
Klein, Timo

Working Paper

Assessing Autonomous Algorithmic Collusion: Q-Learning
Under Short-Run Price Commitments

Tinbergen Institute Discussion Paper, No. TI 2018-056/VII

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Klein, Timo (2018) : Assessing Autonomous Algorithmic Collusion: Q-Learning
Under Short-Run Price Commitments, Tinbergen Institute Discussion Paper, No. TI 2018-056/VII,
Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/185575

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/185575
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

TI 2018-056/VII 

Tinbergen Institute Discussion Paper  

 

 

 

Assessing Autonomous Algorithmic 

Collusion: Q-Learning Under Short-

Run Price Commitments 
 

 

Revision: September 2018 

 

 

Timo Klein1  
 

 

 

 

 

 

 

 

 

 

 

 
1 University of Amsterdam  



 

 

 

Tinbergen Institute is the graduate school and research institute in economics of 

Erasmus University Rotterdam, the University of Amsterdam and VU University 
Amsterdam. 

 
Contact: discussionpapers@tinbergen.nl  
 

More TI discussion papers can be downloaded at http://www.tinbergen.nl  
 

Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 

Gustav Mahlerplein 117 
1082 MS Amsterdam 

The Netherlands 
Tel.: +31(0)20 598 4580 
 

Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 

3062 PA Rotterdam 
The Netherlands 

Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
http://www.tinbergen.nl/


Assessing Autonomous Algorithmic Collusion:
Q-Learning Under Short-Run Price Commitments�

Timo Kleiny

September 2018

Abstract

A novel debate within competition policy and regulation circles is whether au-
tonomous machine learning algorithms may learn to collude on prices. We show
that when �rms face short-run price commitments, independent Q-learning (a
simple but well-established self-learning algorithm) learns to pro�tably coordi-
nate on either a �xed price or on asymmetric price cycles �although conver-
gence to rational and Pareto-optimal collusive behavior is not guaranteed. The
general framework used can guide future research into the capacity of more
advanced algorithms to collude, also in environments that are less stylized or
more case-speci�c.

JEL-codes: K21, L13, L49
Keywords: pricing algorithms, algorithmic collusion, machine learning, rein-
forcement learning, Q-learning, sequential pricing
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Kaisers, Maarten Pieter Schinkel, Ulrich Schwalbe and Leonard Treuren on earlier versions. Errors
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�We will not tolerate anticompetitive conduct, whether it occurs in a smoke-�lled room
or over the internet using complex pricing algorithms�
�US Department of Justice Assistant Attorney General Bill Baer (6 April 2015)

�I think we need to make it very clear that companies can�t escape responsibility for
collusion by hiding behind a computer algorithm�
�EU Competition Commissioner Margrethe Vestager (16 March 2017)

�The [Autonomous Algorithmic Collusion] literature is the closest ever our �eld came
to science-�ction�
�Nicolas Petit, Professor of Law at Liege University (2017)

1 Introduction

The growing prominence of digitization, big data and arti�cial intelligence in com-
mercial activities has given rise to several novel debates within competition policy
and regulation circles. One prominent concern is that intelligent, self-learning pricing
algorithms may at some point work out that the best thing for them to do is to refrain
from aggressive pricing, keeping prices high (Ezrachi and Stucke, 2016; Mehra, 2016).
This would be akin to collusion, but without any overt act of communication required
to establish a competition law infringement, preventing competition authorities from
doing anything about it (Harrington, 2017; Gal, 2018).1 The debate has received
extensive press coverage2 as well as increasing attention from policymakers �such as
the European Commission3 and the OECD4 �and economic consultancy �rms5.
The concerns on autonomous collusion appear to be mostly based on a loose and

intuitive interpretation of arti�cial intelligence only (Ittoo and Petit, 2017; Schwalbe,
2018). This has led several commentators to conclude that the debate is overblown.
Substantially, the main critique is that self-learning algorithms would be ill-equipped

1Other prominent debates include the use of personalized pricing based on online behavior, the
market power of large digital platforms and competitive risks to online privacy.

2These include, amongst others, �When Bots Collude�, in: The New Yorker (25 April 2015);
�How Pricing Bots Could Form Cartels and Make Things More Expensive�, in: Harvard Business
Review (27 October 2016); �Policing the Digital Cartels�, in: Financial Times (8 January 2017),
�Price-Bots Can Collude Against Consumers�, in: The Economist (6 May 2017), �The Algorithms
Have Landed!�, in: Antitrust Chronicle (May 2017), �When Margrethe Vestager Takes Antitrust
Battle to Robots�, in: Politico (28 February 2018) and �Kartellbildung Durch Lernende Algorith-
men?�, in: Frankfurther Allgemeine Zeitung (13 July 2018)

3See in particular the speech by EU Commissioner Vestager �Algorithms and Com-
petition� (16 March 2017), at the Bundeskartellamt 18th Conference on Competi-
tion, Berlin, https://ec.europa.eu/commission/commissioners/2014-2019/vestager/announcements/
bundeskartellamt-18th-conference-competition-berlin-16-march-2017_en.

4OECD (June 2017) �Algorithms and Collusion: Competition Policy in the Digital Age�,
http://www.oecd.org/competition/algorithms-and-collusion.htm.

5Including Oxera (2017) and RBB Economics (2018).
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to coordinate on any one out of a (possibly multidimensional) continuum of subgame
perfect equilibria, at least in absence of illegal communication (Kühn and Tadelis,
2017; Schwalbe, 2018). This critique is supported with references to the experimen-
tal economics literature, where tacit collusion by humans fails to occur in reasonably
realistic oligopoly settings. This would, however, presume equivalence between hu-
mans and learning algorithms in action-selection and learning, which is generally
not the case. And explicit attempts to assess the capacity of di¤erent autonomous
algorithms to collude in various oligopoly environments remain scarce.
This paper discusses the capacity of reinforcement learning �a type of machine

learning in which agents learn from interacting autonomously with their environ-
ment �to collude in an oligopoly environment. More speci�cally, we assess the ca-
pacity of independent Q-learning (a simple but well-established reinforcement learn-
ing algorithm) to collude in a dynamic oligopoly environment with short-run price
commitments. The results show that when �rms face short-run price commitments,
competing Q-learning algorithms pro�tably coordinate on either a �xed price or on
Edgeworth price cycles. Under Edgeworth price cycles, large periodic price increases
reset a gradual downward price spiral. This produces the kind of asymmetric price
cycles that are similarly observed in other markets often suspected of tacit collusion
�most prominently gasoline markets (Noel, 2011; Eckert, 2013; Byrne and de Roos,
2018).
There is a general absence of continuous online price adjustments in many e-

