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Abstract

This paper studies semiparametric identification in linear index discrete response

panel data models with fixed effects. Departing from the classic binary response static

panel data model, this paper examines identification in the binary response dynamic

panel data model and the ordered response static panel data model. It is shown that

under mild distributional assumptions on the fixed effect and the time-varying unobserv-

ables, point-identification fails but informative bounds on the regression coefficients can

still be derived. Partial identification is achieved by eliminating the fixed effect and dis-

covering features of the distribution of the unobservable time-varying components that

do not depend on the unobserved heterogeneity. Numerical analyses illustrate how the

identified set changes as the support of the explanatory variables varies.
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1 Introduction

This paper provides new results on semiparametric identification in fixed effects panel data

discrete response models, and in particular linear index binary response dynamic panel data

models and linear index ordered response static panel data models with additively separable

fixed effects. It is shown that under mild distributional assumptions on the fixed effect and

the time-varying unobservables, point-identification fails but informative identification bounds

for the regression coefficients can still be derived. In the dynamic binary response setting,

partial identification of the regression coefficients is achieved by observing individuals who

switch in two consecutive time periods, conditional on their initial condition. In the static

ordered response setting on the other hand, in addition to the individuals who switch from

one period to the next, it is shown that individuals who choose the “in-between” category in

two consecutive periods are also a useful source of identification.

As pointed out by Heckman (1981a) intertemporal correlation in the decisions of individuals

in panel data models comes in general through the presence of time-invariant unobservables

and lagged dependent variables in the underlying functional form specification. Ignoring this

dynamic behaviour can result in inconsistent estimates of the regression coefficients and other

quantities of interest, while distinguishing between the causes of autocorrelation may have

important policy implications.

Linear panel data model settings where the dependent outcome is continuous, can be seen

as solving an omitted variables problem, arising from the presence of this additively separable

fixed effect. Even when this fixed effect is not restricted to be independent of the explanatory

variables, point-identification of the regression parameters can be achieved by differencing out

the fixed effect.

In non-linear panel data models with additively separable fixed effects, the differencing

approach can not be directly implemented. Identification and estimation in these models rely

heavily on the assumptions econometricians place on the individual specific heterogeneity. The

challenges these models pose have been well documented in the literature. Choosing between

random and fixed effects, how to deal with initial conditions and lagged dependent variables,
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as well as the incidental parameters problem and the calculation of marginal effects, have all

been extensively studied by a number of authors. A detailed summary of developments can be

found in Arellano and Honoré (2001) and more recently in Arellano and Bonhomme (2011).

This paper studies semiparametric identification in linear index discrete response panel

data models with fixed effects in two different settings. The first setting corresponds to the

binary response dynamic panel data model, where the individuals’ choice set consists of a

binary outcome, for example the choice of whether or not to purchase a specific product in a

given period. The main focus is on eliminating the unrestricted fixed effect, which is allowed

to be correlated with the explanatory variables and the time-varying unobservables, with-

out imposing distributional assumptions on the time-varying unobservables. Identification is

achieved by finding features of the distribution that do not depend on the fixed effect. Rosen

and Weidner (2013,WP), thereafter RW2013, took such an approach for deriving bounds in

the static binary outcome setting. In contrast, this paper analyses dynamic binary response

models, where last period’s choice directly enters the current period’s decision rule. Condi-

tioning on the initial condition, identification relies on individuals who switch options from

one period to the next. It is shown that the joint probability of the choices these individuals

make in two consecutive periods is bounded by features of the distribution invariant to the

fixed effect. Under an exogeneity condition for the time-varying unobservables, this allows for

the derivation bounds for the coefficients of the contemporaneous explanatory variables and

the coefficient of the lagged dependent variable.

Point-identification of the regression parameters in binary response panel data models re-

lies on strong and restrictive assumptions which might be untestable and difficult to satisfy

in many applications. Several papers including Chamberlain (1984, 2010), Honoré (2002) and

Honoré and Kyriazidou (2000), have shown that in linear index panel data models with binary

outcomes, parametric point-identification of the regression parameters when regressors have

bounded support can only be achieved under the assumption of independently and identically

logistically distributed time-varying unobservables. Manski (1987), using a conditional ver-

sion of the Maximum Score Estimator, shows that in the static panel data binary response

model inference is possible under a time-stationarity condition, when the strictly exogenous

3



explanatory variables vary enough over time with at least one component having unbounded

support. Honoré and Lewbel (2002) show point-identification in binary panel data models

with predetermined regressors, if there exists a special regressor that is independent of the

fixed effect, conditional on the rest of the regressors and the instruments .

In an attempt to generalize these findings, several papers study semiparametric identifica-

tion in a general class of panel data models that results in partial identification of parameters

and quantities of interest. For example, Chernozhukov, Hahn, and Newey (2005) focus on non-

parametric bound analysis in multinomial panel data models with correlated random effects,

while Chernozhukov, Fernández-Val, Hahn, and Newey (2013) provide sharp identification

bounds for the average and quantile treatment effects in fully parametric and semiparametric

nonseparable panel data models. Honoré and Tamer (2006) study bounds on parameters in dy-

namic discrete choice models, mainly focusing on the initial condition problem. In linear panel

data settings Rosen (2012) studies the identifying power of conditional quantile restrictions in

short panels with fixed effects.

Panel data binary response models are suitable for explaining individual choices when the

choice set includes two alternatives. However, when the choice set includes more than two

alternatives the binary choice model may fail to take into account all the information. The

second setting examined in this paper is the static ordered response setting, where the choice

set consists of more than two ordered alternatives. The shape restrictions imposed by the

ordered response model allows for the characterization of the identified set, without imposing

distributional assumptions on the unobserved time-varying components or the fixed effect.

The bounds are achieved by relying on observable implications in which the fixed effect does

not appear. In contrast to the binary case where information on the parameters of interest

only comes through individuals who switch, in the ordered model it is shown that individuals

who choose the “in-between” categories also provide a useful source of information. The

information provided by the individuals who stay with the same option might be useful in

comparing the behaviour of switchers to non-switchers. Furthermore, the greater number of

choice-pairs that can be used in the ordered model in comparison to the binary model might

help in achieving tighter bounds for the regression parameters.
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Several papers examined identification in multinomial response panel data models where

the choice set includes a variety of unordered alternatives. In a recent working paper, Pakes

and Porter (2014) provide set identification results in multinomial models with additively

separable fixed effects, where the key assumption is a group homogeneity condition on the

disturbances conditional on the contemporaneous explanatory variables and the fixed effects.

Shi, Shum, and Song (2017) develop a semiparametric identification and estimation approach

to panel data multinomial choice models based on cyclic monotonicity, which point-identifies

the model parameters. Although, these papers provide clear identification results, they usu-

ally require the comparison of each option against every other alternative, which might be

intractable and computationally heavy in practice. This paper departs from these models and

imposes some additional shape restrictions on the functional form, thus reducing the number

of between alternatives comparisons needed to determine the optimal choice.

Identification in panel data ordered response models has not been extensively studied in

the literature. Following the work by Honoré (1992) that shows how to consistently estimate

the parameters in the truncated/censored panel data model, this paper focuses on the “in-

between” case of ordered outcomes. Since every ordered response model can be expressed

as a dichotomous/binary response model, parametric point-identification can be achieved un-

der the assumptions of logistically distributed time-varying unobservables as in Chamberlain

(1984, 2010). As discussed in Baetschmann, Staub, and Winkelmann (2015) the literature

has estimated the fixed effects ordered logit model either with a single dichotomization with

constant or individual-specific thresholds, or by combining all possible dichotomizations by

various estimation methods. In a recent paper, Muris (2017) introduces a new estimator for

the fixed effects ordered logit model which allows for estimation of the differences in the cut

points, in addition to a more efficient estimation of the regression coefficients. He achieves this

by using the fact that the ordered logit with J outcomes and T time periods has (J−1)T ways

to be converted into a binary choice logit model. This paper departs from these approaches, by

relaxing the logistic distribution assumption and using the complete structure of the ordered

choice model, thus utilizing more information.

As already discussed, allowing for the fixed effect to be correlated with the explanatory
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variables, creates an endogeneity problem. Chesher (2010) and Chesher and Smolinski (2012)

derive sharp identification bounds in nonparametric cross-sectional ordered response models in

the presence of endogenous variables, that can shrink at a relatively fast rate as the relevance

of the instruments increases and as the number of ordered outcomes becomes larger. They

show that when the ordered model is expressed as a binary response model, the identified sets

are not sharp. This paper departs from the instrumental variables approach and tackles this

problem by directly eliminating this unobserved heterogeneity.

The rest of the paper is structured as follows. Section 2 examines identification in the

dynamic binary response models. Section 3 extends the static binary response panel data

model to a static ordered response panel data model and examines identification under weak

distributional conditions. Section 4 gives some numerical results for the models discussed.

Section 5 concludes with some final remarks. All the proofs are provided in the Appendix.

2 The Dynamic Binary Response Panel Data Model

Binary response panel data models are widely used to model situations where individuals are

observed over time making choices from a set that includes two alternatives, for example the

choice of seeking employment or not or the choice of travelling by train or by car in a specific

period. The leading example in the literature has been the static binary response model,

where individuals’ choices are correlated across different periods only through the presence of a

time-varying unobserved heterogeneity, see for instance Chamberlain (1984, 2010) and Manski

(1987). In the simplest form of this model, each individual in the population is observed for

two time periods, t = 1 and t = 2, and in each time period he can choose one option from the

set Yt ≡ {0, 1}. Therefore, each individual is characterized by a set of observables (Y,X) such

that Y = (Y1, Y2), X = (X1, X2), and a set of unobservables (V, α), where V = (V1, V2) and

α ∈ R. The utility an individual, with covariates xt and unobservables vt, α, receives from

choosing a specific outcome y in period t, yt, is given by

Ut = Xtβ + α + Vt (1)
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where, Xt are observed individual characteristics, α is the unobserved to the econometrician

time-invariant individual fixed effect and Vt is the unobserved to the econometrician time-

varying component. Normalizing the utility of the outside option, Yt = 0, in each period to

be zero and under the assumption that in each period t individuals choose the outcome to

maximize (1), the static panel data binary response model can be shown to be equivalent to,

yt = 1(Xtβ + α + Vt > 0)

where

1(Xtβ + α + Vt > 0) =

 1 if Xtβ + α + Vt > 0

0 otherwise
(2)

RW2013 provide partial identification results in this kind of models and find features of the

distribution that do not depend on α, by considering less restrictive conditions on the distri-

bution of the time-invariant unobervables than the ones discussed in Section 1.

