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Abstract 
 
Before embarking on a project, a principal must often rely on an agent to learn about its 
profitability. We model this learning as a two-armed bandit problem and highlight the 
interaction between learning (experimentation) and production. We derive the optimal contract 
for both experimentation and production when the agent has private information about his 
efficiency in experimentation. This private information in the experimentation stage generates 
asymmetric information in the production stage even though there was no disagreement about 
the profitability of the project at the outset. The degree of asymmetric information is 
endogenously determined by the length of the experimentation stage. An optimal contract uses 
the length of experimentation, the production scale, and the timing of payments to screen the 
agents. Due to the presence of an optimal production decision after experimentation, we find 
over-experimentation to be optimal. The asymmetric information generated during 
experimentation makes over-production optimal. An efficient type is rewarded early since he is 
more likely to succeed in experimenting, while an inefficient type is rewarded at the very end of 
the experimentation stage. This result is robust to the introduction of ex post moral hazard. 
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1. Introduction 

Before embarking on a project, it is important to learn about its profitability to determine 

its optimal scale.  Consider, for instance, shareholders (principal) who hire a manager (agent) to 

work on a new project.1 To determine its profitability, the principal asks the agent to explore 

various ways to implement the project by experimenting with alternative technologies.  Such 

experimentation might demonstrate the profitability of the project.  A longer experimentation 

allows the agent to better determine its profitability but that is also costly and delays production.  

Therefore, the duration of the experimentation and the optimal scale of the project are 

interdependent.  

An additional complexity arises if the agent is privately informed about his efficiency in 

experimentation. If the agent is not efficient at experimenting, a poor result from his experiments 

only provides weak evidence of low profitability of the project.  However, if the owner 

(principal) is misled into believing that the agent is highly efficient, she becomes more 

pessimistic than the agent.  A trade-off appears for the principal.  More experimentation may 

provide better information about the profitability of the project but can also increase asymmetric 

information about its expected profitability, which leads to information rent for the agent in the 

production stage. 

In this paper, we derive the optimal contract for an agent who conducts both 

experimentation and production.  We model the experimentation stage as a two-armed bandit 

problem.2  At the outset, the principal and agent are symmetrically informed that production cost 

can be high or low.  The contract determines the duration of the experimentation stage.  Success 

in experimentation is assumed to take the form of finding “good news”, i.e., the agent finds out 

that production cost is low.3  After success, experimentation stops, and production occurs.  If 

experimentation continues without success, the expected cost increases, and both principal and 

agent become pessimistic about project profitability.  We say that the experimentation stage fails 

if the agent never learns the true cost. 

                                                 
1 Other applications are the testing of new drugs, the adoption of new technologies or products, the identification of 

new investment opportunities, the evaluation of the state of the economy, consumer search, etc. See Krähmer and 

Strausz (2011) and Manso (2011) for other relevant examples.   
2 See, e.g., Bolton and Harris (1999), or Bergemann and Välimäki (2008).  
3 We present our main insights by assuming that the agent’s effort and success in experimentation are publicly 

observed but show that our key results hold even if the agent could hide success.  We also show our key insights 

hold in the case of success being bad news. 
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In our model, the agent’s efficiency is determined by his probability of success in any 

given period of the experimentation stage when cost is low.  Since the agent is privately 

informed about his efficiency, when experimentation fails, a lying inefficient agent will have a 

lower expected cost of production compared to the principal.  This difference in expected cost 

implies that the principal (mistakenly believing the agent is efficient) will overcompensate him 

in the production stage.  Therefore, an inefficient agent must be paid a rent to prevent him from 

overstating his efficiency. 

A key contribution of our model is to study how the asymmetric information generated 

during experimentation impacts production, and how production decisions affect 

experimentation.4  At the end of the experimentation stage, there is a production decision, which 

generates information rent as it depends on what is learned during experimentation.  Relative to 

the nascent literature on incentives for experimentation, reviewed below, the novelty of our 

approach is to study optimal contracts for both experimentation and production.  Focusing on 

incentives to experiment, the literature has equated project implementation with success in 

experimentation.  In contrast, we study the impact of learning from failures on the optimal 

contract for production and experimentation.  Thus, our analysis highlights the impact of 

endogenous asymmetric information on optimal decisions ex post, which is not present in a 

model without a production stage. 

First, in a model with experimentation and production, we show that over 

experimentation relative to the first-best is an optimal screening strategy for the principal, 

whereas under experimentation is the standard result in existing models of experimentation.5 

Since increasing the duration of experimentation helps to raise the chance of success, by asking 

the agent to over experiment, the principal makes it less likely for the agent to fail and exploit the 

asymmetry of information about expected costs.  Moreover, we find that the difference in 

expected costs is non-monotonic in time: we prove that it is increasing for earlier periods but 

converges to zero if the experimentation stage is sufficiently long.  Intuitively, the updated 

beliefs for each type initially diverge with successive periods without success, but they must 

                                                 
4 Intertemporal contractual externality across agency problems also plays an important role in Arve and Martimort 

(2016). 
5 To the best of our knowledge, ours is the first paper in the literature that predicts over experimentation.  The reason 

is that over-experimentation might reduce the rent in the production stage, non-existent in standard models of 

experimentation. 
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eventually converge.  As a result, increasing the duration of experimentation might help reducing 

the asymmetric information after a series of failed experiments. 

Second, we show that experimentation also influences the choice of output in the 

production stage.  We prove that if experimentation succeeds, the output is at the first best level 

since there is no difference in beliefs regarding the true cost after success.  However, if 

experimentation fails, the output is distorted to reduce the rent of the agent.  Since the inefficient 

agent always gets a rent, we expect, and indeed find, that the output of the efficient agent is 

distorted downward. This is reminiscent to a standard adverse selection problem. 

Interestingly, we find another effect: the output of the inefficient agent is distorted 

upward.  This is the case when the efficient agent also commands a rent, which is a new result 

due to the interaction between the experimentation and production stages.  The efficient type 

faces a gamble when misreporting his type as inefficient.  While he has the chance to collect the 

rent of the inefficient type, he also faces a cost if experimentation fails.  Since he is then 

relatively more pessimistic than the principal, he will be under-compensated at the production 

stage relative to the inefficient type.  The principal can increase the cost of lying by asking the 

inefficient type to produce more.  A higher output for the inefficient agent makes it costlier for 

the efficient agent who must produce more output with higher expected costs. 

Third, to screen the agents, the principal distributes the information rent as rewards to the 

agent at different points in time.  When both types obtain a rent, each type’s comparative 

advantage on obtaining successes or failures determines a unique optimal contract.  Each type is 

rewarded for events which are relatively more likely for him.  It is optimal to reward the efficient 

agent at the beginning and the inefficient agent at the very end of the experimentation stage.  

Interestingly, the inefficient agent is rewarded after failure if the experimentation stage is 

relatively short and after success in the last period otherwise.6  Our result suggests that the 

principal is more likely to tolerate failures in industries where cost of an experiment is relatively 

high; for example, this is the case in oil drilling.  In contrast, if the cost of experimentation is low 

(like on-line advertising) the principal will rely on rewarding the agent after success. 

                                                 
6 In an insightful paper, Manso (2011), argues that golden parachutes and managerial entrenchment, which seem to 

reward or tolerate failure, can be effective for encouraging corporate innovation (see also, Ederer and Manso (2013), 

and Sadler (2017)).  Our analysis suggests that such practices may also have screening properties in situations where 

innovators have differences in expertise. 
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We show that the relative likelihood of success for the two types is monotonic, and it 

determines the timing of rewards.  Given risk-neutrality and absence of moral hazard in our base 

model, this property also implies that each type is paid a reward only once, whereas a more 

realistic payment structure would involve rewards distributed over multiple periods.  This would 

be true in a model with moral hazard in experimentation, which is beyond the scope of this 

paper.7  However, in an extension section, we do introduce ex post moral hazard simply in this 

model by assuming that success is private.  That leads to moral hazard rent in every period in 

addition to the previously derived asymmetric information rent.8  By suppressing moral hazard, 

our framework allows us to highlight the screening properties of the optimal contract that deals 

with both experimentation and production in a tractable model. 

Related literature. Our paper builds on two strands of the literature.  First, it is related to 

the literature on principal-agent contracts with endogenous information gathering before 

production.9 It is typical in this literature to consider static models, where an agent exerts effort 

to gather information relevant to production.  By modeling this effort as experimentation, we 

introduce a dynamic learning aspect, and especially the possibility of asymmetric learning by 

different agents.  We contribute to this literature by characterizing the structure of incentive 

schemes in a dynamic learning stage.  Importantly, in our model, the principal can determine the 

degree of asymmetric information by choosing the length of the experimentation stage, and over 

or under-experimentation can be optimal. 

To model information gathering, we rely on the growing literature on contracting for 

experimentation following Bergmann and Hege (1998, 2005).  Most of that literature has a 

different focus and characterizes incentive schemes for addressing moral hazard during 

experimentation but does not consider adverse selection.10  Recent exceptions that introduce 

adverse selection are Gomes, Gottlieb and Maestri (2016) and Halac, Kartik and Liu (2016).11  In 

                                                 
7 Halac et al. (2016) illustrate the challenges of having both hidden effort and hidden skill in experimentation in a 

model without production stage. 
8 The monotonic likelihood ratio of success continues to be the key determinant behind the screening properties of 

the contract.  It remains optimal to provide exaggerated rewards for the efficient type at the beginning and for the 

inefficient type at the end of experimentation even under ex post moral hazard. 
9 Early papers are Cremer and Khalil (1992), Lewis and Sappington (1997), and Cremer, Khalil, and Rochet (1998), 

while Krähmer and Strausz (2011) contains recent citations. 
10 See also Horner and Samuelson (2013).   
11 See also Gerardi and Maestri (2012) for another model where the agent is privately informed about the quality 

(prior probability) of the project. 

 



5 

 

Gomes, Gottlieb and Maestri, there is two-dimensional hidden information, where the agent is 

privately informed about the quality (prior probability) of the project as well as a private cost of 

effort for experimentation.  They find conditions under which the second hidden information 

problem can be ignored.  Halac, Kartik and Liu (2016) have both moral hazard and hidden 

information.  They extend the moral hazard-based literature by introducing hidden information 

about expertise in the experimentation stage to study how asymmetric learning by the efficient 

and inefficient agents affects the bonus that needs to be paid to induce the agent to work.12 

We add to the literature by showing that asymmetric information created during 

experimentation affects production, which in turn introduces novel aspects to the incentive 

scheme for experimentation.  Unlike the rest of the literature, we find that over-experimentation 

relative to the first best, and rewarding an agent after failure can be optimal to screen the agent. 