commerce outlets, where prices instead follow stepwise adjustments. This provides
suggestive evidence that �rms are short-run price committed. To capture this dy-
namic we use the sequential pricing environment of Maskin and Tirole (1988), in
which �rms set prices sequentially and pro�ts are realized after each turn. Following
Maskin and Tirole we also impose the Markov assumption: �rms only condition their
strategy on state variables that are directly payo¤-relevant. This includes demand
estimation, marginal cost and current competitor price but excludes, for instance,
communication and the history of prices. Maskin and Tirole show that in their envi-
ronment �rms are able to charge higher prices and earn higher pro�ts in equilibrium
provided �rms value future pro�ts su¢ ciently high. They interpret this as tacit col-
lusion (p. 592).
The learning algorithm applied is a staightforward adaptation of independent Q-

learning to sequential interaction. After choosing a price given current competitor
price, it observes the realized pro�t and subsequent competitor response and updates
the expected optimal long-run pro�t from choosing the price it did given the com-
petitor price. By interacting autonomously with its environment, it has to make a
continuous trade-o¤ between exploitation (choosing the currently perceived optimal
price) and exploration (choosing perhaps another price, to see what happens and im-
prove precision). Q-learning is particularly suitable for studying autonomous pricing
behavior, because it does not require any prior input, data mining or model of the
environment (such as a demand function or competitor pro�t function). Additionally,

3



Q-learning is relatively straightforward and one of the most well-established meth-
ods within reinforcement learning. Finally, various types of Q-learning algorithms are
being applied in real-world dynamic pricing application, including airline fares and
wholesale electricity markets (Ittoo and Petit, 2017).
Three challenges remain unresolved in guaranteeing convergence to rational and

Pareto-optimal collusive behavior: independent Q-learning is restricted to determin-
istic, pure strategy learning while in case of short-run price commitments equilibrium
behavior involves mixing strategies; agents face a moving target learning problem
in which their best response changes as others changes their response, which may
result in endless recursive adaptation; and the existence of a set of multiple equilib-
ria (albeit limited and discrete) provides an equilibrium selection problem in which
Pareto-optimality is not guaranteed. Note, however, that despite these challenges the
algorithm does not have to behave badly in practice. In absence of theoretical guar-
antees we provide an empirical understanding through simulations. An appendix
is provided that discusses how developments in multi-agent reinforcement learning
could resolve the remaining challenges, but also shows why they still lack practical
applicability to oligopoly environments.
There are only a few papers that look at algorithmic oligopoly collusion beyond

an iterated 2-by-2 prisoner�s dilemma.6 Looking at quantity competition, Huck, Nor-
mann and Oechssler (2003) �nd that a �win-continue-lose-reverse�rule provides joint-
pro�t maximizing convergence and Waltman and Kaymak (2008) that independent
Q-learning may collude on lower quantities. Convergence is however not robust to
small �uctuations in the payo¤ function (Izquierdo and Izquierdo, 2015). Taking a
novel experimental approach, Zhou et al. (2018) propose an ex ante restricted algo-
rithm capable of extorting a human rival to collude. Looking at price competition,
Tesauro and Kephart (2002) show in an environment similar to ours how independent
Q-learning can converge on pro�table asymmetric price cycles �with cycles becom-
ing shorter and pro�ts increasing if products are more di¤erentiated or consumers
less informed. They assume however full knowledge of the environment, which allows
for calculating optimal behavior using dynamic programming. Finally, Salcedo (2015)
shows that under certain su¢ cient conditions collusion is inevitable when �rms adopt
a �xed-strategy pricing algorithm that periodically �decodes�the other algorithm and
subsequently adjusts itself. The proposed conditions may however not hold in practice
(Harrington, 2017) and may even be framed as explicit collusion by communicating
your pricing strategies through decoding (Kühn and Tadelis, 2017; Schwalbe, 2018).
The remainder is organized as follows. Section 2 de�nes the competitive environ-

ment and the algorithm used. Section 3 discusses the empirical results. We look at
the case where a Q-learning algorithm faces a �xed-strategy competitor and where
two Q-learning algorithms are set to compete with each other. In both cases prof-

6See for instance Harrington (2017) and Calvano et al. (2018) for a discussion on reinforce-
ment learning and collusion in iterated prisoner�s dilemmas and Schwalbe (2018) for a more general
discussion on the relevant computer science and (experimental) economics literature.
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its exceed their static level once �rms price sequentially, but only in the �rst case
joint-pro�t maximization is always achieved. In Section 4 we provide a discussion
and possible extensions and Section 5 concludes.

2 Environment and Learning Algorithm

2.1 Environment: Sequential Pricing Duopoly

To capture the dynamics of short-run price commitments we take the sequential
pricing environment as described by Maskin and Tirole (1988).
There are two identical �rms i 2 f1; 2g with homogeneous goods and unrestrictive

capacity. Sequentially, each �rm sets an integer price pit 2 f0; 1; 2; :::; kg, where in
odd-numbered periods t �rm 1 chooses its price while �rm 2 keeps its price unchanged
and vice versa in even-numbered periods. Letting D (�) denote the market demand
function and c marginal cost, de�ne instantaneous pro�t of �rm i at time t as

�
�
pit; p

j
t

�
=

8<:
D (pit) (p

i
t � c) if pit < p

j
t

1
2
D (pit) (p

i
t � c) if pit = p

j
t

0 if pit > p
j
t

(1)

where total pro�t is assumed strictly concave. We restrict ourselves to D (p) = k� p
as in the illustrating example by Maskin and Tirole, with the joint-pro�t maximizing
or monopoly price derived as pm = 1

2
(k + c). Firms discount future pro�ts according

to a discount factor � 2 [0; 1), where each �rm has as objective to maximize at time
t its cumulative stream of discounted future pro�ts, so

max
1X
s=0

�s�
�
pit+s; p

j
t+s

�
. (2)

Note that �rms only observe realized pro�t given their own price and the price of
their competitor; demand and competitor pro�t functions are unknown. We assume a
stationary environment and symmetric payo¤s. A discussion of how non-stationaries
and asymmetry may a¤ect results is included in Section 4.
Similarly as in Maskin and Tirole we impose the Markov assumption: strategies

only depend on state variables that are directly payo¤-relevant. This includes demand
estimation, marginal cost and current competitor price but excludes, for instance,
communication and the history of prices. For this setting, Maskin and Tirole de�ne
the concept of a Markov perfect equilibrium (MPE), which is a subgame perfect Nash
equilibrium with Markov strategies. Take V i(pj) to capture the sum of all present
discounted future pro�ts of �rm i given current state pj when behaving optimally.
From dynamic programming, any set of (random) reaction functions fRi (pj) ; Rj (pi)g
is de�ned as an MPE if it satis�es the Bellman optimality equations
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V i(pj) = max
p

�
�
�
p; pj

�
+ �ERj(p)