This section extends the linear index binary response static model to the linear index binary

response dynamic model. This is of practical relevance because in panel data settings with

repeated observations it is evident and natural to assume that individuals’ past choices directly

affect current and future decisions. For example, an individual’s decision to seek employment

in the current period is likely to be affected by his employment status last period. This

allows for correlation in choices to come through two sources, the fixed effect and the lagged

dependent variable. The dynamic binary response panel data model that includes the lagged

dependent variable as an additional explanatory variable can be expressed as,

yt = 1(Xtβ + 1(Yt−1 = 1)γ + α + Vt > 0) (3)

where

1(Xtβ + 1(Yt−1 = 1)γ + α + Vt > 0) =

 1 if Xtβ + 1(Yt−1 = 1)γ + α + Vt > 0

0 otherwise

and

1(Yt−1 = 1) =

 1 if Yt−1 = 1

0 otherwise
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In this model each individual is observed for three periods, t = {0, 1, 2}, and is characterized

by a set of observables Y = (Y0, Y1, Y2), X = (X1, X2), and a set of unobservables (V, α),

where V = (V1, V2) and α ∈ R. The setting is equivalent to the standard specification of

dynamic binary panel data models, where the lagged dependent variable enters as an additional

regressor in the form of Yt−1 and the parameter γ measures the “impact” of choosing option

Y = 1 in period t− 1. Last period’s choice directly affects the decision so the choice in period

t − 1 needs to be taken into account. This creates an initial condition problem in modeling

the choice in period t = 1, since the choice in period t = 1 depends on the choice in period

t = 0. To deal with this issue, similar to Wooldridge (2005), it is assumed that the outcome

in period t = 0, Y0 = y0, is observed, however no assumptions about its generation or its

relation with the fixed effect are imposed, such that the set of conditioning covariates consists

of (x, y0) ∈ X × Y0. Section 2.1 formalizes the assumptions.

2.1 Model Assumptions

Assumption 1. The observed data comprise a random sample of N individuals from the

population. For each individual (Y, Y0, X, V, α) are defined on the probability space (Ω,F ,P),

where F contains the Borel Sets. The support of (Y0, X, V, α) is (Y0 × X × V × A) where

V ⊆ R2 and A ⊆ R.

Assumption 2. For each value of x ∈ X and y0 ∈ Y0 there is a proper conditional distribution

of (Y1, Y2) given X = x and Y0 = y0,

P 0(y1, y2|x, y0) ≡ P(Y1 = y1 ∧ Y2 = y2|X = x, Y0 = y0)

and the conditional probability of each pair (y1, y2), is point-identified over the support of

(Y1, Y2) for almost every x ∈ X and y0 ∈ Y0.

Assumption 3. The conditional distribution of V given (X = x, Y0 = y0), FV |X,Y0 is abso-

lutely continuous with respect to the Lebesgue measure with an everywhere positive density and

the marginal distribution of ∆V |X = x, Y0 = y0 is given by F∆V |X,Y0, where ∆V = V2 − V1.
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Assumption 4. The conditional distribution of α given X = x, Y0 = y0 is absolutely con-

tinuous with respect to the Lebesgue measure with an everywhere positive density on R and

marginal distribution Fα|X,Y0.

Assumption 5. X and V are stochastically independent conditional on Y0, i.e. V ⊥ X|Y0.

α is allowed to be correlated with both V and X in an arbitrary way. The joint distribution of

(V, α) conditional on (X = x, Y0 = y0) is given by F(V,α)|X,Y0.

Assumption 1 defines the underlying probability space and notation for the support of the

random variables (Y, Y0, X, V, α). Assumption 2 stipulates that the conditional distribution

of (Y1, Y2) given covariates x and the initial condition y0 is point-identified for almost every

x ∈ X and y0 ∈ Y0, as would be the case for example under random sampling. Assumption 3

and Assumption 4 require the time-varying unobservable V and the unobserved heterogeneity

α to be absolutely continuously distributed conditional on X and Y0 with full support in

the Euclidean space. Assumption 5 imposes only conditional independence between X and V

conditional on Y0, which is less restrictive than the assumptions imposed in the literature, such

as V ⊥ (X, Y0) or specifying the conditional distribution V |X, Y0. This assumption allows for

example for correlation between V0 and (V1, V2).

Assumption 4 imposes no restrictions on the time-invariant unobservable and allows cor-

relation with the explanatory variables. Therefore, the presence of α creates an endogeneity

problem, that needs to be addressed for identification and consistent estimation of the param-

eters of interest. In linear panel data models with continuous outcomes, differencing out the

fixed effect is sufficient to guarantee point-identification of the regression parameters. This

paper examines identification in linear index discrete panel data models and mimics the ap-

proach used in linear panel data models with continuous outcomes to solve the problem of the

fixed effect.

Assumptions 3-5 provide restrictions on the conditional distributions of the unobservables

given the observed covariates. These conditional distributions are elements of the generic

collection of conditional distributions defined as,
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• {FV |X,Y0(·|x, y0) : x ∈ X , y0 ∈ Y0} is an element of FV |X,Y0

• {F∆V |X,Y0(·|x, y0) : x ∈ X , y0 ∈ Y0} is an element of F∆V |X,Y0

• {Fα|X,Y0(·|x, y0) : x ∈ X , y0 ∈ Y0} is an element of Fα|X,Y0

• {F(V,α)|X,Y0(·|x, y0) : x ∈ X , y0 ∈ Y0} is an element of F(V,α)|X,Y0

Finally, the set of admissible structures S ≡ (β, γ, F(V,α)|X,Y0) is defined in Assumption 6.

Assumption 6. S ≡ (β, γ, F(V,α)|X,Y0) ∈ S is a specified collection of parameters β and γ,

and joint distributions of the time-varying unobservables and the unobserved heterogeneity,

F(V,α)|X,Y0. Such a S is called a structure.

Under Assumptions 1-6 the identified set of admissible structures, denoted by S0, is

characterized. Define by u(ỹ1, ỹ2, x, y0, α, v1, v2; β, γ), the utility an individual with covari-

ates x, y0 and unobservables α, v1, v2 receives from choosing any pair (ỹ1, ỹ2) ∈ (Y1,Y2) and

by R(y1,y2)(x, y0; β, γ) the region of unobservables (V, α) associated with (y1, y2) maximizing

u(ỹ1, ỹ2, x, y0, α, v1, v2; β, γ), such that

R(y1,y2)(x, y0; β, γ) ≡
{

(V, α) ∈ (V ,A) : (y1, y2) = arg max
(ỹ1,ỹ2)∈(Y1×Y2)

u(ỹ1, ỹ2, x, y0, α, v1, v2; β, γ)

}
Then S0 is characterized by,

S0 =


(β, γ, F(V,α)|X,Y0) ∈ S : ∀(y1, y2) ∈ (Y1 × Y2),

F(V,α)|X,Y0
(
R(y1,y2)(x, y0; β, γ)

)
= P 0(y1, y2|x, y0)

a.e. x ∈ X and y0 ∈ Y0

 (4)

and the identified set for the model parameters (β, γ) is then characterized by,

Θ0 =


(β, γ) ∈ Θ : ∀(y1, y2) ∈ (Y1 × Y2),∃F(V,α)|X,Y0 ∈ F(V,α)|X,Y0

F(V,α)|X,Y0
(
R(y1,y2)(x, y0; β, γ)

)
= P 0(y1, y2|x, y0)

a.e. x ∈ X and y0 ∈ Y0

 (5)

Point-identification of the regression coefficients in the dynamic binary response model

under the logistic distribution assumption comes by observing individuals for (at least) four
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time periods who change behaviour from period t = 2 and t = 3, as shown in Honoré and

Kyriazidou (2000). This behaviour gives rise to features of the distribution that do not depend

on the unobserved heterogeneity. In the semiparametric approach of this paper, that relaxes

the distributional assumption on the time-varying unobservables, finding features of the dis-

tribution that do not depend on the unobserved heterogeneity leads to partial identification

of the regression parameters.

