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Abstract 

 

The purpose of the paper is to examine latent volatility Granger causality for four 

renewable energy Exchange Traded Funds (ETFs) and crude oil ETF (USO), namely 

solar (TAN), wind (FAN), water (PIO), and nuclear (NLR). Data on the renewable 

energy and crude oil ETFs are from 18 June 2008 to 20 March 2017. From the 

underlying stochastic process of a vector random coefficient autoregressive (VRCAR) 

process for the shocks of returns, we derive Latent Volatility Granger causality from 

the Diagonal BEKK multivariate conditional volatility model. We follow Chang et al. 

(2015)’s definition of the co-volatility spillovers of shocks, which calculate the delayed 

effect of a returns shock in one asset on the subsequent volatility or co-volatility in 

another asset, and extend the effects of the co-volatility spillovers of shocks to the 

effects of the co-volatility spillovers of squared shocks. The empirical results show 

there are significant positive latent volatility Granger causality relationships between 

solar (TAN), wind (FAN), nuclear (NLR), and crude oil (USO) ETFs, specifically 

significant volatility spillovers of shocks from solar ETF on the subsequent wind ETF 

co-volatility with solar ETF, and wind ETF on the subsequent solar ETF co-volatility 

with wind ETF. Interestingly, there are significant volatility spillovers of squared 

shocks for the renewable energy ETFs, but not with crude oil ETFs. 

 

Keywords: Renewable Energy, Latent Volatility, Granger Causality, Co-volatility 

Spillovers, Solar, Wind, Water, Nuclear Power. 

 

JEL: C32, C58, G12, G15, Q42. 



3 

1. Introduction  

    Pollution arising from alternative sources of energy has become a major global 

environmental issue in recent years. The rising costs of crude oil, and the decreasing 

supply of nonrenewable energy sources such as oil, gas and coal, together with the 

threat of global warming and climate change, have increased the demand for creating 

sustainable methods for alternative energy sources. Therefore, it is not surprising that 

the sustainable use of energy sources has become a critical policy issue for public and 

private decision makers internationally. 

 The threat of climate change, which is highly related with the production of CO2 

emissions, has caused many governments worldwide to formulate different public 

policies regarding the use of energy. For example, the Paris Agreement, which was 

signed in 2016, is an agreement from the United Nations Framework Convention on 

Climate Change (UNFCCC) that deals with greenhouse gas emissions mitigation, with 

each country required to establish their own targets to improve anti-pollution measures 

in order to mitigate global warming. 

 Renewable energy is derived from natural processes that are replenished 

constantly. As the processes of producing nuclear power is based on the use of uranium 

deposits, which rely on the earth and sun, as long as the relationship between the earth 

and sun remains, nuclear energy can arguably be defined as renewable energy (for 

further details, see Cohen (1983)). Regarding the debate as to whether nuclear energy 

can be considered as a source of clean energy, see Vasques (2014).  

 Although nuclear power is arguably a type of clean energy, any unexpected 

accidents in nuclear power stations invariably lead to serious and lasting consequences. 
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The damage from nuclear energy has figuratively energized the discovery of other kind 

of energy sources, and establishing sustainable methods for renewable energy. 

Although the use of nuclear power has been criticized, it still accounts for a large share 

of electricity generation, which has serious impacts on the use and discovery of 

alternative energy resources. 

In 2013 the World Nuclear Association announced: “There is unprecedented 

interest in renewable energy, particularly solar and wind energy, which provide 

electricity without giving rise to any carbon dioxide emission”. Subsequently, 

renewable electricity supply has been expanded in several European countries. In 2012, 

the share of electricity generated by all types of renewable sources in Germany was 

21.9%, compared with 16.0% for nuclear power after Germany shut down 7-8 of its 18 

nuclear reactors in 2011. In the UK, the amount of energy produced from renewable 

energy is expected to exceed that from nuclear power by 2018. Scotland plans to obtain 

all electricity from renewable energy by 2020. 

 Investment in green energy involves huge financial resources, and the energy 

finance market is an important source for purposes of collecting the funds. Although 

the energy stock index can frequently be used to evaluate the performance of a 

particular energy asset, the stock index is untradeable. Therefore, the volatility of the 

index provides limited information to investors for practical risk management. Instead, 

energy-related Exchange Traded Funds (ETFs) are tradable/marketable, and can be 

incorporated directly in financial portfolios to examine risk transmission in financial 

energy markets.  

In financial markets, risk transmission is a critical issue in selecting suitable 
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hedging instruments, such that a negative covariance between returns of assets ensuring 

that large losses in one financial asset are mitigated by positive returns in the hedging 

instrument. In this paper, we select the four most widely used renewable energy ETFs, 

namely solar (TAN), wind (FAN), water (PIO), nuclear (NLR), as well as crude oil ETF 

(USO), to investigate the risk that is transmitted among the alternative renewable 

energy assets, as well as crude oil asset. 

 Based on the underlying stochastic process of a vector random coefficient 

autoregressive (VRCAR) process for the shocks of returns on energy ETFs, it is 

possible to derive Latent Volatility Granger causality from the Diagonal BEKK 

multivariate conditional volatility model using Chang et al. (2015)’s definition of the 

co-volatility spillovers of shocks. This is defined as the delayed effect of a returns shock 

in one asset on the subsequent volatility or co-volatility in another asset. This paper 

extends the effects of the co-volatility spillovers of shocks to the effects of the co-

volatility spillovers of squared shocks.  

The remainder of the paper is as follows. Section 2 provides a review of the rather 

brief literature on Granger causality of volatility and co-volatility. Section 3 presents 

the alternative multivariate conditional volatility models specifications, including 

Diagonal BEKK and Full BEKK, co-volatility spillovers, and the QLR test of the 

Diagonal BEKK null model against the alternative of a Full BEKK model. Section 4 

discusses the data and variables for the empirical analysis. Section 5 presents and 

analyses the empirical results. Some concluding remarks are given in Section 6. 

 

2. Literature Review 
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 In recent years, renewable energy consumption has emerged as an energy source 

that may alleviate the growing concerns over global warming, climate change, 

greenhouse gas emissions, high and volatile energy prices, and the dependency of many 

countries on foreign energy sources. On the other hand, many governments positively 

encourage clean energy expenditure, such that renewable energy systems are rapidly 

becoming more efficient, more widely available, and cheaper.  

Troster et al. (2018) tested Granger causality between renewable energy 

consumption, oil prices and economic activity. Using monthly oil prices, the US 

industrial production index, and renewable energy consumption over the period January 

1989 to July 2016, the authors showed that there was bi-directional causality between 

changes in renewable energy consumption and economic growth in the lower tails of 

the distribution.  

 Alper and Oguz (2016) and Bloch et al. (2015) considered the use of Granger 

causality between renewable and non-renewable energy consumption and economic 

growth. Managi and Okimoto (2013) accommodated structural breaks, and used 

Markov-switching vector autoregressive models to investigate the relationships 

between the stock prices of oil, clean energy, technology stock prices, and interest rates. 

Their empirical results showed that there was a positive relationship between oil prices 

and clean energy prices.  

 Many empirical studies have been concerned with the hedging of crude oil and 

other energy products. Lin and Li (2015) used the VEC–MGARCH model to 

investigate both price and volatility spillover effects for crude oil and natural gas 

markets for the USA, Europe and Japan. Their results showed that European and 
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Japanese gas prices are cointegrated with Brent crude oil prices, but US gas price was 

decoupled from oil due to the liberalization of natural gas market and the expansion of 

shale gas. The authors found volatility spillovers from the oil market to the natural gas 

market in the three regions, but no spillover effects in the reverse direction for both the 

USA and Europe. 

 Reboredo (2015) used copulas to characterize the dependence structure between 

oil and renewable energy markets. He computed the conditional Value-at-Risk as a 

measure of systemic risk, and showed a significant time-varying average and symmetric 

tail dependence existed between oil returns and several renewable energy indices. The 

author concluded that the crude oil price dynamics significantly contributed around 

30% to downside and upside risk of renewable energy companies. 

 Regarding research on the risk persistence of renewable energy and nonrenewable 

resources, Gevorkyan (2017) used the GARCH model to measure the volatility in 

futures prices for renewable and nonrenewable resources. The renewable resources are 

palm oil, coffee, soya beans, rice, wheat and corn, while the nonrenewable resources 

are zinc, aluminium, natural gas, gold, crude oil and copper. The author suggested that 

renewable resources have greater volatility in future prices than those for the 

benchmark crude oil.  