�
�
�
p;Rj (p)

�
+ �V i(Rj (p))

��
(3)

for all prices pj and for i 2 f1; 2g and j 6= i.
Maskin and Tirole show that if �rms value future pro�ts su¢ ciently high there are

two types of MPE: �xed price equilibria and an Edgeworth price cycle equilibrium.
Under a �xed price equilibrium both �rms sustain a �xed price with the common
believe that the other �rmwould follow if it were to decrease its price, but not if it were
to increase it. Such believes are sustained by o¤-equilibrium price war punishments in
case any �rm undercuts, in which case prices drop towards 1 and �rms mix between
staying at the lower price and returning to the �xed price �with probabilities such
that both �rms are similarly indi¤erent between staying and returning. Table 1 and
Figure 1 illustrate this for the monopoly price for the case where k = 6 and c = 0.
Under an Edgeworth price cycle equilibrium �rms undercut each other until prices

reach the lower bound and neither �rm makes any pro�t. At this lower bound, both
�rms have an incentive to raise their price and reset the gradual downward spiral
but prefer the other �rm to do so. They then mix between maintaining zero pro�t
to punish the other �rm for not resetting the price cycle and resetting the price
cycle itself �with probabilities such that both �rms are similarly indi¤erent between
staying and resetting. This is also illustrated in Table 1 and Figure 1.

p R(p), �xed pricing R(p), Edgeworth price cycles
6 3 4
5 3 4
4 3 3
3 3 2
2 1 1

1

�
1 with prob. �1 (�)
3 with prob. 1� �1 (�)

0

0 3

�
0 with prob. �2 (�)
5 with prob. 1� �2 (�)

Average pro�t 4:5 21
3
for � ! 1

Table 1: Reaction functions for �xed pricing and Edgeworth price cycles, with �1 =
(5 + �) =

�
5� + 9�2

�
and �2 =

�
3�2 � 1

� �
1 + �2 + �4

�
=
�
8 + 7�2 + 2�4 + 3�6

�
Leufkens and Peeters (2011) test experimentally whether humans are capable of

coordinating on either �xed pricing or Edgeworth price cycles. Taking the illustrating
example in Maskin and Tirole and shown here (k = 6, c = 0), they �nd that under
a random ending rule, 13 out of 15 pairs end up coordinating on the joint-pro�t
maximizing �xed price of p = 3, one pair on a �xed price of p = 2 and one pair on
a pricing cycle. Compared to treatments with simultaneous moves, they �nd that
sequential moves generate larger pro�ts and more price stickiness.
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Figure 1: Price dynamics in �xed pricing (top) and Edgeworth cycles (bottom)

2.2 Algorithm: Sequential Independent Q-Learning

The learning algorithm applied is a straightforward adaptation of independent Q-
learning to sequential interaction. Q-learning (Watkins, 1989) is a simple but well-
established single-agent reinforcement learning model.7 By interacting with its en-
vironment, the algorithm learns a so-called Q-function that matches the optimal
long-run value to setting any price given any competitor price. During this interac-
tion, the algorithm uses a dynamic action selection policy that balances exploitation
(choosing the currently perceived optimal price) and exploration (choosing perhaps
another price, to improve the precision of the Q-function). Below the speci�cation
is discussed in detail and a note is provided on its limitations and challenges in our
context of oligopoly competition.

2.2.1 Sequential Q-Learning

Q-functionQi(pj; pi)maps for �rm i 2 f1; 2g action pi (new own price) into its optimal
long-run value given current state pj (current competitor price). In our approach,

7For a comprehensive introduction on single-agent reinforcement learning, see Sutton and Barto
(2018).
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Qi(pj; pi) is initialized as an empty matrix. After observing pro�ts and competitor
response, the algorithm updates the Q-function according to the following recursive
relationship

Qi(pj; pi) (1� �)Qi(pj; pi) + �
�
�(pi; pj) + ��(pi; pj

0
) + �2max

p
Qi(pj

0
; p)

�
; (4)

where pj
0
is the subsequent price of �rm j and � 2 (0; 1) a stepsize parameter that

determines the weight ascribed to the observed value relative to its old value (assumed
constant in our case but which may also be time-varying).
In balancing exploration and exploitation, the algorithm adopts a probabilistic

action selection policy. Using a so-called "-greedy exploration procedure, the Q-
learning algorithm used here selects in each own turn as its action an integer price
pit 2 [0; k] following

pit

�
� U [0; k] with probability "(t)
= argmaxpQ

i(pjt ; p) with probability 1� "(t) (5)

where exploration occurs with probability "(t) 2 [0; 1] and exploitation with probabil-
ity 1� " (t). In case multiple actions share the same highest Q-value under exploita-
tion, the algorithm randomizes over these actions. The probability of exploration is
in our case determined as

"(t) = "(0)(1� �)t, (6)

where "(0) 2 [0; 1] is the initial exploration probability and � 2 [0; 1] a decay parame-
ter. Whenever � > 0, the decay in exploration ensures convergence to a deterministic
strategy.
An often-used alternative to the "-greedy procedure is the so-called Boltzmann

(or softmax) exploration procedure, which involves quantal responses: price pi given
state pj is chosen with probability

Pr
�
pijpj

�
=

exp (Qi(pj; pi)=�(t))P
p exp (Q

i(pj; p)=�(t))
, (7)

with �(t) > 0 as a so-called temperature parameter. When � ! 1, action selection
is random and for � 2 (0;1) higher-valued actions are selected with a higher prob-
ability than lower-valued actions. Usually, � is decreasing gradually towards 0 over
time, to increase exploitation once precision improves. Because simulation results are
qualitatively similar to "-greedy for certain parameter settings, we restrict our further
analysis to "-greedy.
A pseudocode of the learning algorithm is provided below.
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Pseudocode Independent Q-Learning in Sequential Pricing
1 Set demand function and parameters �, �, "(0) and �
2 Initialize Q1 and Q2 as empty matrices
3 Initialize p11 and p

2
2 randomly

4 Initialize t = 3, i = 1 and j = 2
5 Loop over each period
6 j Set price pjt = p

j
t�1

7 j Set price pit according to (5)
8 j Update Qj(pit�2; p

j
t�1) according to (4)

9 j Update t t+ 1 and fi j; j  ig
10 Until t = T (speci�ed number of periods)

In case of simultaneous move, step 7 applies to both agents and Q-value updates
by both agents occur directly after moves are made and pro�ts realized �with the ob-
served value determined as �(pi; pj

0
)+ �maxpQ

i(pj
0
; p), where pj

0
is the simultaneous

move of opponent j.
When a single Q-learning agent faces a �xed-strategy competitor, the sequence of

Qi in (4) provably converges to the values under the optimal (rational, best-response)
strategy, given the general stepsize conditions that

P1
t=0 �

2 < 1 and
P1

t=0 � ! 1
and asymptotically all relevant state-action pairs fpj; pig are visited in�nitely often
(Watkins and Dayan, 1992; Tsitsiklis, 1994). The sequential Q-learning algorithm
developed here would therefore converge to the optimal strategy if the opponent
maintains a �xed strategy.