2.2 Identified Set: Binary Response Dynamic Panel Data Model

The model in (3) is equivalent to standard linear index dynamic binary response panel data

models, like the one discussed in Honoré and Kyriazidou (2000), where the lagged binary

dependent variable enters as an additional regressor. Identification of the model parameters

(β, γ) comes through features of the distribution that are invariant to changes in α, by con-

sidering the joint probability of the choices individuals make in periods t = 1 and t = 2,

conditional on the choice in period t = 0. The regions RDB
(y1,y2)(x, y0; β, γ) that partition the

supp(V, α) such that for all (V, α) ∈ (V ,A), (Y1, Y2) = (y1, y2) when X = x and Y0 = y0 are:

RDB(0,0)(x, 0;β, γ) = {(V, α) ∈ (V,A) : x1β + α+ V1 ≤ 0 & x2β + α+ V2 ≤ 0}

RDB(0,1)(x, 0;β, γ) = {(V, α) ∈ (V,A) : x2β + α+ V2 > 0 ≥ x1β + α+ V1}

RDB(1,0)(x, 0;β, γ) = {(V, α) ∈ (V,A) : x2β + γ + α+ V2 ≤ 0 < x1β + α+ V1}

RDB(1,1)(x, 0;β, γ) = {(V, α) ∈ (V,A) : x1β + α+ V1 > 0 & x2β + γ + α+ V2 > 0}

RDB(0,0)(x, 1;β, γ) = {(V, α) ∈ (V,A) : x1β + γ + α+ V1 ≤ 0 & x2β + α+ V2 ≤ 0}

RDB(0,1)(x, 1;β, γ) = {(V, α) ∈ (V,A) : x2β + α+ V2 > 0 ≥ x1β + γ + α+ V1}

RDB(1,0)(x, 1;β, γ) = {(V, α) ∈ (V,A) : x2β + γ + α+ V2 ≤ 0 < x1β + γ + α+ V1}

RDB(1,1)(x, 1;β, γ) = {(V, α) ∈ (V,A) : x1β + γ + α+ V1 > 0 & x2β + γ + α+ V2 > 0} (6)

The conditional joint probabilities of F(V,α)|X,Y0 for any given pair (y1, y2) ∈ (Y1 × Y2) for

almost every x ∈ X and y0 ∈ Y0 are thus defined by,

P (y1, y2|x, y0) = F(V,α)|X,Y0
(
RDB

(y1,y2)(x, y0; β, γ)|X = x, Y0 = y0

)
(7)

where P (y1, y2|x, y0) = P (Y1 = y1 ∧ Y2 = y2|X = x, Y0 = y0).
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From the regions in (6) and Figure 1(a), it can be seen that the model in (3) is complete in

the sense that conditioning on any value of the explanatory variables and the initial condition,

there is a unique solution to the individual’s problem with probability one and identification

sets of the form of (4) and (5) can be derived. Since the outcome in period t = 0 appears in

the generation of the outcome in period t = 1, the outcomes in all three periods t = {0, 1, 2}

are used. Assumption 4 imposes no restrictions on the fixed effect and identification of the

parameters β and γ through the elimination of α comes only by observing individuals who

switch in periods t = 1 and t = 2 for each of the values of y0. This implies that consideration

of observations of the following types are required,

A = {Y0 = 0 ∧ Y1 = 0 ∧ Y2 = 1}

B = {Y0 = 0 ∧ Y1 = 1 ∧ Y2 = 0}

C = {Y0 = 1 ∧ Y1 = 0 ∧ Y2 = 1}

D = {Y0 = 1 ∧ Y1 = 1 ∧ Y2 = 0} (8)

Theorem 1. Let SDB = (βDB, γDB, FDB
(V,α)|X,Y0) be a structure admitted by model (3) that is

observationally equivalent to S0, then under Assumptions 1-6, (βDB, γDB) satisfy the following

inequalities

1− P (0, 1|x, 0) ≥ P∆V |Y0 [∆V < −∆xβDB|Y0 = 0]

P (1, 0|x, 0) ≤ P∆V |Y0 [∆V < −∆xβDB − γDB|Y0 = 0]

1− P (0, 1|x, 1) ≥ P∆V |Y0 [∆V < −∆xβDB + γDB|Y0 = 1]

P (1, 0|x, 1) ≤ P∆V |Y0 [∆V < −∆xβDB|Y0 = 1]

where P (y1, y2|x, y0) = P (Y1 = y1 ∧Y2 = y2|X = x, Y0 = y0), ∆X = X2−X1 with (X1, X2) ∈

X × X and ∆V = V2 − V1 with (V1, V2) ∈ V × V.

Proof. The proof is provided in Appendix A.1.
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The above relations provide restrictions on the distribution of ∆V |X, Y0 for any realization

of x ∈ X and y0 ∈ Y0 that do not depend on the fixed effect α. The events {Y1 = 0∧ Y2 = 0}

and {Y1 = 1∧Y2 = 1} provide no restrictions on ∆V and can not be used to eliminate the fixed

effect α. Similarly to the binary logit fixed effects model and as discussed in Honoré (2002),

the individuals who do not switch can not be used to identify the regression parameters, since

for any value of β the choices these individuals make can be rationalized by extremely large or

extremely small values of the fixed effect. In other words, these events provide no restrictions

on the values the fixed effect can take for a given value of the regression parameters. The

distribution of ∆V |X, Y0 ∼ F∆V |X,Y0 is equivalent to ∆V |Y0 ∼ F∆V |Y0 by Assumption 5. Notice

that in order for the bounds in Theorem 1 to be informative, there should exists x ∈ X such

that x1 6= x2 with positive probability.

V2+

-x2 -

(0,0)|Y0=0

V1+

-x2

-x1 --x1

(0,1)|Y0=0

(1,1)|Y0=0

(1,0)|Y0=0

(a) Regions defined in equations (6)

V2

-x2 - -

V1

-x2 -

-x1 - --x1 -

(1,0)|Y0=0

ΔV=-Δxβ - γ

(b) Upper Bound for (1, 0)|Y0 = 0

Figure 1: Regions of unobservables for each (Y1, Y2) choice when γ < 0 and Y0 = 0

Figures 1(a) and 1(b) plot the regions of unobservables conditional on Y0 = 0 and γ < 0

given in equations (6) and provide an outline of the main idea. Using the fact that the model

in (3) is complete, it can be shown that the probability of any switching event is bounded

by the probability of an event that is independent of the fixed effect. Figure 1(b) illustrates

this result for the event (Y1, Y2) = (1, 0) conditional on Y0 = 0 and γ < 0. Changing α
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moves the region of (1, 0)|Y0 = 0 up and down the line ∆V = −∆Xβ − γ. Therefore, it

is clear that (V ∗, α∗) ∈ RDB
(1,0)(x, 0; β, γ) implies (V ∗, α∗) ∈ {(V, α) : ∆V < −∆xβ − γ} and

P (1, 0|x, 0) ≤ P∆V |Y0 [∆V < −∆xβ − γ|Y0 = 0].

Theorem 2. Following Theorem 1, under Assumptions 1-6 the bounds for β, γ are given by

the set:

ΘDB =



(β, γ) ∈ Θ : ∀ω ∈ R,

sup
x:−∆xβ−γ≤ω

P (1, 0|x, 0) ≤ inf
x:−∆xβ≥ω

1− P (0, 1|x, 0)

and

sup
x:−∆xβ≤ω

P (1, 0|x, 1) ≤ inf
x:−∆xβ+γ≥ω

1− P (0, 1|x, 1)

a.e. x ∈ X


Proof. The proof is provided in Appendix A.2.

In dynamic models this period’s choice depends on last periods’s choice. This implies that

the choice in period t = 1 depends on the choice in period t = 0, which is the first period

observed in the sample. Unless this period coincides with the first period of the process, it will

depend on previous (not observed) periods, the exogenous variables in period t = 0 and the

joint distribution of the outcome in the first period and the unobserved heterogeneity. This

joint distribution is (in general) different from the joint distribution of future outcomes and

the unobserved heterogeneity. Therefore, since V 6⊥ α, Assumption 5 of V ⊥ X|Y0 does not

imply (in general) V ⊥ (X, Y0). Notice that unlike the Honoré and Kyriazidou (2000) result,

where point-identification in the dynamic binary panel data model is achieved iff the errors

are logistically distributed and 4 time periods are observed, the identified set in Theorem 2

only requires 3 time periods.

Finally, by replacing Assumption 5 of X ⊥ V |Y0, with the unconditional independence as-

sumption, X ⊥ V , the identified set for β and γ can be expressed in terms of the unconditional

probabilities, given in Theorem 3.
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Theorem 3. Let Assumptions 1-4, X ⊥ V and 6 hold. Then the (unconditional) identified

set for (β, γ) is given by,

ΘDB
U =


(β, γ) ∈ Θ : ∀ω ∈ R,

sup
x∈X
{G(ω|x, 0)P0(x) +G(ω|x, 1)P1(x)} ≤ inf

x∈X
{G(ω|x, 0)P0(x) +G(ω|x, 1)P1(x)}


where

G(ω|x, 0) = P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0]

G(ω|x, 1) = P [(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1]

G(ω|x, 0) = 1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0]

G(ω|x, 1) = 1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1]

and

P (Y0 = 0|X = x) = P0(x)

P (Y0 = 1|X = x) = P1(x)

Proof. The proof is provided in Appendix A.3.

3 The Static Ordered Response Panel Data Model

Section 2 studies identification in binary response panel data models. As discussed in Sec-

tion 1 several papers, such as Chintagunta, Kyriazidou, and Perktold (2001) and Pakes and

Porter (2014), have extended the binary response panel data model to multinomial response

models, where individuals choose from a set of unordered alternatives. This paper extends

the binary response panel data model to one where the choice set consists of alternatives that

can be ordered, such as the choice between unemployment, part-time employment or full-time

employment and the choice of flying first, business or economy class. This approach might be

beneficial in reducing the dimension of search for the identified set, since the shape restriction

imposed by the ordering specification, reduces the between alternatives comparisons needed

to determine the option chosen by the individual.
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This section extends the model in (2) to a model of three ordered outcomes, where in every

period t = 1 and t = 2 each individual chooses one option from the set Yt = {0, 1, 2}. Such a

model could be used, for example, in describing consumers’ choices when faced with vertically

differentiated alternatives such that if all the options were offered at the same price everyone

would choose option Y = 2, i.e. (Yt = 1) � (Yt = 2), where A � B denotes that B is weakly

preferred to A. Yt = 0 denotes the outside option and corresponds to not choosing any of

the available alternatives. The panel data ordered response model for each individual can be

expressed as,

Yt =


0 if Xtβ + α + Vt < c1t

1 if c1t < Xtβ + α + Vt ≤ c2t

2 if c2t < Xtβ + α + Vt

(9)

where Xt are observed individual characteristics, α is the unobserved to the econometrician

time-invariant individual heterogeneity, Vt is the time-varying component unobserved to the

econometrician and c = {c11, c12, c21, c22} ∈ C are the threshold parameters in the ordered

model, such that C ⊆ R4 and c2t > c1t, ∀t ∈ {1, 2}. For the rest of the section c is assumed

to be observed to reduce the dimension of the identified set1.

