ᾱ′ + β̄ᾱ′C + Cβ̄ᾱ′C],

where Φj , j = 1, . . . , t− 1 are p× p matrices, Vt = A(L)−1εt and if c is a generic p× r matrix then

c̄ := c(c′c)−1 and c⊥ is a p× (p− r) matrix such that c′⊥c = c′c⊥ = 0. Thus, Xt and β
′Xt are Type
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II I(d) and I(d− b) processes respectively.

The proof of Theorem 2.2 is largely based on Theorem 8 in Johansen (2008) and the MA

representation (9) is based on the solution (2) given in Johansen (2008, 2009).

Therefore both models generate the same class of processes. However, in the FECM model

proposed by Avarucci (2007), cointegration always occurs if b > 0 unlike in the FCVAR model of

Johansen (2008, 2009), where the system can not be cointegrated for b > 0 if αβ′ is a full rank

matrix. Thus, the model of Avarucci (2007) has more natural interpretation of the parameter b.

3 Statistical identi�cation of the Avarucci's FECM model

3.1 The nesting structure of the Avarucci's FECM model

The nesting structure of the Avarucci's FECM model di�ers from the presented in Section 2 the

nesting structure of the Johansen's (2008, 2009) FCVAR model and it follows the simple VAR

structure, which makes testing the cointegration rank r and the number of lagged di�erences k to

be straightforward. If we de�ne the model

Hr,k : ∆d−b(Ip −
k∑
i=1

AiL
i)(∆bIp − αβ′Lb)Xt = εt, r = 0, . . . , p

then, the nesting structure of the Avarucci's FECM model is given by

H0,0 ⊂ H0,1 ⊂ H0,2 ⊂ . . . ⊂ H0,k

∩ ∩ ∩ ∩

H1,0 ⊂ H1,1 ⊂ H1,2 ⊂ . . . ⊂ H1,k

∩ ∩ ∩ ∩
...

...
...

. . .
...

∩ ∩ ∩ ∩

Hp,0 ⊂ Hp,1 ⊂ Hp,2 ⊂ . . . ⊂ Hp,k

,
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For example, the inclusion H2,1 ⊂ H2,2 can be tested by A2 = 0 and the inclusion H1,1 ⊂ H2,1 can

be tested on a rank restriction on the matrix αβ′. Moreover, it is simple to prove that the model

H0,1 is not nested in H2,0 because the term αβ′Lb is zero in H0,1.

The nesting structure of the Johansen FCVAR model is more complicated as discussed in Section

2, see also Carlini and Santucci de Magistris (2017) for the details. The convenient nesting structure

of Avarucci (2007) FECM model not only makes the testing procedures straightforward, but also

assures identi�cation of the model, contrary to Johansen (2008, 2009), which we discuss in the

following sub-sections.

3.2 Identi�cation of FECM when the lag length is unknown

Recall from Section 2 that in the Johansen's (2008, 2009) FCVAR model (1) there exists a number

of equivalent models with overspeci�ed lag length. In order to illustrate that this does not happen

in the Avarucci's (2007) FECM model let us consider the model with just 2 lags:

H2 : ∆d−b

Ip − 2∑
j=1

AjL
j

(∆bIp − αβ′Lb
)
Xt = εt. (10)

where H2 indicates the model with k = 2 in (7).

Let us demonstrate under which restrictions the two sub-models of H2: the model with 2 lags

H(0)
2 and the model with 1 lag H(1)

2

H(0)
2 : ∆d0−b0

(
Ip − (Ip + Ã1)L+ Ã1L

2
)(

∆b0Ip − α̃β̃′Lb0
)
Xt = εt. (11)

H(1)
2 : ∆d1−b1

(
Ip − Ā1L

) (
∆b1Ip − ᾱβ̄′Lb1

)
Xt = εt. (12)

can be reparameterized as in Carlini and Santucci de Magistris (2017), which would indicate iden-

ti�cation problems.

First note, that in case of a unit root, the sub-model H(0)
2 in equation (11) can be written as:

∆d0−b0
(
Ip − Ã1L

)(
∆b0Ip − α̃β̃′Lb0

)
(Ip − IpL)Xt = εt.
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or equivalently as

∆d0−b0
(
Ip − Ã1L

)(
∆b0Ip − α̃β̃′Lb0

)
∆Xt = εt

Therefore,

H(0)
2 : ∆d0−b0+1

(
Ip − Ã1L

)(
∆b0Ip − α̃β̃′Lb0

)
Xt = εt (13)

Now, let us compare the sub-models (12) and (13). It is clear that the equations (13) and (12)

reparametrize when α̃β̃′ = ᾱβ̄′, Ã1 = Ā1, b1 = b0 and d0 − b0 + 1 = d1 − b1. Hence, H(0)
2 = H(1)

2 if

and only if d0 + 1 = d1 and there is a unit root.

Furthermore, note that under the unit root the model H(0)
2 is a sub-model of the model H2,

when we impose the restriction A2 +A1 − Ip = 0. Instead, the sub-model H(1)
2 is the sub-model of

the model H2 when we impose the restriction A2 = 0.