2.2.2 Limitations and Challenges

Two often used objectives for multi-agent learning algorithms include convergence
and rationality (Bowling and Veloso, 2002; Busoniu et al., 2008). Under convergence
the algorithm converges to a stationary strategy when the other agents use a �xed
strategy. Convergence is a desirable property in order to avoid endless recursive
adaptation and perform analyses on eventual outcomes. And under rationality the
algorithm adopts an optimal, best-response strategy in response to the other agents.
This is a desirable property in order to preclude cases in which agents do not behave
in their own self-interest �a common assumption in oligopoly analyses. A corollary
of convergence and rationality is that the eventual outcome is a Nash equilibrium,
in which no agent can be better o¤ given the other strategies. A third desirable
property in our context of autonomous collusion in oligopoly environments is that of
Pareto-optimality, under which no agent can be made better o¤ without making at
least one agent worse o¤.
The independent Q-learning algorithm cannot convergence to rational and Pareto-

optimal collusive behavior in our environment because it fails to address three re-
maining challenges. Firstly, our independent Q-learning algorithm is restricted to
deterministic, pure strategy learning, while in our environment equilibrium behavior
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involves mixing strategies. This means that given any currently-learned strategies, at
least one agent is always better o¤ adjusting its strategy. Secondly, even if it were
capable of learning mixed strategies, the algorithm remains vulnerable to adaptation
and experimentation by its opponent. More generally, agents that are simultaneously
adapting to each others�behavior face a moving target learning problem (Bowling
and Veloso, 2002; Busoniu et al., 2008; Tuyls and Weiss, 2012), in which their best
response changes as others changes their response. Convergence guarantees that ex-
ist for single-agent reinforcement learning algorithms then no longer hold and agents
may end up in endless recursive adaptation. And thirdly, there exists a set of multiple
equilibria (albeit limited and discrete) in our environment, involving �xed prices and
Edgeworth price cycling. This provides an equilibrium selection problem in which
it is a priori unclear whether the equilibrium that materializes is a Pareto-optimal
equilibrium.
Despite these challenges the algorithm does not have to behave badly in practice.

It only means that theory is unable to say how well it is expected to behave. In
absence of theoretical guarantees we provide an empirical understanding through
simulations in the next section.

3 Empirical Results

For the empirical exercise, we initially take the illustrating example in Maskin and
Tirole as discussed in Section 2:1, with k = 6 and c = 0. We take an initial exploration
probability "(0) = 1, decay parameter � = 0:001 and stepsize parameter � = 0:5,
although results are robust to reasonable variations in these parameters as well as
the use of Boltzmann exploration.
To assess the performance of the Q-learning algorithm, we simulate 1; 000 runs,

each lasting 5; 000 periods.8 Over these 5; 000 periods, the probability of exploration
drops below 1%. For each period, we average over the 1; 000 simulated runs to see
how on average market price and pro�t develop over time. We make a comparison
between the static case (� = 0) and a dynamic case (� = 0:95) to see whether pro�ts
are above their static level. We also discuss how results would be when �rms compete
simultaneously instead of sequentially.
We �rst consider the case where the Q-learning algorithm faces a �xed-strategy

agent with monopoly �xed price behavior as described in Section 2:1. Secondly, we
consider the case where two Q-learning algorithms are set to face each other.

3.1 Q-Learning Versus Fixed-Strategy Behavior

We �nd that the dynamic Q-learning algorithm neatly converges to the monopoly
price when faced with a �xed-strategy competitor with monopoly �xed price behavior.

8Simulations are programmed in MATLAB
R

.
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This occurs even without any prior knowledge of the environment or competitor
behavior.
More speci�cally, in Figure 2 the black curves show convergence in case of static

optimization, providing a stable market price of 1 and average pro�ts of 2:5.9 The
gray curves show what happens when the Q-learning algorithm takes into account
the long-run e¤ects of its pricing decisions. In this case, the Q-learning algorithm
fully adapts to its �xed-strategy competitor and converges to the monopoly price of
3, providing a constant joint-pro�t maximizing pro�t of 4:5.
This result is not very surprising. Convergence to rationality is guaranteed here,

because there is only a single Q-learning agent facing a �xed-strategy competitor �as
discussed at the end of Section 2:2:1. Similarly, if �rms would compete simultaneously,
a �xed-strategy competitor would be able to equivalently �extort�a Q-learning algo-
rithm to collude. Observe however that these outcomes, while resembling a monopoly
price equilibrium, are not an MPE. This is because the Q-learning algorithm is unable
to learn the o¤-equilibrium mixing strategy necessary for the �xed-strategy competi-
tor to behave rationally. In response to the Q-learning algorithm, the �xed strategy
agent can be better o¤.

3.2 Q-Learning Versus Q-Learning

While the Q-learning algorithm performs well facing a �xed-strategy competitor, it
remains to be shown how two competing Q-learning algorithms perform. We �nd that
when two dynamic Q-learning algorithms face each other, they manage to pro�tably
coordinate on either a �xed price or on asymmetric price cycles when k is low, and
increasingly on asymmetric price cycles only when k is high.
Figure 3 shows for k = 6 that the Q-learning algorithms learn to maintain prices

that are on average higher than their static levels. This occurs even though both algo-
rithms have no prior knowledge of the environment and have to learn simultaneously.
Average pro�ts are around 3:5. This is above those in the Edgeworth price cycle
MPE of around 21

3
and the static (or competitive) level of 2:5 but below monopoly

pro�ts of 4:5. While not shown here, prices and pro�ts similarly converge to their
static levels if �rms compete simultaneously.
Table 2 shows the types of behavior the algorithms learn, as captured by the �nal

100 periods of all runs. In 349 out of 1; 000 runs, the algorithms converge to a single,
stable �xed price, one-third of which at the monopoly level of p = 3. This is still well
below the experimental results as found by Leufkens and Peeters (2011), in which 13
out of 15 human pairs manage to coordinate at the monopoly level. If the algorithms
do not converge to a �xed price, they clearly display asymmetric pricing: decreases
in the market price occur around twice as often as increases and the average time
between market price increases is 4:0 periods. If a decrease occurs, this happens with

9In the �gure average two-period pro�t is taken. This is done to include exactly one period in
which the Q-learner moves and one in which it is price committed.
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Figure 2: Q-learning versus �xed-strategy monopoly �xed price behavior
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Figure 3: Q-learning versus Q-learning, k = 6
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an average increment of 1:1, but increases occur with increments more than twice
as much. The algorithms do not converge to perfect Edgeworth price cycles, which
would involve price decreases of 1 and price increases of 4.