As already discussed in Section 1 the ordered response panel data model has not been

extensively studied in the literature and the work has mainly focused in redefining the or-

dered response model as a set of binary response models and imposing logistically distributed

unobservables. This paper departs from this approach and directly uses the ordered structure

of the model to characterize the identified set, without imposing distributional assumption on

the unobserved time-varying components or the fixed effect. Such an approach utilizes more

information than the binary response representation and provides informative identification

bounds for the regression parameters. Section 3.1 formalizes the assumptions imposed on

model (9).

1Allowing c to be part of the identified set does not have an effect on the identification strategy.
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3.1 Model Assumptions

Assumption 7. The observed data comprise a random sample of N individuals from the

population. For each individual (Y,X, V, α) are defined on the probability space (Ω,F ,P),

where F contains the Borel Sets. The support of (X, V, α) is (X × V ×A) where V ⊆ R2 and

A ⊆ R.

Assumption 8. For each value of x ∈ X there is a proper conditional distribution of (Y1, Y2)

given X = x,

P 0(y1, y2|x, c) ≡ P(Y1 = y1 ∧ Y2 = y2|X = x, c)

and the conditional probability of each pair (y1, y2), is point-identified over the support of

(Y1, Y2) for almost every x ∈ X , for any fixed c.

Assumption 9. The conditional distribution of V given (X = x), FV |X is absolutely continu-

ous with respect to the Lebesgue measure with an everywhere positive density and the marginal

distribution of ∆V |X = x is given by F∆V |X , where ∆V = V2 − V1.

Assumption 10. The conditional distribution of α given (X = x) is absolutely continuous

with respect to the Lebesgue measure with an everywhere positive density on R and marginal

distribution Fα|X .

Assumption 11. X and V are stochastically independent. α is allowed to be correlated with

both V and X in an arbitrary way. The joint distribution of (V, α) conditional on (X = x) is

given by F(V,α)|X .

Assumption 7 defines the underlying probability space and notation for the support of the

random variables (Y,X, V, α). Assumption 8 stipulates that the conditional distribution of

(Y1, Y2) given covariates x is point-identified for almost every x ∈ X , as would be the case for

example under random sampling. Assumption 9 and Assumption 10 require the time-varying

unobservable V and the unobserved heterogeneity α to be absolutely continuously distributed

conditional on X with full support in the Euclidean space. Assumption 11 imposes indepen-

dence of X and V , but allows α and V to be arbitrary correlated with a joint distribution

F(V,α)|X .
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Assumptions 9-11 provide restrictions on the conditional distributions of the unobservables

given the observed covariates. These conditional distributions are elements of the generic

collection of conditional distributions defined as,

• {FV |X(·|x) : x ∈ X} is an element of FV |X

• {F∆V |X(·|x) : x ∈ X} is an element of F∆V |X

• {Fα|X(·|x) : x ∈ X} is an element of Fα|X

• {F(V,α)|X(·|x) : x ∈ X} is an element of F(V,α)|X

Finally the set of structures S ≡ (β, F(V,α)|X) admitted by model (9) is defined through

Assumption 12.

Assumption 12. S ≡ (β, F(V,α)|X) ∈ S is a specified collection of parameters β and joint

distributions of the time-varying unobservable and the unobserved heterogeneity, F(V,α)|X . Such

a S is called a structure.

Under Assumptions 7-12 the identified set of admissible structures, denoted by S0, is char-

acterized. Define by u(ỹ1, ỹ2, x, c, α, v1, v2; β), the utility an individual receives from choosing

any pair (ỹ1, ỹ2) ∈ (Y1,Y2) given the observables x, fixed values of c and the unobservables

α, v1, v2 and by R(y1,y2)(x, c; β) the region of unobservables (V, α) associated with (y1, y2) max-

imizing u(ỹ1, ỹ2, x, c, α, v1, v2; β), such that

R(y1,y2)(x, c;β) ≡ {(V, α) ∈ (V,A) : (y1, y2) = arg max
(ỹ1,ỹ2)∈(Y1×Y2)

u(ỹ1, ỹ2, x, c, α, v1, v2;β)}.

Then S0 is characterized by:

S0 =


(β, F(V,α)|X) ∈ S : ∀(y1, y2) ∈ (Y1 × Y2)

F(V,α)|X(R(y1,y2)(x, c; β)) = P 0(y1, y2|x, c)

a.e. x ∈ X and c ∈ C


and the identified set for the model parameters β is given by:

Θ0 =


β ∈ Θ : ∀(y1, y2) ∈ (Y1,Y2),∃F(V,α)|X ∈ F(V,α)|X

F(V,α)|X,c(R(y1,y2)(x, c; β)) = P 0(y1, y2|x, c)

a.e. x ∈ X and c ∈ C


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3.2 Identified Set: Ordered Response Static Panel Data Model

When no assumptions are imposed on the fixed effect, identification bounds for the regression

parameters, β, are derived by finding feature of the distribution that do not depend on α.

The regions RSO
(y1,y2)(x, c; β) that partition the support of (V, α) such that (Y1, Y2) = (y1, y2)

when X = x and for any fixed c are provided in Appendix A.4 and plotted in Figure 2. For

any fixed vector c the model in (9) is complete in the sense that conditional on any value of

the explanatory variables x ∈ X , there is a unique solution to the individual decision problem

with probability one. The conditional joint probabilities of (V, α)|X, c, F(V,α)|X,c, for any given

pair (y1, y2) ∈ (Y1 × Y2), conditional on x ∈ X and for any fixed c ∈ C are given by

P (y1, y2|x, c) = F(V,α)|X
(
RSO

(y1,y2) (x, c; β)
∣∣X = x

)
where P (y1, y2|x, c) = P (Y1 = y1 ∧ Y2 = y2|X = x, c).

V2+

(0,0)

V1+

-x2 +c12

-x1 +c11

(1,0)
(2.0)

(0.1) (1,1) (2,1)

(0,2) (1,2) (2,2)

-x2 +c22

-x1 +c21

Figure 2: Regions of unobservables for each (Y1, Y2) choice for a fixed vector c

Similarly to the binary panel data model, individuals who switch from period t = 1 to

t = 2, can be used for identification of the parameters β, without imposing any assumptions

on the fixed effect. The transitions that are informative are therefore,
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{Y1 = 0 ∧ Y2 = 1}

{Y1 = 1 ∧ Y2 = 0}

{Y1 = 0 ∧ Y2 = 2}

{Y1 = 2 ∧ Y2 = 0}

{Y1 = 1 ∧ Y2 = 2}

{Y1 = 2 ∧ Y2 = 1} (10)

In addition to the individuals who change from period t = 1 to t = 2 it can be shown that

information that is independent of α is also provided by considering individuals who choose

the same option, Y = 1, in periods t = 1 and t = 2 such that,

{Y1 = 1 ∧ Y2 = 1} (11)

This might prove helpful when comparing the behaviour of switchers to non-switchers.

Theorem 4. Let SSO =
(
βSO, F SO

(V,α)|X

)
be a structure admitted by model (9). Under Assump-

tions 7-12, for any fixed parameter vector c, if SSO is an observationally equivalent structure

to S0 then, for any x ∈ X , βSO satisfies,

P (1, 0|x, c) ≤ F∆V [−∆xβSO − c11 + c12]

F∆V [−∆xβSO − c11 + c12] ≤ 1− P (0, 1|x, c)

P (2, 0|x, c) ≤ F∆V [−∆xβSO + c12 − c21]

F∆V [−∆xβSO − c11 + c22] ≤ 1− P (0, 2|x, c)

P (2, 1|x, c) ≤ F∆V [−∆xβSO + c22 − c21]

F∆V [−∆xβSO + c22 − c21] ≤ 1− P (1, 2|x, c)

P (1, 1|x, c) ≤ P∆V [−∆xβSO + c22 − c11 > ∆V > −∆xβSO + c12 − c21]

where ∆X = X2 −X1 and ∆V = V2 − V1.

Proof. The proof is provided in Appendix A.5.
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Notice that in addition to the probabilities of the switching events, the conditional prob-

ability of the “in-between” event (1, 1) is also bounded by a conditional probability invariant

to the fixed effect. The rationale behind this result is that, as discussed in Section 2, in the

dynamic binary model the events (Y1, Y2) = (0, 0) and (1, 1) give no information on β since

the behaviour for these cases can be matched by extremely small or extremely large values

of α regardless of the value of β. This is also true for the ordered model for the events (0, 0)

and (2, 2). However, as it can also be seen from Figure 2 in the ordered response model where

Yt = {0, 1, 2}, considered in this section, the non-switchers who choose the “in-between” op-

tion (Y1, Y2) = (1, 1), provide restrictions on the possible values the fixed effect can take for

each value of the parameter β, and hence can be used to identify the regression coefficients.

Theorem 5 formalizes the result.