Econometricians have developed more accurate multivariate volatility models in 

order to capture the risk transmission effects among different assets (see, among others, 

Baba et al., 1985; Engle and Kroner, 1995; Bollerslev, 1986; Bollerslev et al., 1988; 

Engle, 2002; Ling and McAleer, 2003; McAleer, 2018; McAleer et al., 2009; and Tse 

and Tsui, 2002). However, despite the empirical applications of a wide range of 
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conditional volatility models in numerous papers in empirical finance, there are 

theoretical problems associated with virtually all of them. The CCC, VARMA-GARCH, 

and its asymmetric counterpart, VARMA-AGARCH, models have static conditional 

covariances and correlations, which means that the accommodating volatility spillovers 

is not possible.  

Apart from the Diagonal BEKK version, the Full BEKK model of conditional 

covariances has been shown to have no stochastic process underlying it that leads to its 

specification, no regularity conditions, and hence no asymptotic statistical properties 

(see Ling and McAleer (2003), McAleer et al. (2008)). Therefore, if the intention is to 

measure accurately volatility spillovers from the BEKK conditional volatility model, it 

can be considered only for the Diagonal BEKK version, for which the estimates have 

valid asymptotic properties. 

  Chang et al. (2018) examined volatility spillovers using the Diagonal BEKK 

model for spot and futures returns on bio-ethanol and related agricultural commodities, 

corn and sugarcane, using daily data from 31 October 2005 to 14 January 2015. The 

authors found that the futures prices of bio-ethanol and the two agricultural 

commodities, corn and sugarcane, have stronger co-volatility spillovers than their spot 

price counterparts.  

In this paper, we will focus on the risk transmitted in the renewable energy ETFs 

returns and crude oil ETF returns through the DBEKK model for testing the Latent 

Volatility Granger causality and measuring the co-volatility spillovers of shocks.  

 

3. Model Specifications 



9 

 In order to capture latent volatility Granger Causality in Renewable Energy and 

Crude Oil ETFs, we start from the underlying stochastic process of a vector random 

coefficient autoregressive (VRCAR) process for the shocks on returns and then derive 

Latent Volatility Granger causality from the Diagonal BEKK (hereafter DBEKK) 

conditional volatility model that satisfies suitable regularity conditions and has 

asymptotic properties.  

The paper follows Chang et al. (2015)’s definition of the co-volatility spillovers 

of shocks which measure the delayed shocks in one asset on the subsequent co-volatility 

in another asset, and extend the effect of shocks on the co-volatility spillovers to the 

squared shocks on the co-volatility spillovers  

 

3.1 Diagonal BEKK model 

In order to derive the DBEKK model, we follow McAleer et al. (2008) who derive 

the multivariate extension from Tsay’s (1987) univariate random coefficient 

autoregressive (RCA) process, as given below: 

 

𝑅𝑡 = 𝐸(𝑅𝑡|𝐼𝑡−1) + 𝜀𝑡        (1) 

 

where 𝑅𝑡 denotes returns on the asset, 𝑅𝑡 = (𝑅1𝑡, … 𝑅𝑚𝑡)′, 𝜀𝑡 denotes the shocks on 

returns, 𝜀𝑡 = (𝜀1𝑡, … 𝜀𝑚𝑡)′, and 𝐼𝑡−1 refers to the information set that is available at 

time 𝑡 − 1.  

 As shown in McAleer et al. (2008), the shocks on returns (𝜀𝑡 ) are assumed to 

follow a vector random coefficient autoregressive (VRCAR) stochastic process, with 
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𝑚 × 1 vector components, where 𝑚 denotes the number of financial assets, as given 

below: 

 

𝜀𝑡 = Φ𝑡𝜀𝑡−1 + 𝜂𝑡                 (2) 

 

where 𝜀𝑡 and 𝜂𝑡 are 𝑚 × 1 vectors, 𝜂𝑡 is a random residual, 𝜂𝑡~𝑖𝑖𝑑(0, Ω), and Ω 

is an 𝑚 × 𝑚  matrix. 𝛷𝑡  is a random coefficient autoregressive matrix, with an 

𝑚 × 𝑚  matrix of random coefficients, 𝛷𝑡~𝑖𝑖𝑑(0, Σ), and Σ is an 𝑚 × 𝑚  matrix. 

The conditional volatility 𝐻𝑡 is given as:  

  

𝐻𝑡 = 𝐸(𝜀𝑡𝜀𝑡
′|𝐼𝑡−1) = 𝐸(Φ𝑡𝜀𝑡𝜀𝑡

′Φ𝑡
′|𝐼𝑡−1) + 𝐸(𝜂𝑡𝜂𝑡

′|𝐼𝑡−1) 

= 𝐸(Φ𝑡Φ𝑡
′) × 𝐸(𝜀𝑡𝜀𝑡

′|𝐼𝑡−1) + 𝐸(𝜂𝑡𝜂𝑡
′|𝐼𝑡−1) 

=  𝐶′𝐶 + 𝐴′𝜀𝑡−1𝜀′
𝑡−1𝐴                      (3) 

 

where both 𝐶 and 𝐴 are 𝑚 × 𝑚 matrices. 

A lagged dependent variable, 𝐻𝑡−1, is typically added to equation (3) to improve the 

sample fit, as given below (for more details, refer to Baba et al. (1985) and Engle and 

Kroner.(1995)): 

 

              𝐻𝑡 = 𝐶′𝐶 + 𝐴′𝜀𝑡−1𝜀′
𝑡−1𝐴 + 𝐵′𝐻𝑡−1𝐵         (4) 

 

where 
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 𝐶 = [

𝑐11 ⋯ 𝑐1𝑚

⋮ ⋱ ⋮
𝑐𝑚1 ⋯ 𝑐𝑚𝑚

], 𝐴 = [

𝑎11 ⋯ 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑚

], 𝐵 = [
𝑏11 ⋯ 𝑏1𝑚

⋮ ⋱ ⋮
𝑏𝑚1 ⋯ 𝑏𝑚𝑚

] 

  

 McAleer et al. (2008) showed that the Full BEKK model in equations (3) and (4) 

cannot be derived from any known underlying stochastic process, which means there are 

no resularity conditions, except by assumption, and hence no valid asymptotic properties 

of the QMLE of the parameters. Consequently, any statistical analysis of the estimated 

parameters are not valid. McAleer et al. (2008) also showed that only Diagonal BEKK 

has an underlying stochastic process that leads to its specification, with appropriate 

regularity conditions, and so that the asymptotic properties of the QMLE can be 

established as consistent and asymptotically normal.  

The structural properties for DBEKK in equation (4) is that the elements of the 

weighting matrix, A, and the matrix that contributes to the long run properties, B, should 

be diagonal, as given below: 

 

𝐶 = [

𝑐11 ⋯ 𝑐1𝑚

⋮ ⋱ ⋮
0 ⋯ 𝑐𝑚𝑚

],  𝐴 = [
𝑎11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎𝑚𝑚

],  𝐵 = [
𝑏11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏𝑚𝑚

] 

 

3.2 Latent Volatility Granger Causality 

 Granger (1969) proposed a concept of causality based upon predictability. Asset i 

is said to Granger cause asset j if asset j can be forecast better using previous asset j and 

previous asset i than jonly previous asset j. Sims (1972) demonstrated that this was 

equivalent to a much more important criterion that fails to Granger cause Y only if Y is 
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econometrically exogenous in an X on Y dynamic regression.  

In order to test Granger causality from asset j to asset i, we add exogenous 

unconditional shocks of return j, 𝜀𝑗,𝑡−1, to equation (2), as given in equation (5): 

 

𝜀𝑖,𝑡 = Φ𝑡𝜀𝑖.𝑡−1 + Ψ𝜀𝑗,𝑡−1 + 𝜂𝑖,𝑡          (5) 

 

where 𝜀𝑖,𝑡 are the shocks of return of asset i, and 𝜂𝑖,𝑡 are the random residuals of asset 

i, 𝜂𝑖,𝑡~𝑖𝑖𝑑(0, Ω) , Ω  is an 𝑚 × 𝑚  matrix. 𝛷𝑡  is an 𝑚 × 𝑚  matrix of random 

coefficients, 𝛷𝑡~𝑖𝑖𝑑(0, Σ) , Σ  is an 𝑚 × 𝑚  matrix, Ψ  is an 𝑚 × 𝑚  matrix, 

Ψ~𝑖𝑖𝑑(0, 𝐸), E is a constant 𝑚 × 𝑚 matrix.  