k = 6 k = 12 k = 100
Average market price 1:9 4:4 41:7
Competitive level 1:0 1:0 1:0
Monopoly level 3:0 6:0 50:0

Average pro�t 3:5 14:5 1083
Competitive level 2:5 5:5 49:5
Monopoly level 4:5 18:0 1250

Runs with a �xed price 349=1; 000 106=1; 000 4=1; 000
At monopoly price 116=1; 000 23=1; 000 0=1; 000

Runs without a �xed price 651=1; 000 894=1; 000 996=1; 000
Periods with a price decrease 40% 61% 74%
Average price decrease �1:1 �1:3 �6:4
Periods with a price increase 20% 17% 13%
Average price increase 2:3 4:8 40:4
Average time until increase 4:0 4:9 7:5

Table 2: Market outcomes (top) and price dynamics (bottom), �nal 100 periods

Figure 4 shows that the Q-learning algorithms are similarly able to keep prices
and pro�ts above their static level even when extending the action set to pit 2
f0; 1; 2; :::; 12g, i.e. k = 12. To allow for su¢ cient state-action visits, runs are in-
creased to 20; 000 periods, with a learning decay of � = 0:00025 such that exploration
again drops below 1% near the end. Average pro�ts are now around 14:5. This is
above the static level of 5:5 but below monopoly pro�ts of 18. Table 2 shows that
only in 106 runs the algorithms converge to a single, stable �xed price, 23 of which
at the monopoly level of p = 6. When the action set is larger, the algorithm has
increased di¢ culties to converge to the joint-pro�t maximizing monopoly price. In
absence of a �xed price, the algorithms again clearly display an asymmetric pricing
pattern: decreases in the market price occur almost four times as often as increases
(61% versus 17%). Again, prices and pro�ts would converge to the static level in case
of simultaneous competition.
Finally, Figure 5 shows what happens when extending the action set to pit 2

f0; 1; 2; :::; 100g, i.e. k = 100. Runs are increased to 400; 000 periods, with a learning
decay of � = 0:0000125 such that exploration again drops below 1% near the end.
Average pro�ts are now around 1083, well above the static level of 49:5 but still
below monopoly pro�ts of 1250. Table 2 shows that only in 4 runs the algorithms
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Figure 4: Q-learning versus Q-learning, k = 12
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Figure 5: Q-learning versus Q-learning, k = 100
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converge to a �xed price, which occurs at p = f32; 47; 53; 59g (although this would
be more when price destabilizations due to last-minute exploration are not taken
into account). The algorithms again clearly display an asymmetric pricing pattern:
decreases in the market price occur almost six times as often as increases (74% versus
13%) and the average time between market price increases is 7:5 periods. If a price
decrease occurs, this happens with an average increment of 6:4, but when a price
increase occurs the increment is around 40:4. Prices and pro�ts would again converge
to the static level in case of simultaneous competition.

4 Discussion and Extensions

This section provides a discussion on the appropriate collusive benchmark and valu-
able extensions to the learning algorithm and environment considered.

4.1 Appropriate Benchmark

Maskin and Tirole (1988, p. 592) argue that their theory �underscore(s) the relatively
high pro�ts that �rms can earn when the discount factor is near 1�and that it there-
fore �can be viewed as a theory of tacit collusion�. Harrington (2017) on the other
hand characterizes collusion as a situation in which �rms use a reward-punishment
scheme to coordinate their behavior for the purpose of producing a supracompetitive
outcome. As discussed in Section 2.1, both �xed price and Edgeworth price cycle
MPEs are sustained by some threat of punishment. However, the question remains
relative to what the outcome can be considered as �supracompetitive�. In particular,
when the static outcome of prices at or one increment above marginal cost is itself
not an MPE (because of an absence of subgame perfection), is may not be reasonable
to consider this as an appropriate competitive benchmark.
Even when an autonomous algorithm can be shown to outperform an appropriate

competitive benchmark, a subsequent question remains whether it also outperforms
humans. If humans can be shown to be (weakly) better at colluding that autonomous
algorithms (as in Leufkens and Peeters (2011) for k = 6), the risk of autonomous
algorithmic collusion would not add anything above and beyond any already existing
risk of human collusion. The competitive edge of algorithms relative to humans would
therefore have to be made explicit.

4.2 Extensions to the Learning Algorithm

Several valuable extensions to the learning algorithm itself could be developed. In
particular, more advanced multi-agent reinforcement learning algorithms may be able
to deal with the challenges that remain in guaranteeing convergence to rational and
Pareto-optimal collusive behavior. However, key developments in multi-agent rein-
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forcement learning still lack practical applicability to oligopoly environments. A
discussion on such algorithms is provided in the appendix.
In our analysis, prices (and thus states and actions) are considered to be discrete.

This allows for a tabular Q-function that matches a value to each unique state-action
combination. Whenever the state-action set is limited this provides a convenient
approach, but becomes intractable when this set becomes very large. Additionally,
updates only occur in the exact state-action combination visited, while observed
reward and opponent behavior may also be informative on neighboring state-action
combinations. Function approximation (or di¤erential games systems) can then be
used, in which the reinforcement learning algorithm assumes a parametric model of
the environment and observed rewards and state transitions provide updates of the
parameters of the model (Schwartz, 2014; Sutton and Barto, 2018).
No domain knowledge or prior input is considered in the learning process above.

However, previous experiences in comparable learning processes may contain valuable
information to kick-start the new learning process. In such cases, transfer learning can
be considered, where knowledge learned in one task domain is transferred to another,
related domain (Pan and Yang, 2010). Similarly, human feedback through policy
shaping may be used to provide outside guidance to a learning algorithm (Gri¢ th et
al., 2013).
Finally, evolutionary game theory has recently been proposed as a framework for

analyzing the learning dynamics in multi-agent learning (Tuyls et al., 2006; Tuyls
and Parsons, 2007; Bloembergen et al., 2015). Evolutionary game theory concepts
like replicator dynamics and evolutionary stable strategies allow for several novel and
valuable ways to look at multi-agent learning. In particular, they can shed light
into the black box of reinforcement learning by providing qualitative insights into its
transient dynamics and subsequently guidance on parameter tuning and algorithm
selection and development.