The rest of the paper is organized as follows.  In section 2, we present the base good-

news model under adverse selection with exogenous output and public success.  In section 3, we 

consider extensions and robustness checks.  In particular, we allow the principal to choose output 

optimally and use it as a screening variable, study ex post moral hazard where the agent can hide 

success, and the case where success is bad news. 

2. The Model (Learning good news) 

A principal hires an agent to implement a project.  Both the principal and agent are risk 

neutral and have a common discount factor 𝛿 ∈ (0,1].  It is common knowledge that the 

marginal cost of production can be low or high, i.e., 𝑐 ∈ {𝑐, 𝑐}, with 0 < 𝑐 < 𝑐.   The probability 

that 𝑐 = 𝑐 is denoted by 𝛽0 ∈ (0,1).  Before the actual production stage, the agent can gather 

information regarding the production cost.  We call this the experimentation stage. 

The experimentation stage 

During the experimentation stage, the agent gathers information about the cost of the 

project.  The experimentation stage takes place over time, 𝑡 ∈ {1,2,3, … . 𝑇}, where 𝑇 is the 

maximum length of the experimentation stage and is determined by the principal.13  In each 

                                                 
12 They show that, without the moral hazard constraint, the first best can be reached.  In our model, we impose a 

limited liability instead of a moral hazard constraint. 
13 Modeling time as discrete is more convenient to study the optimal timing of payment (section 2.2.3). 
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period 𝑡 , experimentation costs 𝛾 > 0, and we assume that this cost 𝛾 is paid by the principal at 

the end of each period.  We assume that it is always optimal to experiment at least once.14 

In the main part of the paper, information gathering takes the form of looking for good 

news (see section 3.3 for the case of bad news).  If the cost is low, the agent learns it with 

probability 𝜆 in each period 𝑡 ≤ 𝑇.  If the agent learns that the cost is low (good news) in a 

period 𝑡, we will say that the experimentation was successful.  To focus on the screening features 

of the optimal contract, we assume for now that the agent cannot hide evidence of the cost being 

low.  In section 3.2, we will revisit this assumption and study a model with both adverse 

selection and ex post moral hazard.  We say that experimentation has failed if the agent fails to 

learn that cost is low in all 𝑇 periods.  Even if the experimentation stage results in failure, the 

expected cost is updated, so there is much to learn from failure.  We turn to this next. 

We assume that the agent is privately informed about his experimentation efficiency 

represented by 𝜆.  Therefore, the principal faces an adverse selection problem even though all 

parties assess the same expected cost at the outset.  The principal and agent may update their 

beliefs differently during the experimentation stage.  The agent’s private information about his 

efficiency 𝜆 determines his type, and we will refer to an agent with high or low efficiency as a 

high or low-type agent.  With probability 𝜈, the agent is a high type, 𝜃 = 𝐻.  With probability 

(1 − 𝜈), he is a low type, 𝜃 = 𝐿.  Thus, we define the learning parameter with the type 

superscript: 

𝜆𝜃 = 𝑃𝑟(𝑡𝑦𝑝𝑒 𝜃 𝑙𝑒𝑎𝑟𝑛𝑠 𝑐 = 𝑐|𝑐 = 𝑐), 

where 0 < 𝜆𝐿 < 𝜆𝐻 < 1.15  If experimentation fails to reveal low cost in a period, agents with 

different types form different beliefs about the expected cost of the project.  We denote by 𝛽𝑡
𝜃 the 

updated belief of a 𝜃-type agent that the cost is actually low at the beginning of period 𝑡 given 

𝑡 − 1 failures.  For period 𝑡 > 1, we have 𝛽𝑡
𝜃 =

𝛽𝑡−1
𝜃 (1−𝜆𝜃)

𝛽𝑡−1
𝜃 (1−𝜆𝜃)+(1−𝛽𝑡−1

𝜃 ) 
, which in terms of 𝛽0 is 

𝛽𝑡
𝜃 =

𝛽0(1−𝜆𝜃)
𝑡−1

𝛽0(1−𝜆𝜃)
𝑡−1

+(1−𝛽0)
. 

The 𝜃-type agent’s expected cost at the beginning of period 𝑡 is then given by: 

                                                 
14 In the optimal contract under asymmetric information, we allow the principal to choose zero experimentation for 

either type. 
15 If 𝜆𝜃 = 1, the first failure would be a perfect signal regarding the project quality. 
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𝑐𝑡
𝜃 = 𝛽𝑡

𝜃𝑐  + (1 − 𝛽𝑡
𝜃) 𝑐. 

Three aspects of learning are worth noting.  First, after each period of failure during 

experimentation, 𝛽𝑡
𝜃 falls, there is more pessimism that the true cost is low, and the expected cost 

𝑐𝑡
𝜃 increases and converges to 𝑐.  Second, for the same number of failures during 

experimentation, the expected cost is higher as both 𝑐𝑡
𝐻and 𝑐𝑡

𝐿 approach 𝑐.  An example of how 

the expected cost 𝑐𝑡
𝜃 converges to 𝑐 for each type is presented in Figure 1 below. 

 

 
Figure 1. Expected cost with 𝜆𝐻 = 0.35, 𝜆𝐿 = 0.2, 𝛽0 = 0.7, 𝑐 = 0.5, 𝑐 = 5. 

Third, we also note the important property that the difference in the expected cost, ∆𝑐𝑡 =

𝑐𝑡
𝐻 − 𝑐𝑡

𝐿 > 0, is a non-monotonic function of time: initially increasing and then decreasing.16  

Intuitively, each type starts with the same expected cost, which initially diverge as each type of 

the agent updates differently, but they eventually have to converge to 𝑐. 

The production stage 

After the experimentation stage ends, production takes place.  The principal’s value of 

the project is 𝑉(𝑞), where 𝑞 > 0 is the size of the project.  The function 𝑉(⋅) is strictly 

                                                 
16 There exists a unique time period 𝑡∆ such that ∆𝑐𝑡  achieves the highest value at this time period, where  

𝑡∆ = 𝑎𝑟𝑔max
1≤𝑡≤𝑇

(1 − 𝜆𝐿)𝑡 − (1 − 𝜆𝐻)𝑡

(1 − 𝛽0 + 𝛽0(1 − 𝜆𝐻)𝑡)(1 − 𝛽0 + 𝛽0(1 − 𝜆𝐿)𝑡)
. 
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increasing, strictly concave, twice differentiable on (0, +∞), and satisfies the Inada conditions.17  

The size of the project and the payment to the agent are determined in the contract offered by the 

principal before the experimentation stage takes place.  If experimentation reveals that cost is 

low in a period 𝑡 ≤ 𝑇, experimentation stops, and production takes place based on 𝑐 = 𝑐.18  We 

call 𝑞𝑆 the output after success.  If experimentation fails, i.e., there is no success during the 

experimentation stage, production occurs based on the expected cost in period 𝑇 + 1.19  We call 

𝑞𝐹 the output after failure.  We assume that 𝑞𝑆 > 𝑞𝐹 > 0.  Since our main interest is to capture 

the impact of asymmetric information after failure, it is enough to assume that 𝑞𝑆 and 𝑞𝐹 are 

exogenously determined.  We relax this assumption in section 3.1, where the output is optimally 

chosen by the principal given her beliefs. 

The contract 

Before the experimentation stage takes place, the principal offers the agent a menu of 

dynamic contracts.  Without loss, we use a direct truthful mechanism, where the agent is asked to 

announce his type, denoted by 𝜃.  A contract specifies, for each type of agent, the length of the 

experimentation stage, the size of the project, and a transfer as a function of whether or not the 

agent succeeded while experimenting.  In terms of notation, in the case of success we include 𝑐 

as an argument in the wage and output for each 𝑡.  In the case of failure, we include the expected 

cost 𝑐
𝑇𝜃̂
𝜃̂ .20  A contract is defined formally by  

𝜛𝜃̂ = (𝑇𝜃̂, {𝑤𝑡
𝜃̂(𝑐)}

𝑡=1

𝑇𝜃̂

, 𝑤𝜃̂ (𝑐
𝑇𝜃̂+1

𝜃̂ )), 

where 𝑇𝜃̂ is the maximum duration of the experimentation stage for the announced type 𝜃, 

𝑤𝑡
𝜃̂(𝑐)  is the agent’s wage if he observed 𝑐 = 𝑐 in period 𝑡 ≤ 𝑇𝜃̂ and 𝑤𝜃̂ (𝑐

𝑇𝜃̂+1

𝜃̂ ) is the agent’s 

wage if the agent fails 𝑇𝜃̂ consecutive times. 

                                                 
17 Without the Inada conditions, it may be optimal to shut down the production of the high type after failure if 

expected cost is high enough.  In such a case, neither type will get a rent. 
18 In this model, there is no reason for the principal to continue to experiment once she learns that cost is low.  
19 We assume that the agent will learn the exact cost later, but it is not contractible. 
20 Since the principal pays for the experimentation cost, the agent is not paid if he does not succeed in any 𝑡 < 𝑇𝜃̂ . 
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An agent of type 𝜃, announcing his type as 𝜃, receives expected utility 𝑈𝜃(𝜛𝜃̂) at time 

zero from a contract 𝜛𝜃̂: 

𝑈𝜃(𝜛𝜃̂) = 𝛽0 ∑ 𝛿𝑡𝑇𝜃̂

𝑡=1 (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃(𝑤𝑡
𝜃̂(𝑐) − 𝑐𝑞𝑆)  

+𝛿𝑇𝜃̂
(1 − 𝛽0 + 𝛽0(1 − 𝜆𝜃)

𝑇𝜃̂

) (𝑤𝜃̂ (𝑐
𝑇𝜃̂+1

𝜃̂ ) − 𝑐
𝑇𝜃̂+1

𝜃 𝑞𝐹). 

Conditional on the actual cost being low, which happens with probability 𝛽0, the 

probability of succeeding for the first time in period 𝑡 ≤ 𝑇𝜃̂ is given by (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃. 

Experimentation fails if the cost is high (𝑐 = 𝑐̅), which happens with probability 1 − 𝛽0, or, if 

the agent fails 𝑇𝜃̂ times despite 𝑐 = 𝑐, which happens with probability 𝛽0(1 − 𝜆𝜃)𝑇𝜃̂
.   

The optimal contract will have to satisfy the following incentive compatibility constraints 

for all 𝜃 and 𝜃: 

(𝐼𝐶)  𝑈𝜃(𝜛𝜃) ≥ 𝑈𝜃(𝜛𝜃̂). 