Theorem 5. Let Assumptions 7-12 hold, for any fixed parameter vector c. Using the defini-

tions in (12), an outer region for β is given by the set:

ΘSO =


β ∈ Θ : ∀ω, ω′, ω′′ ∈ R,

max[s(1,0)(ω), s(2,0)(ω), s(2,1)(ω), s(1,1)(ω)] ≤ min[i(0,1)(ω), i(0,2)(ω), i(1,2)(ω), i(1,1)(ω)]

a.e. x ∈ X and c ∈ C


where,

s(1,0)(ω) = sup
x:−∆xβ−c11+c12≤ω

P (1, 0|x, c)

s(2,0)(ω) = sup
x:−∆xβ+c12−c21≤ω

P (2, 0|x, c)

s(2,1)(ω) = sup
x:−∆xβ+c22−c21≤ω

P (2, 1|x, c)

s(1,1)(ω) = sup
x∈X∗∗

P (1, 1|x, c)

i(0,1)(ω) = inf
x:−∆xβ−c11+c12≥ω

[1− P (0, 1|x, c)]

i(0,2)(ω) = inf
x:−∆xβ−c11+c22≥ω

[1− P (0, 2|x, c)]

i(1,2)(ω) = inf
x:−∆xβ+c22−c21≥ω

[1− P (1, 2|x, c)]

i(1,1)(ω) = 1− inf
x∈X∗

P (1, 1|x, c) (12)
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and for any fixed ω, ω′, ω′′ ∈ R

X∗ = {x : ω′ ≥ −∆xβ + c22 − c11 ∧ −∆xβ + c12 − c21 ≥ ω}

X∗∗ = {x : ω ≥ −∆xβ + c22 − c11 ∧ −∆xβ + c12 − c21 ≥ ω′′} (13)

Proof. The proof is provided in Appendix A.6.

4 Numerical Examples

This section provides numerical illustrations of the identified sets derived in Sections 2 and 3

for the dynamic binary response model and the static ordered response model under different

support conditions and Probability Generating Processes (PGP). For expositional purposes

this section starts with some numerical illustrations of the identified sets for the binary re-

sponse static panel data model derived in RW2013. All the models examined in this section

have discrete support for the explanatory variables, X. Even though point-identification fails,

the numerical examples illustrate that informative bounds can be achieved as the support of

the discrete explanatory variables increases.

4.1 Static Binary Response Panel Data Model

4.1.1 Example 1

Consider the two time period static binary panel data model,

Yt = 1(Xtβ + α + Vt > 0) (14)

where Xt = (X1t, X2t), β = (β1, β2), α|X ∼ N(Xδ, 1) with X = 1
2
(X1 + X2) and δ = (1,−1)

and Vt|X,α
iid∼ f(). The true parameter of β2 = 1 after the normalization of β1 = 12.

Tables 1 and 2 give the identified sets for β2 under different specification for the dis-

tribution of the time-varying unobservables and as the support of the discrete explanatory

2 This baseline PGP is similar to the one used in RW2013. The Normal distribution for the fixed effect was

approximated on a grid with 100 evenly spaced support points on [Xδ − 4, Xδ + 4], and the approximation

error should be small.
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variables (X1t, X2t) changes. The first Probit specification in Table 1 with Vt|X,α
iid∼ N(0, 1)

is the same as in RW2013. Table 1 also provides identified sets under the probit specification

with Vt|X,α
iid∼ N

(
0, π

2

3

)
and the standard logit specification Vt ⊥ (X,α) with iid logistic

distribution.

Table 1: Identified sets for β2 under Probit and Logit specifications with symmetric support

for (X1t, X2t) around zero

Support of (X1t, X2t)

{−1, 0, 1} {−2,−1, 0, 1, 2} {−3,−2,−1, 0, 1, 2, 3}

V
iid∼ N (0, 1) (0,∞) (0.5, 2) (0.667, 1.5)

V
iid∼ N

(
0, π

2

3

)
(−0.5,∞) (0.286, 2.667) (0.545, 1.714)

Logistic (−0.5,∞) (0.286, 2.667) (0.545, 1.714)

Table 2: Identified sets for β2 under Probit and Logit specifications with asymmetric support

for (X1t, X2t) around zero

Support of (X1t, X2t)

{−1, 0, 1, 2, 3} {−2,−1, 0, 1, 2, 3, 4} {−4,−3,−2,−1, 0, 1, 2}

V
iid∼ N (0, 1) (0.5, 6) (0.667,2) (0.667,2)

V
iid∼ N

(
0, π

2

3

)
(0.286,∞) (0.545,2.5) (0.545,2.5)

Logistic (0.286,∞) (0.545,2.5) (0.545,2.5)

From Tables 1 and 2 two main conclusions can be drawn. The first one is that as the support

of the explanatory variables increases the identified sets become narrower. This suggests that

even thought the model only partially identifies the regression parameters, those sets shrink

around the true value as the support of the explanatory variables increases.

Secondly, it is evident that the model with Vt
iid∼ N

(
0, π

2

3

)
errors and the standard logit

model with variance of the unobservables var(Vt) = π2

3
give similar identified sets. This might
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have implications on the identification and estimation of such models under mispecification3.

4.1.2 Example 2

Consider the two period static binary response panel data model as in (14) ,

Yt = 1(Xtβ + α + Vt > 0)

where Xt = (X1t, X2t, X3t) with X3t ∈ {0, 1}, β = (β1, β2, β3), α|X ∼ N(Xδ, 1) with X =

1
2
(X1 + X2) and δ = (1,−1, 0) and Vt|X,α

iid∼ N(0, 1). The true parameter of β2 = 1 and

β3 = 1 after the normalization of β1 = 1.

Figure 3 provides identified set for (β2, β3) for different values of β3 in the grid [−1, 3].

Similarly to Example 1, the sets shrink as the support of the discrete explanatory variables

(X1t, X2t) changes, even if the support of X3 remains fixed.

(a) (X1t, X2t) ∈ {−1, . . . , 1} (b) (X1t, X2t) ∈ {−2, . . . , 2} (c) (X1t, X2t) ∈ {−3, . . . , 3}

(d) (X1t, X2t) ∈ {−1, . . . , 3} (e) (X1t, X2t) ∈ {−2, . . . , 4} (f) (X1t, X2t) ∈ {−4, . . . , 2}

Figure 3: Joint identified sets for (β2, β3) when X3t ∈ {0, 1}

3This might be related to the discussion in Ruud (1983).
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4.2 Dynamic Binary Response Panel Data Model

4.2.1 Example 3

Consider the three period dynamic binary response panel data model as the one described in

Section 2,

Yt = 1(Xtβ + 1(Yt−1 = 1)γ + α + Vt > 0) (15)

where Xt = (X1t, X2t), β = (β1, β2), α|X ∼ N(Xδ, 1) with X = 1
2
(X1 + X2) and δ = (1,−1)

and Vt|X, Y0, α
iid∼ f(). The true parameter of β2 = 1 and γ = 0.5 after normalizing β1 = 1.

Table 3 and Table 4 provide the identified sets for β2 as described in Theorem 2, when γ =

0.5 is fixed, under different specification for the distribution of the time-varying unobservables

and as the support of the discrete explanatory variables (X1t, X2t) changes.

It can be concluded that in the dynamic binary response panel data model with fixed γ, the

identified set for β2 shrinks as the support of the explanatory variables increases. Furthermore,

the identified sets increase as the variance of the time-varying unobservables increases. Finally,

similarly to the binary response static panel data model, the standard logit model and the

model with Vt|X, Y0, α
iid∼ N

(
0, π

2

3

)
errors give similar identified sets.

Table 3: Outer regions for β2 under Probit and Logit specifications with symmetric support

for (X1t, X2t) around zero when γ = 0.5

Support of (X1t, X2t)

{−1, 0, 1} {−2,−1, 0, 1, 2} {−3,−2,−1, 0, 1, 2, 3}

V
iid∼ N (0, 1) (−0.125,∞) (0.438, 2.5) (0.625, 1.643)

V
iid∼ N

(
0, π

2

3

)
(−0.375,∞) (0.313, 3.75) (0.542, 1.917)

Logistic (−0.375,∞) (0.313, 3.75) (0.542, 1.917)
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Table 4: Outer regions for β2 under Probit and Logit specifications with asymmetric support

for (X1t, X2t) around zero when γ = 0.5

Support of (X1t, X2t)

{−1, 0, 1, 2, 3} {−2,−1, 0, 1, 2, 3, 4} {−4,−3,−2,−1, 0, 1, 2}

V
iid∼ N (0, 1) (0.438,∞) (0.625, 2.125) (0.625, 1.9)

V
iid∼ N

(
0, π

2

3

)
(0.313,∞) (0.542,2.833) (0.542,2.375)

Logistic (0.313,∞) (0.542, 2.833) (0.542, 2.375)

4.2.2 Example 4

Consider the binary response dynamic panel data model in (15) with Vt|X, Y0, α
iid∼ N(0, 1),

but assume no knowledge of β2 or γ. Figure 4 provides identified sets for (β2, γ) as described

in Theorem 2, for different values of γ in the grid [−1, 6], as the support of (X1t, X2t) changes,

with true values β2 = 1 and γ = 0.5.

(a) (X1t, X2t) ∈ {−1, . . . , 1} (b) (X1t, X2t) ∈ {−2, . . . , 2} (c) (X1t, X2t) ∈ {−3, . . . , 3}

(d) (X1t, X2t) ∈ {−1, . . . , 3} (e) (X1t, X2t) ∈ {−2, . . . , 4} (f) (X1t, X2t) ∈ {−4, . . . , 2}

Figure 4: Joint identified sets for (β2, γ)
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It is clear that for the specific range of values for the grid of γ chosen the identified set for

β2 shrinks as the support of the discrete explanatory variables (X1t, X2t) increases, however

with three periods the identified set for γ is only bounded from above. Recall that as shown

in Honoré and Kyriazidou (2000) the parameters in the dynamic binary response model with

one lagged dependent variable and logistically distributed unobservables are point-identified

with at least four time periods.

4.3 Static Ordered Response Panel Data Model

4.3.1 Example 5

Consider the two period static ordered response panel data model as discussed in Section 3,

Yt =


0 if Xtβ + α + Vt < c1t

1 if c1t < Xtβ + α + Vt ≤ c2t

2 if c2t < Xtβ + α + Vt

(16)

where Xt = (X1t, X2t), β = (β1, β2), α|X ∼ N(Xδ, 1) with X = 1
2
(X1 + X2) and δ = (1,−1)

and Vt|X,α
iid∼ N (0, 1). The true parameter of β2 = 1 after the normalization of β1 = 1. The

threshold parameters are assumed to be time-invariant such that c11 = c12 and c21 = c22
4, and

c11 = c12 is normalized to 0. Table 5 and Table 6 provide the outer sets for β2 as described

in Theorem 5, when c = c21 = c22 is fixed, for different values of c, and as the support of the

discrete explanatory variables (X1t, X2t) changes5. For any given c it is evident that as the

support of Xt increases the identified sets decrease. Furthermore, it can be also clearly seen

that the choice of the threshold c affects the size of the identified sets. This indicates that

in the ordered choice model the threshold plays a crucial role in the identifying power of the

model.