The conditional volatility 𝐻𝑡 in the equation (4) can be extended as equation (6)  

 

𝐻𝑖,𝑡 = 𝐸(𝜀𝑖,𝑡𝜀𝑖,𝑡
′|𝐼𝑡−1) 

= 𝐸(Φ𝑡𝜀𝑖,𝑡𝜀𝑖,𝑡
′Φ𝑡

′|𝐼𝑡−1) + 𝐸(Ψ𝜀𝑗𝑡𝜀𝑗𝑡
′Ψ′|𝐼𝑡−1) + 𝐸(𝜂𝑖,𝑡𝜂𝑖,𝑡

′|𝐼𝑡−1) 

= 𝐸(Φ𝑡Φ𝑡
′) × 𝐸(𝜀𝑖,𝑡𝜀𝑖,𝑡

′|𝐼𝑡−1) + 𝐸(ΨΨ′) × 𝐸(𝜀𝑗𝑡𝜀𝑗𝑡
′|𝐼𝑡−1) + 𝐸(𝜂𝑖,𝑡𝜂𝑖,𝑡

′|𝐼𝑡−1) 

=  𝐶′𝐶 + 𝐴′𝜀𝑖,𝑡−1𝜀′
𝑖,𝑡−1𝐴 + 𝐸𝜀𝑗,𝑡−1𝜀′

𝑗,𝑡−1                 (6) 

 

where 𝐶 , 𝐴 , E are 𝑚 × 𝑚  matrices. For the structural properties for DBEKK, the 

matrix A should be diagonal, as given below 

 

 𝐶 = [

𝑐11 ⋯ 𝑐1𝑚

⋮ ⋱ ⋮
0 ⋯ 𝑐𝑚𝑚

], 𝐴 = [
𝑎11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎𝑚𝑚

],  𝐸 = [

𝑒11 ⋯ 𝑒1𝑚

⋮ ⋱ ⋮
0 ⋯ 𝑒𝑚𝑚

]    
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We add the diagonal lagged dependent variable, 𝐻𝑡−1, to improve the sample fit, as 

given below: 

 

𝐻𝑖,𝑡 =  𝐶′𝐶 + 𝐴′𝜀𝑖.𝑡−1𝜀′
𝑖.𝑡−1𝐴 + +𝐵′𝐻𝑖.𝑡−1𝐵 + 𝐸𝜀𝑗,𝑡−1𝜀′

𝑗,𝑡−1 +  𝐹𝐻𝑗,𝑡−1  (7) 

 

where 

B = [
𝑏11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏𝑚𝑚

],  𝐹 = [
𝑓11 ⋯ 𝑓1𝑚

⋮ ⋱ ⋮
0 ⋯ 𝑓𝑚𝑚

] 

 

In order to conduct the empirical analysis, equation (7) can be presented as 

equations (8) - (10):  

 

ℎ𝑖,𝑡 = 𝑐𝑖𝑖 + 𝑎𝑖𝑖
2𝜀𝑖,𝑡−1

2 + 𝑏𝑖𝑖
2ℎ𝑖,𝑡−1 + 𝑒𝑖𝑖

∗𝜀𝑗,𝑡−1
2 + 𝑓𝑖𝑖

∗ℎ𝑗,𝑡−1                    (8) 

ℎ𝑗,𝑡 = 𝑐𝑗𝑗 + 𝑎𝑗𝑗
2𝜀𝑗,𝑡−1

2 + 𝑏𝑗𝑗
2ℎ𝑗,𝑡−1 + 𝑒𝑗𝑗

∗𝜀𝑗,𝑡−1
2 + 𝑓𝑗𝑗

∗ℎ𝑗,𝑡−1                   (9) 

ℎ𝑖𝑗,𝑡 = 𝑐𝑖𝑗 + 𝑎𝑖𝑖 × 𝑎𝑗𝑗 × 𝜀𝑖,𝑡−1 × 𝜀𝑗,𝑡−1 + 𝑏𝑖𝑖 × 𝑏𝑗𝑗 × ℎ𝑖𝑗,𝑡−1+𝑒𝑖𝑗
∗𝜀𝑗,𝑡−1

2 + 𝑓𝑖𝑗
∗ℎ𝑗,𝑡−1  (10) 

 

where ℎ𝑖,𝑡  is the conditional volatility of asset i at time t, ℎ𝑗,𝑡  is the conditional 

volatility of asset j at time t, ℎ𝑖𝑗,𝑡 is the co-volatility of assets i and j at time t, 𝜀𝑖,𝑡−1 

denotes the shocks of asset i at t-1, and 𝜀𝑗,𝑡−1 denotes the shocks of asset j at t-1.  

Following the concept of Granger causality, the latent volatility Granger causality 

from asset i, to asset j can be defined as follows: 

 

𝜕h𝑖,𝑡

𝜕𝜀𝑗,𝑡−1
2 = 𝑒𝑖𝑖

∗ , 𝑖 ≠ 𝑗. 
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Consequently, the null hypothesis of the latent volatility Granger Causality from the 

shocks of asset j to asset i can be tested as the the null hypothesis base on equation (10), 

as given below: 

  

𝐻0: 𝑒𝑖𝑖 = 0. 

 

3.3 Partial Volatility Spillovers 

As explained in Chang et al. (2015), we can define full volatility spillovers and 

full co-volatility spillovers from Full BEKK model, and partial co-volatility spillovers 

from the Diagonal BEKK model. However, only Diagonal BEKK provides consistent 

and asymptotically normal QMLEs of the parameters so that, in the following section, 

we focus only on the partial co-volatility spillovers effects. 

Based on Chang et al. (2015)’s definition, the partial co-volatility spillover of 

shocks of returns is given as follows: 

 

H𝑖𝑗,𝑡/𝜕𝜀𝑘,𝑡−1, 𝑖 ≠ 𝑗, 𝑘 = either 𝑖 or 𝑗  

 

Moreover, equation (7) defines the partial co-volatility spillover from the squared 

shocks of returns, which is given as: 

 

H𝑖𝑗,𝑡/𝜕𝜀𝑘,𝑡−1
2 , 𝑖 ≠ 𝑗, 𝑘 = either 𝑖 or 𝑗. 

 

 Both partial co-volatility spillovers from the shocks and squared shocks of returns 

can be conducted from equation (10), which is given as: 
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𝜕ℎ𝑖𝑗,𝑡

𝜕𝜀𝑗,𝑡−1
= 𝑎𝑖𝑖 × 𝑎𝑗𝑗 × 𝜀𝑖,𝑡−1 + 2𝑒𝑖𝑗

∗ × 𝜀𝑗,𝑡−1, 𝑖 ≠ 𝑗 

 

ℎ𝑖𝑗,𝑡

𝜕𝜀𝑗,𝑡−1
2 = 𝑒𝑖𝑗

∗,   𝑖 ≠ 𝑗. 

 

A test of the null hypothesis for the shocks of return j on the subsequent co-

volatility of assets i and j is given as:   

   

𝐻0: 𝑎𝑖𝑖𝑎𝑗𝑗 = 0 and 𝑒𝑖𝑗
∗ = 0, 𝑖 ≠ 𝑗. 

 

The test of the null hypothesis for the squared shocks of return j on the subsequent co-

volatility of assets i and j is given as: 

 

𝐻0: 𝑒𝑖𝑗
∗ = 0,   𝑖 ≠ 𝑗 

 

3.4 QLR test for the Diagonal BEKK Null against the Full BEKK Alternative 

 A likelihood ratio (LR) test is used for comparing the goodness of fit of two 

statistical models that are widely used in comparing a simple null against a complex 

alternative to find which model is superior. Under the incorrect assumption of a normal 

likelihood function, we follow Chang et al.’s (2017) development of a quasi-likelihood 

ratio test (QLR), and test the multivariate conditional volatility Diagonal BEKK model, 

which has valid regularity conditions and asymptotic properties, against the alternative 

Full BEKK model, which has valid regularity conditions and asymptotic properties 
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only under the null hypothesis of zero off-diagonal elements.  

The QLR test statistic is given as:   

 

QLR test statistic =  

2 * (quasi maximized log likelihood value under the alternative hypothesis  

– quasi maximized log likelihood value under the null hypothesis). 

 

Based on equation (4), the QLR statistic has an asymptotic chi-squared distribution 

under the null hypothesis, with degrees of freedom equivalent to the number of off-

diagonal terms in the two 𝑚 × 𝑚 matrices, that is, the weighting matrix, A, and the 

stability matrix, B, of the Full BEKK model, namely 2𝑚(𝑚 − 1). 