We also assume that the agent must be paid his expected production costs whether 

experimentation succeeds or fails.21  Therefore, the individual rationality constraints must be 

satisfied ex post (i.e., after experimentation): 

(𝐼𝑅𝑆𝑡
𝜃) 𝑤𝑡

𝜃(𝑐) − 𝑐𝑞𝑆 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝐼𝑅𝐹
𝑇𝜃
𝜃 )  𝑤𝜃(𝑐

𝑇𝜃+1
𝜃 ) − 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹 ≥ 0, 

where the 𝑆 and 𝐹 are to denote success and failure. 

The principal’s expected payoff at time zero from a contract 𝜛𝜃 offered to the agent of 

type 𝜃 is  

𝜋𝜃(𝜛𝜃) = 𝛽0 ∑ 𝛿𝑡𝑇𝜃

𝑡=1 (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃(𝑉(𝑞𝑆) − 𝑤𝑡
𝜃(𝑐) − 𝛤𝑡)  

+𝛿𝑇𝜃
(1 − 𝛽0 + 𝛽0(1 − 𝜆𝜃)

𝑇𝜃

) (𝑉(𝑞𝐹) − 𝑤𝜃(𝑐
𝑇𝜃+1
𝜃 ) − 𝛤𝑇𝜃), 

where the cost of experimentation is 𝛤𝑡 =
∑ 𝛿𝑠𝛾𝑡

𝑠=1

𝛿𝑡
.  Thus, the principal’s objective function is: 

𝜈𝜋𝐻(𝜛𝐻) + (1 − 𝜈)𝜋𝐿(𝜛𝐿). 

                                                 
21 See the recent paper by Krähmer and Strausz (2015) on the importance of ex post participation constraints in a 

sequential screening model.  They provide multiple examples of legal restrictions on penalties on agents prematurely 

terminating a contract.  Our results remain intact as long as there are sufficient restrictions on penalties imposed on 

the agent.  If we assumed unlimited penalties, for example, with only an ex ante participation constraint, we can 

apply well-known ideas from mechanisms à la Crémer-McLean (1985) that says the principal can still receive the 

first best profit. 
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To summarize, the timing is as follows: 

(1) The agent learns his type 𝜃. 

(2) The principal offers a contract to the agent. In case the agent rejects the contract, the 

game is over and both parties get payoffs normalized to zero; if the agent accepts the 

contract, the game proceeds to the experimentation stage with duration as specified in 

the contract. 

(3) The experimentation stage begins.  

(4) If the agent learns that 𝑐 = 𝑐, the experimentation stage stops, and the production 

stage starts with output and transfers as specified in the contract.  

In case no success is observed during the experimentation stage, the production 

occurs with output and transfers as specified in the contract.    

Our focus is to study the interaction between endogenous asymmetric information due to 

experimentation and optimal decisions that are made after the experimentation stage.  The focus 

of the existing literature on experimentation has been on providing incentives to experiment, 

where success is identified as an outcome with a positive payoff.  The decision ex post is not 

explicitly modeled.  In contrast, to highlight the role of asymmetric information on decisions ex 

post, we model an ex post production stage that is performed by the same agent who 

experiments.  This is common in a wide range of applications such as the regulation of natural 

monopolies or when a project relies on new, untested technologies.22   

2.1 The First Best Benchmark 

Suppose the agent’s type 𝜃 is common knowledge before the principal offers the contract. 

The first-best solution is found by maximizing the principal’s profit such that the wage to the 

agent covers the cost in case of success and the expected cost in case of failure.   

𝛽0 ∑𝛿𝑡

𝑇𝜃

𝑡=1

(1 − 𝜆𝜃)
𝑡−1

𝜆𝜃(𝑉(𝑞𝑆) − 𝑤𝑡
𝜃(𝑐) − 𝛤𝑡)

+𝛿𝑇𝜃
(1 − 𝛽0 + 𝛽0(1 − 𝜆𝜃)

𝑇𝜃

) (𝑉(𝑞𝐹) − 𝑤𝜃(𝑐
𝑇𝜃+1
𝜃 ) − 𝛤𝑇𝜃)

 

                                                 
22 As noted by Laffont and Tirole (1988), in the presence of cost uncertainty and risk aversion, separating the two 

tasks may not be optimal.  Moreover, hiring one agent for experimentation and another one for production might 

lead to an informed principal problem.  For example, in case the former agent provides negative evidence about the 

project’s profitability, the principal may benefit from hiding this information from the second agent to keep him 

more optimistic about the project.  
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subject to  

(𝐼𝑅𝑆𝑡
𝜃) 𝑤𝑡

𝜃(𝑐) − 𝑐𝑞𝑆 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝐼𝑅𝐹
𝑇𝜃
𝜃 )  𝑤𝜃(𝑐

𝑇𝜃+1
𝜃 ) − 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹 ≥ 0. 

The individual rationality constraints are binding.  If the agent succeeds, the transfers 

cover the actual cost with no rent given to the agent: 𝑤𝑡
𝜃(𝑐) = 𝑐𝑞𝑆 for 𝑡 ≤ 𝑇𝜃.  In case the agent 

fails, the transfers cover the current expected cost and no expected rent is given to the 

agent: 𝑤𝜃(𝑐
𝑇𝜃+1
𝜃 ) = 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹.  Since the expected cost is rising as long as success is not 

obtained, the termination date 𝑇𝐹𝐵
𝜃  is bounded and it is the highest 𝑡𝜃 such that 

𝛿𝛽
𝑡𝜃
𝜃 𝜆𝜃[𝑉(𝑞𝑆) − 𝑐𝑞𝑆] + 𝛿(1 − 𝛽

𝑡𝜃
𝜃 𝜆𝜃)[𝑉(𝑞𝐹) − 𝑐

𝑡𝜃+1
𝜃 𝑞𝐹]

≥ 𝛾 + [𝑉(𝑞𝐹) − 𝑐
𝑡𝜃
𝜃 𝑞𝐹]

 

The intuition is that, by extending the experimentation stage by one additional period, the 

agent of type 𝜃 can learn that 𝑐 = 𝑐 with probability 𝛽
𝑡𝜃
𝜃 𝜆𝜃.   

 Note that the first-best termination date of the experimentation stage 𝑇𝐹𝐵
𝜃  is a non-

monotonic function of the agent’s type.  In the beginning of Appendix A, we formally prove that 

there exists a unique value of 𝜆𝜃 called 𝜆̂, such that: 

𝑑𝑇𝐹𝐵
𝜃

𝑑𝜆𝜃 < 0 for 𝜆𝜃 < 𝜆̂ and 
𝑑𝑇𝐹𝐵

𝜃

𝑑𝜆𝜃 ≥ 0 for 𝜆𝜃 ≥ 𝜆̂. 

This non-monotonicity is a result of two countervailing forces.23  In any given period of 

the experimentation stage, the high type is more likely to learn 𝑐 = 𝑐 (conditional on the actual 

cost being low) since 𝜆𝐻 > 𝜆𝐿.  This suggests that the principal should allow the high type to 

experiment longer.  However, at the same time, the high type agent becomes relatively more 

pessimistic with repeated failures.  This can be seen by looking at the probability of success 

conditional on reaching period 𝑡, given by 𝛽0(1 − 𝜆𝜃)
𝑡−1

𝜆𝜃, over time.  In Figure 2, we see that 

this conditional probability of success for the high type becomes smaller than that for the low 

type at some point.  Given these two countervailing forces, the first-best stopping time for the 

high type agent can be shorter or longer than that of the type 𝐿 agent depending on the 

parameters of the problem.24  Therefore, the first-best stopping time is increasing in the agent’s 

                                                 
23 A similar intuition can be found in Halac et al. (2016) in a model without production. 
24 For example, if 𝜆𝐿 = 0.2, 𝜆𝐻 = 0.4, 𝑐 = 0.5, 𝑐 = 20, 𝛽0 = 0.5, 𝛿 = 0.9, 𝛾 = 2, and 𝑉 = 10√𝑞, then the first-

best termination date for the high type agent is 𝑇𝐹𝐵
𝐻 = 4, whereas it is optimal to allow the low type agent to 

experiment for seven periods, 𝑇𝐹𝐵
𝐿 = 7.  However, if we now change 𝜆𝐻  to 0.22  and 𝛽0 to 0.4, the low type agent is 

allowed to experiment less, that is, 𝑇𝐹𝐵
𝐻 = 4 > 𝑇𝐹𝐵

𝐿 = 3. 
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type for small values of 𝜆𝜃 when the first force (relative efficiency) dominates, but becomes 

decreasing for larger values when the second force (relative pessimism) becomes dominant.  

 
Figure 2. Probability of success with 𝜆𝐻 = 0.4, 𝜆𝐿 = 0.2, 𝛽0 = 0.5. 

2.2 Asymmetric information 

Assume now that the agent privately knows this type.  Recall that all parties have the 

same expected cost at the outset.  Asymmetric information arises in our setting because the two 

types learn asymmetrically in the experimentation stage, and not because there is any inherent 

difference in their ability to implement the project.  Furthermore, private information can exist 

only if experimentation fails since the true cost 𝑐 = 𝑐 is revealed when the agent succeeds.   

We now introduce some notation for ex post rent of the agent, which is the rent in the 

production stage.  Define by 𝑦𝑡
𝜃 the wage net of cost to the 𝜃 type who succeeds in period 𝑡, and 

by 𝑥𝜃 the wage net of the expected cost to the 𝜃 type who failed during the entire 

experimentation stage: 

𝑦𝑡
𝜃 ≡ 𝑤𝑡

𝜃(𝑐) − 𝑐𝑞𝑆 for 1 ≤ 𝑡 ≤ 𝑇𝜃, 

𝑥𝜃 ≡ 𝑤𝜃(𝑐
𝑇𝜃+1
𝜃 ) − 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹 . 

Therefore, the ex post (𝐼𝑅) constraints can be written as: 

(𝐼𝑅𝑆𝑡
𝜃) 𝑦𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝐼𝑅𝐹
𝑇𝜃
𝜃 ) 𝑥𝜃 ≥ 0, 

where the 𝑆 and 𝐹 are to denote success and failure.   
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To simplify the notation, we denote with  𝑃𝑇
𝜃 the probability that an agent of type 𝜃 does 

not succeed during the 𝑇 periods of the experimentation stage: 

𝑃𝑇
𝜃 = 1 − 𝛽0 + 𝛽0(1 − 𝜆𝜃)

𝑇
. 