4In a recent working paper Botosaru and Muris (2017) consider estimation of the regression parameters

and the thresholds in a fixed effects ordered logit model with a time-varying link function.
5The outer sets are calculated by setting ω′ →∞ and ω′′ → −∞.
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Table 5: Identified sets for β2 under Probit and Logit specifications with symmetric support

for (X1t, X2t) around zero

Support of (X1t, X2t)

{−1, 0, 1} {−2,−1, 0, 1, 2} {−3,−2,−1, 0, 1, 2, 3}

c = 0.5 (0, 5) (0.5, 1.8) (0.667, 1.444)

c = 1.5 (0, 3) (0.5, 1.667) (0.667, 1.4)

c = 2.5 (-0.5,2.333) (0.286, 1.571) (0.556, 1.364)

Table 6: Identified sets for β2 under Probit and Logit specifications with asymmetric support

for (X1t, X2t) around zero

Support of (X1t, X2t)

{−1, 0, 1, 2, 3} {−2,−1, 0, 1, 2, 3, 4} {−4,−3,−2,−1, 0, 1, 2}

c = 0.5 (0.5, 3) (0.667, 1.667) (0.636, 1.8)

c = 1.5 (0.429, 1.8) (0.636, 1.444) (0.5,1.667)

c = 2.5 (0.375, 1.571) (0.6, 1.364) (0.333, 1.571)

4.3.2 Example 6

Consider the ordered response static panel data model in (16), but assume no knowledge of

β2 or c. Figure 5 provides identified sets for (β2, c) for different values of c in the grid [0,6],

when the true value of β2 = 1 and c = 1.5 , as the support of (X1t, X2t) increases. Similarly to

the previous examples, the identified sets decrease as the support of the explanatory variables

increases.
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(a) (X1t, X2t) ∈ {−1, . . . , 1} (b) (X1t, X2t) ∈ {−2, . . . , 2} (c) (X1t, X2t) ∈ {−3, . . . , 3}

(d) (X1t, X2t) ∈ {−1, . . . , 3} (e) (X1t, X2t) ∈ {−2, . . . , 4} (f) (X1t, X2t) ∈ {−4, . . . , 2}

Figure 5: Joint identified sets for (β2, c)

5 Concluding Remarks

This paper studies identification in discrete response panel data models with fixed effects.

Under fairly mild conditions, identified sets for the regression parameters in the dynamic binary

and static ordered response models are derived, without assuming distributional assumptions

on the time-varying unobservables or the fixed effect. The bounds are achieved by relying on

observable implications in which the fixed effect does not appear. Similar to the binary static

panel data model, the dynamic binary and the static ordered panel data models are complete

and informative identification bounds for the parameters of interest can be derived.

As discussed in Section 1 when the time-varying unobservables are independent and identi-

cally distributed with a logistic distribution, then the regression parameters in the linear index

binary and ordered response panel data models can be point-identified. The feature of the

distribution these papers use that does not depend on the unobservable α is the conditional
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probability of the outcome variable in a specific period taking a specific value, conditional on

the event that individuals change at some period in the past. The feature of the distribution

that does not depend on the unobserved heterogeneity in this paper is the joint probability of

two outcome variables that take different values in two periods. If Assumptions 3 and 9 are

strengthened such that the time-varying unobservables follow an independent and identically

distributed logistic distribution, the bounds provided in this paper might still fail to be single-

tons. Chamberlain (1984, 2010) and Honoré and Kyriazidou (2000) prove point-identification

of the regression parameters, when the regressors have bounded support, under the assump-

tions that the time-varying unobservables follow a logistic distribution and are independent

of both the explanatory variables (X1, X2) and α. Under Assumptions 5 and 11, V is al-

lowed to be correlated with α. Imposing the assumption that V ⊥ α may or may not lead to

point-identification and would require an additional assumption which might not be credible

or testable.

In conclusion, even though the identification bounds in this paper might not be singleton

sets, they provide information on the regression parameters under fairly weak conditions.

Since the sets do not depend on any distributional assumption on the unobservables, they can

provide information for a general class of linear index static and dynamic discrete response

panel data models with fixed effects. Furthermore, they are relatively simple to construct and

therefore might be easy to use for computation and inference.
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A Appendix

A.1 Proof of Theorem 1

This section provides the proof of Theorem 1. It can be shown that the event probabilities

described in Theorem 1 do not depend on α. Consider the sequences of events in (8). The

conditional probability for the event (Y1, Y2) = (0, 1) conditional on Y0 = 0 is,

P (0, 1|x, 0) = P(V,α)|X,Y0 [{X1β + α + V1 ≤ 0} ∧ {X2β + α + V2 > 0}|X = x, Y0 = 0]

≤ PV |X,Y0 [(X2 −X1)β + V2 − V1 > 0|X = x, Y0 = 0]

= P∆V |X,Y0 [∆V > −∆Xβ|X = x, Y0 = 0]

The conditional probability for the event (Y1, Y2) = (1, 0) conditional on Y0 = 0 is given by,

P (1, 0|x, 0) = P(V,α)|X,Y0 [{X1β + α + V1 ≥ 0} ∧ {X2β + γ + α + V2 < 0}|X = x, Y0 = 0]

≤ PV |X,Y0 [(X2 −X1)β + γ + V2 − V1 < 0|X = x, Y0 = 0]

= P∆V |X,Y0 [∆V < −∆Xβ − γ|X = x, Y0 = 0]

The conditional probability for the event (Y1, Y2) = (0, 1) conditional on Y0 = 1 is,

P (0, 1|x, 1) = P(V,α)|X,Y0 [{X1β + γ + α + V1 ≤ 0} ∧ {X2β + α + V2 > 0}|X = x, Y0 = 1]

≤ PV |X,Y0 [(X2 −X1)β − γ + V2 − V1 > 0|X = x, Y0 = 1]

= P∆V |X,Y0 [∆V > −∆Xβ + γ|X = x, Y0 = 1]

The conditional probability for the event (Y1, Y2) = (1, 0) conditional on Y0 = 1 is equivalent

to,

P (1, 0|x, 1) = P(V,α)|X,Y0 [{X1β + γ + α + V1 ≥ 0} ∧ {X2β + γ + α + V2 < 0}|X = x, Y0 = 1]

≤ PV |X,Y0 [(X2 −X1)β + V2 − V1 < 0|X = x, Y0 = 1]

= P∆V |X,Y0 [∆V < −∆Xβ|X = x, Y0 = 1]
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For any fixed X = x and by applying Assumption 5 , the above inequalities imply that

1− P (0, 1|x, 0) ≥ P∆V |Y0 [∆V < −∆xβ|Y0 = 0]

P (1, 0|x, 0) ≤ P∆V |Y0 [∆V < −∆xβ − γ|Y0 = 0]

1− P (0, 1|x, 1) ≥ P∆V |Y0 [∆V < −∆xβ + γ|Y0 = 1]

P (1, 0|x, 1) ≤ P∆V |Y0 [∆V < −∆xβ|Y0 = 1]

which completes the proof.

A.2 Proof of Theorem 2

This section proves Theorem 2. Consider any constant ω ∈ R, conditioning on Y0 = 0, then

(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω ⇒ ∆V < ω (17)

and conditioning on Y0 = 1, then

(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω ⇒ ∆V < ω (18)

The relations in (17) and (18) imply that, ∀ω ∈ R:

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0] ≥ P [∆V < ω|X = x, Y0 = 0]

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0] ≤ P [∆V < ω|X = x, Y0 = 0]

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1] ≥ P [∆V < ω|X = x, Y0 = 1]

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1] ≤ P [∆V < ω|X = x, Y0 = 1]

⇐⇒

When −∆Xβ ≥ ω

P [(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0] = P (0, 1|x, 0)
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otherwise

P [(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0] = 0

When −∆Xβ − γ ≤ ω

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0] = P (1, 0|x, 0)

otherwise

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0] = 0

When −∆Xβ + γ ≥ ω

P [(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1] = P (0, 1|x, 1)

otherwise

P [(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1] = 0

When −∆Xβ ≤ ω

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1] = P (1, 0|x, 1)

otherwise

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1] = 0

These equalities in combination with (17), (18) and by applying Assumption 5 imply that,

inf
x:−∆xβ≥ω

1− P (0, 1|x, 0) ≥ F∆V |Y0(ω|0)

sup
x:−∆xβ−γ≤ω

P (1, 0|x, 0) ≤ F∆V |Y0(ω|0)

inf
x:−∆xβ+γ≥ω

1− P (0, 1|x, 1) ≥ F∆V |Y0(ω|1)

sup
x:−∆xβ≤ω

P (1, 0|x, 1) ≤ F∆V |Y0(ω|1)

⇐⇒

sup
x:−∆xβ−γ≤ω

P (1, 0|x, 0) ≤ F∆V |Y0(ω|0) ≤ inf
x:−∆xβ≥ω

1− P (0, 1|x, 0)

sup
x:−∆xβ≤ω

P (1, 0|x, 1) ≤ F∆V |Y0(ω|1) ≤ inf
x:−∆xβ+γ≥ω

1− P (0, 1|x, 1)

(19)

which completes the proof.
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A.3 Proof of Theorem 3

To prove the unconditional identified set in Theorem 3, first notice that

F∆V |X(ω|x) = F∆V |X,Y0(ω|x, 0)P (Y0 = 0|X = x) + F∆V |X,Y0(ω|x, 1)P (Y0 = 1|X = x).