4.3 Extensions to the Environment

In addition to extensions to the learning algorithm, future research may also con-
sider extensions to the environment considered. These may be aimed at making the
environment less stylized or more case-speci�c.
To account for short-run price commitments, we have adopted the sequential pric-

ing framework proposed by Maskin and Tirole (1988). Here, �rms are exogenously
restricted to respond sequentially. However, Maskin and Tirole also consider the
case where �rms face short-run price commitments but are not restricted to sequen-
tial behavior. They show that sequential pricing also occurs endogenously. Similar
endogenization of sequential pricing can be considered in the case of reinforcement
learning, where a restriction on the action set to the current price only occurs when
the agent adopted a price change in the previous period.
Using a full-information environment and dynamic programming, Tesauro and
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Kephart (2002) show that under independent Q-learning, the duration of the Edge-
worth price cycles decreases and average prices and pro�ts increase once products be-
come more di¤erentiated (either vertically or horizontally) or when consumers are less
informed. It would be interesting to see to what degree these results are maintained
when agents do not possess full information and have to learn while simultaneously
interacting.
Throughout we have assumed that the environment itself remains stationary and

agents are symmetric. The only non-stationarity that has been considered so far is
opponent-induced non-stationarity. However, in oligopoly environments payo¤s are
rarely stationary and �rms rarely symmetric. In particular, demand may �uctuate
independently from �rm behavior and marginal costs can be di¤erent and varying idio-
syncratically. Robustness of multi-agent reinforcement learning algorithms applied to
oligopoly environments would then also have to be evaluated in terms of these non-
stationarities. For instance, �rms may require some persistent degree of exploration
in order to observe any changes in the environment or apply some recency-weighting
to the observed state transitions and rewards. Additionally, it may be interesting to
consider the case beyond two �rms, possibly with entry and exit as well.
Finally, in the environment considered here, consumers are modelled as exoge-

nous. Noel (2011) argues, however, than in the presence of Edgeworth price cycles,
consumers may be better o¤ when they are capable of shifting consumption to dif-
ferent periods. While a downwards sloping demand curve already accounts for the
fact that more demand occurs if prices are lower and vice versa, it does not take into
account any dynamic optimization �e.g. even higher demand during low prices if
previous periods experienced high prices, especially if this is a recurrent pattern.

5 Concluding Remarks

Fully autonomous algorithmic collusion remains elusive. On the one hand, an intuitive
interpretation of the capabilities of arti�cial intelligence may suggest that increasingly
more sophisticated pricing algorithms will at some point, inevitably, learn to under-
mine competitive pressures and achieve higher pro�ts �at the expense of consumers.
Such an outcome would be akin to collusion, but without the overt act of communi-
cation currently necessary to establish a competition law infringement. On the other
hand, it remains unclear exactly how such autonomous algorithms would work.
We show how in a stylized oligopoly environment with repeated sequential price

competition, independent Q-learning algorithms are able to achieve higher-than-static
prices and pro�ts. It provides ground for competition authorities and regulators to re-
main vigilant when observing the rise of autonomous pricing algorithms in the market
place, in particular in cases where �rms may be short-run price committed. Addi-
tionally, the general framework used here may be used to similarly assess the capacity
of other, perhaps more advanced algorithms to collude in various environments.
Finally, note that only a diagnostic tool is provided here. It suggests a way in
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which the collusive capabilities of autonomous algorithms may be assessed. It does
not prescribe any particular medicine in response to a positive diagnosis. In any
case, banning autonomous algorithms altogether would be a very clear overreaction,
as this would disregard any social gains algorithms may bring in for instance clearing
markets, reducing costs or increasing competitive pressures (Oxera, 2017). Addition-
ally, it may not be reasonable to condemn �rms for any increased margins when this
is merely the result of an intelligent unilateral adaptation to oligopolistic markets �
as may arguably be the case with Edgeworth price cycles. The appropriate policy
response therefore seems to involves a case-by-case investigation into the capacity of
various types of algorithms to achieve supracompetitive pro�ts in certain environ-
ments. The conclusion will then most likely be that only in speci�c cases regulation
will be required to prevent autonomous robots from getting together and �xing prices.

References

[1] Abdallah, S. and Lesser, V. (2008) �A Multiagent Reinforcement Learning Al-
gorithm with Non-Linear Dynamics�, Journal of Arti�cial Intelligence Research,
33(1), pp. 521-549

[2] Awheda, M. and Schwartz, H.M. (2013) �Exponential Moving Average Q-
Learning Algorithm�, In: Proceedings of the IEEE Symposium Series on Com-
putational Intelligence

[3] Albrecht, S.V. and Stone, P. (2018) �Autonomous Agents Modelling Other
Agents: A Comprehensive Survey and Open Problems�, arXiv:1709.08071v2

[4] Bloembergen, D., Tuyls, K., Hennes, D. and Kaisers, M. (2015) �Evolutionary
Dynamics of Multi-Agent Learning: A Survey�, Journal of Arti�cial Intelligence
Research, 53, pp. 659-697

[5] Bowling, M. and Veloso, M. (2002) �Multiagent Learning Using a Variable Learn-
ing Rate�, Arti�cial Intelligence, 136(2), pp. 215-250

[6] Busoniu, L., Babuska, R., and De Schutter, B. (2008) �A Comprehensive Survey
of Multiagent Reinforcement Learning�, IEEE Transactions on Systems, Man,
and Cybernetics, Part C 38(2)

[7] Byrne, D.P. and de Roos N. (2018) �Learning to Collude: A Study in Retail
Gasoline�, working paper

[8] Calvano, E., Calzolari, G., Denicolò, V. and Pastorello, S. (2018) Algorithmic
Pricing and Collusion: What Implications for Competition Policy?, working pa-
per

20



[9] Eckert, A. (2013) �Empirical Studies of Gasoline Retailing: A Guide to the Lit-
erature�, Journal of Economic Surveys, 27, pp. 140-166

[10] Ezrachi, A. and Stucke, M.E. (2016) Virtual Competition: The Promise and
Perils of the Algorithm-Driven Economy, Harvard University Press, Cambridge,
Massachusetts

[11] Gal, M.S. (2018) �Algorithms as Illegal Agreements�, Berkeley Technology Law
Journal, forthcoming

[12] Greenwald, A. and Hall, K. (2003) �Correlated Q-Learning�, In: Proceedings of
the 22nd Conference on Arti�cial Intelligences, pp. 242-249

[13] Gri¢ th, S., Subramanian, K., Scholz, J., Isbell, C. L. and Thomaz, A. L. (2013)
�Policy Shaping: Integrating Human Feedback with Reinforcement Learning�,
In: Advances in Neural Information Processing Systems, pp. 2625-2633

[14] Harrington, J.E. (2017) �Developing Competition Law for Collusion by Au-
tonomous Price-Setting Agents�, working paper

[15] Hernandez-Leal, P., Kaisers, M., Baarslag, T. and Munoz de Cote, E. (2017) �A
Survey of Learning in Multiagent Environments: Dealing with Non-Stationarity�,
arXiv:1707.09183

[16] Hu, J. and Wellman, M.P. (2003) �Nash Q-Learning for General-Sum Stochastic
Games�, Journal of Machine Learning Research, 4, pp. 1039-1069