Using this notation, we can rewrite the two incentive constraints as: 

(𝐼𝐶𝐿,𝐻)  𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐿 + 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑥𝐿 

≥ 𝛽0 ∑ 𝛿𝑡𝑇𝐻

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐻 + 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 [𝑥𝐻 + ∆𝑐𝑇𝐻+1𝑞𝐹], 

(𝐼𝐶𝐻,𝐿)  𝛽0 ∑ 𝛿𝑡𝑇𝐻

𝑡=1 (1 − 𝜆𝐻)𝑡−1𝜆𝐻𝑦𝑡
𝐻 + 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐻 𝑥𝐻 

≥ 𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐻)𝑡−1𝜆𝐻𝑦𝑡
𝐿 + 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 [𝑥𝐿 − ∆𝑐𝑇𝐿+1𝑞𝐹], 

Using our notation, the principal maximizes the following objective function subject to 

(𝐼𝑅𝑆𝑡
𝐿), (𝐼𝑅𝐹

𝑇𝐿
𝐿 ), (𝐼𝑅𝑆𝑡

𝐻), (𝐼𝑅𝐹
𝑇𝐻
𝐻 ), (𝐼𝐶𝐿,𝐻), and (𝐼𝐶𝐻,𝐿) 

𝐸𝜃 {
𝛽0 ∑ 𝛿𝑡𝑇𝜃

𝑡=1 (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃[𝑉(𝑞𝑆) − 𝑐𝑞𝑆 − 𝛤𝑡] + 𝛿𝑇𝜃
𝑃

𝑇𝜃
𝜃 [𝑉(𝑞𝐹) − 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹 − 𝛤𝑇𝜃]

−𝛽0 ∑ 𝛿𝑡𝑇𝜃

𝑡=1 (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃𝑦𝑡
𝜃 − 𝛿𝑇𝜃

𝑃
𝑇𝜃
𝜃 𝑥𝜃

}  

We start by analyzing the two (𝐼𝐶) constraints and first show that the low type always 

earns a rent.25  The reason that (𝐼𝐶𝐿,𝐻) is binding is that since a high type must be given his 

expected cost following failure, a low type will have to be given a rent to truthfully report his 

type as his expected cost is lower.  That is, the 𝑅𝐻𝑆 of (𝐼𝐶𝐿,𝐻) is strictly positive since 

∆𝑐𝑇𝐻+1 = 𝑐
𝑇𝐻+1
𝐻 − 𝑐

𝑇𝐻+1
𝐿 > 0.  We denote by 𝑈𝐿 the rent to the low type by the 𝐿𝐻𝑆 of the 

(𝐼𝐶𝐿,𝐻): 

𝑈𝐿 ≡ 𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐿 + 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑥𝐿 > 0. 

2.2.1. (𝑰𝑪𝑯,𝑳) binding.  

Interestingly, it is also possible that the high type wants to misreport his type such that 

(𝐼𝐶𝐻,𝐿) is binding too.  While the low type’s benefit from misreporting is positive for sure 

(∆𝑐𝑇𝐻+1 > 0), the high type’s expected utility from misreporting his type is a gamble.  There is a 

positive part since he has a chance to claim the rent 𝑈𝐿 of the low type.  This part is positively 

related to ∆𝑐𝑇𝐻+1 adjusted by relative probability of collecting the low type’s rent.  However, 

there is a negative part as well since he runs the risk of having to produce while being 

                                                 
25 We prove this result in a Claim in Appendix A. 
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undercompensated since paid as a low type whose expected cost is lower when experimentation 

fails.  This term is positively related to ∆𝑐𝑇𝐿+1 adjusted by probability of starting production 

after failure.  This is reflected in 𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 on the 𝑅𝐻𝑆 of (𝐼𝐶𝐻,𝐿).  The (𝐼𝐶𝐻,𝐿) is binding 

only when the positive part of the gamble dominates the negative part.26 

The complexity of the model calls for an illustrative example that demonstrates that 

(𝐼𝐶𝐻,𝐿) might be binding in equilibrium.  Consider a case where the two types are significantly 

different, e.g., 𝜆𝐿 is close to zero and 𝜆𝐻 is close to one so that, in the first-best, 𝑇𝐿 = 0 and 

𝑇𝐻 > 0. 27  Suppose the low type claims being high.  Since his expected cost is lower than the 

cost of the high type after 𝑇𝐻 unsuccessful experiments (𝑐
𝑇𝐻
𝐿 < 𝑐

𝑇𝐻
𝐻 ), the low type must be given 

a rent to induce truth-telling.  Consider now the incentives of the high type to claim being low. In 

this case, production starts immediately without experimentation under identical beliefs about 

expected cost (𝛽0𝑐  + (1 − 𝛽0) 𝑐).  Therefore, the high type simply collects the rent of the low 

type without incurring the negative part of the gamble when producing.  And, (𝐼𝐶𝐻,𝐿) is binding.  

In our model, the exact value of the gamble depends on the difference in expected costs 

and also the relative probabilities of success and failure.  These, in turn, are determined by the 

optimal durations of experimentation stage, 𝑇𝐿 and 𝑇𝐻.   To see how 𝑇𝐿 and 𝑇𝐻 affect the value 

of the gamble, consider again our simple example when the principal asks the low type to (over) 

experiment (by) one period, 𝑇𝐿 = 1, and look at the high-type’s incentive to misreport again.  

The high-type now faces a risk.  If the project is bad, he will fail with probability (1 − 𝛽0) and 

have to produce in period 𝑡 = 2 knowing almost for sure that the cost is 𝑐, while the principal is 

led to believe that the expected cost is 𝑐2
𝐿 = 𝛽2

𝐿𝑐  + (1 − 𝛽2
𝐿) 𝑐 < 𝑐.  Therefore, by increasing the 

low-type’s duration of experimentation, the principal can use the negative part of the gamble to 

mitigate the high-type’s incentive to lie and, therefore, relax the (𝐼𝐶𝐻,𝐿).   

                                                 
26 Suppose that the principal pays the rent to the low type after an early success.  The high type may be interested in 

claiming to be low type to collect the rent.  Indeed, the high type is more likely to succeed early given that the 

project is low cost.  However, misreporting his type is risky for the high type.  If he fails to find good news, the 

principal, believing that he is a low type, will require the agent to produce based on a lower expected cost.  Thus, 

misreporting his type becomes a gamble for the high type: he has a chance to obtain the low-type’s rent, but he will 

be undercompensated relative to the low type in the production stage if he fails during the experimentation stage.   
27 In this example, we emphasize the role of the difference in 𝜆s and suppress the impact of the relative probabilities 

of success and failure.  
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Another way to illustrate the impact of 𝑇𝐿 and 𝑇𝐻 on the gamble is to consider a case 

where the principal must choose an identical length of the experimentation stage for both types 

(𝑇𝐻 = 𝑇𝐿 = 𝑇). 28  We prove in Proposition 1 below that, in this scenario, the (𝐼𝐶𝐻,𝐿) constraint 

is not binding.  Intuitively, since the relevant probabilities 𝑃𝑇
𝜃 and the difference in expected cost 

∆𝑐𝑇+1 are both identical in the positive and negative part of the gamble, they cancel each other.  

This implies that misreporting his type will be unattractive for the high type.29   

Proposition 1.  

If the duration of experimentation must be chosen identical for both types, 𝑇𝐻 = 𝑇𝐿, then 

the high type obtains no rent. 

Proof: See Supplementary Appendix B. 

Based on Proposition 1, we conclude that it is the principal’s choice to have different 

lengths of the experimentation stage that results in (𝐼𝐶𝐻,𝐿) being binding.  Since the two types 

have different efficiencies in experimentation (𝜆𝐻 > 𝜆𝐿), the principal optimally chooses 

different durations of experimentation for each type.  This reveals that having both incentive 

constraints binding might be in the interest of the principal.   

In our model, the efficiency in experimentation (𝜆𝐻 > 𝜆𝐿) is private information and the 

principal chooses 𝑇𝐿 and 𝑇𝐻 to screen the agents.  This choice determines equilibrium values of 

the relative probabilities of success and failure, and the difference in expected costs which 

determine the gamble.  The non-monotonicity of the first-best termination dates (section 2.1) and 

also non-monotonicity in the difference in expected costs (Figure 1) make it difficult to provide a 

simple characterization of the optimal durations.  This indicates the challenge in deriving a 

necessary condition for the sign of the gamble.   

We provide below sufficient conditions for the (𝐼𝐶𝐻,𝐿) constraint to be binding, which 

are fairly intuitive given the challenges mentioned above.  To determine the sufficient 

conditions, we focus on the adverse selection parameter 𝜆.  These conditions say that the 

constraint is binding as long as the order of termination dates at the optimum remain unaltered 

from that under the first best.  Recalling the definition of 𝜆̂ from the discussion of first best, for 

                                                 
28 For example, the FDA requires all the firms to go through the same amount of trials before they are allowed to 

release new drugs on the market. 
29 We prove formally in Supplementary Appendix B that if 𝑇 is the same for both types, the gamble is zero. 
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small values of 𝜆 (𝜆𝐿 < 𝜆𝐻 < 𝜆̂) this means 𝑇𝐿 < 𝑇𝐻, while the opposite is true for high values 

of 𝜆 (𝜆𝐻 > 𝜆𝐿 > 𝜆̂).30 

Claim. Sufficient conditions for (𝐼𝐶𝐻,𝐿) to be binding. 

For any 𝜆𝐿 ∈ (0,1), there exists 0 < 𝜆𝐻(𝜆𝐿) < 𝜆
𝐻
(𝜆𝐿) < 1 such that the first best order 

of termination dates is preserved in equilibrium and (𝐼𝐶𝐻,𝐿) binds if  

either i) 𝜆𝐻 < 𝑚𝑖𝑛{𝜆𝐻(𝜆𝐿), 𝜆̂} for 𝜆𝐿 < 𝜆̂ or ii) 𝜆𝐻 > 𝜆
𝐻
(𝜆𝐿) > 𝜆𝐿 for 𝜆𝐿 ≥ 𝜆̂. 

Proof: See Appendix A. 

The optimal contract is derived formally in Appendix A, and the key results are presented 

in Propositions 2 and 3.  The principal has two tools to screen the agent: the length of the 

experimentation period and the timing of the payments for each type.  We examine each of them 

first, and later in section 3.2, we let the principal screening by choosing the optimal outputs 

following both failure and success. 

2.2.2. The length of the experimentation period: optimality of over-experimentation 

While the standard result in the experimentation literature is under-experimentation, we 

find that over-experimentation can also occur when there is a production stage following 

experimentation. Experimenting longer increases the chance of success, and it can also help 

reduce information rent.  We explain this next.   

To give some intuition, consider the case where only (𝐼𝐶𝐿,𝐻) binds.  The high type gets 

no rent while rent of the low type is 𝑈𝐿 = 𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹.  In this case, there is no benefit 

from distorting the duration of the experimentation for the low type (𝑇𝐿 = 𝑇𝐹𝐵
𝐿 ).  However, the 

principal optimally distorts 𝑇𝐻 from its first-best level to mitigate rent of the low type.  The 

reason why the principal may decide to over-experiment is that it might reduce the rent in the 

production stage, non-existent in standard models of experimentation.  First, by extending the 

experimentation period, the agent is more likely to succeed in experimentation.  And, after 

success, the cost of production is known, and no rent can originate from the production stage.  