Define P (Y0 = 0|X = x) = P0(x) and P (Y0 = 1|X = x) = P1(x), which are fully observed.

The relations (17) and (18), ∀ω ∈ R imply:

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0] ≥ P [∆V < ω|X = x, Y0 = 0]

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0] ≤ P [∆V < ω|X = x, Y0 = 0]

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1] ≥ P [∆V < ω|X = x, Y0 = 1]

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1] ≤ P [∆V < ω|X = x, Y0 = 1].

(20)

Define by

G(ω|x, 0) = P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0]

G(ω|x, 1) = P [(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1]

G(ω|x, 0) = 1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0]

G(ω|x, 1) = 1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1].

Then multiplying by P0(x) and P1(x) such that,

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ ≥ ω|X = x, Y0 = 0]P0(x) ≥ P [∆V < ω|X = x, Y0 = 0]P0(x)

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − γ ≤ ω|X = x, Y0 = 0]P0(x) ≤ P [∆V < ω|X = x, Y0 = 0]P0(x)

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ + γ ≥ ω|X = x, Y0 = 1]P1(x) ≥ P [∆V < ω|X = x, Y0 = 1]P1(x)

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ ≤ ω|X = x, Y0 = 1]P1(x) ≤ P [∆V < ω|X = x, Y0 = 1]P1(x),

implies that the relations in (20) can be expressed as

G(ω|x, 0)P0(x) ≤ F∆V |X,Y0(ω|x, 0)P0(x) ≤ G(ω|x, 0)P0(x)

G(ω|x, 1)P1(x) ≤ F∆V |X,Y0(ω|x, 1)P1(x) ≤ G(ω|x, 1)P1(x)
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which implies,

G(ω|x, 0)P0(x) +G(ω|x, 1)P1(x) ≤ F∆V |X(ω|x) ≤ G(ω|x, 0)P0(x) +G(ω|x, 1)P1(x)

⇐⇒

G(ω|x, 0)P0(x) +G(ω|x, 1)P1(x) ≤ F∆V (ω) ≤ G(ω|x, 0)P0(x) +G(ω|x, 1)P1(x)

where the last result follows from Assumption V ⊥ X. The last relation implies that,

sup
x∈X
{G(ω|x, 0)P0(x) +G(ω|x, 1)P1(x)} ≤ inf

x∈X
{G(ω|x, 0)P0(x) +G(ω|x, 1)P1(x)}.

This completes the proof.

A.4 Regions of unobservables for the static ordered model

The regions RSO
(y1,y2)(x, c; β) that partition the support of (V, α) such that (Y1, Y2) = (y1, y2)

when X = x and for any fixed c and plotted in Figure 2, are given by the following set of

inequalities,

RSO
(0,0) (x, c; β) =

(V, α) ∈ (V ,A) :

x1β + α + V1 − c11 ≤ 0

&

x2β + α + V2 − c12 ≤ 0


RSO

(0,1) (x, c; β) =

(V, α) ∈ (V ,A) :

x1β + α + V1 − c11 ≤ 0

&

−x2β + c12 < α + V2 ≤ −x2β + c22


RSO

(0,2) (x, c; β) =

(V, α) ∈ (V ,A) :

x1β + α + V1 − c11 ≤ 0

&

0 < x2β + α + V2 − c22


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RSO
(1,0) (x, c; β) =

(V, α) ∈ (V ,A) :

−x1β + c11 < α + V1 ≤ −x1β + c21

&

x2β + α + V2 − c12 ≤ 0


RSO

(1,1) (x, c; β) =

(V, α) ∈ (V ,A) :

−x1β + c11 < α + V1 ≤ −x1β + c21

&

−x2β + c12 < α + V2 ≤ −x2β + c22


RSO

(1,2) (x, c; β) =

(V, α) ∈ (V ,A) :

−x1β + c11 < α + V1 ≤ −x1β + c21

&

0 < x2β + α + V2 − c22


RSO

(2,0) (x, c; β) =

(V, α) ∈ (V ,A) :

0 < x1β + α + V1 − c21

&

x2β + α + V2 − c12 ≤ 0


RSO

(2,1) (x, c; β) =

(V, α) ∈ (V ,A) :

0 < x1β + α + V1 − c21

&

−x2β + c12 < α + V2 ≤ −x2β + c22


RSO

(2,2) (x, c; β) =

(V, α) ∈ (V ,A) :

0 < x1β + α + V1 − c21

&

0 < x2β + α + V2 − c22


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A.5 Proof of Theorem 4

To prove Theorem 4 first notice that the conditional probabilities P (Y1 = y1 ∧ Y2 = y2|X =

x, c) = P (y1, y2|x, c) of the events given in (10) are given by:

P (0, 1|x, c)) = P(V,α)|X,c[{0 ≥ X1β + α+ V1 − c11}

∧ {X2β + α+ V2 − c12 > 0 ∧ 0 ≥ X2β + α+ V2 − c22}|X = x, c]

P (1, 0|x, c) = P(V,α)|X,c[{X1β + α+ V1 − c11 > 0 ∧ 0 ≥ X1β + α+ V1 − c21}

∧ {0 ≥ X2β + α+ V2 − c12}|X = x, c]

P (0, 2|x, c) = P(V,α)|X,c[{0 ≥ X1β + α+ V1 − c11} ∧ {X2β + α+ V2 − c22 > 0}|X = x, c]

P (2, 0|x, c) = P(V,α)|X,c[{X1β + α+ V1 − c21 > 0} ∧ {0 ≥ X2β + α+ V2 − c12}|X = x, c]

P (1, 2|x, c) = P(V,α)|X,c[{X1β + α+ V1 − c11 > 0 ∧ 0 ≥ X1β + α+ V1 − c21}

∧ {X2β + α+ V2 − c22 > 0}|X = x, c]

P (2, 1|x, c) = P(V,α)|X,c[{X1β + α+ V1 − c21 > 0}

∧ {X2β + α+ V2 − c12 > 0 ∧ 0 ≥ X2β + α+ V2 − c22}|X = x, c] (21)

From (21) it can be shown that:

P (0, 1|x, c) ≤ P(V,α)|X,c({0 ≥ X1β + α+ V1 − c11} ∧ {X2β + α+ V2 − c12 > 0}|X = x, c)

≤ P(V,α)|X,c(0 > (X1 −X2)β + (V1 − V2)− c11 + c12|X = x, c)

P (1, 0|x, c) ≤ P(V,α)|X,c[{X1β + α+ V1 − c11 > 0} ∧ {0 ≥ X2β + α+ V2 − c12}|X = x, c]

≤ P(V,α)|X,c(0 > (X2 −X1)β + (V2 − V1)− c12 + c11|X = x, c)

P (0, 2|x, c) ≤ P(V,α)|X,c(0 > (X1 −X2)β + (V1 − V2)− c11 + c22|X = x, c)

P (2, 0|x, c) ≤ P(V,α)|X,c(0 > (X2 −X1)β + (V2 − V1)− c12 + c21|X = x, c)

P (1, 2|x, c) ≤ P(V,α)|X,c({0 ≥ X1β + α+ V1 − c21} ∧ {X2β + α+ V2 − c22 > 0}|X = x, c)

≤ P(V,α)|X,c(0 > (X1 −X2)β + V1 − V2 + c22 − c21|X = x, c)

P (2, 1|x, c) ≤ P(V,α)|X,c[{X1β + α+ V1 − c21 > 0} ∧ {0 ≥ X2β + α+ V2 − c22}|X = x, c]

≤ P(V,α)|X,c(0 > (X2 −X1)β + V2 − V1 + c21 − c22|X = x, c)

(22)
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Then using Assumptions 11 for any fixed c ∈ C, the relations in (22) can be expressed as:

P (0, 1|x, c) ≤ PV |X,c(V2 − V1 > −∆Xβ − c11 + c12|X = x, c)

= 1− F∆V [−∆xβ − c11 + c12]

P (1, 0|x, c) ≤ PV |X,c(V2 − V1 < −∆Xβ + c12 − c11|X = x, c)

= F∆V [−∆xβ − c11 + c12]

P (0, 2|x, c) ≤ PV |X,c(−∆Xβ − c11 + c22 < V2 − V1|X = x, c)

= 1− F∆V [−∆xβ − c11 + c22]

P (2, 0|x, c) ≤ PV |X,c(V2 − V1 < −∆Xβ + c12 − c21|X = x, c)

= F∆V [−∆xβ + c12 − c21]

P (1, 2|x, c) ≤ PV |X,c(−∆Xβ + c22 − c21 < V2 − V1|X = x, c)

= 1− F∆V [−∆xβ + c22 − c21]

P (2, 1|x, c) ≤ PV |X,c(V2 − V1 < −∆Xβ + c22 − c21|X = x, c)

= F∆V [−∆xβ + c22 − c21] (23)

The inequalities in (23) lead to bounds for β, such that for any given X = x,

P (1, 0|x, c) ≤ F∆V [−∆xβ − c11 + c12] ≤ 1− P (0, 1|x, c)

P (2, 0|x, c) ≤ F∆V [−∆xβ + c12 − c21]

F∆V [−∆xβ − c11 + c22] ≤ 1− P (0, 2|x, c)

P (2, 1|x, c) ≤ F∆V [−∆xβ + c22 − c21] ≤ 1− P (1, 2|x, c)

(24)

The above relations show that changing choices from period t = 1 to t = 2 provide restrictions

on the distributions of ∆V that do not depend on the fixed effect, α. In the binary case

discussed in Section 2 the events (Y1, Y2) = (0, 0) and (1, 1) gave no information on β since

the behaviour for these cases can be matched by extremely small or extremely large values

of α. This is also true for the static ordered model for the events (0, 0) and (2, 2). However,

in the ordered response model where Yt = {0, 1, 2}, considered in this section, there is an
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“in-between” event, (Y1, Y2) = (1, 1), that provides information for β without involving the

fixed effect. To see that consider the joint probability of choosing the event (11):

P (1, 1|x, c) = P(V,α)|X,c[{X1β + α + V1 − c11 > 0 ∧ 0 ≥ X1β + α + V1 − c21}

∧ {X2β + α + V2 − c12 > 0 ∧ 0 ≥ X2β + α + V2 − c22}|X = x, c]

= P(V,α)|X,c[X1β + α + V1 − c11 > 0 ∧ 0 ≥ X1β + α + V1 − c21

∧ X2β + α + V2 − c12 > 0 ∧ 0 ≥ X2β + α + V2 − c22|X = x, c]

(25)

By combining

X1β + α + V1 − c11 > 0 and 0 ≥ X2β + α + V2 − c22

and

0 ≥ X1β + α + V1 − c21 and X2β + α + V2 − c12 > 0

it can be shown that:

P (1, 1|x, c) ≤ PV [0 > (X2 −X1)β + (V2 − V1)− c22 + c11

∧ (X2 −X1)β + (V2 − V1)− c12 + c21 > 0|X = x, c]

P (1, 1|x, c) ≤ P∆V [−∆Xβ + c22 − c11 > ∆V > −∆Xβ + c12 − c21|X = x, c] (26)

which does not depend on α. This completes the proof.