[17] Huck, S., Normann, H.T. and Oechssler, J. (2003) �Zero-Knowledge Cooperation
in Dilemma Games�, Journal of Theoretical Biology, 220, pp. 47-54

[18] Ittoo, A. and Petit, N. (2017) �Algorithmic Pricing Agents and Tacit Collusion:
A Technological Perspective�, working paper

[19] Izquierdo, S. S. and Izquierdo, L. R. (2015) �The �Win-Continue, Lose-Reverse�
Rule in Cournot Oligopolies: Robustness of Collusive Outcomes�, In: Amblard,
F., Miguel, F.J., Blanchet, A. and Gaudou, B. (Eds) Lecture Notes in Economics
and Mathematical Systems, Volume 676, Springer, Berlin, Heidelberg

[20] Könönen, V. (2003) �Asymmetric Multiagent Reinforcement Learning�, In: Pro-
ceedings IEEE/WIC International Conference on Intelligent Agent Technology,
pp. 336-342

[21] Kühn, K.U. and Tadelis, S. (2017) �Regulating the Internet Economy: Policy
Issues and Economic Analysis�, presentation prepared for CRESSE 2017

21



[22] Leufkens, K. and Peeters, R. (2011) �Price Dynamics and Collusion Under Short-
Run Price Commitments�, International Journal of Industrial Organization, 29,
pp. 134-153

[23] Maskin, E. and Tirole, J. (1988) �A Theory of Dynamic Oligopoly II: Price
Competition, Kinked Demand Curves and Edgeworth Cycles�, Econometrica,
56(3), pp. 571-599

[24] Mehra, S. K. (2015) �Antitrust and the Robo-Seller: Competition in the Time
of Algorithms�, Minnesota Law Review, 100, pp. 1323-1375

[25] Noel, M.D. (2011) �Edgeworth Price Cycles�, In: Palgrave Macmillan (Eds) The
New Palgrave Dictionary of Economics, Palgrave Macmillan, London

[26] Oxera (2017) �When Algorithms Set Prices: Winners and Losers�, Oxera Dis-
cussion Paper, June 2017

[27] Pan, S. J. and Yang, Q. (2010) �A Survey on transfer Learning�, IEEE Trans-
actions on Knowledge and Data Engineering, 22(10), pp. 1345-1359

[28] Petit, N. (2017) �Antitrust and Arti�cial Intelligence: A Research Agenda�, Jour-
nal of European Competition Law and Practice, 8(6), p. 361

[29] RBB Economics (2018) �Automatic Harm to Competition? Pricing Algorithms
and Coordination�, RBB Brief 55, February 2018

[30] Salcedo, B. (2015) �Pricing Algorithms and Tacit Collusion�, Manuscript, Penn-
sylvania State University

[31] Schwalbe, U. (2018) �Algorithms, Machine Learning, and Collusion�, working
paper

[32] Schwartz, H.M. (2014) Multi-Agent Machine Learning: A Reinforcement Ap-
proach, Wiley, Hoboken, New Jersey

[33] Singh, S., Kearns, M. and Mansour, Y. (2000) �Nash Convergence of Gradi-
ent Dynamics in General-Sum Games�, In: Uncertainty in Arti�cial Intelligence
Proceedings, pp. 541-548

[34] Sutton, R.S. and Barto, A.G. (2018) Reinforcement Learning: An Introduction,
2nd Edition, The MIT Press, Cambridge, Massachusetts

[35] Tesauro, G. (2003) �Extending Q-Learning to General Adaptive Multi-Agent
Systems�, In: Advances in Neural Information Processing Systems, pp. 871-878

[36] Tesauro, G. and Kephart, J.O. (2002) �Pricing in Agent Economics Using Multi-
Agent Q-Learning�, Autonomous Agents and Multi-Agent Systems, 5, pp. 289-
304

22



[37] Tuyls, K., �t Hoen, P. J. and Vanschoenwinkel, B. (2006) �An Evolutionary
Dynamical Analysis of Multi-Agent Learning in Iterated Games�, Autonomous
Agents and Multi-Agent Systems, 12(1), pp. 115-153

[38] Tuyls, K. and Parsons, S. (2007) �What Evolutionary Game Theory Tells Us
About Multiagent Learning�, Arti�cial Intelligence, 171(7), pp. 406-416

[39] Tuyls, K. and Weiss, G. (2012) �Multiagent Learning: Basics, Challenges, and
Prospects�, AI Magazine, 33(3), pp. 41-52

[40] Tsitsiklis, J.N. (1994) �Asynchronous Stochastic Approximation and Q-
Learning�, Machine Learning, 16(3), pp. 185-202

[41] Waltman, L. and Kaymak, U. (2008) �Q-Learning Agents in a Cournot Oligopoly
Model�, Journal of Economic Dynamics & Control, 32, pp. 3275-3293

[42] Watkins, C.J.C.H. (1989) Learning from Delayed Rewards, PhD Thesis, Univer-
sity of Cambridge, England

[43] Watkins, C.J.C.H. and Dayan, P. (1992) �Q-Learning�, Machine Learning, 8(3),
pp. 279�292

[44] Zhang, C. and Lesser, V. (2010) �Multi-Agent Learning with Policy Prediction�,
In: Proceedings of the 24th National Conference on Arti�cial Intelligence, pp.
746-752

[45] Zhou, N., Zhang, L., Li, S. and Wang, Z. (2018) �Algorithmic Collusion in
Cournot Duopoly Market: Evidence from Experimental Economics�, working
paper

[46] Zinkevich, M. (2003) �Online Convex Programming and Generalized In�nitesi-
mal Gradient Ascent�, In: Proceedings 20th International Conference on Machine
Learning, pp. 928-936

23



Appendix: Multi-Agent Reinforcement Learning

Any direct application of single-agent reinforcement learning algorithms to multi-
agent environments can be problematic, because they do not account for any non-
stationarity in the environment caused by the adaptation of other agents. Addition-
ally, single-agent reinforcement learning learns deterministic strategies, while often
mixing is required in response to a strategic opponent. And even if opponent-
induced non-stationarity is taken into account and agents manage to converge to
behavior which is a mutual best response (possibly involving mixed strategies), there
is no guarantee that the achieved equilibrium is a Pareto-optimal equilibrium. De-
velopments in multi-agent reinforcement learning are aimed at resolving the issue
of opponent-induced non-stationarity and mixing strategies. This section discusses
several key developments, but also shows why they still lack practical applicability
to oligopoly environments. For a general introduction on multi-agent reinforcement
learning see Tuyls and Weiss (2012) and for an overview of the literature see Buso-
niu et al. (2008), Hernandez-Leal et al. (2017) and Albrecht and Stone (2018) in
particular.