Second, even if experimentation fails, increasing the duration of experimentation can help reduce 

                                                 
30 As we will see below, when 𝜆s are high, the Δ𝑐𝑡  function is skewed to the left, and its shape largely determines 

equilibrium properties as well as our sufficient condition.  When 𝜆s are small, the Δ𝑐𝑡 function is relatively flat, and 

the relative probabilities of success and failure play a more prominent role. 
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the asymmetric information and thus the agent’s rent in the production stage.  This is because the 

difference in expected cost ∆𝑐𝑡 is non-monotonic in 𝑡.  We show that such over-experimentation 

is more effective if the agents are sufficiently different in their learning abilities.31  This does not 

depend on whether only one or both (𝐼𝐶)s are binding.  

When both (𝐼𝐶)s are binding, there is another novel reason for over experimentation.  By 

increasing the duration of experimentation for the low type, 𝑇𝐿, the principal can increase the 

high type’s cost of lying.  Recall that the negative part of the high-type’s gamble when he lies is 

represented by 𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 on the 𝑅𝐻𝑆 of (𝐼𝐶𝐻,𝐿).  Since ∆𝑐𝑡 is non-monotonic, the 

principal can increase the cost of lying by increasing 𝑇𝐿.   

In Proposition 2, we provide sufficient conditions for over-experimentation.  In Appendix 

A, we also give sufficient conditions for under-experimentation to be optimal for the high type. 

We also provide a numerical example of over-experimentation in Figure 4 below. 

Proposition 2.  Sufficient conditions for over-experimentation.  

For any 𝜆𝐿 ∈ (0,1), there exists 0 < 𝜆𝐻(𝜆𝐿) < 𝜆
𝐻
(𝜆𝐿) < 1 such that the high type over-

experiments if 𝜆𝐻is different enough from 𝜆𝐿:  

𝑇𝐻 > 𝑇𝐹𝐵
𝐻  if 𝜆𝐻 > 𝜆

𝐻
(𝜆𝐿), 

and the low type over-experiments if 𝜆𝐻 is not too different from 𝜆𝐿: 

𝑇𝐿 ≥ 𝑇𝐹𝐵
𝐿  if 𝜆𝐻 < 𝜆𝐻(𝜆𝐿). 

Proof: See Appendix A. 

In Figure 3 below, we use an example to illustrate that increasing 𝑇𝐻 is more effective 

when 𝜆𝐻 is higher (relative to 𝜆𝐿).  Start with case when the difference in expected cost is given 

by the dashed line, and there is over-experimentation (𝑇𝐹𝐵
𝐻 = 10, while 𝑇𝑆𝐵

𝐻 = 11).  By 

increasing 𝑇𝐻, the principal decreases 𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1, which in turn decreases the positive part of 

the gamble and makes lying less attractive for the high type.  This effect is even stronger for a 

higher 𝜆𝐻 (see plain line), where the difference in expected cost is skewed to the left with a 

relatively high ∆𝑐𝑇𝐻+1 at the first best 𝑇𝐹𝐵
𝐻 = 5.  Now, increasing 𝑇𝐻 is even more effective 

since the decrease in 𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1 is even sharper. 

                                                 
31 The opposite is true when the 𝜆s are relatively small and close to each other.  Then, the principal prefers to under-

experiment which reduces the difference in expected cost. 
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Figure 3. Difference in the expected cost with 𝜆𝐻 = 0.35(= 0.82), 𝜆𝐿 = 0.2, 𝛽0 = 0.7, 𝑐 = 0.1, 𝑐 = 10,  

 𝑉(𝑞) = 3.5√𝑞, 𝛿 = 0.9, and 𝛾 = 1. 

Finally, as in the first best, either type may experiment longer, and 𝑇𝐿 can be larger or 

smaller than 𝑇𝐻. 

2.2.3. The timing of the payments: rewarding failure or early/late success? 

The principal chooses the timing of rewards and the duration of experimentation at the 

same time as part of the contract, and, in this section, we analyze the principal’s choice of timing 

of rewards to each type: should the principal reward early or late success in the experimentation 

stage? Should she reward failure?   

Recall that the low type receives a strictly positive rent, 𝑈𝐿 > 0, and (𝐼𝐶𝐿,𝐻) is binding.   

The principal has to determine when to pay this rent to the low type while taking into account the 

high type’s incentive to misreport.  This is achieved by rewarding the low type at events which 

are relatively more likely for the low type.  Since the high type is relatively more likely to 

succeed early, he is optimally rewarded early, while the reward to the low type is optimally 

postponed.  Furthermore, since the high type is more likely to fail if experimentation lasts long 

enough, rewarding the low type after late success or failure will depend on the length of the 

experimentation stage, which is determined by the cost of experimentation (𝛾).   

We will next characterize the optimal timing of payments.  There are two cases 

depending on whether only (𝐼𝐶𝐿,𝐻) or both 𝐼𝐶 constraints are binding. 
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Proposition 3. The optimal timing of payments. 

Case A: Only the low type’s IC is binding.  

        The high type gets no rent. There is no restriction on when to reward the low type. 

Case B: Both types’ IC are binding.   

        The principal must reward the high-type for early success (in the very first period) 

𝑦1
𝐻 > 0 = 𝑥𝐻 = 𝑦𝑡

𝐻 for all 𝑡 > 1. 

        The low type agent is rewarded  

(i) after failure if the cost of experimentation is large (𝛾 > 𝛾∗): 

𝑥𝐿 > 0 = 𝑦𝑡
𝐿 for all 𝑡 ≤ 𝑇𝐿, and 

(ii) after success in the last period if the cost of experimentation is small (𝛾 < 𝛾∗): 

𝑦
𝑇𝐿
𝐿 > 0 = 𝑥𝐿 = 𝑦𝑡

𝐿 for all 𝑡 ≤ 𝑇𝐿. 

Proof: See Appendix A. 

If (𝐼𝐶𝐻,𝐿) is not binding, we show in Case A of Appendix A that the principal can use 

any combination of 𝑦𝑡
𝐿 and 𝑥𝐿 to satisfy the binding (𝐼𝐶𝐿,𝐻): there is no restriction on when and 

how the principal pays the rent to the low type as long as 𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐿 +

𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐿 𝑥𝐿 = 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹.  Therefore, the principal can reward either early or late success, 

or even failure.  

If (𝐼𝐶𝐻,𝐿) is binding, the high type has an incentive to claim to be a low type and we are 

in Case B.  This is the more interesting case and we focus on its characterization in this section.  

The timing of rewards to the low type depends on which scheme yields a lower 𝑅𝐻𝑆 of (𝐼𝐶𝐻,𝐿).   

We start by analyzing the case where the principal rewards the agent after success.  In the 

optimal timing of payments is determined by the relative likelihood ratio of success in period 𝑡,  

𝛽0(1−𝜆𝐻)
𝑡−1

𝜆𝐻

𝛽0(1−𝜆𝐿)𝑡−1𝜆𝐿
 , 

which is strictly decreasing in 𝑡.  Therefore, if the principal chooses to reward the low type for 

success, she will optimally postpone this reward till the very last period, 𝑇𝐿, to minimize the 

high type’s incentive to misreport. 

To see why the principal may want to reward the low type agent after failure, we need to 

compare the relative likelihood of ratio of success (
𝛽0(1−𝜆𝐻)

𝑡−1
𝜆𝐻

𝛽0(1−𝜆𝐿)𝑡−1𝜆𝐿 ) and failure (
𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 ).  We show 
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in Appendix A that there is a unique period 𝑇̂𝐿 such that the two relative probabilities are 

equal:32 

(1−𝜆𝐻)
𝑇̂𝐿−1

𝜆𝐻

(1−𝜆𝐿)𝑇̂𝐿−1𝜆𝐿
≡

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿  . 

This critical value 𝑇̂𝐿 (depicted in Figure 4 below) determines which type is relatively 

more likely to succeed or fail during the experimentation stage.  In any period 𝑡 < 𝑇̂𝐿, the high 

type who chooses the contract designed for the low type is relatively more likely to succeed than 

fail compared to the low type.  For 𝑡 > 𝑇̂𝐿, the opposite is true.  This feature plays an important 

role in structuring the optimal contract.  The critical value 𝑇̂𝐿 determines whether the principal 

will choose to reward success or failure in the optimal contract. 

 
Figure 4. Relative probability of success/failure with 𝜆𝐻 = 0.4, 𝜆𝐿 = 0.2, 𝛽0 = 0.5. 

If the principal wants to reward the low type after success, it will only be optimal if the 

experimentation stage lasts long enough.  If 𝑇𝐿 > 𝑇̂𝐿, the principal can reward success in the last 

period as the relative probability of success is declining over time and the rent is the smallest in 

the last period 𝑇𝐿.  If the experimentation stage is short, 𝑇𝐿 < 𝑇̂𝐿, the principal will pay the rent 

to the low type by rewarding failure since the high type is relatively more likely to succeed 

during the experimentation stage.   

The important question is therefore what the optimal value of 𝑇𝐿 is relative to 𝑇̂𝐿 and 

consequently whether the principal should reward success or failure.  The optimal value of 𝑇𝐿 is 

                                                 
32 See Lemma 1 in Appendix A for the proof. 
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inversely related to the cost of experimentation 𝛾.  In Appendix A, we prove in Lemma 6 that 

there exists a unique value of 𝛾∗ such that 𝑇𝐿 < 𝑇̂𝐿 for any 𝛾 > 𝛾∗.  Therefore, when the cost of 

experimentation is high (𝛾 > 𝛾∗), the length of experimentation will be short, and it will be 

optimal for the principal to reward the low type after failure.  Intuitively, failure is a better 

instrument to screen out the high type when experimentation cost is high.  So, it is the adverse 

selection concern that makes it optimal to reward failure. 

Finally, if the high type also gets positive rent, we show in Appendix A, that the principal 

will reward him for success in the first period only.  This is the period when success is most 

likely to come from a high type than a low type.  

3. Extensions 

3.1. Over-production as a screening device 

In this section, we allow the principal to choose output optimally after success and after 

failure, and she can now use output as another screening variable. While our main findings 

continue to hold, the key new results are that if the experimentation stage fails, the inefficient 

type is asked to over-produce, while the efficient type under-produces.  Just like over-

experimentation, over-production can be used to increase the cost of lying. 

