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“Prices versus quantities” (Weitzman 1974), a hugely influential paper, is widely cited (and 
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trade. Weitzman models a flow pollutant, but greenhouse gases are persistent. Stock pollutants 
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1 Introduction

Following the Paris Climate Agreement, 88 countries are considering imple-

menting either a tax or a cap and trade system to regulate greenhouse gas

emissions. To date, 40 countries have implemented one of these market instru-

ments, with about half using each policy.1 The European Emissions Trading

System (ETS) alone has an annual market value of about 40 billion USD. The

biggest ETS in the US is California’s with a market value of 6.5 billion USD,

and China is currently introducing the largest overall. Singapore and South

Africa are about to introduce a carbon tax. The World Bank & Ecofys (2018)

lists 27 immediate initiatives considering the introduction of either policy in-

strument, where the majority are ETS and 7 are labeled as undecided; 13 of

these initiatives are at the country level.

Weitzman’s (1974) “Prices versus quantities” is among the most widely

taught papers in environmental economics. It is elegant, simple, and makes

an important point about ranking these two most popular market-based policy

instruments to control pollutants. The paper has been widely cited in debates

over climate policy (total citations> 3500). In teaching students about climate

change and cap-and-trade systems, we use Weitzman’s (1974) reasoning to

explain why society would probably be better off using taxes.

Weitzman models the regulators uncertainty about firms’ abatement costs.

He shows that this uncertainty creates a lower deadweight loss under a tax

than under cap and trade (a quota) if and only if the slope of the marginal

abatement cost curve is steeper than the slope of the marginal damage curve.

His paper describes a flow pollutant, making the analysis simple and crisp.

A flow pollutant affects society only in the period when it is released. How-

ever, most regulated pollutants have some persistence or cumulative impact.

For example, carbon dioxide emissions have an effective half-life well above a

century. Weitzman’s logic underpins much of the discussion about instrument

1In addition there are about 20 subnational initiatives, 8 of which are in China and will
be replaced by the currently introduced national ETS. Some countries have both taxes and
ETS in place. See carbonpricingdashboard.worldbank.org for a regularly updated overview
and interactive map.
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choice in climate policy. We show that this logic fails for the stock pollutants

causing climate change.

The correction needed to rank taxes and quotas for stock pollutants is al-

most as simple as Weitzman’s criterion for a flow pollutant. Section 2 explains

the basic idea using graphs. Section 3 presents the formal results using a dy-

namic programming model with serially correlated technological shocks and

gradual diffusion of new technologies, under asymmetric information. Sec-

tion 4 calibrates the model based on widely-used estimates of abatement costs

and climate-related damages. It shows that the advantage of taxes over quotas

in controlling greenhouse gas emissions is much weaker than widely believed.

We now review the intuition for Weitzman’s ranking and explain the cor-

rection needed for stock pollutants. Under a tax, technological uncertainty

creates uncertainty about emissions, and consequently about damages. Un-

der a binding quota, technological uncertainty does not alter emissions, but

it creates cost uncertainty for firms. If the (aggregate) marginal abatement

cost curve is steeper than the marginal damage curve, then uncertainty about

abatement costs harms society more than uncertainty about damages. Hence,

in the static (flow pollutant) setting taxes are preferred if and only if the

marginal abatement cost curve is steeper than the marginal damage curve.

In a dynamic setting with stock pollution, in each period we have to com-

pare current abatement costs with the discounted stream of damages occur-

ring over an extended time horizon. Hereafter, in discussing stock pollutants,

we refer to the discounted stream of marginal damages simply as “marginal

damages”. In the climate context, the relevant marginal damage function is

referred to as the social cost of carbon. Applying the logic described above

to the climate context, one might be tempted to rank taxes and quotas by

comparing the slopes of the social cost of carbon and the marginal abatement

cost curve. Indeed, the literature makes this leap (e.g. Nordhaus 20082, Wood

2“Uncertainty pervades climate-change science, economics, and policy. One key difference
between price and quantity instruments is how well each adapts to deep uncertainty. A major
result from environmental economics is that the relative efficiency of price and quantity
regulation depends upon the nature – and more precisely the degree of nonlinearity – of
costs and benefits (see Weitzman 1974).”

2
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& Jotzo 20113 Weitzman 20184).5

This leap is generally incorrect. In the dynamic setting the abatement

technology is a stochastic process. Every period gives rise to an innovation

unknown to the policy maker at the onset of the regulation period. Because

technology is highly persistent, the technological innovation affects not only

the abatement cost in the present period, but also the abatement costs in future

periods. Consequently, the innovation also changes future optimal (or business

as usual) emissions, thus changing the future baseline concentration of the

pollutant. With convex damages, the marginal damage caused by additional

emissions today depends on the pollutant’s baseline concentration.

As a consequence, the technology shock not only shifts the marginal abate-

ment cost curve, but it simultaneously shifts the marginal damage curve (=

social cost of carbon). The policy ranking depends as much on this shift as it

does on relative slopes. In an extreme case, this additional shift implies that

a cap and trade system is first best (not just better than the tax) even if the

marginal damage curve is much flatter than the abatement cost curve.

Technological innovations typically diffuse slowly through the economy,

rather than being adapted instantly. Gradual diffusion creates a gap between

the feasible and the implemented technology level; current adoption signals

greater future adoption. With gradual diffusion, a technology shock might

have little effect on current abatement costs, but the future adoption can

lead to a large shift in the social cost of carbon. Thus, gradual diffusion of

technology also favors quotas over taxes.

Hoel & Karp (2002) analyze prices versus quantities for a stock pollutant

in a setting where current innovations have no impact on future technology,

thereby ruling out our results. Newell & Pizer (2003) rank the two policies

when cost shocks are serially correlated in an open-loop setting, where the

3“It is generally thought that this is the case with climate change for the comparison
between price and quantity instruments.”

4“For example in the case of CO2, since the marginal benefit curve within a regulatory
period is very flat [...] the theory strongly advises a fixed price as the optimal regulatory
instrument.”

5Other recent reviews of taxes and quotas in the context of climate policy, include Hep-
burn (2006), Aldy et al. (2010), Goulder & Schein (2013), and Newbery (2018).
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regulator chooses current and future policy levels at the initial time. They show

that positively correlated cost shocks increase stock volatility under taxes,

favoring quotas, although not by enough to tip the balance.6 The intuition

they provide depends crucially on the open loop assumption that future policy

makers do not respond when the realized technology and emission levels drift

away from anticipated levels. In contrast, the effect we describe precisely

depends on the fact that policy makers will update the emission targets after

observing past technological innovations. Karp & Zhang (2005) compare the

policy ranking across the open loop and feedback settings, with correlated

shocks.7 They observe that the ranking of taxes versus quantities changes,

but they do not recognize the different mechanism in the feedback setting and

its ability to make quotas dominate taxes in the climate context.

Our contributions: (i) develop a simple and intuitive ranking criterion;

(ii) explain why Weitzman’s reasoning does not carry over to stock pollutants;

(iii) show that the case for taxes is much weaker in climate change than pre-

viously thought; (iv) additionally show that under slow technology diffusion

quotas can, in special cases, implement the first best allocation under uncer-

tainty (even when the marginal abatement cost curve is steeper than marginal

damages).

6Under taxes in the open loop setting, positively serially correlated shocks translate into
positively serially correlated levels of emissions. These raise the volatility of the pollution
stock and increase the deadweight loss arising from stock uncertainty. In contrast, under
quotas in the open loop setting, the stock trajectory is deterministic. Serial correlation does
not have a similar impact on the deadweight loss arising from abatement cost uncertainty,
because abatement costs depend only on a period’s shock realization, not on its history.
This intuition breaks down under feedback policies, where the stock trajectory is stochastic
under both taxes and quotas. By conditioning future policies on historic shock realizations,
policy makers eliminate the cumulative deviation between the realized and the optimal stock
levels.

7Karp & Zhang (2012) study a more general model that includes endogenous investment
in abatement capital.
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2 One-period graphical analysis

Weitzman’s static model for a flow pollutant produces a simple criterion for

ranking a tax and quota. A variation of this one-period model reveals a fun-

damental difference between the settings where damages depend on the flow

of pollution or the stock of pollution. The criterion for ranking policies in the

stock-related case is only slightly more complicated than in the flow-related

case, and it closely relates to the formula we develop for the dynamic model.

2.1 Review of standard model

In the classic prices versus quantities setting, marginal damages increase lin-

early in emissions: MD = a + bE . The slope parameter b characterizes the

convexity of damages. Similarly, the classical setting assumes that marginal

benefits from emissions are linear. An optimizing firm emits to the point

where the marginal benefits of emissions equal the marginal abatement costs.