A.6 Proof of Theorem 5

This section proves the identified set of the static ordered model given in Theorem 5. As

discussed in Section 3 the events {(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1), (1, 1)} provide restric-

tions on the distribution of ∆V that do not depend on the unobserved heterogeneity, α. From

the inequalities in (24) and (26) it can be concluded that,
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(Y1, Y2) = (0, 1) ⇒ ∆V > −∆Xβ − c11 + c12

(Y1, Y2) = (1, 0) ⇒ ∆V < −∆Xβ − c11 + c12

(Y1, Y2) = (0, 2) ⇒ ∆V > −∆Xβ − c11 + c22

(Y1, Y2) = (2, 0) ⇒ ∆V < ∆Xβ + c12 − c21

(Y1, Y2) = (1, 2) ⇒ ∆V > −∆Xβ + c22 − c21

(Y1, Y2) = (2, 1) ⇒ ∆V < −∆Xβ + c22 − c21

(Y1, Y2) = (1, 1) ⇒ −∆Xβ + c22 − c11 ≥ ∆V ≥ −∆Xβ + c12 − c21

For a given set of arbitrary constants ω, ω′, ω′′ ∈ R the above relations imply that,

(Y1, Y2) = (0, 1) ∧ −∆Xβ − c11 + c12 ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (1, 0) ∧ −∆Xβ − c11 + c12 ≤ ω ⇒ ∆V < ω

(Y1, Y2) = (0, 2) ∧ −∆Xβ − c11 + c22 ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (2, 0) ∧ −∆Xβ + c12 − c21 ≤ ω ⇒ ∆V < ω

(Y1, Y2) = (1, 2) ∧ −∆Xβ + c22 − c21 ≥ ω ⇒ ∆V > ω

(Y1, Y2) = (2, 1) ∧ −∆Xβ + c22 − c21 ≤ ω ⇒ ∆V < ω

(Y1, Y2) = (1, 1) ∧ ω′ ≥ −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 ≥ ω ⇒ ω′ > ∆V > ω

(Y1, Y2) = (1, 1) ∧ ω ≥ −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 ≥ ω′′ ⇒ ω > ∆V > ω′′

(27)
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The relations in (27) and Assumption 11 imply that for each fixed c ∈ C, ∀ω, ω′, ω′′ ∈ R:

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ − c11 + c12 ≥ ω|X = x, c] ≥ P [∆V < ω]

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − c11 + c12 ≤ ω|X = x, c] ≤ P [∆V < ω]

1− P [(Y1, Y2) = (0, 2) ∧ −∆Xβ − c11 + c22 ≥ ω|X = x, c] ≥ P [∆V < ω]

P [(Y1, Y2) = (2, 0) ∧ −∆Xβ + c12 − c21 ≤ ω|X = x, c] ≤ P [∆V < ω]

1− P [(Y1, Y2) = (1, 2) ∧ −∆Xβ + c22 − c21 ≥ ω|X = x, c] ≥ P [∆V < ω]

P [(Y1, Y2) = (2, 1) ∧ −∆Xβ + c22 − c21 ≤ ω|X = x, c] ≤ P [∆V < ω]

P [(Y1, Y2) = (1, 1) ∧ {ω′ ≥ −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 ≥ ω}|X = x, c]

≤ P [ω < ∆V < ω′]

P [(Y1, Y2) = (1, 1) ∧ {ω ≥ −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 ≥ ω′′}|X = x, c]

≤ P [ω′′ < ∆V < ω] (28)

Following the same arguments as in proving Theorem 2 it can be shown that for any given

ω, ω′, ω′′ ∈ R,

When −∆Xβ − c11 + c12 ≥ ω

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ − c11 + c12 ≥ ω|X = x, c] = 1− P (0, 1|x, c)

otherwise

1− P [(Y1, Y2) = (0, 1) ∧ −∆Xβ − c11 + c12 ≥ ω|X = x, c] = 1

When −∆Xβ − c11 + c12 ≤ ω

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − c11 + c12 ≤ ω|X = x, c] = P (1, 0|x, c)

otherwise

P [(Y1, Y2) = (1, 0) ∧ −∆Xβ − c11 + c12 ≤ ω|X = x, c] = 0

When −∆Xβ − c11 + c22 ≥ ω

1− P [(Y1, Y2) = (0, 2) ∧ −∆Xβ − c11 + c22 ≥ ω|X = x, c] = 1− P (0, 2|x, c)

otherwise

1− P [(Y1, Y2) = (0, 2) ∧ −∆Xβ − c11 + c22 ≥ ω|X = x, c] = 1
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When −∆Xβ + c12 − c21 ≤ ω

P [(Y1, Y2) = (2, 0) ∧ −∆Xβ + c12 − c21 ≤ ω|X = x, c] = P (2, 0|x, c)

otherwise

P [(Y1, Y2) = (2, 0) ∧ −∆Xβ + c12 − c21 ≤ ω|X = x, c] = 0

When −∆Xβ + c22 − c21 ≥ ω

1− P [((Y1, Y2) = (1, 2) ∧ −∆Xβ + c22 − c21 ≥ ω|X = x, c] = 1− P (1, 2|x, c)

otherwise

1− P [(Y1, Y2) = (1, 2) ∧ −∆Xβ + c22 − c21 ≥ ω|X = x, c] = 1

When −∆Xβ + c22 − c21 ≤ ω

P [(Y1, Y2) = (2, 1) ∧ −∆Xβ + c22 − c21 ≤ ω|X = x, c] = P (2, 1|x, c)

otherwise

P [(Y1, Y2) = (2, 1) ∧ −∆Xβ + c22 − c21 ≤ ω|X = x, c] = 0

When ω′ ≥ −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 ≥ ω,

P [(Y1, Y2) = (1, 1) ∧ {ω′ > −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 ≥ ω}|X = x, c] = P (1, 1|x, c)

otherwise

P [(Y1, Y2) = (1, 1) ∧ {ω′ > −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 ≥ ω}|X = x, c] = 0

When ω ≥ −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 ≥ ω′′

P [(Y1, Y2) = (1, 1) ∧ {ω ≥ −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 > ω′′}|X = x, c] = P (1, 1|x, c)

otherwise

P [(Y1, Y2) = (1, 1) ∧ {ω ≥ −∆Xβ + c22 − c11 ∧ −∆Xβ + c12 − c21 > ω′′}|X = x, c] = 0.

The above relations show that depending on the different values of x ∈ X the lower and

upper bounds of the inequalities in (28) change. Since for any value of β in the identified set
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the relations in (28) should hold simultaneously for all ω, ω′, ω′′ ∈ R, a.e. x ∈ X , combining

(24), (26), (28) and the above relations for the different values of x ∈ X , the distribution of

∆V is shown to be bounded by,

sup
x:−∆xβ−c11+c12≤ω

P (1, 0|x, c) ≤ F∆V (ω)

F∆V (ω) ≤ inf
x:−∆xβ−c11+c12≥ω

[1− P (0, 1|x, c)]

sup
x:−∆xβ+c12−c21≤ω

P (2, 0|x, c) ≤ F∆V (ω)

F∆V (ω) ≤ inf
x:−∆xβ−c11+c22≥ω

[1− P (0, 2|x, c)]

sup
x:−∆xβ+c22−c21≤ω

P (2, 1|x, c) ≤ F∆V (ω)

F∆V (ω) ≤ inf
x:−∆xβ+c22−c21≥ω

[1− P (1, 2|x, c)]

sup
x∈X∗

P (1, 1|x, c) ≤ F∆V (ω′)− F∆V (ω)

sup
x∈X∗∗

P (1, 1|x, c) ≤ F∆V (ω)− F∆V (ω′′)

where

X∗ = {x : ω′ ≥ −∆xβ + c22 − c11 ∧ −∆xβ + c12 − c21 ≥ ω}

X∗∗ = {x : ω ≥ −∆xβ + c22 − c11 ∧ −∆xβ + c12 − c21 ≥ ω′′}

Furthermore, notice that at the limit ω′ →∞ and ω′′ → −∞:

P (1, 1|x, c) ≤ 1− F∆V (ω)⇔ F∆V (ω) ≤ 1− P (1, 1|x, c), when x ∈ X∗

P (1, 1|x, c) ≤ F∆V (ω), when x ∈ X∗∗

and

F∆V (ω) ≤ inf
x∈X∗

1− P (1, 1|x, c)

sup
x∈X∗∗

P (1, 1|x, c) ≤ F∆V (ω) (29)

which completes the proof.
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