 

4. Data and Variables 

4.1 Global Renewable Energy 

 Renewable energy is an energy that is collected from renewable resources, such 

as solar energy, water, wind, waves and geothermal heat. As shown in Figure 1, the use 

of renewable energy has rapidly risen since 2005, and the increasing use of alternative 

energy has already established itself as a trend for the future.  

 

[Figure 1 goes here] 

 

 From the 2015 World Energy Council report, renewable energy provides energy 

in four important areas: electricity generation, air and water heating/cooling, 
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transportation, and rural (off-grid) energy services, that accounts for over 30% of the 

total global installed power generation capacity, and 23% of total global electricity 

production.  

As shown in Figure 2, it is clear that the use of renewable energy, such as wind, 

hydro and solar for generating electricity, has also risen during the period 1985-2015. 

The share of the use of different sources in electricity generation in 2015, and hydro 

power contributes significantly to electricity generation. 

 

[Figure 2 goes here] 

 

 Eurostat Statistics Explained 2018 reported that electricity generation from 

renewable sources contributed more than one-quarter (29.6 %) to total EU-28 gross 

electricity consumption in 2016. As shown in Figure 3, hydropower is the most widely 

used renewable energy source, followed by wind power and solar. Moreover, as shown 

in Figure 4, global energy investment is about $1.8 trillion, and 17% of total energy 

investment has been for renewable energy. 

 

[Figures 3-4 go here] 

 

4.2 Variables and Statistical Analysis 

 The paper uses daily data for four renewable energy ETFs, namely Solar (TAN), 

Wind (FAN), Water (PIO), Nuclear (NLR), as well as Crude Oil ETF (USO). The 

sample of energy and crude oil ETFs covers the period 18 June 2008 to 20 March 2017. 
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The choice of the length of the sample period was dictated by the availability of data.  

The rate of return is obtained from taking the natural logarithm of the daily price 

data, and subtracting the natural logarithms of the daily closing price for two 

consecutive days from each other, and multiplying by 100 (that is, log-differences in 

prices). The definitions of the variable are given in Table 1. 

 

[Table 1 goes here] 

 

 As shown in Figure 5, there is the phenomenon of volatility clustering in the 

volatility renewable energy ETF returns and the crude oil ETF returns. Crude oil 

displays greater volatility than renewable energies during 2014-2016, which may be 

caused by the decreasing demand for oil internationally, together with the boom in the 

production of shale oil in the USA. All data series show high variability in 2008-2009 

because of the Global Financial Crisis (GFC), and 2010-12 for the European debt crisis, 

as shown in Figures 6 and 7. 

 

[Figures 5-7 go here] 

 

 The descriptive statistics for the returns of ETFs are given in Table 2. The highest 

standard deviation in the ETF markets over the sample period is for solar ETF (TAN), 

followed by wind ETF (FAN). The returns have different degrees of skewness. 

Skewness is important in finance and investing analysis because, in most financial 

datasets, they have either positive or negative skewness, rather than following the 
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normal distribution, which had zero skewness.  

 All ETFs returns are essentially skewed to the left, indicating that these ETF series 

had longer left tails (extreme losses) than right tails (extreme gains). Furthermore, all 

of the ETF returns have kurtosis that are significantly higher than 3, implying that 

higher probabilities of extreme market movements are in the left direction of losses 

rather than profits. The Jarque-Bera Lagrange multiplier test statistics confirm the 

existence of non-normal distributions in all the return series. 

 

[Table 2 goes here] 

 

 The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests in the 

ETF returns series are summarized in Table 3. The ADF test accommodates serial 

correlation by specifying explicitly the structure of serial correlation in the return 

shocks. The non-parametric PP test allows fairly mild assumptions that do not assume 

a specific type of serial correlation and heteroskedasticity in the disturbances, and can 

have higher power than the ADF test under a wide range of circumstances. 

 

[Table 3 goes here] 

 

 The null hypothesis of the ADF and PP tests is that the series have a unit root 

(Dickey and Fuller, 1979; Said and Dickey, 1984; Phillips and Perron, 1988). Based on 

the ADF and PP test results, the large negative values in all cases indicate rejection of 

the null hypothesis of unit roots at the 1% level of significance. Therefore, all the returns 
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series for the empirical analysis are stationary. 

 

5.  Empirical Results 

Table 4 shows the QLR test results of the multivariate conditional volatility 

DBEKK null model against the alternative Full BEKK model. The QLR test rejects the 

null hypothesis DBEKK model with zero off-diagonal elements, against the alternative 

hypothesis of the Full BEKK model. Theoretically, the Full BEKK model does not have 

valid asymptotic properties of the QMLE of the estimated parameters (except by 

assumption). Despite the data seem rejecting the DBEKK as an empirically valid model, 

we will nevertheless use the DBEKK model to derive the latent Granger volatility 

causality and volatility spillovers between renewable resources and crude oil ETFs as 

it retains valid asymptotic properties. 

 

[Table 4 goes here] 

 

The detailed results of the DBEKK model for renewable resource ETFs and crude 

oil ETF are shown in Appendices 1-5. In order to calculate equations (8)-(10), we set 

𝜀𝑗,𝑡−1
2   and ℎ𝑗,𝑡−1  as exogenous variables and use equation (8) to test the latent 

volatility Granger causality from asset j to asset i, 𝑖 ≠ 𝑗, and equation (10) to test and 

measure the partial volatility spillovers between asset j and asset i, 𝑖 ≠ 𝑗.  

Appendix 1 reports the DBEKK estimates with exogenous variables 𝜀𝑗,𝑡−1
2  and 

ℎ𝑗,𝑡−1 for TAN; Appendix 2 reports the DBEKK estimates with exogenous variables 

𝜀𝑗,𝑡−1
2  and ℎ𝑗,𝑡−1 for FAN; Appendix 3 reports the DBEKK estimates with exogenous 
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variables 𝜀𝑗,𝑡−1
2  and ℎ𝑗,𝑡−1 for PIO; Appendix 4 DBEKK estimates with exogenous 

variables 𝜀𝑗,𝑡−1
2   and ℎ𝑗,𝑡−1  for NLR; and Appendix 5 DBEKK estimates with 

exogenous variables 𝜀𝑗,𝑡−1
2  and ℎ𝑗,𝑡−1 for USO. 

 

5.1 Latent Volatility Granger Causality 

    As explained in section 3.2, the Latent Volatility Granger Causality, 
𝜕h𝑖,𝑡

𝜕𝜀𝑗,𝑡−1
2 = 𝑒𝑖𝑖

∗ , 

is the causality from the squared shocks of ETF return j to the volatility of ETF return 

i. If the null hypothesis 𝑒𝑖𝑖
∗ = 0 is rejected, then there exists Latent Volatility Granger 

Causality between the two asset returns. Table 5 shows a significant Granger Causality 

relationship from the squared shocks of 𝐸𝑇𝐹𝑗 returns to the volatility of returns 𝐸𝑇𝐹𝑖, 

as well as from the squared shocks of 𝐸𝑇𝐹𝑖 returns to the volatility of return 𝐸𝑇𝐹𝑗. 

 

[Insert Table 5 here] 

 

 For example, the squared shocks of solar ETF returns has significant causality for 

the volatility wind ETF returns. There is also latent volatility causality from the squared 

shocks of wind ETF returns to the volatility of solar ETF returns, and a similar outcome 

for other ETF counterparts. Furthermore, the coefficients for the latent volatility 

Granger causality are significantly positive in all cases, which indicates the delayed 

return squared shocks for asset j have concurrent positive impacts on the volatility of 

asset i. 

 As explained in section 4.1, investors are increasingly interested in investing in 

financial renewable energy products. The wind ETF(FAN) to solar ETF(TAN), and the 
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water ETF(PIO) to solar ETF(TAN), have stronger latent volatility Granger causality 

effects, with coefficients 0.126 and 0.150, respectively. These results confirm, as 

explained in section 4, that hydro, wind power and solar are the most widely used 

renewable sources, and the volatility of returns shocks of wind and water causes greater 

impacts to solar than does solar to water and wind. 

 

5.2 Partial Co-volatility Spillovers from Shocks 

The partial co-volatility spillover effects of shocks are defined as the effect of a 

delayed shock in one asset returns on the subsequent co-volatility with another asset. 

The partial co-volatility spillover effects of the shocks can be tested by 𝑎𝑖𝑖𝑎𝑗𝑗 =

0 and 𝑒𝑖𝑗
∗ = 0 in equation (10). The coefficients of matrix A and matrix E in Tables 6 

are statistical significantly at the 1% level, which shows strong spillovers from one 

renewable resources/crude oil asset on subsequent co-volatility with another energy 

asset. It is not surprising that the delayed shocks of other renewable resource ETFs are 

the main elements that have statistical significance for the co-spillovers of crude oil and 

renewable resource ETFs.  