We write these marginal costs as a function of emissions (instead of abate-

ment): MAC = θ− f E . The slope parameter f captures the concavity of the

benefits from emitting or, equivalently, the convexity of the abatement cost.8

The upper left panel in Figure 1 depicts the MD curve as the increasing solid

line and shows the expected abatement cost curve as the decreasing solid line.

The parameter θ is private information, known to the firm but not to

the policy maker. The planner knows only the expected value of θ. A risk

neutral planner sets E(MAC) = MD, equating the marginal damage curve

and the expectation of the marginal abatement cost curve.9 With taxes, the

8Let the absolute benefits of emissions beB(E) = θE − f
2
E 2. Abatement is the difference

between business as usual and actual emissions: A = EBAU −E . Business as usual emission
are industry’s optimal emissions in the absence of policy. Firms’ first order condition for
unregulated emission optimization yields EBAU = θ

f
. Thus, the absolute abatement costs

are AC(A) = B(EBAU ) − B(E) = θEBAU − f
2
EBAU 2

− θE + f
2
E 2 = 1

2

θ2

f
− θE + f

2
E 2

resulting in the marginal abatement costs MAC(A) = (−θ + f E )dE
dA

= θ − f E . Thus, f
indeed describes both the concavity of emission benefits and the convexity of abatement
costs.

9The common assumption that the intercept but not the slope is private information is
key to the simplicity of both Weitzman’s and our result (Perino & Requate (2012)). Hoel

5
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policy fixes the emissions price at the green (horizontal) line in Figure 1. In a

quantity setting, the policy caps the emissions at the red (vertical) line.

Figure 1 shows the realized marginal abatement cost curve as the dashed

line. The top left panel shows the tax and the quota equilibria for a flow

pollutant, both of which differ from the social optimum. The figure identifies

the deadweight loss under the tax as a light green triangle and the deadweight

loss under a quota as a red triangle. The (green) deadweight loss under the tax

is smaller than the (red) deadweight emerging under a quota. In this figure,

taxes dominate quotas because the MAC curve is steeper than the MD curve.

2.2 Modification for a stock pollutant

Weitzman’s (1974) setting assumes that a change in θ does not shift the MD

curve. A footnote in his paper, elaborated by Stavins (1996), points out that

a correlation between θ and the MD curve complicates the policy ranking.

Stavins describes situations where an underlying factor simultaneously affects

marginal abatement costs and marginal damages. For example, a sunny day in-

creases ultraviolet radiation, increasing ozone production, raising ozone abate-

ment costs. If the sunny day causes people to spend more hours outdoors,

marginal damages from ozone (respiratory stress) also increase.

In a dynamic setting, stock pollutants and abatement technologies evolve

over time. The policy maker has to regulate pollution without knowing the

current or future abatement costs. Technology shocks are persistent and an

innovation simultaneously lowers current and future abatement costs. A re-

duction in the future costs changes future emissions, altering future levels of

the stock pollutant. The change in future stocks affects the discounted stream

of damages resulting from emitting an additional unit of the pollutant today.

Thus, the innovation that shifts the marginal benefits curve also shifts the

marginal damage curve. Here we need not search for a distinct factor (e.g. the

sunny day in Stavin’s example) that affects both abatement costs and dam-

& Karp (2001) rank the two policies in a model with stock pollutants, when a serially
uncorrelated shock affects the slope. The resulting criterion for policy ranking is not closely
related to the criterion where the shock affects the intercept of marginal cost.

6
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Figure 1: Illustration of Weitzman (1974) insights for a flow pollutant (top panels)

and a quasi-static illustration of the changes for a stock pollutant (bottom panels).

The light green (left) triangle characterizes the deadweight loss under a tax, whereas

the red (right) triangle characterizes the deadweight loss under a quota. The black

solid lines represent expectations, and their dashed counterparts represent realiza-

tions. The panels on the right add labels of relevant distances and slopes for our

graph-based quantitative illustration of taxes versus quotas.

ages. The uncertainty about technology at the heart of Weitzman’s (1974)

framework necessarily affects marginal damages as well.

7
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The lower left panel in Figure 1 illustrates the consequences of the above

insight. The MD curve now represents the discounted stream of future dam-

ages arising from the flows’ impact on the pollution stock: the social cost of

carbon in the climate context. To use graphical analysis, we take this marginal

damage function as exogenous. In the genuinely dynamic setting discussed in

Section 3, the marginal damage function is endogenous.

We again assume that an innovation lowers, by ∆, the marginal abatement

cost from the solid line to the dashed line. Because technology is persistent,

the reduction in marginal abatement costs makes future emission reductions

cheaper, and reduces future emissions (both optimal and business as usual).

The resulting reduction in the future pollution stock lowers the marginal dam-

age from releasing an additional unit of the pollutant today. As a consequence,

the MD curve also shifts down. The parameter ϕ relates the shifts of the MD

and the MAC curves. In the climate change setting, ϕ equals the derivative

of the social cost of carbon with respect to the technology shock.

The lower panels in Figure 1 show that the downward shift of the MD

curve increases the deadweight loss of the tax and reduces the deadweight loss

of the quota. The ranking of taxes versus quantities now depends on both the

relative slopes of the two curves and the shifter ϕ. The key feature to observe

in the figure is that the equilibrium emissions adjustment to a shock under the

tax exceeds the socially optimal adjustment, whereas emissions under a quota

do not respond. The deadweight loss is monotonic in the deviation between the

equilibrium adjustment and the socially optimal adjustment: taxes dominate

quotas if and only if the deviation is greater under quotas than under taxes.

A shift of the MD curve (a positive value of ϕ) does not alter the equilibrium

emissions adjustment under taxes or quotas, but it reduces the socially optimal

adjustment, moving it closer to the equilibrium under quotas (no adjustment).

Therefore, a positive value of ϕ always lowers the deadweight loss under quotas

and raises the deadweight loss under taxes.

8
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2.3 Policy ranking with a stock pollutant

This subsection offers a graphical perspective on some results derived in the

dynamic model (Section 3). The right panels in Figure 1 enrich the graphs of

the left panels by adding labels to the slopes and some of the distances in the

graphs.

We use the upper right panel of Figure 1 to establish Weitzman’s result

that a tax dominates a quota for a flow pollutant if and only if the MAC curve

is steeper than the MD curve. The green and the red triangles representing

the deadweight losses are similar, i.e., they have the same angles. As a conse-

quence, the deadweight loss of the tax (light green triangle) is smaller than the

deadweight loss of the quota (red triangle) if and only if s < k. The absolute

value of the slope of the MAC curve is mMAC ≡ k
h
and the slope of the MD

curve is mMD ≡ s
h
. Thus, mMAC

mMD = k
s
and taxes dominate quotas (k

s
> 1) if

and only if mMAC > mMD, confirming Weitzman’s result.

The lower right panel in Figure 1 adds labels to the one-period illustration

for the stock pollutant. Now, in addition to the slopes, the responsiveness

ϕ of the MD curve to a given shift of the MAC curve matters. We use three

geometrical relations from the graph. First, we relate the deadweight loss

under the quota to the relative shift ϕ. Using the relation d
d+k

= ϕ, we have

d =
ϕ k

1− ϕ
or

d

k
=

ϕ

1− ϕ
. (1)

Once again, the light green and the red triangles representing the deadweight

loss in the two settings are similar (same angles), and we compare them based

on their sides s and k. By the definition of the slope, h mMAC = k + d ⇒
h mMAC

k
= 1 + d

k
. Using equation (1) to replace the fraction d

k
delivers

h mMAC

k
=

1

1− ϕ
. (2)

Similarly, we observe that h mMD = s− d ⇒ h mMD

s
= 1− d

s
. Using equation

(1) to replace d, we obtain

h mMD

s
= 1−

ϕ

1− ϕ

k

s
. (3)

9
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Dividing equation (3) by equation (2) and solving for s
k
delivers

s

k
=

1

1− ϕ

(

mMD

mMAC
+ ϕ

)

.

Taxes dominate quotas if and only if the deadweight loss of the tax is smaller

than the deadweight loss of a quota, i.e., s
k
< 1, which is equivalent to10

mMD

mMAC
< 1− 2ϕ. (4)

If the marginal damage curve is somewhat responsive to the technology

shock, then the MAC curve has to be much larger than the MD curve for

taxes to be the preferred instrument. The next section builds an explicit

model of stock pollution, verifying and extending equation (4). It finds a

closely related formula and expresses the slope of marginal damages and the

shifter ϕ in terms of fundamentals.

3 The dynamic model

In the dynamic setting, two sources of asymmetric information cause the non-

equivalence of taxes and quotas. First, asymmetry arises because technology-

related costs are private information when firms choose emissions. Second,

asymmetry arises because emissions decisions occur more frequently than pol-

icy updates, unless the regulator can condition the policy instrument on the

arriving information.