Nash-Q Learning and Hyper-Q Learning

The main limitation of using independent Q-learning in multi-agent environments is
that both exploration and adaptation by an opponent can have a major impact in the
Q-value updates. Hu and Wellman (2003) propose Nash-Q learning as an extension of
independent Q-learning to multi-agent environments. Under Nash-Q, agents main-
tain Q-functions over joint actions and perform updates based on assuming Nash
equilibrium behavior over current Q-values. Speci�cally, each agent i 2 f1; :::; ng
takes in state s an action ai based on some probability distribution �i (�js). Take ri
as its subsequent reward. Q-value updates now occur following

Qi
�
s; a1; :::; an

�
 (1� �)Qi

�
s; a1; :::; an

�
+ �

�
ri + �NashQi (s0)

�
, (8)

where NashQi (s0) is the present discounted pro�t in a selected equilibrium given
the currently learned Q-values. NashQi (s) and �i (�js) are subsequently updated
using quadratic programming. Extensions include Correlated-Q learning (Green-
wald and Hall, 2003), which instead looks for a more general correlated equilibrium,
and Asymmetric-Q learning (Könönen, 2003), which deals with leader-follower stage
games.
Nash-Q is guaranteed to converge to a Nash equilibrium (given certain technical

conditions), but su¤ers from several practical limitations. Firstly, it requires full ob-
servability of opponent rewards in order to update the Q-functions. For environments
where this is not feasible (such as in oligopoly competition), an observable proxy of
opponent rewards (pro�ts) would have to be used. Final results will then depend
on how closely this proxy relates to actual rewards. Secondly, Nash-Q requires an
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appropriate search algorithm to obtain at each step the values for NashQi (s), which
is non-trivial and may lead to a slow learning process. Finally, in case multiple Nash
equilibria exist, it remains unclear whether the equilibria identi�ed in each step for
each state are Pareto-optimal equilibria.
As an alternative, Tesauro (2003) propose Hyper-Q learning, which learns the Q-

values associated with mixed instead of pure strategies and uses estimated opponent
strategies as additional state variables �i.e.

Qi
�
s; �̂�i; �i

�
 (1� �)Qi

�
s; �̂�i; �i

�
+ �

�
ri + �max

�
Qi
�
s0; �̂�i

0
; �
��

, (9)

where �̂�i are estimates of all the competitor probability distributions given each
state � based on (for instance) Bayesian inference or exponential moving average
estimation. In theory, Hyper-Q is able to deal both with non-stationary opponents
and mixing strategies, while only having to observe joint actions and own rewards.
However, maintaining tabular Q-functions requires discretization of the probability
distributions, which would increase the size of the Q-function exponentially. Function
approximation may then have be used to allow for continuous state and action spaces.

Gradient Ascent Algorithms

Under gradient ascent, the algorithm increases or decreases the probability of selecting
an action based on some gradient: increase the probability of an action when it is
expected to increase the sum of all present discounted future pro�ts (positive gradient)
and decrease otherwise (negative gradient).
Singh et al. (2000) �rst proposed in�nitesimal gradient ascent (IGA) for the

simple two-agents, two-actions stateless game �later generalized by Zinkevich (2003)
as generalized in�nitesimal gradient ascent (GIGA) for two-agent stateless games with
more than two actions. Take � and � as the probabilities that the �rst out of the
two actions is chosen by agent 1 and 2 respectively and V i (�; �) as the associated
present discounted future pro�ts of �rm i 2 f1; 2g. Probabilities are updated based
on the gradients following

� �+ �
@V 1 (�; �)

@�
and �  � + �

@V 2 (�; �)

@�
. (10)

Taking an in�nitesimal stepsize � ! 0 when the amount of steps goes to in�nity,
competing algorithms will display a weak form of convergence: average rewards con-
verge to Nash rewards, but strategies might still display endless recursive adaptation
in case of a mixed-strategy Nash equilibrium. To achieve convergence in strategies
as well, Bowling and Veloso (2002) suggest the win-or-learn-fast (WoLF) heuristic,
in which the gradient stepsize is small (learn cautiously) when the agent is winning
but large (learn quickly) when losing, where winning or losing is de�ned relative
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to an equilibrium strategy. This heuristic stimulates convergence without giving up
rationality.
The above gradient ascent algorithms require full information on current oppo-

nent strategies and in case of the WoLF heuristic also prior knowledge on existing
equilibria. Additionally, the game is assumed stateless. Bowling and Veloso (2002)
propose win-or-learn-fast policy hill climbing (WoLF-PHC) as a practical algorithm
that can be applied in cases when agents do not possess such information and the
environment may display di¤erent states. WoLF-PHC uses an exogenous learning
rate instead of the actual gradient and an approximate notion of winning. Taking
� (ajs) as the strategy, capturing the probability action a is taken in state s, updates
occur following

� (ajs)  � (ajs) +
�
� if a = argmaxa0 Q (s; a0)
��
A�1 otherwise

where � =

�
�w if

P
a � (ajs)Q(s; a) >

P
a �� (ajs)Q(s; a)

�l otherwise
(11)

and A is the size of the action set, �w < �l and � (�js) is restricted to a legal proba-
bility distribution. �� (�js) is the probability distribution of the average strategy over
time and updates of Q-function Q (s; a) occur conventionally. Abdallah and Lesser
(2008) propose weighted policy learner (WPL) as an extension that uses a continuous
spectrum of learning rates and Zhang and Lesser (2010) propose policy gradient as-
cent with approximate policy prediction (PGA-APP), which uses an approximation
of the opponent strategy and gradient to estimate its own gradient with respect to the
opponent�s forecasted (instead of current) strategy. Finally, Awheda and Schwartz
(2013) propose a more straightforward exponential moving average Q-learning (EMA-
Q) algorithm that is comparable to WoLF-PHC, WPL and PGA-APP but is claimed
to converge in a wider variety of situations. Under EMA-Q, strategy updates occur
following

� (ajs) 
�
(1� k�w) � (ajs) + k�w if a = argmaxa0 Q (s; a0)
(1� k�l) � (ajs) + k�l 1

A�1 otherwise (12)

where A is again the size of the action set, �w < �l and k a constant gain �with
k�l 2 (0; 1). � (�js) is again restricted to a legal probability distribution.
The above gradient ascent algorithms have the main advantages that they can deal

with opponent-induced non-stationarity, can learn continuous mixing strategies and
do not require any model of the environment. In the application of for instanceWoLF-
PHC or EMA-Q to oligopoly environments, however, several practical problems arises:
it may take a (very) long time for the algorithm to converge; it is not obvious how the
exploration and learning rates and their decay should be set; and even if convergence
to a (possibly mixed) equilibrium occurs, it is not obvious that this is a Pareto-optimal
equilibrium.
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