Therefore, the parameter b is always identi�ed. In order to rule out the identi�cation problem for

the parameter d and autoregressive parameters Aj , we only need to assume that the characteristic

polynomial

Π(z) =

Ip − k∑
j=1

Ajz
j


has roots outside the unit circle, which is already assumed in Avarucci (2007). Therefore the

identi�cation problem for the parameter d and autoregressive parameters Aj is not present in the

Avarucci's FECM model.

3.3 Lack of identi�cation when αβ′ = 0

However, the problem of identi�cation can arise when αβ′ = 0. In this situation, (7) is given by

∆d

Ip − k∑
j=1

AjL
j

Xt = εt

and the parameter b is not identi�ed. This particular feature of the model has been used in Lasak

(2010) to propose a sup-test for no cointegration and is common for all fractionally cointegrated

Vector Error Correction models. This identi�cation issue is also relevant in the FCVAR model
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when the number of lags is k = 0.

3.4 The proof of identi�cation of the Avarucci's FECM model

In this sub-section we give the proof of identi�cation of the FECM model (3) when the lag length k

of the VAR is known. The proof of identi�cation follows the same steps as in Johansen and Nielsen

(2012).

Theorem 1. Suppose b 6= 1 and αβ′ 6= 0, then the parameters θ = vec(d, b, A1, . . . , Ak, α, β,Ω)

in the model

∆d−b

Ip − k∑
j=1

AjL
j

(∆bIp − αβ′Lb
)
Xt = εt

are identi�able.

Proof

1. A parametric model is identi�ed when fλ0
(xt|It−1) = fλ̃(xt|It−1) implies λ0 = λ̃, where

f(xt|It−1) is the conditional density function. In the FECM model the parameter vector is

given by λ = vec(d, b, α, β,A1, . . . , Ak,Ω).

2. In the model (3) εt is assumed to be iid. We are interested in the �rst and the second

moment of f . Hence we have to show that the conditions Eλ0(xt|It−1) = Eλ̃(xt|It−1) and

varλ0
(xt|It−1) = varλ̃(xt|It−1) imply λ0 = λ̃. The equality for conditional variances requires

that Ω0 = Ω̃.

3. We use the decomposition Ip = ββ̄′ + β⊥β̄
′
⊥ where β̄′ = (β′β)−1β′ and β̄′⊥ = (β′⊥β⊥)−1β′⊥ to

identify the parameters α and β de�ning ˜̃α = αβ′β̄0 and
˜̃
β = β(β̄′0β)−1 so that αβ′ = ˜̃α

˜̃
β′.

4. The equality for conditional means requires that

Πλ0
(z) = (Ip −A0

1z − · · · −A0
kz
k)(1− z)d0−b0((1− z)b0Ip − α0β

′
0(1− (1− z)b0) =

= (Ip − Ã1z − · · · − Ãkzk)(1− z)d̃−b̃((1− z)b̃Ip − α̃β̃′(1− (1− z)b̃) = Πλ̃(z)
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If k > 0 and r > 0 then it is implied that A0
j = Ãj , j = 1, . . . , k, d0 = d̃, b0 = b̃, α0 = α̃ and

β0 = β̃ when b0 = b̃ 6= 1.

5. If b0 = b̃ = 1 then (Ip −A0
1z − · · · −A0

kz
k)((1− z)Ip − α0β

′
0(1− (1− z)) = (Ip − Ã1z − · · · −

Ãkz
k)((1−z)Ip− α̃β̃′(1− (1−z)) is not generally solved by A0

j = Ãj , j = 1, . . . , k, α0 = α̃ and

β0 = β̃. In fact, by the theory of matrix polynomials in Dennis at al. (1976), this problem

can be easily explained. Suppose that you have a given matrix polynomial

B(z) = Ip −B1z − . . .−Bkzk

and Bj , j = 1, . . . , k are p× p �xed square matrices and we want to decompose it as

(Ip −D1z − . . . Dk−1z
k−1)(Ip − C1z)

where C1 is called the right solvent of the matrix polynomial B(z). We de�ne the latent

values as the values z1, . . . , zpk such that |B(zk)| = 0 and the right latent vectors as the

vectors v1, . . . , vpk such that B(zj)vj = 0 where zj is a latent value. If B(z) has p linearly

independent right latent vectors v1,, . . . , vp corresponding to latent roots z1, . . . , zp, then C1 :=

QΛQ−1 is a right solvent, where Q = [v1, . . . , vp] and Λ = diag(z1, . . . , zp), see Dennis et al.

(1976). Therefore, in general the right solvent is not unique (because we can �nd many

z1, . . . , zp that satisfy the requirement of the theorem) and there exist di�erent matrices

D
(l)
j , j = 1, . . . , k − 1, C

(l)
1 for l = 1, . . . , p that satisfy the decomposition of B(z). For this

reason, when b0 = b̃ = 1 the matrices Aj , j = 1, . . . , k (the Dj , j = 1, . . . , k − 1 matrices in

the example) and α and β (the C1 matrix in the example) are not identi�ed.

6. Suppose now r = 0, then the parameters (d,A1, . . . , Ak) are just identi�ed and it follows the

same argument as in Johansen and Nielsen (2012).

This proof shows that an identi�cation problem occurs when the DGP value of the cointegration gap

parameter b0 is equal to 1. This identi�cation issue can naturally a�ect the asymptotic distributions

of the parameters of the model. We will discuss in Section 4.2 the consequences of the identi�cation
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issue on the estimation method proposed.