Our analysis focuses on the asymmetric information resulting from tech-

nological innovation, which we consider most relevant for three reasons. First,

many technological innovations are genuinely private information or at least

unverifiable information at the time firms choose emissions. Second, it is hard

to explicitly condition policy on technological innovation. Third, technological

10See Stavins’s (1996) for a criterion with arbitrary correlation between marginal damages
and abatement costs. Our criterion fleshes out the case of full-correlation arising in the
dynamic setting. Our graphical derivation makes the mechanism transparent, and provides
important intuition for the results below.

10
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innovations are persistent and, therefore, affect all future periods. As a result,

the impact of technology shocks is not easily mitigated by intertemporal ar-

bitrage. In contrast to persistent technological innovations, macro-economic

shocks usually have a low to moderate serial correlation. As a result, intertem-

poral arbitrage through banking and borrowing of certificates, or through the

European Emission Trading System’s market stability reserve, substantially re-

duce market disturbances from such shocks. Moreover, it is relatively easy to

condition carbon policy on macroeconomic indicators as suggested by Boren-

stein et al. (2014), which can eliminate the costs from asymmetric information

independently of serial correlation (Appendix A).

3.1 Description of the model

The model contains two state variables: a pollution stock and a technology

level. We express the pollution stock, St, as the deviation from the “no-harm”

level; for climate change St corresponds to the deviation from the pre-industrial

carbon concentration. The equation of motion for the stock is

St+1 = δSt + Et,

where Et is the annual emission flow and δ ∈ (0, 1) captures the persistence

of harmful pollution (decay factor 1 − δ). The pollution stock causes annual

damages of b
2
S2
t .

11 The exogenous parameter b equals the slope of the marginal

flow damage curve. The (discounted stream of) the marginal damage from

releasing another unit of emissions and its dependence on technology shocks is

endogenous to the model, not an exogenous input as in the preceding section.

We characterize the abatement technology by a deterministic trend and a

stochastic deviation from this trend θt. This deviation is a highly persistent

stochastic process under iid shocks εt ∼ iid (0, σ2). The equation of motion

11The absence of a linear damage term results from our assumption that the natural
steady-state level of the pollutant is also the no-harm level, which for climate change is the
pre-industrial level of carbon dioxide. Introducing an additional linear term does not change
our formal results and merely matters for the model’s calibration, see section 4.1 for further
discussion.

11
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for θ is

θt = ρθt−1 + εt,with ρ > 0 and Et(εt) = 0.

The policy maker knows θt−1 but not εt when she chooses policy at time t;

firms know both θt−1 and εt at time t. This asymmetry provides the dynamic

analogue of Weitzman’s (1974) asymmetric information. Firms adopt only the

fraction α ∈ (0, 1] of the novel technological innovations immediately. They

adopt the remaining fraction in the next period. This model captures grad-

ual diffusion without the need of an additional state variable.12 We define

θ̂t ≡ ρθt−1 + αεt as the stochastic component of the adopted technology, and

we let ht denote the deterministic trend of adopted technology. We note that

under gradual diffusion the present realization of the technology adoption car-

ries more information about future realizations of technology adoption: the

correlation between θ̂t and θ̂t+j decreases with α.13

The firms’ emission benefits are (ht + θ̂t)Et −
f

2
E2

t , where f is the slope

of the marginal abatement cost curve. A higher value of θ̂t corresponds to

a larger marginal benefit from emitting: a larger marginal abatement cost.

A better-than-expected technological innovation therefore corresponds to a

negative realization of the shock ε: an innovation lowers the marginal benefit

of emissions, thus lowering abatement costs.

We use superscripts Q and T for the quota and tax policy scenarios. Under

a binding quota, the regulator chooses the actual emissions level EQ
t and has

the expected flow net benefit (using Et αεt = 0)

(ht + ρθt−1)E
Q
t −

f

2

(

EQ
t

)2

−
b

2
S2
t .

Under a tax τt the firm’s payoff is (ht + θ̂t)E − f

2
E2

t − τtEt, implying the first

order condition ht + θ̂t − fEt = τt. This first order condition results in the

12Even in a model with gradual diffusion, the most important characteristic of the diffusion
process for the policy ranking would be the amount of technology adopted during the current
policy period relative to the long-term future. It is precisely this characteristic of technology
diffusion that we capture by α.

13The correlation between θ̂t and θ̂t+j is ρj
(

ρ2 ρ2j
−1

ρ2
−1

+ α2

)

−0.5

, see Appendix B.3.

12
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firm’s decision rule

ET
t = eTt +α

εt

f
with eTt ≡

ht + ρθt−1 − τt

f

(

= EET
t

)

.

It is convenient to model the tax-setting regulator as choosing expected emis-

sions eTt , which is equivalent to setting the tax τt = ht+ρθt−1−f eTt . The tax

payment is a pure transfer and does not enter the regulator’s payoff function.

The tax-setting regulator’s expected flow net benefit from emissions is

(ht + ρθt−1) e
T
t −

f

2

(

eTt
)2

+
α2

2f
σ2 −

b

2
S2
t .

For both problems, the regulator wants to maximize the expectation of the

present discounted stream of net benefit flows, defined as the benefit of emis-

sions minus the stock-related damage. She balances the persistent costs from

pollution with the transitory benefits from emitting. The discount factor is

β. At the end of period t the regulator learns the value of θt by observing

the permit price induced by the quota or the level of emissions induced by the

tax. Thus, the regulator knows θt when choosing the policy level at t+1. The

pollution stock is public information.

3.2 Policy ranking

The marginal pollution damage, the Social Cost of Carbon (SCC) in the

climate setting, is

SCCt = χt + λSt + µθt−1.

Appendix A provides formulae for λ, the derivative of the SCC with respect

to the carbon stock, and µ, the derivative of the SCC with respect to the

technology realization, and shows that both are positive constants. An increase

in the stock of carbon increases the SCC, and (because ρ > 0) a higher cost of

abatement shifts up the graph of the SCC as a function of carbon. The time

dependence of χt reflects the SCC’s response to the technology trend ht. The

functions χt, λ and µ are the same under the optimal tax, the optimal quota,

13
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and in the full information (first best) setting where the planner observers εt.

The levels of emissions are the same in the three settings if and only if the

shock equals its expected value, εt = 0.

We denote by r ≡ b
f
the ratio of the slopes of the marginal flow damage

and the marginal abatement cost. This slope describes the relative convexity

of the damage and the abatement cost functions. For a flow pollutant, taxes

dominate quotas if and only if r < 1. In the case of carbon dioxide, r is tiny,

about 8 × 10−4 for our baseline calibration (Section 4.1). For the case of a

stock pollutant, the intertemporally aggregated marginal damages, the SCC,

replace the flow marginal damages. Accordingly, we define the ratio R ≡ λ
f
,

which relates the convexity of stock damages to that of abatement costs.14

Lemma 1 gives the relation between these two slopes.

Lemma 1 Under both taxes and quotas, the slope of the SCC with respect to

the stock of carbon, relative to the slope of marginal abatement cost is

R ≡
λ

f
=

1

2β

(

−
(

1− βδ2
)

+ βr +

√

(1− βδ2 − βr)2 + 4βr

)

. (5)

Unsurprisingly, the discount factor β and the persistence of the pollutant δ

play the major role in relating the flow ratio r and the stock ratio R. Figure 2

graphs R
r
as functions of the flow pollution ratio r for our baseline calibration

of β and δ (solid) and for an alternative with higher discount factor and higher

persistence (dashed). In our base calibration, R is 23 times as large as r. This

factor means that aggregate damages are more convex than flow damages: the

SCC is much steeper in emissions than is the flow marginal damage curve.

14It is insightful consider the time step and units explicitly when defining R. Appendix A
uses a parameter φ to denote the time step, enabling a simple scaling of the period’s length.
There, we define R ≡ λ

f
φ. R relates the slope of the SCC curve, ∂SCC

∂St
, to the slope of the

MAC curve, ∂MAC
∂Etφ

. Here, Etφ is the amount of emissions over the course of the period,
equal to the annual emissions flow times the number of years in a period: we have to compare
the cost of the marginal unit change of atmospheric carbon with a unit change of abatement
over the course of the period (rather than with the annual flow). The parameter φ carries
the unit time, and R ≡ ∂SCC

∂St /∂MAC
∂Etφ

= λ
f
φ is unit free. In the main text, we set φ = 1 (rather

than “1 year”) for ease of notation. This choice picks units in which years are normalized
to unity.