When output is optimally chosen by the principal in the contract, 𝑞𝑆 is now replaced by 

by 𝑞𝑡
𝜃(𝑐) and is determined by 𝑉′ (𝑞𝑡

𝜃(𝑐)) = 𝑐.  The main change from the base model is that 

output after failure which is denoted by 𝑞𝜃(𝑐
𝑇𝜃+1
𝜃 ), can vary continuously depending on the 

expected cost.  We can simply replace 𝑞𝐹 by 𝑞𝜃(𝑐
𝑇𝜃+1
𝜃 ) and 𝑞𝑆 by 𝑞𝑡

𝜃(𝑐) in the principal’s 

problem. 

We derive the formal output scheme in Supplementary Appendix C but present the 

intuition here.  When experimentation is successful, there is no asymmetric information and no 

reason to distort the output.  Both types produce the first best output.  When experimentation 

fails to reveal the cost, asymmetric information will induce the principal to distort the output to 

limit the rent.  This is a familiar result in contract theory.  In a standard second best contract à la 

Baron-Myerson, the type who receives rent produces the first best level of output while the type 

with no rent under-produces relative to the first best. 
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We find a similar result when only the low type’s incentive constraint binds.  The low 

type produces the first best output while the high type under-produces relative to the first best.  

To limit the rent of the low type, the high type is asked to produce a lower output.   

However, we find a new result when both 𝐼𝐶 are binding simultaneously.  We give below 

the sufficient conditions such that both incentive constraints are binding when output is variable, 

and these conditions are similar to the ones identified earlier.  When both incentive constraints 

bind, to limit the rent of the high type, the principal will increase the output of the low type and 

require over-production relative to the first best.  To understand the intuition behind this result, 

recall that the rent of the high type mimicking the low type is a gamble with two components.  

The positive part is due to the rent promised to the low type after failure in the experimentation 

stage which is increasing in 𝑞𝐻(𝑐
𝑇𝐻+1
𝐻 ).  By making this output smaller, the principal can 

decrease the positive component of the gamble.  The negative part is now given by 

𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞

𝐿(𝑐
𝑇𝐿+1
𝐿 ), and it comes from the higher expected cost of producing the output 

required from the low type.  By making this output higher, the principal can increase the cost of 

lying and lower the rent of the high type. We summarize the results in Proposition 4 below. 

Proposition 4. Optimal output. 

After success, each type produces at the first best level: 

𝑉′ (𝑞𝑡
𝜃(𝑐)) = 𝑐 for 𝑡 ≤ 𝑇𝜃. 

After failure, the high type under-produces relative to the first best output: 

𝑞𝑆𝐵
𝐻 (𝑐

𝑇𝐻+1
𝐻 ) < 𝑞𝐹𝐵

𝐻 (𝑐
𝑇𝐻+1
𝐻 ). 

After failure, the low type over-produces: 

𝑞𝑆𝐵
𝐿 (𝑐

𝑇𝐿+1
𝐿 ) ≥ 𝑞𝐹𝐵

𝐿 (𝑐
𝑇𝐿+1
𝐿 ). 

Proof: See Supplementary Appendix C. 

As in our main model, we now derive sufficient conditions for both 𝐼𝐶 to bind and for 

over-experimentation to occur and discuss them in turn.  We show below that the sufficient 

conditions for (𝐼𝐶𝐻,𝐿) to be binding are stricter than in our main model with an exogenous 

output.  This is not surprising since the principal now has an additional screening instrument to 
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reduce the high type’s incentives to misreport.  We introduce 𝜆̇𝐻(𝜆𝐿) < 𝑚𝑖𝑛{𝜆𝐻(𝜆𝐿), 𝜆̂} and 

𝜆̈𝐻(𝜆𝐿) > 𝜆
𝐻
(𝜆𝐿) to provide sufficient condition for both (𝐼𝐶) to be binding simultaneously. 

Claim. Sufficient condition for (𝐼𝐶𝐻,𝐿) to be binding with endogenous output. 

For any 𝜆𝐿 ∈ (0,1), there exists 0 < 𝜆̇𝐻(𝜆𝐿) < 𝜆̈𝐻(𝜆𝐿) < 1 such that 

(𝐼𝐶𝐻,𝐿) binds if either i) 𝜆𝐻 < 𝜆̇𝐻(𝜆𝐿) for 𝜆𝐿 < 𝜆̂ or ii) 𝜆𝐻 > 𝜆̈𝐻(𝜆𝐿) > 𝜆𝐿 for 𝜆𝐿 ≥ 𝜆̂. 

Proof: See Supplementary Appendix C. 

The exact distortions in 𝑞𝐻(𝑐
𝑇𝐻+1
𝐻 ) and 𝑞𝐿(𝑐

𝑇𝐿+1
𝐿 ) are chosen by the principal to mitigate 

the rent.  Since the agent’s rent depends on both output and the difference in expected costs after 

failure, distortions in output are proportional to ∆𝑐𝑇𝐻+1 and ∆𝑐𝑇𝐿+1, which are non-monotonic in 

time.  This makes it challenging to derive necessary and sufficient conditions for over/under 

experimentation when output is chosen optimally.  We characterize sufficient conditions for over 

and under experimentation for the high type below. 

Claim. Sufficient conditions for over-experimentation. 

There exist 0 < 𝜆
𝐿

< 𝜆̿𝐿 < 1 and 𝜆̿𝐻 > 𝜆𝐻(𝜆𝐿) such that 

𝑇𝐻 > 𝑇𝐹𝐵
𝐻  (over experimentation is optimal) if 𝜆̿𝐻 > 𝜆𝐻 > 𝜆

𝐻
(𝜆𝐿) and 𝜆𝐿 > 𝜆

𝐿
; 

𝑇𝐻 < 𝑇𝐹𝐵
𝐻  (under experimentation is optimal) if 𝜆𝐻 < 𝜆𝐻(𝜆𝐿) and 𝜆𝐿 < 𝜆̿𝐿. 

Proof: See Supplementary Appendix C. 

3.2. Success might be hidden: ex post moral hazard 

In the base model, we have suppressed moral hazard to highlight the screening properties 

of the timing of rewards, which allowed us to isolate the importance of the monotonic likelihood 

ratio of success in screening the two types.  As we noted before, modeling both hidden effort and 

privately known skill in experimentation is beyond the scope of this paper.  However, we can 

introduce ex post moral hazard by relaxing our assumption that the outcome of experiments in 

each period is publicly observable.  This introduces a moral hazard rent in each period, but our 

key insights regarding the screening properties of the optimal contract remain intact.  It remains 

optimal to provide exaggerated rewards for the efficient type at the beginning and for the 



24 

 

inefficient type at the end of experimentation even under ex post moral hazard.  Furthermore, the 

agent’s rent is still determined by the difference in expected cost, which remains non-monotonic 

in time.  Thus, the reasons for over-experimentation also remain intact. 

Specifically, we assume that success is privately observed by the agent, and that an agent 

who finds success in some period 𝑗 can choose to announce or reveal it at any period 𝑡 ≥ 𝑗.  

Thus, we assume that success generates hard information that can be presented to the principal 

when desired, but it cannot be fabricated.  The agent’s decision to reveal success is affected not 

only by the payment and the output tied to success/failure in the particular period 𝑗, but also by 

the payment and output in all subsequent periods of the experimentation stage.   

Note first that if the agent succeeds but hides it, the principal and the agent’s beliefs are 

different at the production stage: the principal’s expected cost is given by 𝑐
𝑇𝜃+1
𝜃  while the agent 

knows the true cost is 𝑐.  In addition to the existing (𝐼𝑅) and (𝐼𝐶) constraints, the optimal 

scheme must now satisfy the following new ex post moral hazard constraints: 

(𝐸𝑀𝐻𝜃)  𝑦
𝑇𝜃
𝜃 ≥ 𝑥𝜃 + (𝑐

𝑇𝜃+1
𝜃 − 𝑐)𝑞𝐹 for 𝜃 = 𝐻, 𝐿, and 

(𝐸𝑀𝑃𝑡
𝜃)  𝑦𝑡

𝜃 ≥ 𝛿𝑦𝑡+1
𝜃  for 𝑡 ≤ 𝑇𝜃 − 1. 

The (𝐸𝑀𝐻𝜃) constraint makes it unprofitable for the agent to hide success in the last 

period.  The (𝐸𝑀𝑃𝑡
𝜃) constraint makes it unprofitable to postpone revealing success in prior 

periods.  The two together imply that the agent cannot gain by postponing or hiding success.  

The principal’s problem is exacerbated by having to address the ex post moral hazard constraints 

in addition to all the constraints presented before.  First, as formally shown in the Supplementary 

Appendix D, both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) may be slack, and either or both may be binding.33  Since 

the ex post moral hazard constraints imply that both types will receive rent, these rents may be 

sufficient to satisfy the (𝐼𝐶) constraints.  Second, private observation of success increases the 

cost of paying a reward after failure.  When the principal rewards failure with 𝑥𝜃 > 0, the 

(𝐸𝑀𝐻𝜃) constraint forces her to also reward success in the last period (𝑦
𝑇𝜃
𝜃 > 0 because of 

(𝐸𝑀𝐻𝜃)) and in all previous periods (𝑦𝑡
𝜃 > 0 because of (𝐸𝑀𝑃𝑡

𝜃)).  However, we show below 

that it can still be optimal to reward failure. 

                                                 
33 Unlike the case when success is public, the (𝐼𝐶𝐿,𝐻) may not always be binding. 
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Proposition 5.  

When success can be hidden, the principal must reward success in every period for each type.  

When both the (𝐼𝐶𝐿,𝐻) and (𝐼𝐶𝐻,𝐿) constraints bind and the optimal 𝑇𝐿 ≤ 𝑇̂𝐿, it is optimal to 

reward failure for the low type.  

Proof: See Supplementary Appendix D. 

Details and the formal proof are in the Supplementary Appendix D.  Here we provide 

some intuition why rewarding failure or postponing rewards remain optimal even when the agent 

privately observes success.  We also provide an example below where this occurs in equilibrium.  

The argument for postponing rewards to the low type to effectively screen the high type applies 

even when success is privately observed.  This is because the relative probability of success 

between types is not affected by the two ex post moral hazard constraints above.  An increase of 

$1 in 𝑥𝜃 causes an increase of $1 in 𝑦
𝑇𝜃
𝜃 , which in turn causes an increase in all the previous 𝑦𝑡

𝜃 

according to the discount factor.  Therefore, the increases in 𝑦
𝑇𝜃
𝜃  and 𝑦𝑡

𝜃 are not driven by the 

relative probability of success between types.  And, just as in Proposition 3, we again find that it 

is optimal to postpone the reward for the low type if he experiments for a relatively brief length 

of time and both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) are binding.  For example, when 𝛽0 = 0.7 𝛾 = 2, 𝜆𝐿 =

0.28, 𝜆𝐻 = 0.7  the principal optimally chooses 𝑇𝐻 = 1, 𝑇𝐿 = 2 and rewards the low type after 

failure since 𝑇̂𝐿 = 3.  