4 Estimation of the Avarucci's FECM model

In this section we use a pro�le likelihood approach to estimate the parameters of the FECM model.

We concentrate the likelihood function on the parameters ψ = (d, b)′ as in Johansen and Nielsen

(2012). The pro�le maximum likelihood estimator is

arg max
ψ∈K

`T (ψ), (14)

where K is a compact set de�ned as K =
{
η ≤ b ≤ d ≤ d̄

}
for some values η > 0 and d̄ > 0 and

`T (ψ) = − 1

2T
log det(Ω) +

1

pT
log(2π).

Hence, the parameters α, β and Aj , j = 1, . . . , k are considered as nuisance parameters.

To maximize the likelihood function we use the same idea as in Johansen and Nielsen (2012). For

any combination of ψ, we maximize the likelihood function with respect to the nuisance parameters

α, β and Aj , j = 1, . . . , k with a numerical routine based on a switching algorithm described below.

4.1 The switching algorithm

For any given values of ψ = (d, b)′, we estimate

∆dXt − αβ′∆d−bLbXt +A(Ik ⊗ α)(Ik ⊗ β′)∆d−bLbZt −A∆dZt = εt.

Now we can use the switching algorithm to maximize the likelihood with respect to ψ.
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Note that

A
p×pk

=

[
A1 A2 · · · Ak

]
Zt
pk×1

=



Xt−1

Xt−2
...

Xt−k


.

We run the following switching algorithm:

Step 1. For given values of α, β,Ω, we estimate A in the following equation

∆dXt − αβ′∆d−bLbXt = A[∆dZt − (Ik ⊗ α)(Ik ⊗ β′)∆d−bLbZt] + εt

The parameters Â are estimated with ordinary least squares.

Step 2. Given values of A, β,Ω, we estimate α in the following equation:

∆dXt −A∆dZt = [Ip : −A](Ik+1 ⊗ α)(Ik+1 ⊗ β′)∆d−bLb

 Xt

Zt

+ εt

Using the Mosconi and Paruolo algorithm explained in the Appendix, we estimate α with generalized

least squares by imposing Hα = [Ip : −A], Wt = (Ik+1 ⊗ β′)∆d−bLb

 Xt

Zt

 and K is the matrix

such that (Ik+1 ⊗ α) = Kvec(α).

Step 3. For given values of A,α,Ω, we estimate β in the following equation

∆dXt −A∆dZt = [Ip : −A](Ik+1 ⊗ α)(Ik+1 ⊗ β′)∆d−bLb

 Xt

Zt

+ εt

Again, the Mosconi and Paruolo algorithm is needed to estimate β with generalized least squares

after imposing Hβ = [Ip : −A](Ik+1 ⊗ α), Wt = ∆d−bLb

 Xt

Zt

 where K is the matrix such that

(Ik+1 ⊗ β′) = Kvec(β).

15



Step 4. For given values of A,α, β we estimate Ω as

Ω =
1

T

T∑
t=1

εtε
′
t

and then we evaluate the likelihood.

We iterate Step 1 - Step 2 - Step 3 and Step 4 until convergence. Finally, we optimize the

likelihood function (14) with respect to ψ = (d, b)′ to calculate the ML estimator ψ̂.

4.2 Estimation and Identi�cation issues

As explained in Section 3, the identi�cation issue in the FECM model arises when the DGP value

b0 = 1. In particular, the identi�cation issue is relevant for the matrices α, β and Aj , j = 1, . . . , k,

because they are shown not to be unique when b0 = 1. We maximize the pro�le likelihood function

with respect to ψ = (d, b)′. Hence, the maximum likelihood estimator ψ̂ is always identi�ed, but

the estimated nuisance parameters α̂, β̂ and Âj , j = 1, . . . , k are not identi�ed.

By simple algebra, we note that if b0 = 1 then the FECM model with k lags is a reparameteri-

zation of the FCVAR model where b = 1, d ≥ 1 (d = d0 + 1) and k lags. In fact, the characteristic

polynomial of the FECM model when b = 1 is given by the following expression

∆d−1(Ip −
k∑
j=1

Ajz
j)((1− z)Ip − αβ′z) = (1− z)d−1

k+1∑
j=0

Ψjz
j

while the characteristic polynomial of the FCVAR model when b = 1 is given by the following

expression:

(1− z)dIp = αβ′(1− z)d−1z −
k∑
j=1

Γj(1− z)dzj = (1− z)d−1
k+1∑
j=0

Ψjz
j .

Furthermore, the FCVAR model with b = 1 is an identi�ed model. Hence, we could test in the

FECM framework the hypothesis H0 : b = 1. The asymptotic distribution of this hypothesis has

to be derived because this is a case of hypothesis testing in which the nuisance parameters are not
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identi�ed. A reference that describe in more detail this problem is Hansen (1996). If the hypothesis

H0 : b = 1 is not rejected, then we study the FCVAR in which d ≥ 1.

In the Monte Carlo experiment, we have generated a FECM model with b = 1, b = 0.99, b = 1.01

and T = 100, 000 observations. When we estimate the model (setting the initial values of α, β and

A to their true values), the switching algorithm converge very slowly and the number of iterations

is approximately of an order of 109. These non-identi�ed and almost-non-identi�ed FECM models

make the proposed estimation procedure very di�cult to manage in the proximity of b0 = 1.