14
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R
r

r

high βδ

baseline

l
rbase

Figure 2: The solid graph shows the ratio R
r
for our baseline values of β and

δ with an annual time step. The dashed graph increases the half life of the
stock by 50% and lowers the discount rate from 2% to 1% per year. “rbase”
marks the slope ratio in our baseline calibration.

The following proposition provides two equivalent characterizations of the

criterion ranking taxes and quotas for a stock pollutant.

Proposition 1 Taxes dominate quotas if and only if

R <
1

β
−

2µ

α
⇔ R < Rcrit ≡ −

1

2
κ1 +

1

2

√

κ2
1 + 4κ0 (6)

with κ1 ≡
δρ (2− α)

α
and κ0 ≡

1− βδρ

β2
.

For flow pollutants taxes dominate quotas if and only if r < 1. The first

condition in Proposition 1 shows that (i) the relevant slope criterion for a

stock pollutant is R instead of r, (ii) a higher value of µ favors quotas, and (iii)

slow technology adoption favors quotas.15 The shadow value µ captures the

responsiveness of the social cost of marginal emissions (SCC) to the technology

realization. This shadow value is endogenous to the model. The right hand

side of the equivalence (6) expresses the criterion in terms of the fundamental

15Equation (11) in the appendix provides the formula for µ in terms of the the model’s
fundamentals. Importantly, µ is independent of α.
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Rcrit

δρ

α = 1

α = 3
4

α = 1
2

Rcrit

δρ

Figure 3: Rcrit as a function of δρ for α = 1 (red dash), α = 0.75 (solid), and
α = 0.5 (green dash), with an annual time step. Quotas dominate taxes for
R > Rcrit. The upper right graph zooms in on high values of δρ as they prevail
in the climate context, the “o” marks our baseline calibration.

model parameters. We note that the ratio R and the critical level Rcrit respond

differently to parameters: R depends on all parameters except α, whereas Rcrit

depends on all parameters except r.

Figures 3 graphs Rcrit as a function of the “joint persistence” δρ of the stock

pollutant and technology for three values of α, assuming an annual time step

and the discount factor β = 0.98. For the case of no persistence of pollution or

technology δρ is close to zero and the left panel shows that the critical value

is close to unity, as in the static criterion. However, for climate change δ is

close to 1; and with persistent technology so is ρ. For δρ ≈ 1 the right panel

of Figure 3 shows that the critical value remains bounded away from 0. In the

climate change context, quotas might dominate taxes not only when r is tiny,

but even if R is close to 0. Section 4 further explores this possibility.

We provide intuition for our results building on the case of a flow pollutant.

There, a technology innovation (a negative value of ε) lowers both the socially

optimal emission level and marginal abatement cost. Under taxes, firms face

constant abatement prices and the emission quantity overreacts compared to

the socially optimal response. This quantity fluctuation’s impact on expected

16
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damages is the dominating contribution to the deadweight loss under a tax.

By Jensen’s inequality, the convexity of the damage function determines its

magnitude. Under quotas, emissions are constant but the firms’ equilibrium

marginal abatement costs overreact compared to the social optimum. This

exaggerated abatement cost fluctuation is the dominating contribution to the

deadweight loss under quotas, and by Jensen’s inequality the convexity of

the abatement cost function determines its magnitude. If abatement costs

are more convex than damages, the deadweight loss is larger under a quotas.

Lemma 1 shows that stock pollution increases the relative convexity of the

damage function (R instead of r), thereby weakening the case for taxes.

Proposition 1 states that, for a stock pollutant, a greater sensitivity of the

SCC to technology (higher µ) and a slower technology diffusion (smaller α) fur-

ther strengthen the case for quotas. We start by providing the intuition for the

case of immediate technology diffusion (α = 1). As discussed in the preceding

paragraph, the dominating contribution to the deadweight loss under quantity

regulation of flow pollutants is the overreaction of the equilibrium abatement

price relative to the socially optimal response. For a stock pollutant, techno-

logical innovation today implies lower future emissions, resulting in a lower

future pollution stock.16 Consequently, a technological innovation reduces the

marginal damages resulting from an additional emission unit today (assuming

convex damages). This reduction in marginal damages amplifies the socially

optimal price fluctuation resulting from the innovation’s reduction of marginal

abatement costs. Thus, the socially optimal price fluctuation is larger in the

stock pollution setting than in the flow pollution setting: the innovation af-

fects marginal costs and marginal damages in a perfectly correlated way. A

part of what would be an “overreaction” of emission prices under quantity

regulation of a flow pollutant becomes a socially optimal variation under a

stock pollutant.

Proposition 1 shows that a higher (endogenous) value of µ favors quotas.

16In line with the empirical findings for most sectors, our functional forms imply that
there is no rebound effect strong enough to increase aggregate emissions in response to an
emissions-saving innovation

17
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The shadow value µ of the interaction term θtSt measures the responsive-

ness of the social cost of marginal emissions to the technology realization. If

the socially optimal abatement cost responds more sharply to innovation (µ

large), then the socially optimal response approaches the “overreaction” of

equilibrium marginal abatement costs under a quantity regulation, reducing

the deadweight loss of a quota. The graphical analysis in Section 2 reflects

this intuition. When the technological innovation shifts the marginal damage

curve for a stock pollutant (lower panels of Figure 1), it amplifies the optimal

price fluctuations in response to the innovation, relative to the case of the

flow pollutant (upper panels of Figure 1). Indeed, for α = 1, the left side of

the policy-ranking equivalence (6) (dynamic model) reproduces the left side

of the graph-based equivalence (4) that we derived in the quasi-static setting.

The dynamic model introduces the additional discount factor only because we

assume that today’s emissions contribute to tomorrow’s stock and damages,

whereas the quasi-static analog treated the damage as instantaneous.

The main difference between the quasi-static stock pollution extension and

the dynamic model is that both R and µ are endogenous in equation (6),

whereas the quasi-static model simply assumed some slope ratio of marginal

damages over marginal abatement costs and merely argued for the existence

of some shift, ϕ, of the marginal damage curve. In addition, the quasi-static

model cannot capture the fact that technology diffusion takes more than one

period (α < 1). Before continuing the discussion of technology diffusion and

the underlying intuition we pose one more question. Can the “overreaction”

of marginal abatement costs from the flow pollution perspective become a

socially optimal fluctuation for a stock pollutant?

Proposition 2 Assume that b, f, β, ρ, δ > 0 and that βδρ < 1.

(i) There exists α∗ ∈ (0, 1) such that the quota is first best.

(ii) A reduction in α favors quotas, and there exists αcrit ∈ (α∗, 1) such that

quotas dominate taxes for all α < αcrit.

The proposition shows that for any model calibration with convex damages

and abatement costs there exists a technology adoption rate α for which quotas

18
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α∗, αcrit

R

αcrit

α∗

l
Rbase

Figure 4: Quotas dominate taxes for α < αcrit, shown as the solid graph. The
quota is first best for α = α∗, shown as the red dashed graph. The graphs use
an annual time step and baseline values β = 0.98, δ = 0.997, and ρ = 0.99.
“Rbase” marks the slope ratio in our baseline calibration.

dominate taxes. For sufficiently slow technology diffusion, quotas are not only

preferred to taxes, but the cap and trade system achieves the first best emission

allocation even if the slope of the marginal damages curve is arbitrarily small

(but positive) and the slope of the marginal cost curve is arbitrarily large.

The proposition also implies that this situation can arise only under partial

technology diffusion (α < 1). Figure 4 graphs α∗, where quotas are first best,

and αcrit, below which quotas dominate taxes, as a function of R, the ratio of

stock damage convexity to abatement cost convexity.

To understand the role of technology diffusion, note that under partial

diffusion today’s technology shock provides information not only about to-

day’s technology adoption but also about subsequent adoption. Footnote 13

notes that partial diffusion increases the correlation between current and future

adopted technology. As a result, a given level of adoption today signals even

more future adoption. In particular, the socially optimal marginal abatement

cost responds to innovation, anticipating both present and future adoption.

In contrast, the marginal abatement cost under quantity regulation responds
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only to the presently adopted part of the innovation. As a consequence, partial

diffusion increases fluctuations of the socially optimal price of emissions rela-

tive to the fluctuations arising under quantity regulation. Given that quantity

regulation generally suffers from an overreaction of the emissions price, partial

diffusion reduces the welfare loss under a quota.

Appendix B.2 notes that for α < α∗ the socially optimal emission price

fluctuations are even stronger than the fluctuations under a quota. Moreover,

in this case, a technological innovation reduces marginal abatement costs but

increases socially optimal current emissions: the current innovation strongly

reduces future abatement costs (and thus emissions) but only slightly reduces

current abatement costs, making it optimal to emit more today in anticipation

of the high reductions of future abatement costs.