While we have focused on how the ex post moral hazard affects the benefit of rewarding 

failure, those constraints also affect the other optimal variables of the contract.  For instance, the 

constraint (𝐸𝑀𝑃𝑡
𝜃) can be relaxed by decreasing either 𝑇𝜃.  So, we expect a shorter 

experimentation stage and a lower output when success can he hidden. 

3.3. Learning bad news 

In this section, we show that our main results survive if the object of experimentation is 

to seek bad news, where success in an experiment means discovery of high cost 𝑐 = 𝑐.  For 

instance, stage 1 of a drug trial looks for bad news by testing the safety of the drug.  Following 

the literature on experimentation we call an event of observing 𝑐 = 𝑐 by the agent “success” 

although this is bad news for the principal.  If the agent’s type were common knowledge, the 

principal and agent both become more optimistic if success is not achieved in a particular period 
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and relatively more optimistic when the agent is a high type than a low type.  Also, as time goes 

by without learning that the cost is high, the expected cost becomes lower due to Bayesian 

updating and converges to 𝑐.  In addition, the difference in the expected cost is now negative, 

∆𝑐𝑡 = 𝑐𝑡
𝐻 − 𝑐𝑡

𝐿 < 0 since the 𝐻 type is relatively more optimistic after the same amount of 

failures.  However, ∆𝑐𝑡 remains non-monotonic in time and the reasons for over experimentation 

remain unchanged. 

Denoting by 𝛽𝑡
𝜃 the updated belief of agent 𝜃 that the cost is actually high, the type 𝜃’s 

expected cost is then 𝑐𝑡
𝜃 = 𝛽𝑡

𝜃𝑐  + (1 − 𝛽𝑡
𝜃) 𝑐.  An agent of type 𝜃, announcing his type as 𝜃, 

receives expected utility 𝑈𝜃(𝜛𝜃̂) at time zero from a contract 𝜛𝜃̂, but now 𝑦𝑡
𝜃̂ = 𝑤𝑡

𝜃̂(𝑐) −

𝑐𝑞𝑡
𝜃̂(𝑐) is a function of 𝑐.  

Under asymmetric information about the agent’s type, the intuition behind the key 

incentive problem is similar to that under learning good news.  However, it is now the high type 

who has an incentive to claim to be a low type.  Given the same length of experimentation, 

following failure, the expected cost is higher for the low type.  Thus, a high type now has an 

incentive to claim to be a low type: since a low type must be given his expected cost following 

failure, a high type will have to be given a rent to truthfully report his type as his expected cost is 

lower, that is, 𝑐
𝑇𝐿+1
𝐻 < 𝑐

𝑇𝐿+1
𝐿 .  The details of the optimization problem mirror the case for good 

news of Propositions 2, 3, and 4 and the results are similar.  We present results formally in 

Proposition 6 in Supplementary Appendix E. 

We find similar restrictions when both (𝐼𝐶) constraints bind as in Propositions 2, 3 and 4.  

The type of news, however, determines length of experimentation decisions.  The parallel 

between good news and bad news is remarkable but not difficult to explain.  In both cases, the 

agent is looking for news.  The types determine how good the agent is at obtaining this news.  

The contract gives incentives for each type of agent to reveal his type, not the actual news. 

4. Conclusions 

In this paper, we have studied the interaction between experimentation and production 

where the length of the experimentation stage determines the degree of asymmetric information 

at the production stage.  While there has been much recent attention on studying incentives for 

experimentation in two-armed bandit settings, details of the optimal production decision are 
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typically suppressed to focus on incentives for experimentation.  Each stage may impact the 

other in interesting ways and our paper is a step towards studying this interaction. 

There is also a significant literature on endogenous information gathering in contract 

theory but typically relying on static models of learning.  By modeling experimentation in a 

dynamic setting, we have endogenized the degree of asymmetry of information in a principal 

agent model and related it to the length of the learning stage.   

When there is an optimal production decision after experimentation, we find a new result 

that over-experimentation is a useful screening device.  Likewise, over production is also useful 

to mitigate the agent’s information rent.  By analyzing the stochastic structure of the dynamic 

problem, we clarify how the principal can rely on the relative probabilities of success and failure 

of the two types to screen them.  The rent to a high type should come after early success and to 

the low type for late success.  If the experimentation stage is relatively short, the principal has no 

recourse but to pay the low type’s rent after failure, which is another novel result.   

While our main section relies on publicly observed success, we show that our key 

insights survive if the agent can hide success.  Then, there is ex post moral hazard, which implies 

that the agent is paid a rent in every period, but the screening properties of the optimal contract 

remain intact.  Finally, we prove that our key insights do hold in both good and bad-news 

models. 
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Appendix A (Proof of Sufficient conditions for (𝑰𝑪𝑯,𝑳) to be binding, 

Propositions 2 and 3) 

 

First best: Characterizing 𝜆̂. 

Claim. There exists 𝜆̂ ∈ (0,1), such that 
𝑑𝑇𝐹𝐵

𝜃

𝑑𝜆𝜃 < 0 for 𝜆𝜃 < 𝜆̂ and 
𝑑𝑇𝐹𝐵

𝜃

𝑑𝜆𝜃 ≥ 0 for 𝜆𝜃 ≥ 𝜆̂. 

Proof: The first-best termination date 𝑡 is such that 

𝛽𝑡𝜆[𝑉(𝑞𝑆) − 𝑐𝑞𝑆] + (1 − 𝛽𝑡𝜆)[𝑉(𝑞𝐹) − 𝑐𝑡+1𝑞𝐹] = 𝛾 + [𝑉(𝑞𝐹) − 𝑐𝑡𝑞𝐹]. 

Rewriting it next we have 

𝛽𝑡𝜆[𝑉(𝑞𝑆) − 𝑐𝑞𝑆 − 𝑉(𝑞𝐹)] + 𝑞𝐹[𝑐𝑡 − 𝑐𝑡+1(1 − 𝛽𝑡𝜆)] = 𝛾, 

which given that 𝑐𝑡 − 𝑐𝑡+1(1 − 𝛽𝑡𝜆) = 𝛽𝑡𝜆𝑐, can be rewritten next as 

𝛽𝑡𝜆 =
𝛾

(𝑉(𝑞𝑆)−𝑐𝑞𝑆)−(𝑉(𝑞𝐹)−𝑐𝑞𝐹)
, 

which implicitly determines 𝑡 as a function of 𝜆, 𝑡(𝜆). Using the Implicit Function Theorem 

𝑑𝑡

𝑑𝜆
= −

𝜕[
𝜆𝛽0(1−𝜆)𝑡−1

𝛽0(1−𝜆)𝑡−1+(1−𝛽0)
]

𝜕𝜆

𝜕[
𝜆𝛽0(1−𝜆)𝑡−1

𝛽0(1−𝜆)𝑡−1+(1−𝛽0)
]

𝜕𝑡

. 

Since 
𝜕[

𝜆𝛽0(1−𝜆)𝑡−1

𝛽0(1−𝜆)𝑡−1+(1−𝛽0)
]

𝜕𝜆
= 

𝛽
0
((1 − 𝜆)𝑡−1 + 𝜆(1 − 𝜆)𝑡−2(𝑡 − 1)(−1)) (𝛽

0
(1 − 𝜆)𝑡−1 + (1 − 𝛽

0
)) − 𝛽

0
𝜆(1 − 𝜆)𝑡−1 (𝛽

0
(1 − 𝜆)𝑡−1 + (1 − 𝛽

0
))

(𝛽
0
(1 − 𝜆)𝑡−1 + (1 − 𝛽

0
))

2  

=
𝛽0(1−𝜆)𝑡−1[1−𝛽0+𝛽0(1−𝜆)𝑡−1−

(1−𝛽0)𝜆(𝑡−1)

1−𝜆
]

(𝛽0(1−𝜆)𝑡−1+(1−𝛽0))
2 , 

and 
𝜕[

𝜆𝛽0(1−𝜆)𝑡−1

𝛽0(1−𝜆)𝑡−1+(1−𝛽0)
]

𝜕𝑡
=

𝛽0(1−𝛽0)𝜆(1−𝜆)𝑡−1 𝑙𝑛(1−𝜆)

(𝛽0(1−𝜆)𝑡−1+(1−𝛽0))
2 , we have 

  
𝑑𝑡

𝑑𝜆
= −

𝛽0(1−𝜆)𝑡−1[1−𝛽0+𝛽0(1−𝜆)𝑡−1−
(1−𝛽0)𝜆(𝑡−1)

1−𝜆
]

(𝛽0(1−𝜆)𝑡−1+(1−𝛽0))
2

𝛽0(1−𝛽0)𝜆(1−𝜆)𝑡−1 𝑙𝑛(1−𝜆)

(𝛽0(1−𝜆)𝑡−1+(1−𝛽0))
2

= −
(1−𝛽0)(1−𝜆𝑡)+𝛽0(1−𝜆)𝑡

(1−𝛽0)𝜆(1−𝜆) 𝑙𝑛(1−𝜆)
. 
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For 
𝑑𝑡

𝑑𝜆
< 0 it is necessary and sufficient that (1 − 𝛽0)(1 − 𝜆𝑡) + 𝛽0(1 − 𝜆)𝑡 < 0. Since 

𝑑[(1−𝛽0)(1−𝜆𝑡)+𝛽0(1−𝜆)𝑡]

𝑑𝑡
< 0 for any 𝜆 it is sufficient to find 𝜆̂ such that (1 − 𝛽0)(1 − 2𝜆) +

𝛽0(1 − 𝜆)2 < 0 for any 𝜆 > 𝜆̂. Since (1 − 𝛽0)(1 − 2𝜆) + 𝛽0(1 − 𝜆)2 = 

𝛽0 (𝜆 −
1−√1−𝛽0

𝛽0
) (𝜆 −

1+√1−𝛽0

𝛽0
), we define 𝜆̂ =

1−√1−𝛽0

𝛽0
.34     Q.E.D. 

 

Sufficient conditions for (𝑰𝑪𝑯,𝑳) to be binding. 

Claim. For any 𝜆𝐿 ∈ (0,1), there exists 0 < 𝜆𝐻(𝜆𝐿) < 𝜆
𝐻
(𝜆𝐿) < 1 such that the first best order 

of termination dates is preserved in equilibrium and (𝐼𝐶𝐻,𝐿) binds if  

either i) 𝜆𝐻 < 𝑚𝑖𝑛{𝜆𝐻(𝜆𝐿), 𝜆̂} for 𝜆𝐿 < 𝜆̂ or ii) 𝜆𝐻 > 𝜆
𝐻
(𝜆𝐿) > 𝜆𝐿 for 𝜆𝐿 ≥ 𝜆̂. 