4.3 Initial values

Using the switching algorithm it is important to have a good initial guess for parameters α, β and

the matrix A. Hence we use as initial guess for these parameters the estimates from the equation

∆dXt − αβ′∆d−bLbXt + Ξ∆d−bLbZt −A∆dZt = εt

obtained with Conditional Sum of Squares (CSS) pro�le likelihood method. We get d̂, b̂, α̂, β̂, Â, Ξ̂

by maximizing the pro�le likelihood function (or pro�le CSS) with a reduced rank regression. In

fact, this model can be estimated with a pro�le likelihood depending on the parameters d, b. Hence,

we maximize

`(ψ) = − log det

(
1

T

T∑
i=1

ε̂t(ψ)ε̂′t(ψ)

)
− 1

pT
log(2π)

over a compact parameter set K =
{
η ≤ b ≤ d ≤ d̄

}
for some values d̄ > η > 0.

The estimates Â, α̂ and β̂ are used as initial guess to start up the switching algorithm. The

estimates d̂ and b̂ are used as initial values in the optimization routine.

4.4 Asymptotic properties

The switching algorithm proposed in Section 4.1 gives us the estimates of all the parameters of

the FECM model. We summarize the asymptotic properties of these estimates in Theorem 2 and

Theorem 3 and prove them in the Apppendix C.
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Theorem 2. The estimator β̂ is consistent. The asymptotic distribution of β̂ is mixed Gaussian

with the optimal convegence rate, hence β̂ − β ∈ OP
(
T−b

)
, b > 0.5.

Theorem 3. The estimators d̂, b̂, α̂, Â1, . . . , Âk are root-T consistent and have an asymptotic

joint normal distribution.

Theorem 2 indicates that the asymptotic distribution of the estimator of the cointegrating

relationship β̂ in FECM model is equal to the distribution of the ML estimator of this paramater

in Johansen and Nielsen (2012), �asak (2008) and GLS in Robinson and Hualde (2003). It is also

similar to Johansen (1995) for b = 1 �xed. Since β̂ remains mixed normal, we can test for the

values of cointegration vector using Wald test that will be χ2 distributed. Theorem 3 implies that

the standard inference rules for other estimators would be valid as well.

5 Simulation experiment

The Monte Carlo exercise is conducted with a simulation of the FECM model using the Jensen

(2014)'s algorithm to generate the FCVAR model two times. The FECM model can be generated

in two steps: in the �rst step invert a FCVARd,b model with 0 lags to obtain Yt, given by

Yt = (Ip −A1,0L− . . .−Ak,0Lk)−1εt.

In the second step generate the process

Xt = (∆d0Ip − α0β
′
0∆d0−b0Lb0)−1Yt

again with the Jensen (2014) algorithm. We developed a new routine that transforms the param-

eters of the VAR model into the parameters of the FCVAR model when d = b = 1. With these

transformed parameters, we generate the process Xt.

We run three Monte Carlo experiments. In the �rst experiment we generate N = 1500 Monte
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Carlo replications of the following data generating process

(Ip −A1,0L−A2,0L
2)(∆d0Ip − α0β

′
0∆d0−b0Lb0)Xt = εt

where εt ∼ i.i.d.N(0,Ω0) and t = 1, . . . , T . The numerical parameters of the DGP are

A0 = [A1,0 : A2,0] =

 −0.2 0.2 0.2 0

0 0.3 −0.3 −0.3



α0 =

 −0.3

0.3

 β0 =

 1

−0.4

 Ω0 =

 1 0

0 1


and the values of d0 and b0 are chosen such that the inverse roots y of the determinant |(1 −

y)Ip − α0β
′
0y| = 0 are outside the fractional circle Cb0 as described in Johansen (2008). The

parameters in A0 are chosen such that the inverse roots z of the lag polynomial calculated as

|Ip − A1,0z − A2,0z
2| = 0 are outside the unit circle. Furthermore, we have chosen parameters for

which no identi�cation issues occur.

For each run of the Monte Carlo simulation we �t the FECM model with two lags, given by

(Ip −A1L−A2L
2)(∆dIp − αβ′∆d−bLb)Xt = εt (15)

using the switching algorithm discussed in Section 4.1.

When we maximize the likelihood function, the �rst experiment is to use as initial values for

the parameters d and b the true data generating process values d0 and b0, while the initial values in

the switching algorithm for α, β and Ω are imposed to be α0, β0 and Ω0. The maximization routine

climbs the likelihood function within the values d ∈ [0.01, 2] and b ∈ [0.01, 2] in order to avoid

negative - or close to zero - d̂ and b̂ estimates. Further, we impose in the maximization routine the

restriction d ≥ b because in the FECM this inequality must be satis�ed.

We introduce two parameters to control the convergence of the switching algorithm. The �rst
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parameter is the maximum number of iterations of the switching algorithm N iter. The program

stops when a number of N iter chosen is reached. The second parameter is a tolerance number Tol.

The program stops when the absolute value of the likelihood at step k + 1 minus the likelihood

value at step k is less than Tol. In the Monte Carlo we have set these two parameters to be

N iter = 20, 000 and Tol = 10−8.

To simplify the exposition, we introduce new notation for the elements of the matrices in model.