4 The climate context

This section calibrates the dynamic model to reasonable climate change sce-

narios using DICE 2013 (Nordhaus 2013) and IPCC (2013). Despite our use

of a stylized two-state model, the results illustrate the empirical relevance of

the conceptual and theoretical insights described above: they may reverse the

prices versus quantities ranking in plausible climate change scenarios.17

4.1 Application

We use DICE 2013 to calibrate the abatement cost and damage parameters f

and b. Our calibration uses annual values; in stating our units we suppress the

“year”. Appendix A provides an explicit treatment of the time step. Setting

17Our model is consistent with a different interpretation that uses recent evidence of a
near-linear relation between cumulative carbon dioxide emissions and temperature change,
the “transient climate response to cumulative CO2 emissions” (TCRE) (Matthews et al.
2009, MacDougall et al. 2017). With this alternative, we can set δ = 1 and replace S,
the carbon stock, with T , the temperature anomaly. The flow damage now depends on T
instead of S. Recent climate economic applications of the TRCE model include Brock et al.
(2014), Brock & Hansen (2017), and Dietz & Venmans (2018). This alternative requires a
slightly different calibration than the one presented below.
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abatement at 75% of the optimal level in DICE we obtain values for marginal

abatement costs during the period 2015 - 2050. Fitting the average of these

values to the linear marginal abatement cost function we obtain f = 1.8 in

units of G$
(GtCO2)2

, our baseline value. We will contrast the resulting ranking

with that obtained for a modified calibration that we refer to as low abatement

convexity. We obtain this lower value of f by setting abatement at only 50%

of the optimal level and averaging the marginal abatement costs of the DICE

model over the period 2015-2100, resulting in f = 1.2 in G$
(GtCO2)2

.18

To calculate the damage parameter b we set annual Gross World Product

(GWP) to the IMF’s 2016 estimate of 120 trillion in dolllars using purchasing

power parity.19 In DICE’s climate model, an increase of atmospheric carbon

dioxide by 1270 GtCO2 over the preindustrial level implies a medium to long-

run temperature increase of 2◦C. DICE assumes that this temperature increase

lowers output by approximately 1%. This calibration assumption implies b ≈

0.0015 in units of G$
(GtCO2)2

, our baseline value.20

We also consider a tipping or high damage convexity scenario based on

the concern that a temperature increase above 2◦C can trigger a variety of

feedbacks that lead to a steep increase of damages. In this scenario we assume

that the current temperature increase of approximately 1◦C causes negligible

damage, but an increase of 3◦C causes a 5% loss in GWP. DICE’s climate

model implies that an increase of 1600 GtCO2 produces a 3oC increase in

temperature. If this increase lowers GWP by 5%, then b ≈ 0.0047, our “tipping

point” parameter estimate.21

We also consider a flat marginal damage scenario where we set the slope

18The DICE 2013 marginal abatement costs change exogenously over time and endoge-
nously in the emission level, hence the variation.

19This value is high relative to other estimates; the exact value in the World Economic
Outlook Database, October 2017, is 120.197 trillion. We chose such a high value because
our model (apart from ht) is stationary, but world output is likely to grow substantially over
the coming century. We note that DICE’s much lower estimate of world output is based on
purchasing power parity weights that have recently been criticized for undervaluing output
of the developing world (Deaton & Aten 2017).

20This conclusion uses b
2
(1271)

2
= 120 × 103 (0.01). The factor 103 on the right side

converts 120 $Tr into 120× 103 $G(iga).
21This conclusion uses the calibration equation b

2
(1601)

2
= 120× 103 (0.05).
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parameter to one third of our baseline calibration for illustrative purposes:

b = 0.0005 $G
(GtCO2)2

. Such a slope reduction can represent a scenario with

a substantial reduction of the overall climate change impact. More interest-

ingly, it can also represent a scenario with a substantial “flat marginal damage

component”. Our model assumed that marginal damages are zero at the pre-

industrial carbon concentration. Positive (or negative) marginal damages at

the pre-industrial carbon concentration introduce a linear term in the damage

function. Such a linear term has no effect on our ranking criteria, but it af-

fects the damage calibration. Combining our 2◦C baseline calibration with a

positive marginal damage prevailing already at pre-industrial concentrations

would reduce the slope parameter b. Recent analytic models have suggested

that marginal damages might be flatter (Golosov et al. 2014). We note that

the literature cited in footnote 17 counters these arguments based on recent

climate modeling insights, and Tol’s (2018) recent empirical meta-review even

suggest that the first degree of warming might be beneficial, which would

increase rather than decrease the slope parameter in our calibration.

We use the annual discount factor β = 0.98, consistent with the median

2% discount rate in the recent expert survey by Drupp et al. (2018). We

also consider a high discount factor β = 0.99 as our low discounting scenario.

We assume close to perfect persistence of an innovation, employing an annual

correlation coefficient of 0.99. We calibrate the persistence of atmospheric

carbon to Joos et al.’s (2013) model for carbon removal from the atmosphere,

adopted in the 5th Assessment Report of the Intergovernmental Panel on Cli-

mate Change (IPCC 2013). A least square fit over 1000 years delivers an

annual removal rate of 0.3% (δ = 0.997), implying a half-life of 230 years.

Table 4.1 shows the policy ranking for our baseline scenario and its varia-

tions. The policy ranking is the same with either annual or decadal time steps

except in the “low discount” column. There, quotas dominate for all α with

a decadal time step. However, under an annual time step, taxes dominate if

α is close to 1. We have chosen α to be the fraction of technology adopted

during the current policy period. Here we see that the policy ranking is quite

sensitive to this fraction α, but relatively insensitive to the time step. (The
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Table 1: Taxes versus Quantities Reassessed

meaning base tipping
low
disc

low abate
convexity

low damage
convexity

technology
diffusion

α 1 0.5 any any* any (0.5,1)

damage
convexity

b 0.0015 0.0047 0.0005

discount
factor

β 0.98 0.99

abatement
convexity

f 1.8456 1.2

preferred
policy

tax quota quota quota* quota tax

The table states the optimal policy instrument (final row) for different calibrations.
The first column with numbers gives our baseline calibration. Numbers in other
columns show the parameters that differ in the alternative calibrations. Policy ranking
holds for both annual and decadal time step except for the ‘low discount’ column (*);
there, quotas dominate for full α domain only with a decadal time step; with an
annual time taxes dominate if α is close enough to unity. Parameters are in annual
units except for the rate of partial adoption α, which specifies adoption during the
regulation period.

time step affects the numeric values of only the discount and decay factors

β and δ.) Thus, it is not the duration of technology diffusion that matters,

but the amount diffused in the current policy period (shifting the MAC curve)

as compared to the amount diffused overall (shifting the SCC curve). For a

fixed speed of technology diffusion a longer regulatory period implies a higher

α (more adoption within the regulatory period). Therefore a long delay in

updating optimal policy favors taxes.

For our baseline calibration with immediate technology diffusion (α = 1)

we conclude that taxes dominate quotas, in line with previous literature. How-

ever, reducing the diffusion parameter α from 1 to 0.5 causes quotas to dom-

inate taxes. For the tipping point scenario, where we increase the damage

convexity, quotas dominate for all values of α (including α = 1, the feasi-

ble upper bound). Reducing the convexity of abatement cost or increasing

the discount factor both favor quotas. Our last column acknowledges recent

literature that argues for relatively flat marginal damages, based on the closed-
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form integrated assessment model by Golosov et al. (2014). For very low and

in particular flat marginal damages we get back to a scenario where taxes dom-

inate quotas, at least for α ∈ (0.5, 1), i.e., sufficiently fast technology diffusion.

From Proposition 2.ii we know that quotas dominate for sufficiently small α

as long as the marginal damage curve is not entirely flat.

The previous sections explain why the widespread argument for taxes dom-

inating quotas fails conceptually in the case of a stock pollutant. Our appli-

cation demonstrates quantitatively that the case for taxes over quotas in the

climate change context is much weaker than widely believed.

5 Conclusions

A widespread (static) criterion for ranking price-based and quantity-based reg-

ulation does not carry over to the dynamic setting where the regulated quantity

is persistent. In this setting, the asymmetric information between the regu-

lator and firms arises from technological change. The policy maker regulates

an externality but does not observe recent innovations. The standard ranking

criterion incorporates the effect of innovations on firms’ cost structure. Our

ranking criterion additionally incorporates the effect of the current innovation

on firms’ future production decisions and, thereby, externality costs arising

from future damages. Both the persistence of the regulated quantity and the

delayed technology diffusion favor quantity regulation.