 The last column in Table 6 shows the negative partial co-volatility spillovers for 

all combinations of renewable resource and crude oil ETFs. From the point of view of 

a portfolio, negative co-volatility spillovers means that one asset can be used for 

hedging instruments in financial risk management. 

 

[Table 6 goes here] 
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5.3 Co-volatility Spillovers of Squared Shocks 

 As explained in section 3.3, we define the co-volatility spillover effects from the 

shocks of returns and from the squared shocks of returns. The partial co-volatility 

spillover effects of the squared shocks can be tested by 𝑒𝑖𝑗
∗ = 0  in equation (10). 

Table 7 shows that there are 12 of 20 cases with significant spillover effects from the 

squared shocks of returns. Surprisingly, none of the renewable energy ETFs squared 

shocks of returns have partial co-volatility spillover effects with crude oil (USO), and 

vice-versa. 

 The last column in Table 7 shows that there are positive partial co-volatility 

spillovers in all combinations of renewable resources and crude oil ETFs. From the 

perspective of a financial portfolio, a portfolio with smaller squared shocks of asset j 

on the subsequent co-volatility with another asset means that the portfolio has a lower 

overall co-risk. 

 

[Table 7 goes here] 

 

6. Concluding Remarks 

 The purpose of the paper was to examine latent volatility Granger causality and 

partial volatility spillovers for four renewable energy ETFs, namely solar (TAN), wind 

(FAN), water (PIO), nuclear (NLR), and crude oil (USO) ETF. Data on the renewable 

energy and crude oil ETFs are from 18 June 2008 to 20 March 2017. 

 Based on the underlying stochastic process of a vector random coefficient 

autoregressive (VRCAR) process for the shocks on returns, we derive Latent Volatility 
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Granger causality and partial volatility spillovers from the Diagonal BEKK 

multivariate conditional volatility model. 

  The empirical results show there are significant positive latent volatility Granger 

causality relationships between solar, wind, nuclear, and crude oil ETFs, specifically 

the volatility of returns shocks of wind and water cause stronger impacts on solar than 

do solar shocks to water and wind. 

Using Chang et al.’s (2015) definition of partial co-volatility spillovers from the 

shocks of returns and extend the measurements from the return shocks on co-volatility 

to the squared shocks of returns on co-volatility. The empirical results show that all 

combinations of renewable resource and crude oil ETFs have negative partial co-

volatility spillovers effects from the shocks. The negative co-volatility spillovers effect 

imply that two assets can be taken as a hedging instrument in an optimal financial 

portfolio. 

The empirical results also show the squared shocks of the returns of any renewable 

energy asset on the subsequent co-volatility with other renewable counterparts are 

positive and strong. In terms of a positive value of the volatility spillover from squared 

shocks in the portfolio, risk managers can choose a portfolio with a smaller value of 

volatility spillovers from squared shocks as a useful hedging instrument.  

In summary, the empirical results should serve as a useful guide for public and 

private policymakers, market investors and energy producers in the optimal analysis 

and management of risk in financial portfolios. 
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Figure 1  

Primary Energy Consumption by Source, World 

 

Source: Our World in Data, 2018. 

Note: TWh: Terawatt-hours. “Other renewables” includes renewable sources including wind, 

geothermal, solar, biomass and waste. Data does not include energy sourced from traditional biomass, 

which may form a significant component of primary energy consumption in low to middle-income 

countries. 
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Figure 2  

Electricity Generation and Share, World 

Source: BP Global, 2016 

 

 

Source: IEA, 2017. 
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Figure 3  

Gross Electricity Generation from Renewable Sources for EU-28 

 

 

Source: Eurostat, 2018. 
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Figure 4  

2015 Global Energy Investment  

 

 

Source: IEA, 2016. 
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Figure 5 

Renewable Energy ETF Returns and Crude Oil ETF Returns 

18 June 2008 to 20 March 2017 
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Figure 6  

Unconditional Volatility for Renewable Energy and Crude Oil ETFs  

18 June 2008 to 20 March 2017 
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Figure 7 

Conditional Volatility for Solar, Wind, Water, Nuclear and Crude Oil ETFs 

18 June 2008 to 20 March 2017 
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Table 1  

Data Sources 

 

Variables ETFs Definition 

Transaction 

market 

Solar TAN Guggenheim Solar ETF NYSE 

Wind FAN 

First Trust ISE Global Wind 

Energy Index Fund (FAN) 

NYSE 

Water PIO 

PowerShares Global Water 

Portfolio (Water) 

NYSE 

Nuclear NLR 

VanEck Vectors Uranium+Nuclear 

Energy ETF (Nuclear) 

NYSE 

Crude Oil USO United States Oil Fund (Crude Oil) NYSE 
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Table 2  

Descriptive Statistics 

18 June 2008 to 20 March 2017 

 

Returns Mean SD Max Min Skewness Kurtosis Jarque-Bera 

Solar -0.115 3.092 19.760 -20.775 -0.321 6.106 3657.423 

Wind -0.040 1.923 17.745 -13.541 -0.312 11.126 11811.576 

Water -0.003 1.546 17.545 -11.511 -0.157 12.241 15919.366 

Nuclear -0.034 1.684 12.110 -14.070 -0.829 9.593 9885.513 

Crude Oil -0.066 2.156 9.169 -11.299 -0.133 5.459 727.3069 
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Table 3  

Unit Root Tests 

Variables 

ADF test 

No Trend & 

Intercept 

With 

Intercept 

With Trend & 

Intercept 

Solar -44.9114* -44.9617* -44.9742* 

Wind -48.6077* -48.6186* -48.7151* 

Water -52.9042* -52.8943* -52.9007* 

Nuclear -50.9805* -50.9894* -51.0002* 

Crude Oil -55.5240* -55.5686* -55.5687* 

Variables 

PP test 

No Trend & 

Intercept 

With 

Intercept 

With Trend & 

Intercept 

Solar -44.8565* -44.9708* -44.9914* 

Wind -48.6507* -48.6483* -48.7605* 

Water -52.9672* -52.8880* -52.9054* 

Nuclear -50.9708* -50.9990* -51.0194* 

Crude Oil -55.4874* -55.5384* -55.5392* 

Note: * denotes the null hypothesis of a unit root is rejected at the 1% level of significance. 
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Table 4  

QLR Test of Diagonal BEKK against Full BEKK 

 

Quasi Log-likelihood value for DBEKK                           -19202.5788 

Quasi Log-likelihood value for Full BEKK                 -19131.2463 

QLR test statistic                                                                                   142.665 

Critical value at 1% with 40 df                                                              63.69 

Note: df denotes degrees of freedom. 
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Table 5  

Latent Volatility Granger Causality 

 

Outcomes Coefficient 

ε𝑗,𝑡−1
2   ℎ𝑖,𝑡 𝑒𝑖𝑖

∗  

Solar → Wind 0.014** 

Solar → Water 0.009** 

Solar → Nuclear 0.010** 

Solar → Crude Oil 0.009** 

Wind → Solar 0.126** 

Wind → Water 0.053** 

Wind → Nuclear 0.042** 

Wind → Crude Oil 0.025** 

Water → Solar 0.150** 

Water → Water 0.085** 

Water → Nuclear 0.066** 

Water → Crude Oil 0.035** 

Nuclear → Solar 0.085** 

Nuclear → Wind 0.039** 

Nuclear → Water 0.031** 

Nuclear → Crude Oil 0.016** 

Crude Oil → Solar 0.011* 

Crude Oil → Wind 0.010** 

Crude Oil → Water 0.006** 

Crude Oil → Nuclear 0.006** 

Note: ** denotes significance level 1%, * denotes significance level 10%. 
𝜕h𝑖,𝑡

𝜕𝜀𝑗,𝑡−1
2 = 𝑒𝑖𝑖

∗ , 𝑖 ≠ 𝑗 
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Table 6 

Partial Co-volatility Spillover Effects from Shocks 

 