The elements of the matrices are

α =

 α1

α2

 β =

 1

β1

 Ω =

 ω11 ω12

ω21 ω22

 A =

 a
(1)
11 a

(1)
12 a

(2)
11 a

(2)
12

a
(1)
21 a

(1)
22 a

(2)
21 a

(2)
22


where ω12 = ω21. When we estimate the FECMmodel the vectors β̂∗ = [β∗1 : β∗2 ]′ and α̂∗ = [α∗1 : α∗2]′

are normalized by calculating α̂ = β∗1 α̂
∗ and β̂ = 1

β∗
1
· β̂∗.

We present the Monte Carlo results when we simulate the process with d0 = 0.8, b0 = 0.6 and

T = 100, 000. The results of the sample statistics of the distributions of the estimated parameters

are reported in Table 3.1. Figure 3.1 displays the plots of the densities of the estimates of the

parameters in Eq. 15. These densities are calculated with a non-parametric method and they are

smoothed by a Gaussian Kernel.

The biases of the Monte Carlo estimates are smaller than an order of magnitude of 10−3 and

the standard deviations are smaller than 0.1. We analyzed if the Monte Carlo sample distributions

were normal with a Jarque-Bera test and we do not reject the hypothesis for some of the elements

in the matrix A and the fractional parameters d and b.

We tried to check if the switching algorithm is robust with respect to di�erent initial values and

the results are still the same when the sample size is T = 100, 000. If the sample size is T = 10, 000

then the initial values for α, β and Ω are crucial if we want to �nd the global maximum of the

likelihood function.

The algorithm behaves di�erently depending on the choice of d0 and b0. In fact, if we simulate

a model where d0 = b0 = 0.9, we need over 20,000 iterations of the switching algorithm to converge,
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which is related to the identi�cation of the model discussed in Section 3.

In the second Monte Carlo experiment we �x d = d0 and b = b0 and let the switching algorithm

�nd the estimates of all other parameters. In Figure 3.2 and Table 3.2 the results are shown when

the DGP takes values d0 = b0 = 0.6 and α0, β0, A0 as before and T = 100, 000. We notice that in

this set up we could not reject the null hypothesis of normality for all the parameters but β.

In the third Monte Carlo experiment we �t the model

(I −A1L−A2L
2)(∆dIp −Π∆d−bLb)Xt = εt

where

Π =

 Π11 Π12

Π21 Π22

 ,
i.e. matrix Π has a full column rank and we run the switching algorithm �xing d = d0 and b = b0.

In Figure 3.3 and Table 3.3 the Monte Carlo results are shown when the DGP has d0 = b0 = 0.6

and α0, β0, A0 as before and T = 100, 000. We do not reject the null hypothesis of normality for all

the estimated parameters with a Jarque-Bera test.

6 Conclusions

In this paper we discuss two fractionally cointegrated models: a FCVARmodel proposed in Johansen

(2008, 2009) and the FECM model proposed in Avarucci (2007) and Avarucci and Velasco (2010).

They both generate the same class of processes, but due to di�erent lag structures their properties

di�er signi�cantly. The FECM model turns out to be characterised by a more convenient nesting

structure, that allows a straightforward way for testing the cointegration rank and the number of

lagged di�erences to be included as short run parameters. Further, the identi�cation problems are

far less severe in FECM model than in the FCVAR model. On the other hand, the estimation

of FECM is more complicated due to the presence of two di�erent parts that model the short

run dynamics and the restriction that relates their parameters. Thus, we propose an estimation
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procedure, which is based on the suggestion of Carlini and Mosconi (2014) that maximizes the

likelihood function using a switching algorithm and the GLS procedure of Mosconi and Paruolo

(2014). We prove the asymptotic distribution of the estimators of all the parameters and we

illustrate by means of Monte Carlo experiment the performance of our procedure in �nite samples.

We �nd that close to the DGPs chosen in the Monte Carlo simulations, the estimated parameters

d̂, b̂, α̂, Âj , j = 1, 2 are normally distributed, whilst β̂ has a fat-tailed distribution, which con�rms

the asymptotic theory developed. The solution of the model has been previously derived in Avarucci

(2007), while testing for the rank has been discussed in �asak and Velasco (for cointegration strength

>0.5) and Avarucci and Velasco (for cointegration strength <0.5). Therefore our paper �lls in the

gap for a complete inference based on Avarucci (2007) model.

Appendix A

The following algorithm describes how to estimate a bilinear form with a GLS model. Further

details can be found in Mosconi and Paruolo (2014).

Consider the following equation

Yt = Hθ′Wt + εt t = 1, . . . , T

εt ∼ iidN(0,Ω), vec(θ) = Kψ

where Yt and Wt are respectively py × 1 and pw × 1 vectors, H and θ are respectively py × r and

pw × r matrices. Then, we can estimate ψ as

ψ̂ = (K ′(H ′Ω−1H ⊗ Sww)K)−1K ′vec(SwyΩ−1H)

where Sww =
∑T
t=1WtW

′
t and Swy =

∑T
t=1WtY

′
t .
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Appendix B

Figure 1: Distributions of the parameters when the DGP parameters are d0 = 0.8, b0 = 0.6.