Our discussion focuses on pollution control to mitigate climate change,

where Weitzman’s (1974) static ranking criterion is widely applied, even if

only informally. However, contrary to the assumptions of Weitzman’s model,

all regulated greenhouse gases are persistent and the major greenhouse gas,

carbon dioxide, persists for centuries. We emphasize that moving from flow

to stock damages substantially increases damage convexity, i.e., the slope of

the damage curve. We cannot judge the slope of the cumulative damage curve

(the Social Cost of Carbon) based on the (generally very flat) annual damage

curve.

Our main contribution is to derive a simple slope-based criterion for rank-
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ing prices versus quantities in the case of stock externalities under asymmetric

information. Our graphical derivation furthers the intuition and produces an

approximate ranking criterion. Our dynamic model formalizes the ranking

criterion. There, we recognize that slope and shift parameters are endoge-

nous. We also introduce a simple model of delayed technology diffusion and

demonstrate its policy relevance.

Our empirical application shows that the conceptual correction of the rank-

ing argument substantially weakens the case for price regulation in climate

change mitigation. We presented several reasonable calibrations for which

cap and trade (quantity regulation) dominates taxes (price regulation). We

selected our dynamic model to permit general analytic insight, restricting it

to two state variables. As a result, the model remains a simple and stylized

description of the complex assessment of climate change, even though we cal-

ibrate carefully to the integrated assessment literature and climate data. Our

quantitative results do not imply that quotas necessarily dominate taxes in

controlling carbon dioxide, but they demonstrate that our conceptual correc-

tion of the common ranking argument has serious policy implications.

Technological uncertainty lies at the heart of the Weitzman’s (1974) asym-

metric information problem. Technological change means that the regulator

does not learn firms’ current costs, even after many observations. In the pol-

lution context, the long-lasting impact of current shocks on future abatement

costs alters future emissions, changing social damages because these depend on

cumulative emissions. Similar problems arise wherever asymmetric informa-

tion is important and a regulator’s objective depends on cumulative regulated

actions.
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A Appendix: Proofs

A comment on macroeconomic shocks: The intercept of the firms’

marginal benefit of emissions, ht+ρθt−1+αεt, incorporates exogenous changes

via ht. We treat the function ht as deterministic, but nothing changes if we

add to ht an iid shock, uncorrelated with the technology shock, εt.

If ht is serially correlated, e.g., if it depends on macroeconomic variables

such as the business cycle, we would need to add additional state variables

to the model. For example, suppose that a serially correlated macro shock
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mt affects the intercept of marginal abatement cost, with mt = ρmmt−1 + ǫmt .

The regulator knows mt−1 when she announces the policy at the beginning of

period t, so mt−1 is a component of the state variable at time t; mt is public

knowledge when firms choose their emissions. Instead of choosing a level of

the tax or the quota, the regulator can choose a rule that is conditioned on

mt. Provided that ǫt and ǫmt are uncorrelated, this generalization does not

change the ranking criterion. Our paper therefore focuses on the technology-

related shock, which remains private information until the regulator observes

the emissions response to a tax, or the price of a quota. Hereafter, we ignore

the macro-related shock.

Time step: We choose the unit of time to be one year and we use

the parameter φ to represent the time step. Thus, if the time step is one

decade, φ = 10. This parameter does not appear in the formulae used in the

text, because there we set φ = 1. The parameter serves two purposes. The

parameter enables us to calibrate the model to a particular time step, we chose

one year, and then change the time step of the model without changing f or

b.

For example, if the firms’ benefit, during one year, of emitting at the annual

rate of xt is (ht + ρθt−1 + αεt) xt −
f

2
xt, then their benefit of emitting at the

same annual rate over a decade is
[

(ht + ρθt−1 + αεt) xt −
f

2
xt

]

10. This for-

mulation ignores discounting during a period. However, including intra-period

discounting merely introduces a constant factor multiplying each period payoff,

without changing the optimization problem or the policy ranking. Similarly, if

the stock during a period is St, annual damages equal b
2
S2
t and damages during

a decade equal b
2
S2
t 10. This formulation again ignores intra-period discount-

ing, and additionally assumes that the stock is constant during the period.

In the climate context, the stock changes little during a year or a decade, so

the assumption of a constant intra-period stock is unimportant. It would be

easy to drop this assumption at the cost of slightly more complicated notation.

The length of the time step also affects the numerical value of the discount

factor β and the decay factor δ. Our numerical evaluation takes this (expo-
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nential) scaling into account. In contrast, α denotes the adoption during the

current policy period and is therefore independent of the time step.

Notation: We take advantage of the linear-quadratic structure to avoid

having to solve separate problems when the regulator uses taxes or quotas or in

the first best (full information) setting. To this end, we introduce the indicator

function

Φ =

{

1 if tax

0 if quota
.

We use xt ∈ {eT , eQ} to denote the regulator’s control under tax and quantity

regulation, respectively. With this notation, the regulator’s problem, for i ∈

{T,Q}, is

maxEt

∑

∞

τ=0 β
[

(ht+τ + ρθt+τ−1) xt+τ −
f

2
(xt+τ ) + Φα2

2f
σ2 − b

2
S2
t+τ

]

φ

subject to St+τ+1 = δSt+τ + φxt+τ + Φφα εt
f
and θt = ρθt−1 + εt.

The term Φα2

2f
σ2 in the payoff arises from taking expectations, in each period,

of the shock for that period, εt. Here we use the assumption that these shocks

are iid with mean zero. We refer to the problem formulated using x and Φ

as the “generic problem” because it subsumes the problems under both taxes

and quotas.

Because the problem has two state variables, it is convenient to use matrix

notation. We define the state vector as Yt = (St, θt−1)
′ and we define the

following matrices:

Q =

(

−b 0

0 0

)

, A =

(

δ 0

0 ρ

)

, W =
(

0 ρ
)

,

B =

(

φ

0

)

, C =

(

Φφα
f

1

)

.

(7)
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With this notation, the net flow payoff and equation of motion for the

generic problem are:

[

htxt −
1
2
fx2

t +
1
2
Y ′

tQYt +WYtxt + Φα2

2f
σ2
]

φ and

Yt+1 = AYt + Bxt + Cεt.

Proof of Lemma 1. The dynamic programming equation for the generic

problem is:

J i
t (Yt) = Max

xt

[

htxt −
1

2
fx2t +

1

2
Y ′

tQYt +WYtxt +Φ
α2

2f
σ2

]

φ+ βEtJ
i
t+1 (Yt+1) .

(8)

The subscript t in Jt takes into account that the value function depends explic-

itly on calendar time due to the exogenous change in the intercept of marginal

costs, ht.

The value function for the LQ problem, for i ∈ {T Q}, is linear-quadratic:

J i
t (Yt) = V i

0,t + V ′

1tYt +
1
2
Y ′

t V2Yt. The terms V1t and V2 are the same under

taxes and quotas; only the term V i
0,t differs. The terms V1t and V i

0t inherit the

time-dependence of ht, but V2 is constant. Denote v1,t as the first element of

the column matrix V1t, and define χt = −βv1,t, the intercept of the graph of

the present value of the social cost of carbon. V2 is a symmetric matrix, which

we write as

V2 = −

[

λ µ

µ ν

]

. (9)

We write the difference in the payoff under taxes and under quotas as

∆t ≡ V T
0,t − V

Q
0,t.

Online Appendix B.1 provides the details of the following steps:

1) We substitute the equations of motion into the right side of the DPE,

equation 8, and take expectations.

2) We use the first order condition for xt to obtain the linear control

rule, xt = Z0t + ZYt. The coefficients of the control rule, Z0t and Z, are the
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same under taxes and quotas, a consequence of the “Principle of Certainty

Equivalence”; Z is a constant row vector and Z0t is a time-varying scalar.

3) We substitute the optimal control rule back into the right side of the

DPE to obtain the maximized DPE.

4) Equating coefficients of the terms that are quadratic in Yt and indepen-

dent of Yt (on the two sides of the DPE) we obtain, respectively, an algebraic

Riccatti equation for V2 and a difference equation for V i
0t.

This algorithm produces formulae for the endogenous parameters λ and µ.

Using the definition ̟ ≡ f
(

1− βδ2 − β b
f
φ2
)

, λ and µ satisfy

λ =
1

2βφ

(

−̟ +
√

̟2 + 4βφ2bf
)

> 0 (10)

µ =
λ

f

(

φβδρ

(1− βδρ) + βφλ
f

)

. (11)

From inspection of equation 10, λ > 0, so the numerator of the right side of

equation 11 is positive. Therefore, µ has the same sign as ρ, which in our

setting is positive, because the shock describes a technological innovation.22.