Outcomes Coefficients Shocks Spillovers 

𝜀𝑗.𝑡−1  ℎ(𝑖, 𝑗)𝑡 𝑎𝑖𝑖 𝑎𝑗𝑗 𝑒𝑖𝑗
∗  𝜀𝑖,𝑡−1 𝜀𝑗,𝑡−1 

𝜕ℎ𝑖𝑗,𝑡

𝜕𝜀𝑗,𝑡−1
 

Solar → Solar, Wind 0.121* 0.157* 0.017* -0.026 -0.059 -0.0025 

Solar → Solar, Water 0.121* 0.164* 0.014* -0.024 -0.059 -0.0021 

Solar → Solar, Nuclear 0.121* 0.108* 0.012* -0.010 -0.059 -0.0015 

Solar → Solar, Crude Oil 0.121* 0.211* -0.002 -0.049 -0.059 -0.0010 

Wind → Wind, Solar  0.100* 0.132* 0.093* -0.026 -0.013 -0.0028 

Wind → Wind, Water 0.100* 0.090* 0.060* -0.012 -0.013 -0.0017 

Wind → Wind, Nuclear 0.100* 0.187* 0.051* -0.007 -0.013 -0.0015 

Wind → Wind, Crude Oil 0.100* 0.212* -0.001 -0.047 -0.013 -0.0010 

Water → Water, Solar 0.084* 0.127* 0.094* -0.032 -0.011 -0.0024 

Water → Water, Wind 0.084* 0.109* 0.069* -0.016 -0.011 -0.0017 

Water → Water, Nuclear 0.084* 0.081* 0.054* -0.005 -0.011 -0.0012 

Water → Water, Crude Oil 0.084* 0.219* 0.001 -0.045 -0.011 -0.0008 

Nuclear → Nuclear, Solar 0.071* 0.130* 0.039* -0.059 -0.010 -0.0013 

Nuclear → Nuclear, Wind 0.071* 0.153* 0.033* -0.030 -0.010 -0.0010 

Nuclear → Nuclear, Water 0.071* 0.162* 0.035* -0.024 -0.010 -0.0010 

Nuclear → Nuclear, Crude Oil 0.071* 0.209* -0.001 -0.044 -0.010 -0.0006 

Crude Oil → Crude Oil, Solar 0.380* 0.164* 0.012 -0.077 -0.011 -0.0051 

Crude Oil → Crude Oil, Wind 0.380* 0.192* -0.007 -0.040 -0.011 -0.0028 

Crude Oil → Crude Oil, Water 0.380* 0.207* -0.004 -0.038 -0.011 -0.0029 

Crude Oil → Crude Oil, Nuclear 0.380* 0.157* -0.001 -0.031 -0.011 -0.0018 

Note: * denotes significance level 1%. 
𝜕ℎ𝑖𝑗,𝑡

𝜕𝜀𝑗,𝑡−1
= 𝑎𝑖𝑖 × 𝑎𝑗𝑗 × 𝜀𝑖,𝑡−1 + 2𝑒𝑖𝑗

∗ × 𝜀𝑗,𝑡−1, 𝑖 ≠ 𝑗. 
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Table 7 

Partial Co-volatility Spillover Effect from Squared Shocks 

 

Outcomes Spillovers  

ε𝑗,𝑡−1
2   ℎ(𝑖, 𝑗)𝑡 

ℎ𝑖𝑗,𝑡

𝜕𝜀𝑗,𝑡−1
2 = 𝑒𝑖𝑗

∗  

Solar → (Solar, Wind) 
0.017* 

Solar → (Solar, Water) 
0.014* 

Solar → (Solar, Nuclear) 
0.012* 

Solar no (Solar, Crude Oil) -0.002 

Wind → (Wind, Solar)  
0.093* 

Wind → (Wind, Water) 
0.060* 

Wind → (Wind, Nuclear) 
0.051* 

Wind no (Wind, Crude Oil) -0.001 

Water → (Water, Solar) 
0.094* 

Water → (Water, Wind) 
0.069* 

Water → (Water, Nuclear) 
0.054* 

Water no (Water, Crude Oil) 0.001 

Nuclear → (Nuclear, Solar) 
0.039* 

Nuclear → (Nuclear, Wind) 
0.033* 

Nuclear → (Nuclear, Water) 
0.035* 
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Nuclear → (Nuclear, Crude Oil) 
-0.001 

Crude Oil no (Crude Oil, Solar) 0.012 

Crude Oil no (Crude Oil, Wind) -0.007 

Crude Oil no (Crude Oil, Water) -0.004 

Crude Oil no (Crude Oil, Nuclear) -0.001 

Note: * denotes significance level 1%. 
ℎ𝑖𝑗,𝑡

𝜕𝜀𝑗,𝑡−1
2 = 𝑒𝑖𝑗

∗, 𝑖 ≠ 𝑗. 
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Appendix 1: Diagonal BEKK with exogenous variables 𝜺𝒋,𝒕−𝟏
𝟐  and 𝒉𝒋,𝒕−𝟏 for Solar(TAN). 

Mean equation TAN FAN PIO NLR USO 

TAN(-1) 0.083*** 

(0.028) 

0.039** 

(0.016) 

0.018 

(0.013) 

0.023 

(0.015) 

0.046** 

(0.017) 

FAN(-1) 0.061 

(0.057) 

-0.052 

(0.032) 

0.045* 

(0.025) 

0.004 

(0.029) 

0.101** 

(0.036) 

PIO(-1) -0.046 

(0.076) 

0.029 

(0.042) 

-0.136*** 

(0.034) 

0.038 

(0.035) 

0.331*** 

(0.046) 

NLR(-1) -0.064 

(0.048) 

-0.012 

(0.032) 

0.059** 

(0.026) 

-0.037 

(0.030) 

0.210*** 

(0.033) 

USO(-1) 0.014 

(0.026) 

0.014 

(0.014) 

0.012 

(0.011) 

0.020 

(0.012) 

-0.037** 

(0.018) 

C -0.051 

(0.049) 

-0.010 

(0.029) 

0.029 

(0.023) 

-0.018 

(0.025) 

-0.042 

(0.032) 

 

Diagonal 

BEKK C A B 

TAN(-1) 0.066*** 

(0.009) 

0.027*** 

(0.006) 

0.019*** 

(0.005) 

0.015*** 

(0.004) 

0.001 

(0.007) 

0.121*** 

(0.009) 

    0.986*** 

(0.002) 

    

FAN(-1)  0.032*** 

(0.004) 

0.017*** 

(0.003) 

0.012*** 

(0.002) 

-0.001 

(0.005) 

 0.157*** 

(0.009) 

    0.974*** 

(0.003) 

   

PIO(-1)   0.017*** 

(0.002) 

0.011*** 

(0.002) 

-0.002 

(0.004) 

  0.164*** 

(0.008) 

    0.975*** 

(0.002) 

  

NLR(-1)    0.020*** 

(0.001) 

-0.002 

(0.003) 

   0.108*** 

(0.006) 

    0.991*** 

(0.001) 

 

USO(-1)     0.038*** 

(0.008) 

    0.211*** 

(0.012) 

    0.972*** 

(0.003) 
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Diagonal 

BEKK E F 

TAN(-1) 0.032*** 

(0.005) 

0.017*** 

(0.003) 

0.014*** 

(0.002) 

0.012*** 

(0.002) 

-0.002 

(0.002) 

-0.028*** 

(0.006) 

-0.014*** 

(0.003) 

-0.011*** 

(0.002) 

-0.012*** 

(0.002) 

0.002 

(0.003) 

FAN(-1)  0.014*** 

(0.002) 

0.010*** 

(0.001) 

0.009*** 

(0.001) 

-0.001 

(0.002) 

 -0.010*** 

(0.002) 

-0.007*** 

(0.002) 

-0.008*** 

(0.001) 

0.001 

(0.002) 

PIO(-1)   0.009*** 

(0.001) 

0.008*** 

(0.001) 

-0.001 

(0.001) 

  -0.006*** 

(0.001) 

-0.007*** 

(0.001) 

0.001 

(0.001) 

NLR(-1)    0.010*** 

(0.001) 

-0.001 

(0.001) 

   -0.011*** 

(0.001) 

0.001 

(0.001) 

USO(-1)     0.008*** 

(0.002) 

    -0.009*** 

(0.002) 

Log-likelihood -19017.29 

AIC 16.742 

Notes: Standard errors are in parentheses, * denotes significance level 10%, ** denotes significance level 5%, *** denotes significance level 1%. Solar (TAN), Wind 

(FAN), Water (PIO), and Nuclear (NLR), Crude Oil (USO). 

A = [
𝑎11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎55

], B = [
𝑏11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏55

], C = [

𝑐11 ⋯ 𝑐15

⋮ ⋱ ⋮
0 ⋯ 𝑐55

] , E = [

𝑒11 ⋯ 𝑒15

⋮ ⋱ ⋮
0 ⋯ 𝑒55

], F = [
𝑓11 ⋯ 𝑓15

⋮ ⋱ ⋮
0 ⋯ 𝑓55

] 
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Appendix 2: Diagonal BEKK with exogenous variables 𝜺𝒋,𝒕−𝟏
𝟐  and 𝒉𝒋,𝒕−𝟏 for Wind(FAN). 