N = 1, 500 Monte Carlo replications and Yt, t = 1, . . . , 100000.
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Table 1: Sample statistics of the Monte Carlo distributions when d0 = 0.8 b0 = 0.6, T = 100000

observations and N = 1500 Monte Carlo replications.

d b α1 α2 β

Bias 0.0000 0.0012 0.0001 -0.0005 0.0000

Std.Dev 0.0038 0.0135 0.0214 0.0206 0.0024

Skew. -0.1404 0.0117 -0.3912 0.3018 0.0546

Kurtosis 3.1239 3.0231 3.3295 3.2352 3.3915

p-value JB test 0.0514 >0.5000 0.0010 0.0010 0.0084

a
(1)
11 a

(1)
12 a

(1)
21 a

(1)
22

Bias 0.0001 0.0000 0.0002 0.0000

Std.Dev 0.0103 0.0049 0.0096 0.0054

Skew 0.2826 -0.2777 -0.1961 0.1228

Kurtosis 3.1502 3.1095 3.1846 3.0136

p-value JB test 0.0010 0.0010 0.0052 0.1434

a
(2)
11 a

(2)
12 a

(2)
21 a

(2)
22

Bias 0.0000 0.0000 0.0000 -0.0002

Std.Dev 0.0081 0.0046 0.0033 0.0030

Skew 0.2360 -0.0388 0.0532 0.0482

Kurtosis 3.3815 3.0897 2.9097 2.8717

p-value JB test 0.0010 >0.5000 >0.5000 0.4295
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Figure 2: Distributions of the Monte Carlo simulations when d0 = b0 = 0.6 are �xed in the switching

algorithm. The generated FECM paths have T = 100000 observations.
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Table 2: Sample statistics of the Monte Carlo distributions d0 = b0 = 0.6 kept �xed in the switching

algorithm with T = 100000 and N = 1750 Monte Carlo replications.

d α1 α2 β1

Bias - -0.0005 0.0002 0.0000

Std.Dev - 0.0097 0.0081 0.0023

Skew. - -0.1066 0.0750 0.0655

Kurtosis - 3.0495 2.9494 3.4033

p-value JB test - 0.1671 0.3867 0.0031

a
(1)
11 a

(1)
12 a

(1)
21 a

(1)
22

Bias 0.0004 -0.0002 -0.0002 0.0001

Std.Dev 0.0068 0.0038 0.0060 0.0035

Skew 0.0432 -0.0834 -0.0087 0.0745

Kurtosis 2.8909 2.9927 3.0914 3.0576

p-value JB test 0.4818 0.3513 >0.5000 0.3810

a
(2)
11 a

(2)
12 a

(2)
21 a

(2)
22

Bias 0.0002 -0.0001 -0.0000 -0.0001

Std.Dev 0.0054 0.0038 0.0032 0.0030

Skew 0.0200 0.0748 0.0591 0.0374

Kurtosis 2.9412 2.9225 2.8213 2.9423

p-value JB test >0.5000 0.3455 0.1802 >0.5000
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Figure 3: Distributions of the Monte Carlo simulations when d0 = b0 = 0.6 are �xed in the switching

algorithm. The generated FECM paths have T = 100, 000 observations.
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Table 3: Sample statistics of the Monte Carlo distributions d0 = b0 = 0.6 kept �xed and T = 100000,

N = 1750 Monte Carlo replications and estimation of the matrix Π.

π11 π12 π21 π22

Bias - 0.0005 0.0000 0.0002 0.0003

Std.Dev 0.0098 0.0041 0.0081 0.0034

Skew. -0.1072 0.0678 0.0755 -0.0877

Kurtosis 3.0452 3.0158 2.9507 2.9101

p-value JB test 0.1663 0.4993 0.3846 0.2338

a
(1)
11 a

(1)
12 a

(1)
21 a

(1)
22

Bias 0.0004 0.0000 -0.0001 0.0002

Std.Dev 0.0068 0.0038 0.0060 0.0035

Skew 0.0428 -0.0699 -0.0070 0.0829

Kurtosis 2.8821 3.0308 3.0953 3.0458

p-value JB test 0.4444 0.4578 >0.5000 0.3315

a
(2)
11 a

(2)
12 a

(2)
21 a

(2)
22

Bias 0.0002 0.0000 0.0000 -0.0001

Std.Dev 0.0054 0.0038 0.0033 0.0030

Skew 0.0202 0.0642 0.0589 0.0379

Kurtosis 2.9403 2.9068 2.8339 2.9455

p-value JB test >0.5000 0.3859 0.2123 >0.5000
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Appendix C

Here we provide proofs of the asymptotic distribution of the estimators of all the parameters ob-

tained from the procedure proposed in Section 4.1.

C.1 Model. Consider the model with one lag

∆dXt = αβ′∆d−bLbXt + Vt

Vt = AVt−1 + εt.

Multiplying by Ip −AL and using (Ip −AL)Vt = εt we �nd

∆dXt = αβ′∆d−bLbXt −Aαβ′∆d−bLbXt−1 + ∆dAXt−1 + εt. (16)

C.2 Representation. For the model (16) the representation is given by equation (9) in Section

2.2 and can be written as

Xt = ∆−d0(C0Vt + ∆b0Z1t),

where Z1t is stationary. Inserting

Vt = (Ip −A0L)−1εt = (Ip −A0)−1εt + ∆

∞∑
i=0

A∗i εt−i = (Ip −A0)−1εt + ∆Z2t

where Z2t is stationary, we �nd

Xt = ∆−d0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}, (17)

Note that β′0Xt = β′0∆−d0+b0Z1t is fractional of order d0 − b0.