We define r ≡ b
f
, the ratio of the slopes of marginal damages and marginal

benefit (equal to marginal abatement cost) and R ≡ λ
f
φ, the ratio of the slope

of the SCC and the marginal flow benefit. The flexible time step φ enters

the definition of R because we are interested in the ratio of the costs from an

additional unit of emissions in the atmosphere λ and the benefits of emitting

one more unit of emissions over the course of a period. If the period is not

a year, then the benefit from one unit of emissions is f

φ
rather than f . The

parameter f measures the benefit from increasing the annual emission flow by

one unit (so φ times the unit increase over the course of a period). Dividing

both sides of equation 10 by f establishes Lemma 1.

Proof of Proposition 1. Step 4 in the algorithm described in the proof of

22The units of λ are USD
GtCO2

2 : The units of ̟ coincide with those of f and 1

φ
eliminates

the time unit in f . The value function parameter µ is unit-free.
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Lemma 1 also produces the difference equation for V i
0,t:

V i
0,t =

(

htZ0t −
1
2
f (Z0t)

2 + Φα2

2f
σ2
)

φ+

β
(

V i
0,t+1 + V ′

1t+1BZ0t +
1
2
(BZ0t)

′

V2 (BZ0t) +
1
2
C ′V2Cσ2

)

.

(Online Appendix B.1 derives this relation; see equation 25.) We define ∆t ≡

V T
0,t−V

Q
0,t, the difference in payoff under taxes and quotas. Using the fact that

Z0t, Vt+1, and V2 are the same under taxes and quotas, and the definitions of

Φ and C, we obtain the difference equation

∆t = V T
0,t − V

Q
0,t =

α2

2f
σ2φ+ β∆t+1

−1
2
βσ2

[

(

φα
f

1
)

[

λ µ

µ ν

](

φα
f

1

)

−
(

0 1
)

[

λ µ

µ ν

](

0

1

)]

⇒

∆t = β∆t+1 +
α2

2f
σ2φ− 1

2
βσ2φαφαλ+2µf

f2 = β∆t+1 +
αφ

2f
σ2
(

α− β φαλ+2µf
f

)

.

The last line follows from carrying out the matrix multiplication and then

simplifying. The steady state of this equation is the constant

∆ =
1

1− β

αφ

2f
σ2

(

α− β
φαλ+ 2µf

f

)

. (12)

Using the definition R ≡ λ
f
φ we have

∆ =
1

1− β

αφ

2f
σ2 (α− β (2µ+ αR)) .

This equation implies that taxes dominate quotas if and only if

α− β (2µ+ αR) > 0. (13)

Rearranging this inequality establishes the inequality on the left hand side of

the equivalence (6). We note that at this point the explicit dependence on φ
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has dropped out and matters only through the scaling of the discount factor

β and the decay factor δ.

We rearrange inequality (13) using the definition of R and equation (11)

for µ to obtain

α− β

(

2
βδρR

(1− βδρ) + βR
+ αR

)

> 0.

Multiplying by the positive denominator, this inequality is equivalent to

α ((1− βδρ) + βR)− β (2 (βδρR) + αR ((1− βδρ) + βR)) > 0

⇔− β2αR2 + (αβ − β (2βδρ+ α (1− βδρ)))R + α (1− βδρ) > 0

⇔R2 −
(αβ − β (2βδρ+ α (1− βδρ)))

β2α
R−

α (1− βδρ)

β2α
< 0

⇔R2 +
1

α
δρ (2− α)R−

(1− βδρ)

β2
< 0

⇔R2 + κ1R− κ0 < 0,

where the last inequality uses the definitions κ1 ≡ δρ(2−α)
α

> 0 and κ0 ≡
1−βδρ

β2 > 0.

The quadratic expression R2 + κ1R− κ0 is negative at R = 0 and remains

negative for R smaller than the positive root of the quadratic, defined as Rcrit

in the proposition. Hence the inequality is satisfied for R ∈ [0, Rcrit).

Proof of Proposition 2. (i) In the first best (full information) world the

regulator observes the technology shock in each period before choosing the

level of emissions. Here, the regulator conditions emissions on St, θt−1 and εt.

Under asymmetric information and quotas, the regulator chooses emissions

conditioned on St, θt−1 and Eεt = 0: under the quota, emissions do not

depend on εt. Thus, the quota might be first best only if the first best level of

emissions does not depend on εt.

We use well-known properties of the linear quadratic problem to show that

the independence of the first best level of emissions and εt is sufficient, not

merely necessary, for the quota to be first best. By the Principle of Certainty

Equivalence for the linear quadratic problem, the coefficients of the linear and
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quadratic parts of the value function, V1t and V2, are the same under taxes

and quotas in the scenario with asymmetric information and also in the first

best scenario. Thus, the parameters χt, λ, and µ are the same across the three

scenarios.

The first best level of emissions equates the realized MAC and the present

value of the social cost of carbon:

ρθt−1 + αεt − fEFB
t = β

(

χt + λ
(

δSt + EFB
t

)

+ µ (ρθt−1 + εt)
)

, (14)

where EFB
t denotes the first best level of emissions. An innovation εt causes

the MAC curve to shift up by αεt, and it causes the present value of the SCC

to shift up by βµεt. We obtain the first order condition for the quota under

asymmetric information by replacing εt with Eεt = 0 and by replacing EFB
t

with E
Q
t (the quota) in equation 14. The fact that χt, λ, and µ are the same in

the first best world and under quotas (and also under taxes) implies that the

quota is first best if and only if the first best level of emissions does not depend

on εt. From equation 14 this necessary and sufficient condition is equivalent

to α = βµ.

Thus, to establish part (i) of the Proposition we need only establish that

there exist an α ∈ (0, 1] that satisfies α = βµ. We have already established

(for ρ > 0, our maintained assumption) that µ > 0. To complete the proof we

need only confirm that βµ ≤ 1. Using the definitions of µ and R, we have

βµ ≤ 1 ⇔ β2R δρ

(1−βδρ)+βR
≤ 1 ⇔

Rβ (βδρ− 1) ≤ (1− βδρ) .

(15)

Because βδρ is bounded away from 1 and R > 0, the last inequality is always

satisfied. Therefore, there exists α ∈ (0, 1] that satisfies α = βµ.

(ii) To show that a reduction in α favors quotas, we note that Rcrit is a

differentiable function of α. Using the chain rule and the definitions of κ1 and
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κ0, we obtain
dRcrit

dα
= −

1

2

κ1 −
√

κ2
1 + 4κ0

√

κ2
1 + 4κ0

2δ
ρ

α2
> 0. (16)

Therefore, a reduction in α lowers the critical value Rcrit, above which quotas

dominate taxes.

To establish the second part of Part (ii), we note from Part (i) that for

α = βµ the quota is first best. Under the tax (using ET = eT + α εt
f
), we have

dET

dεt
=

α

f
>

α− βµ

f + βλ
=

dEFB

dεt
, (17)

where the second equality uses the first order condition 14 and the inequality

uses λ > 0 and µ > 0. This inequality means that emissions under the tax are

always more responsive to a shock, compared to the first best level of emissions.

Therefore, the tax can never support the first best level of emissions; quotas

strictly dominate taxes for α = βµ, where the quota is first best. This fact

and inequality 16 imply that quotas strictly dominate taxes for α ≤ α∗ = βµ.

The fact that this dominance is strict means that there exists αcrit > α∗ for

which quotas strictly dominate taxes when α < αcrit.
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B Extended Appendix

The first part of this appendix collects the details summarized by the algorithm

in the proof of Lemma 1. The second part provides heuristic arguments for

Propositions 1 and 2. The third part derives the formula for the correlation

in footnote 11.

B.1 Material for Lemma 1

The equations of motion are

Yt+1 = AYt + Bxt + Cεt

and the value function is

Jt (Yt) = V i
0,t + V ′

1tYt +
1

2
Y ′

t V2Yt.

The right side of the DPE, equation 8, is

(

htxt −
1
2
fx2

t +
1
2
Y ′

tQYt +WYtxt + Φα2

2f
σ2
)

φ+ βEtJt+1 (Yt+1)

=
(

htxt −
1
2
fx2

t +
1
2
Y ′

tQYt +WYtxt + Φα2

2f
σ2
)

φ

+βEt

(

V i
0,t+1 + V ′

1t+1Yt+1 +
1
2
Y ′

t+1V2Yt+1

)

.

Substituting in the equations of motion, we write the right side of the DPE as

(

htxt −
1
2
fx2

t +
1
2
Y ′

tQYt +WYtxt + Φα2

2f
σ2
)

φ+

βEt[V
i
0,t+1 + V ′

1t+1 (AYt + Bxt + Cεt)

+1
2
(AYt + Bxt + Cεt)

′

V2 (AYt + Bxt + Cεt)].