Mean equation TAN FAN PIO NLR USO 

TAN(-1) 0.079*** 

(0.027) 

0.043*** 

(0.014) 

0.019 

(0.012) 

0.024 

(0.014) 

0.040* 

(0.015) 

FAN(-1) 0.081 

(0.058) 

-0.034 

(0.035) 

0.054* 

(0.029) 

0.037 

(0.031) 

0.107*** 

(0.036) 

PIO(-1) -0.065 

(0.074) 

-0.012 

(0.042) 

-0.172*** 

(0.034) 

-0.025 

(0.037) 

0.325*** 

(0.047) 

NLR(-1) -0.050 

(0.050) 

0.012 

(0.032) 

0.087*** 

(0.026) 

-0.005 

(0.031) 

0.208*** 

(0.032) 

USO(-1) 0.016 

(0.026) 

0.015 

(0.015) 

0.016 

(0.012) 

0.022 

(0.013) 

-0.032 

(0.018) 

C -0.081 

(0.049) 

-0.021 

(0.029) 

0.019 

(0.023) 

-0.018 

(0.026) 

-0.043 

(0.033) 

 

Diagonal 

BEKK C A B 

TAN(-1) 0.099*** 

(0.010) 

0.052*** 

(0.005) 

0.041*** 

(0.003) 

0.010 

(0.007) 

0.001 

(0.006) 

0.132*** 

(0.008) 

    0.984*** 

(0.002) 

    

FAN(-1)  0.049*** 

(0.003) 

0.033*** 

(0.002) 

0.016*** 

(0.004) 

-0.001 

(0.004) 

 0.100*** 

(0.010) 

    0.988*** 

(0.002) 

   

PIO(-1)   0.031*** 

(0.002) 

0.018*** 

(0.003) 

-0.001 

(0.003) 

  0.090*** 

(0.007) 

    0.992*** 

(0.001) 

  

NLR(-1)    0.030*** 

(0.006) 

-0.001 

(0.005) 

   0.187*** 

(0.012) 

    0.955*** 

(0.005) 

 

USO(-1)     0.033*** 

(0.007) 

    0.212*** 

(0.013) 

    0.972*** 

(0.003) 
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Diagonal 

BEKK E F 

TAN(-1) 0.126*** 

(0.016) 

0.093*** 

(0.009) 

0.075*** 

(0.007) 

0.050*** 

(0.008) 

-0.002 

(0.008) 

-0.127*** 

(0.017) 

-0.097*** 

(0.010) 

-0.080*** 

(0.007) 

-0.027*** 

(0.009) 

0.002 

(0.009) 

FAN(-1)  0.081*** 

(0.006) 

0.060*** 

(0.004) 

0.051*** 

(0.005) 

-0.001 

(0.006) 

 -0.083*** 

(0.007) 

-0.063*** 

(0.005) 

-0.034*** 

(0.006) 

0.002 

(0.006) 

PIO(-1)   0.053*** 

(0.003) 

0.043*** 

(0.004) 

-0.001 

(0.004) 

  -0.058*** 

(0.004) 

-0.031*** 

(0.005) 

0.001 

(0.005) 

NLR(-1)    0.042*** 

(0.006) 

-0.005 

(0.006) 

   -0.010 

(0.008) 

0.006 

(0.006) 

USO(-1)     0.026*** 

(0.007) 

    -0.024*** 

(0.007) 

Log-likelihood -18989.29 

AIC 16.725 

Notes: Standard errors are in parentheses, * denotes significance level 10%, ** denotes significance level 5%, *** denotes significance level 1%. Solar (TAN), Wind 

(FAN), Water (PIO), and Nuclear (NLR), Crude Oil (USO). 

A = [
𝑎11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎55

], B = [
𝑏11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏55

], C = [

𝑐11 ⋯ 𝑐15

⋮ ⋱ ⋮
0 ⋯ 𝑐55

] , E = [

𝑒11 ⋯ 𝑒15

⋮ ⋱ ⋮
0 ⋯ 𝑒55

], F = [
𝑓11 ⋯ 𝑓15

⋮ ⋱ ⋮
0 ⋯ 𝑓55

] 
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Appendix 3: Diagonal BEKK with exogenous variables 𝜺𝒋,𝒕−𝟏
𝟐  and 𝒉𝒋,𝒕−𝟏 for Water(PIO). 

Mean equation TAN FAN PIO NLR USO 

TAN(-1) 0.071** 

(0.026) 

0.034*** 

(0.013) 

0.013 

(0.011) 

0.021 

(0.014) 

0.039** 

(0.016) 

FAN(-1) 0.051 

(0.055) 

-0.061** 

(0.031) 

0.035 

(0.025) 

0.001 

(0.029) 

0.109*** 

(0.036) 

PIO(-1) -0.010 

(0.077) 

0.042 

(0.044) 

-0.124*** 

(0.036) 

0.030 

(0.03) 

0.335*** 

(0.048) 

NLR(-1) -0.068 

(0.051) 

-0.014 

(0.034) 

0.058** 

(0.027) 

-0.02 

(0.031) 

0.208*** 

(0.034) 

USO(-1) 0.018 

(0.027) 

0.016 

(0.015) 

0.016 

(0.012) 

0.026* 

(0.013) 

-0.039** 

(0.018) 

C -0.079 

(0.048) 

-0.021 

(0.029) 

0.016 

(0.022) 

-0.023 

(0.025) 

-0.047 

(0.033) 

 

Diagonal 

BEKK C A B 

TAN(-1) 0.065*** 

(0.009) 

0.029*** 

(0.005) 

0.024*** 

(0.003) 

0.008** 

(0.003) 

0.002 

(0.006) 

0.127*** 

(0.007) 

    0.986*** 

(0.001) 

    

FAN(-1)  0.030*** 

(0.003) 

0.018*** 

(0.002) 

0.009*** 

(0.002) 

-0.002 

(0.004) 

 0.109*** 

(0.009) 

    0.984*** 

(0.002) 

   

PIO(-1)   0.020*** 

(0.002) 

0.012*** 

(0.002) 

-0.001 

(0.003) 

  0.084*** 

(0.009) 

    0.990*** 

(0.002) 

  

NLR(-1)    0.018*** 

(0.002) 

-0.001 

(0.003) 

   0.081*** 

(0.009) 

    0.990*** 

(0.002) 

 

USO(-1)     0.033*** 

(0.007) 

    0.219*** 

(0.013) 

    0.969*** 

(0.003) 
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Diagonal 

BEKK E F 

TAN(-1) 0.150*** 

(0.024) 

0.103*** 

(0.014) 

0.094*** 

(0.011) 

0.058*** 

(0.010) 

-0.002 

(0.013) 

-0.140*** 

(0.027) 

0.093*** 

(0.015) 

-0.089*** 

(0.012) 

-0.047*** 

(0.011) 

0.001 

(0.013) 

FAN(-1)  0.085*** 

(0.009) 

0.069*** 

(0.006 

0.052*** 

(0.005) 

-0.002 

(0.009) 

 -0.071*** 

(0.010) 

-0.062*** 

(0.007) 

-0.042*** 

(0.006) 

0.004 

(0.009) 

PIO(-1)   0.072*** 

(0.006) 

0.054*** 

(0.005) 

0.001 

(0.007) 

  -0.070*** 

(0.007) 

-0.050*** 

(0.005) 

0.001 

(0.007) 

NLR(-1)    0.067*** 

(0.006) 

-0.003 

(0.008) 

   -0.060*** 

(0.007 

0.004 

(0.008) 

USO(-1)     0.036*** 

(0.010) 

    -0.028** 

(0.011) 

Log-likelihood -18956.19 

AIC 16.688 

Notes: Standard errors are in parentheses, * denotes significance level 10%, ** denotes significance level 5%, *** denotes significance level 1%. Solar (TAN), Wind 

(FAN), Water (PIO), and Nuclear (NLR), Crude Oil (USO). 

A = [
𝑎11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎55

], B = [
𝑏11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏55

], C = [

𝑐11 ⋯ 𝑐15

⋮ ⋱ ⋮
0 ⋯ 𝑐55

] , E = [

𝑒11 ⋯ 𝑒15

⋮ ⋱ ⋮
0 ⋯ 𝑒55

], F = [
𝑓11 ⋯ 𝑓15

⋮ ⋱ ⋮
0 ⋯ 𝑓55

] 
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Appendix 4: Diagonal BEKK with exogenous variables 𝜺𝒋,𝒕−𝟏
𝟐  and 𝒉𝒋,𝒕−𝟏 for Nuclear(NLR). 