C.3 Likelihood. We let λ be a notation for all parameters, and λ\d are all the parameters except

d. We want to �nd expressions for Ddεt(λ\d) say, and use the notation

Ddεt(λ0) = Ddεt(λ0\d)|d=d0 .
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We �rst de�ne εt(λ) and the (conditional given initial values) likelihood function,

setting Ω = Ω0 :
εt(λ) = ∆dXt − αβ′∆d−bLbXt +Aαβ′∆d−bLbLXt −∆dAXt−1

−2 logL(λ) = tr{Ω−10

T∑
t=1

εt(λ)εt(λ)′}

We next insert the Xt from (17):

εt(λ) = ∆d−d0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t} (18)

−αβ′∆d−d0−bLb{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

+Aαβ′∆d−d0−bLbL{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−A∆d−d0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}.

C.4 The asymptotic distribution of β̂. We normalize the usual way as β = β0 + β0⊥θ, and

�rst set all other the parameters equal to their true value. We �nd

εt(λ0\θ) = {C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−α0(β′0 + θ′β′⊥0)∆−b0Lb0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

+A0α0(β′0 + θ′β′⊥0)∆−b0Lb0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−A0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}.

Di�erentiating with respect to θ we �nd two terms

Dθεt(λ0\θ)|θ=θ0 = −α0(dθ)′β′⊥0∆−b0Lb0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

+A0α0(dθ)′β′⊥0∆−b0Lb0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

In this expression we keep the most nonstationary terms, which determine the asymptotic behaviour
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of the score function, and �nd, using Dθεt(λ0) = Dθεt(λ0\θ)|θ=θ0

Dθεt(λ0) ' −α0(dθ)′β′⊥0{C0(Ip −A0)−1(∆−b0 − 1)εt}

+A0α0(dθ)′β′⊥0{C0(Ip −A0)−1(∆−b0 − 1)εt

= −(Ip −A0)α0(dθ)′β′⊥0C0(Ip −A0)−1(∆−b0 − 1)εt.

Note that the Avarucci model has the adjustment coe�cients α̃0 = (Ip − A0)α0 such that α̃′0⊥ =

α′0⊥(Ip −A0)−1 and we could de�ne C̃0 = C0(Ip −A0)−1. The score function then becomes

−2T−b0−1/2Dθ logL(λ0)

= tr{(dθ)′β′⊥0C0(Ip −A0)−1T−b0−1/2
T∑
t=1

(∆−b0 − 1)εtε
′
tΩ
−1
0 (Ip −A0)α0}

D→ tr{(dθ)′β′⊥0C̃0

∫ 1

0

Wb0−1(dW )′Ω−10 α̃0}.

where
ST,t = T−b0+1/2(∆−b0 − 1)εt

D→Wb0−1(u),

T−1
T∑
t=1

ST,tε
′
t = T−b0−1/2

T∑
t=1

(∆−b0 − 1)εtε
′
t
D→
∫ 1

0

Wb0−1(dW )′

T−1
T∑
t=1

ST,tST,t = T−2b0
T∑
t=1

{(∆−b0 − 1)εt}{(∆−b0 − 1)εt}′

D→
∫ 1

0

Wb0−1W
′
b0−1du

Note that C̃0Wb0−1 depends on α̃′⊥0W and is independent of α̃′0Ω−10 W, so the limit of the score

function is mixed Gaussian. The information is found as the limit

T−2b0tr{Ω−10

T∑
t=1

Dθεt(λ0)Dθεt(λ0)′}

D→ tr{Ω−10 α̃0(dθ)′β′⊥0C̃0

∫ 1

0

Wb0−1W
′
b0−1duC̃

′
0β⊥0(dθ)α̃′0}.
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A Taylors expansion shows that (provided the estimator is consistent) we �nd for all matrices dθ

tr{(dθ)′β′⊥0C̃0T
−1

T∑
t=1

ST,tε
′
tΩ
−1
0 α̃0}

' −tr{(dθ)′β′⊥0C̃0T
−1

T∑
t=1

ST,tS
′
T,tC̃

′
0β⊥0(θ̂ − θ0)}

hence

T b0(θ̂ − θ)′ ' [β′⊥0C̃0T
−1

T∑
t=1

ST,tS
′
T,tC̃

′
0β⊥0]−1β′⊥0C̃0T

−1
T∑
t=1

ST,tε
′
tΩ
−1
0 α̃0

D→ [β′⊥0C̃0

∫ 1

0

Wb0−1W
′
b0−1duC̃

′
0β⊥0]−1β′⊥0C̃0

∫ 1

0

Wb0−1(dW )′Ω−10 α̃0

C.5 The asymptotic distribution of �d. First all parameters are set to their null value except

d, and we note that all terms have the di�erence ∆d−d0 :

εt(λ0\d) = ∆d−d0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−∆d−d0α0β
′
0∆−b0Lb0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

+∆d−d0A0α0β
′
0∆−b0Lb0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−∆d−d0A0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}.