37



Taxes versus Quantities Reassessed Karp & Traeger

Taking expectations gives

(

htxt −
1
2
fx2

t +
1
2
Y ′

tQYt +WYtxt + Φα2

2f
σ2
)

φ+

β[V i
0,t+1 + V ′

1t+1 (AYt +Bxt)+

1
2
(AYt + Bxt)

′

V2 (AYt +Bxt) +
σ2

2
C ′V2C].

(18)

The first order condition is

(ht − fxt +WYt)φ+ β
(

V ′

1t+1B + B′V2Bxt + B′V2AYt

)

= 0 ⇒

htφ+ βV ′

1t+1B + (Wφ+ βB′V2A)Yt = (fφ− βB′V2B) xt = 0,

which implies the control rule

xt =
1

fφ− β (B′V2B)

(

htφ+ βV ′

1t+1B + (Wφ+ βB′V2A)Yt

)

or

xt = Z0t + ZYt with

Z0t =
htφ+βV ′

1t+1
B

fφ−β(B′V2B)
and Z = Wφ+βB′V2A

fφ−β(B′V2B)
.

(19)

Substituting the control rule into the expectation of the right side of the DPE
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(expression 18) gives the maximized right side of the DPE:

[ht (Z0t + ZYt)−
1
2
f (Z0t + Y ′

tZ
′) (Z0t + ZYt)

+1
2
Y ′

tQYt +WYt (Z0t + ZYt) + Φα2

2f
σ2]φ+

β
(

V i
0,t+1 + V ′

1t+1 (AYt + B (Z0t + ZYt))
)

+β
(

1
2
(AYt +B (Z0t + ZYt))

′

V2 (AYt + B (Z0t + ZYt)) +
1
2
C ′V2Cσ2

)

(20)

The terms that are quadratic in Y in expression 20 are

1

2
Y ′

t

[

(Q− fZ ′Z + 2W ′Z)φ+ β (A+ BZ)′ V2 (A+ BZ)
]

Yt (21)

Here we use the fact that WYt = Y ′

tW
′ (because both are scalars) so

WYt (ZYt) = Y ′

tW
′ZYt.

Now we use the fact that for any matrix H, Y ′HY = Y ′H ′Y (because

Y ′HY is a scalar). Therefore Y ′HY = 1
2
Y ′ (H +H ′)Y . We can write any

quadratic form as a symmetric quadratic. Using this fact, write

Y ′

tW
′ZYt =

1

2
Y ′

t (W
′Z + Z ′W )Yt.

Using this result we write the quadratic part of the right side of the maximized

DPE, expression 21, as

1

2
Y ′

t

[

(Q− fZ ′Z +W ′Z + Z ′W )φ+ β (A+ BZ)′ V2 (A+ BZ)
]

Yt

Equating coefficients of the quadratic terms on the left and right sides of the
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maximized DPE gives

V2 =
[

(Q− fZ ′Z +W ′Z + Z ′W )φ+ β (A+BZ)′ V2 (A+BZ)
]

(22)

We simplify the right side of equation 22 using the definitions of Z (equation

19) and V (equation 9) and the matrices defined in equation 7 to write

Z =
(

− δβλ

f+βλφ
, ρ−βµρ

f+βλφ

)

.

With this result, performing the matrix manipulation on the right side of

equation 22, and using equation 9, gives a recursive system of equations in λ,

µ, and ν:

−

[

λ µ

µ ν

]

=

[

− 1
f+βλφ

(fβλδ2 + bβλφ2 + bfφ) −βδ ρ

f+βλφ
(fµ+ λφ)

−βδ ρ

f+βλφ
(fµ+ λφ) − ρ2

f+βλφ
(−φβ2µ2 + λνφβ2 + 2φβµ+ fνβ − φ)

]

.

The equation for λ is

λ = 1
f+βλφ

(fβλδ2 + bβλφ2 + bfφ) ⇒

βφλ2 + (f − fβδ2 − bβφ2)λ− bfφ = 0

or

βφλ2 +̟λ− bfφ = 0.

The last line uses the definition ̟ ≡ f
(

1− βδ2 − β b
f
φ2
)

. The positive root

of this quadratic is

λ =
1

2βφ

(

−̟ +
√

̟2 + 4βφ2bf
)

. (23)

We know that the correct root is positive (so −λ < 0), because the negative
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root implies that the payoff grows arbitrarily large and positive as the stock

of carbon becomes large. However, large carbon stocks result in high damages

and a negative payoff.

The equation for µ is

µ = βδ
ρ

f + βλφ
(fµ+ λφ) ⇒ µ = βδρ

λ

f

φ

1− βδρ+ β λ
f
φ
. (24)

Collecting the terms in expression 20 that are independent of Yt and equat-

ing these to V i
0,t produces the difference equation

V i
0,t =

(

htZ0t −
1
2
f (Z0t)

2 + Φα2

2f
σ2
)

φ+

β
(

V i
0,t+1 + V ′

1t+1 (BZ0t) +
1
2
(BZ0t)

′

V2 (BZ0t) +
1
2
C ′V2Cσ2

)

.

(25)

B.2 Heuristic arguments

Equations 14 and 17 rely on only the Principle of Certainty Equivalence for

the linear quadratic problem. They do not require formulae for χt, λ and µ,

and therefore provide the basis for a hueristic argument. As noted in the proof

of Proposition 2, the fact that χt, λ and µ are the same in the three scenarios

(full information and asymmetric information under a tax or a quota) imply

that emissions in the three scenarios differ only if εt 6= 0, i.e. when the shock

does not equal its expected value. For εt = 0 we have EFB
t = E

Q
t = ET

t .

Emissions under the tax and in the first best scenario are linear in εt, with

derivatives given in equation 17; of course the quota is independent of εt. Thus,

for α 6= α∗,
dET

dεt
=

α

f
>

α− βµ

f + βλ
=

dEFB

dεt
>

dEQ

dεt
= 0. (26)

The welfare cost of deviating from the first best level of emissions is quadratic

in the deviation and symmetric around a zero deviation. The deviation be-

tween actual and first best emissions under the tax is

(

α

f
−

α− βµ

f + βλ

)

εt,
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and the deviation between actual and first best emissions under the quota is

−

(

α− βµ

f + βλ

)

εt.

We need to consider two cases: α − βµ > 0 and α − βµ < 0; for α = βµ

we know from Proposition 2 that quotas dominate. For α − βµ > 0 the

absolute value of the deviation under the quota exceeds the absolute value of

the deviation under taxes for all εt 6= 0 (so taxes dominate quotas) if and only

if
(

α− βµ

f + βλ

)

>

(

α

f
−

α− βµ

f + βλ

)

.

Rearranging this inequality and using the definition of R produces the first

equality in Proposition 1. For α− βµ < 0 the absolute value of the deviation

under the quota exceeds the absolute value of the deviation under taxes (so

taxes dominate quotas) if and only if

−

(

α− βµ

f + βλ

)

>

(

α

f
−

α− βµ

f + βλ

)

⇒ 0 >
α

f
.

This inequality is never satisfied, so for α− βµ < 0 quotas dominate taxes, as

established in the proof of Proposition 2.

Note that for α − βµ < 0 a larger current innovation (higher abatement

costs) reduces the current first best level of emissions. When α is small, a

positive current innovation means that abatement costs rise by a small amount,

but expected abatement costs for future periods are expected to rise by a large

amount. In this case, it is optimal to reduce current emissions (relative to the

case where εt = 0) in anticipation of high future emissions.

B.3 Intertemporal correlation of adopted technology lev-

els

This appendix derives the formula in Footnote 3.

We have θt = ρθt−1 + εt and θ̂t = ρθt−1 + αεt. Solving for θt+j and using

the definition of θ̂t+j produces
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θt+j = ρj+1θt−1 +

j
∑

s=0

ρsεt+j−s (27)

θ̂t+j = ρ

(

ρjθt−1 +

j−1
∑

s=0

ρsεt+j−1−s

)

+ αεt+j ⇒ (28)

vart

(

θ̂t+j

)

= ρ2
j−1
∑

s=0

ρ2sσ2 + α2σ2 and covt

(

θ̂t, θ̂t+j

)

= αρjσ2 (29)

Using the formula for covariance, we have

corrt

(

θ̂t, θ̂t+j

)

=
αρjσ2

√

(

ρ2
∑j−1

s=0 ρ
2sσ2 + α2σ2

)

(α2σ2)

(30)

Using
∑j−1

s=0 ρ
2s = ρ2j−1

ρ2−1
to simplify the denominator of the previous expression

produces

corrt

(

θ̂t, θ̂t+j

)

=
αρjσ2

√

(

ρ2 ρ
2j
−1

ρ2−1
σ2 + α2σ2

)

α2σ2

=
ρj

√

(

ρ2 ρ
2j
−1

ρ2−1
+ α2

)

, (31)

yielding the formula in Footnote 13.
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