Mean equation TAN FAN PIO NLR USO 

TAN(-1) 0.078** 

(0.027) 

0.044*** 

(0.014) 

0.019 

(0.012) 

0.028* 

(0.014) 

0.041** 

(0.016) 

FAN(-1) 0.056 

(0.057) 

-0.049 

(0.032) 

0.049 

(0.025) 

0.020 

(0.029) 

0.101** 

(0.037) 

PIO(-1) -0.053 

(0.074) 

0.005 

(0.041) 

-0.016*** 

(0.033) 

-0.012 

(0.036) 

0.321*** 

(0.048) 

NLR(-1) -0.052 

(0.054) 

-0.006 

(0.035) 

0.065 

(0.028) 

-0.012 

(0.036) 

0.229*** 

(0.036) 

USO(-1) 0.022 

(0.026) 

0.019 

(0.014) 

0.017 

(0.011) 

0.026** 

(0.013) 

-0.036 

(0.018) 

C -0.051 

(0.049) 

-0.005 

(0.030) 

0.030 

(0.023) 

-0.016 

(0.026) 

-0.047 

(0.033) 

 

Diagonal 

BEKK C A B 

TAN(-1) 0.053*** 

(0.007) 

0.020*** 

(0.005) 

0.015*** 

(0.004) 

0.002 

(0.003) 

0.004 

(0.005) 

0.130*** 

(0.007) 

    0.985*** 

(0.001) 

    

FAN(-1)  0.032*** 

(0.005) 

0.014*** 

(0.003) 

0.003 

(0.003) 

-0.001 

(0.004) 

 0.153*** 

(0.010) 

    0.970*** 

(0.003) 

   

PIO(-1)   0.018*** 

(0.003) 

0.006*** 

(0.002) 

-0.001 

(0.003) 

  0.162*** 

(0.010) 

    0.970*** 

(0.003) 

  

NLR(-1)    0.016*** 

(0.002) 

0.001 

(0.002) 

   0.071*** 

(0.009) 

    0.987*** 

(0.003) 

 

USO(-1)     0.024*** 

(0.006) 

    0.209*** 

(0.012) 

    0.973*** 

(0.003) 
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Diagonal 

BEKK E F 

TAN(-1) 0.085*** 

(0.016) 

0.048*** 

(0.009) 

0.038*** 

(0.008) 

0.039*** 

(0.008) 

0.005 

(0.008) 

-0.067*** 

(0.017) 

-0.024** 

(0.010) 

-0.020*** 

(0.008) 

-0.022** 

(0.010) 

-0.006 

(0.008) 

FAN(-1)  0.039*** 

(0.008) 

0.027*** 

(0.005) 

0.033*** 

(0.005) 

0.001 

(0.006) 

 -0.008 

(0.010) 

-0.006 

(0.006) 

-0.010 

(0.007) 

-0.001 

(0.006) 

PIO(-1)   0.031*** 

(0.005) 

0.035*** 

(0.005) 

0.001 

(0.004) 

  -0.014** 

(0.005) 

-0.017*** 

(0.005) 

0.001 

(0.004) 

NLR(-1)    0.059*** 

(0.005) 

-0.001 

(0.006) 

   -0.043*** 

(0.008) 

0.001 

(0.005) 

USO(-1)     0.016*** 

(0.005) 

    -0.010* 

(0.005) 

Log-likelihood -18978.71 

AIC 16.708 

Notes: Standard errors are in parentheses, * denotes significance level 10%, ** denotes significance level 5%, *** denotes significance level 1%. Solar (TAN), Wind 

(FAN), Water (PIO), and Nuclear (NLR), Crude Oil (USO). 

A = [
𝑎11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎55

], B = [
𝑏11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏55

], C = [

𝑐11 ⋯ 𝑐15

⋮ ⋱ ⋮
0 ⋯ 𝑐55

] , E = [

𝑒11 ⋯ 𝑒15

⋮ ⋱ ⋮
0 ⋯ 𝑒55

], F = [
𝑓11 ⋯ 𝑓15

⋮ ⋱ ⋮
0 ⋯ 𝑓55

] 
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Appendix 5: Diagonal BEKK with exogenous variables 𝜺𝒋,𝒕−𝟏
𝟐  and 𝒉𝒋,𝒕−𝟏 for Crude Oil(USO). 

Mean equation TAN FAN PIO NLR USO 

TAN(-1) 0.085*** 

(0.026) 

0.045*** 

(0.013) 

0.018 

(0.011) 

0.023* 

(0.013) 

0.045** 

(0.015) 

FAN(-1) 0.048 

(0.051) 

-0.051* 

(0.031) 

0.030 

(0.024) 

-0.003 

(0.027) 

0.113** 

(0.036) 

PIO(-1) -0.041 

(0.067) 

0.007 

(0.036) 

-0.127*** 

(0.031 

0.025 

(0.033) 

0.311*** 

(0.044) 

NLR(-1) -0.068 

(0.044) 

-0.006 

(0.028) 

0.063** 

(0.023) 

-0.027 

(0.027 

0.207*** 

(0.028) 

USO(-1) 0.006 

(0.025) 

0.006 

(0.015) 

0.007 

(0.012) 

0.022* 

(0.014) 

-0.052* 

(0.019) 

C -0.035 

(0.049) 

0.004 

(0.029) 

0.043* 

(0.022) 

0.003 

(0.025) 

-0.081* 

(0.033) 

 

Diagonal 

BEKK C A B 

TAN(-1) 0.068*** 

(0.010) 

0.030*** 

(0.006) 

0.026*** 

(0.005) 

0.010*** 

(0.004) 

0.111 

(0.118) 

0.164*** 

(0.005) 

    0.982*** 

(0.001) 

    

FAN(-1)  0.036*** 

(0.005) 

0.020*** 

(0.003) 

0.009*** 

(0.003) 

0.026 

(0.067) 

 0.192*** 

(0.006) 

    0.970*** 

(0.002) 

   

PIO(-1)   0.021*** 

(0.003) 

0.011*** 

(0.002) 

0.034 

(0.052) 

  0.207*** 

(0.007) 

    0.967*** 

(0.002) 

  

NLR(-1)    0.013*** 

(0.002) 

0.121 

(0.063) 

   0.157*** 

(0.005) 

    0.983*** 

(0.001) 

 

USO(-1)     0.268** 

(0.068) 

    0.380*** 

(0.023) 

    -0.009 

(0.178) 
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Diagonal 

BEKK E F 

TAN(-1) 0.011** 

(0.006) 

0.011*** 

(0.004) 

0.011*** 

(0.003) 

0.003 

(0.003) 

0.012 

(0.011) 

-0.013** 

(0.006) 

-0.011*** 

(0.004) 

-0.011*** 

(0.003) 

-0.004 

(0.003) 

-0.021 

(0.035) 

FAN(-1)  0.010*** 

(0.003) 

0.007*** 

(0.003) 

0.003* 

(0.002) 

-0.007 

(0.008) 

 -0.007** 

(0.003) 

-0.005** 

(0.002) 

-0.002 

(0.002) 

0.014 

(0.023) 

PIO(-1)   0.006*** 

(0.002) 

0.003** 

(0.002) 

-0.004 

(0.007) 

  -0.004** 

(0.002) 

-0.003 

(0.002) 

0.006 

(0.017) 

NLR(-1)    0.006*** 

(0.002) 

-0.001 

(0.007) 

   -0.006*** 

(0.002) 

-0.023 

(0.020) 

USO(-1)     0.045*** 

(0.004) 

    0.634*** 

(0.026) 

Log-likelihood -19087.21 

AIC 16.803 

Notes: Standard errors are in parentheses, * denotes significance level 10%, ** denotes significance level 5%, *** denotes significance level. Solar (TAN), Wind 

(FAN), Water (PIO), and Nuclear (NLR), Crude Oil (USO). 

A = [
𝑎11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎55

], B = [
𝑏11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏55

], C = [

𝑐11 ⋯ 𝑐15

⋮ ⋱ ⋮
0 ⋯ 𝑐55

] , E = [

𝑒11 ⋯ 𝑒15

⋮ ⋱ ⋮
0 ⋯ 𝑒55

], F = [
𝑓11 ⋯ 𝑓15

⋮ ⋱ ⋮
0 ⋯ 𝑓55

] 