We also note that the in the second and third terms, we can use β′0C0 = 0, so we are left with

εt(λ0\d) = ∆d−d0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−∆d−d0α0β
′
0Lb0Z1t

+∆d−d0A0α0β
′
0Lb0LZ1t

−∆d−d0A0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}.
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All nonstationary term vanishes and Ddεt(λ0) is stationary. It follows that the score

T−1/2Dd logL = T−1/2tr{
T∑
t=1

Ddεt(λ0)ε′tΩ
−1
0 }

asymptotically Gaussian, and the information is found as the limit of

tr{T−1
T∑
t=1

Ddεt(λ0)Ddεt(λ0)′Ω−10 }.

Thus the asymptotic distribution of T 1/2(d̂− d0) is Gaussian.

C.6 The asymptotic distribution of �b. The derivatives are found as follows. First all parameters

are set to their null value except b,:

εt(λ0\b) = {C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−α0β
′
0∆−bLb{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

+A0α0β
′
0∆−bLbL{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−A0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}.

Again we employ β′0C0 = 0 and �nd

εt(λ0\b) = {C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−α0β
′
0∆−bLb∆

b0Z1t

+A0α0β
′
0∆−bLbL∆b0Z1t

−A0L{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}.

Taking derivative with respect to b we �nd

Dbεt(λ0\b)|b=b0 = (Ip −A0)α0β
′
0Db∆

−(b−b0)|b=0Z1t
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Thus Dbεt(λ0) is stationary and the asymptotic distribution of b̂ is Gaussian. The information is

found as

tr{T−1
T∑
t=1

Dbεt(λ0)Dbεt(λ0)′Ω−10 }.

and the o� diagonal elements are

tr{T−1
T∑
t=1

Dbεt(λ0)Ddεt(λ0)′Ω−10 }.

This shows that we get a joint Gaussian limit distribution of T 1/2(d̂− d0, b̂− b0).

A small comment in the end: we know that

πn(d) =
d(d+ 1) . . . (d+ n− 1)

n!

πn(0) =

 1

0

n = 0

n = 1, 2, ...

for small d we have

πn(d) ≈ d (n− 1)!

n!
,

such that Ddπn(d)|d=0 = 0 for n = 0, and

Dd−d0πn(d− d0)|d=d0 = Ddπn(d)|d=0 = 1/n, n = 1, 2, . . .

Thus and Zt we �nd

Dd−d0πn(d− d0)|d=d0Zt = Zt−1 + Zt−2/2 + Zt−3/3 + . . .

Thus if Zt is stationary, then also Dd−d0πn(d− d0)|d=d0Zt is stationary.
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C.7 The asymptotic distribution of α̂ and Â. We �x all the parameters but α to their true

values and we get

εt(λ0\α) = ∆d−d0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t} (19)

−αβ′0Lb0{Z1t}

+A0αβ
′
0Lb0L{Z1t}

−A0L{∆b0Z1t + C0(Ip −A0)−1εt + C0∆Z2t}.

Taking the derivative with respect to α we get

Dαεt(λ0\α) = −dαβ′0Lb0Z1t +A0dαβ
′
0Lb0L(Z1t) (20)

Thus Dαεt(λ0) is stationary and the asymptotic distribution of α̂ is Gaussian. In fact, it follows

that the score

T−1/2Dα logL = T−1/2tr{
T∑
t=1

Dαεt(λ0)ε′tΩ
−1
0 }

asymptotically Gaussian, and the information is found as the limit of

tr{T−1
T∑
t=1

Dαεt(λ0)Dαεt(λ0)′Ω−10 }.

We �x the parameters to their true values but A and we get

εt(λ0\α) = ∆d−d0{C0(Ip −A0)−1εt + C0∆Z2t + ∆b0Z1t}

−α0β
′
0Lb0{Z1t}

+Aα0β
′
0Lb0L{Z1t}

−AL{∆b0Z1t + C0(Ip −A0)−1εt + C0∆Z2t}.

Taking the derivative with respect to A we get

DAεt(λ0\α) = −dAα0β
′
0Lb0LZ1t − dAL{∆b0Z1t + C0(Ip −A0)−1εt + C0∆Z2t}
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Thus DAεt(λ0) is stationary and the asymptotic distribution of Â is Gaussian. In fact, it follows

that the the score

T−1/2DA logL = T−1/2tr{
T∑
t=1

DAεt(λ0)ε′tΩ
−1
0 }

asymptotically Gaussian, and the information is found as the limit of

tr{T−1
T∑
t=1

DAεt(λ0)DAεt(λ0)′Ω−10 }.

The o� diagonal elements

tr{T−1
T∑
t=1

DAεt(λ0)Dαεt(λ0)′Ω−10 }, tr{T−1
T∑
t=1

DAεt(λ0)Ddεt(λ0)′Ω−10 }

tr{T−1
T∑
t=1

DAεt(λ0)Dbεt(λ0)′Ω−10 }, tr{T−1
T∑
t=1

Dαεt(λ0)Ddεt(λ0)′Ω−10 }

tr{T−1
T∑
t=1

Dαεt(λ0)Dbεt(λ0)′Ω−10 }

are product of stationary components.

Hence the asymptotic distribution of T 1/2vec(d̂− d0, b̂− b0, α̂− α0, Â−A0) is Gaussian.
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