Proof: We will prove later in this Appendix A (see Optimal payment structure) that when the 

(𝐼𝐶𝐻,𝐿) binds, the principal will pay 𝑈𝐿 by only rewarding failure (𝑥𝐿 > 0), or only rewarding 

success in the last period 𝑇𝐿 (𝑦
𝑇𝐿
𝐿 > 0).  In step 1 below, we characterize a function 𝜁(𝑡) that 

determines the sign of the high-type’s gamble, i.e., if (𝐼𝐶𝐻,𝐿) is binding, regardless of whether 

the agent is optimally paid after failure or success.  In step 2, we characterize values of 𝜆𝐿 and 𝜆𝐻 

such that 𝜁(𝑡) is monotonic.  These two steps together imply that the gamble is positive under 

this set of 𝜆𝐿 and 𝜆𝐻 if the order of optimal termination dates (𝑇𝐿 and 𝑇𝐻) is the same as in the 

first best. In step 3, we prove that under this set of 𝜆𝐿 and 𝜆𝐻 it is indeed optimal for the principal 

to make the (𝐼𝐶𝐻,𝐿) binding in equilibrium. Therefore, the sufficient conditions characterize 

values of 𝜆𝐿 and 𝜆𝐻 such that the principal finds it optimal to preserve the first best order of 

termination dates in equilibrium.  

We begin by deriving the gamble if the agent is optimally rewarded after failure and after 

success in the last period 𝑇𝐿. If the principal rewards the low type after failure, the high type’s 

expected utility from misreporting (i.e., the 𝑅𝐻𝑆 of the (𝐼𝐶𝐻,𝐿) constraint) is:  

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹  − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 = 𝑞𝐹𝑃

𝑇𝐿
𝐻 (𝛿𝑇𝐻 𝑃

𝑇𝐻
𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐𝑇𝐻+1 − 𝛿𝑇𝐿

∆𝑐𝑇𝐿+1). 

                                                 

34 Note that 
1−√1−𝛽0

𝛽0
 is well defined and 0 <

1−√1−𝛽0

𝛽0
< 1 for 𝛽0 < 1. 
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If the principal rewards the low type only after success in period 𝑇𝐿, the high type’s 

expected utility from misreporting (i.e., the 𝑅𝐻𝑆 of the (𝐼𝐶𝐻,𝐿) constraint) is:  

𝛽0(1−𝜆𝐻)
𝑇𝐿−1

𝜆𝐻

𝛽0(1−𝜆𝐿)𝑇𝐿−1𝜆𝐿
𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹 − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿𝑞𝐹 =  

𝑞𝐹 (
(1−𝜆𝐻)

𝑇𝐿−1
𝜆𝐻

(1−𝜆𝐿)𝑇𝐿−1𝜆𝐿
𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1 − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1). 

Step 1.  The gamble for the high type is positive (regardless of the payment scheme) if 

and only if 𝜁(𝑇𝐻) > 𝜁(𝑇𝐿), where 𝜁(𝑡) ≡ 𝛿𝑡𝑃𝑡
𝐿(𝛽𝑡+1

𝐿 − 𝛽𝑡+1
𝐻 ). 

a) Consider the case of reward after failure first, 𝑞𝐹𝑃
𝑇𝐿
𝐻 (𝛿𝑇𝐻 𝑃

𝑇𝐻
𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐𝑇𝐻+1 − 𝛿𝑇𝐿

∆𝑐𝑇𝐿+1). Given 

that ∆𝑐𝑡 = (𝑐 − 𝑐)(𝛽𝑡
𝐿 − 𝛽𝑡

𝐻), the gamble is positive if and only if 

𝛿𝑇𝐻 𝑃
𝑇𝐻
𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐𝑇𝐻+1 − 𝛿𝑇𝐿

∆𝑐𝑇𝐿+1 > 0, 

𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 (𝛽

𝑇𝐻+1
𝐿 − 𝛽

𝑇𝐻+1
𝐻 ) > 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 (𝛽

𝑇𝐿+1
𝐿 − 𝛽

𝑇𝐿+1
𝐻 ), 

which can be re-written as 𝜁(𝑇𝐻) > 𝜁(𝑇𝐿). 

b) Consider now the case of reward after success, 𝑞𝐹 (
(1−𝜆𝐻)

𝑇𝐿−1
𝜆𝐻

(1−𝜆𝐿)𝑇𝐿−1𝜆𝐿
𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1 −

𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1).  Similarly, the gamble is positive if and only if 

(1−𝜆𝐻)
𝑇𝐿−1

𝜆𝐻

(1−𝜆𝐿)𝑇𝐿−1𝜆𝐿
𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1 − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1 > 0, 

(1−𝜆𝐻)
𝑇𝐿−1

𝜆𝐻

(1−𝜆𝐿)𝑇𝐿−1𝜆𝐿

𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐿
𝐻 >

𝛿𝑇𝐿
𝑃
𝑇𝐿
𝐿 (𝛽

𝑇𝐿+1
𝐿 −𝛽

𝑇𝐿+1
𝐻 )

𝛿𝑇𝐻
𝑃
𝑇𝐻
𝐿 (𝛽

𝑇𝐻+1
𝐿 −𝛽

𝑇𝐻+1
𝐻 )

. 

We will prove later in this Appendix A (see Optimal payment structure) that when gamble 

for the high type is positive, the low type is rewarded for success if and only if 
(1−𝜆𝐻)

𝑇𝐿−1
𝜆𝐻

(1−𝜆𝐿)𝑇𝐿−1𝜆𝐿
>

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿  or, alternatively, 

(1−𝜆𝐻)
𝑇𝐿−1

𝜆𝐻𝑃
𝑇𝐿
𝐿

(1−𝜆𝐿)𝑇𝐿−1𝜆𝐿𝑃
𝑇𝐿
𝐻

> 1. Therefore, a sufficient condition for the gamble to be 

positive when the low type is rewarded for success is 1 >
𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 (𝛽

𝑇𝐿+1
𝐿 −𝛽

𝑇𝐿+1
𝐻 )

𝛿𝑇𝐻
𝑃
𝑇𝐻
𝐿 (𝛽

𝑇𝐻+1
𝐿 −𝛽

𝑇𝐻+1
𝐻 )

. Given that 

𝛿𝑇𝐿
𝑃
𝑇𝐿
𝐿 (𝛽

𝑇𝐿+1
𝐿 −𝛽

𝑇𝐿+1
𝐻 )

𝛿𝑇𝐻
𝑃
𝑇𝐻
𝐿 (𝛽

𝑇𝐻+1
𝐿 −𝛽

𝑇𝐻+1
𝐻 )

=
𝜁(𝑇𝐿)

𝜁(𝑇𝐻)
, the condition above may be rewritten as 1 >

𝜁(𝑇𝐿)

𝜁(𝑇𝐻)
.  
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Therefore, we have proved that a sufficient condition for the gamble to be positive 

(regardless of the payment scheme) is 𝜁(𝑇𝐻) > 𝜁(𝑇𝐿). 

We now explore the properties of 𝜁(𝑡) function. 

Step 2. Next, we prove that for any 𝜆𝐿 ∈ (0,1), there exist 𝜆
𝐻
(𝜆𝐿) and 𝜆𝐻(𝜆𝐿), 1 > 𝜆

𝐻
 > 

𝜆𝐻 > 0 such that 
𝑑𝜁(𝑡)

𝑑𝑡
< 0 if 𝜆𝐻 > 𝜆

𝐻
 and 

𝑑𝜁(𝑡)

𝑑𝑡
> 0 if 𝜆𝐻 < 𝜆𝐻. 

To simplify, 𝜁(𝑡) = 𝛿𝑡(1 − 𝛽0 + 𝛽0(1 − 𝜆𝐿)𝑡) (
𝛽0(1−𝜆𝐿)

𝑡

𝛽0(1−𝜆𝐿)𝑡+(1−𝛽0)
−

𝛽0(1−𝜆𝐻)
𝑡

𝛽0(1−𝜆𝐻)𝑡+(1−𝛽0)
)  

= 𝛿𝑡
𝛽0((1−𝜆𝐿)

𝑡
(𝛽0(1−𝜆𝐻)

𝑡
+(1−𝛽0))−(1−𝜆𝐻)

𝑡
(1−𝛽0+𝛽0(1−𝜆𝐿)

𝑡
))

𝛽0(1−𝜆𝐻)𝑡+(1−𝛽0)
  

= 𝛿𝑡
𝛽0(1−𝛽0)((1−𝜆𝐿)

𝑡
−(1−𝜆𝐻)

𝑡
)

(𝛽0(1−𝜆𝐻)𝑡+(1−𝛽0))
= 𝛿𝑡

𝛽0(1−𝛽0)((1−𝜆𝐿)
𝑡
−(1−𝜆𝐻)

𝑡
)

𝑃𝑡
𝐻 .  

𝑑𝜁(𝑡)

𝑑𝑡

= 𝛿𝑡
((1 − 𝜆𝐿)𝑡𝑙𝑛(1 − 𝜆𝐿) − (1 − 𝜆𝐻)𝑡𝑙𝑛(1 − 𝜆𝐻))𝑃𝑡

𝐻 − 𝛽
0
(1 − 𝜆𝐻)𝑡𝑙𝑛(1 − 𝜆𝐻)((1 − 𝜆𝐿)𝑡 − (1 − 𝜆𝐻)𝑡)

(𝑃𝑡
𝐻)2 1

𝛽
0
(1 − 𝛽

0
)
 

 

+𝛿𝑡 𝑙𝑛 𝛿
𝑃𝑡

𝐻((1 − 𝜆𝐿)𝑡 − (1 − 𝜆𝐻)𝑡)

(𝑃𝑡
𝐻)2 1

𝛽0(1 − 𝛽0)
 

 

= 𝛿𝑡 [𝑙𝑛(1−𝜆𝐿)+𝑙𝑛𝛿](1−𝜆𝐿)
𝑡
𝑃𝑡

𝐻−(1−𝜆𝐻)
𝑡
(𝑃𝑡

𝐿𝑙𝑛(1−𝜆𝐻)+𝑃𝑡
𝐻𝑙𝑛𝛿)

(𝑃𝑡
𝐻)

2 1

𝛽0(1−𝛽0)

. 

Function 𝜁(𝑡) decreases with 𝑡 if and only if 𝜙(𝜆𝐻) < 0, where  

𝜙(𝜆𝐻) = [𝑙𝑛(1 − 𝜆𝐿) + 𝑙𝑛 𝛿](1 − 𝜆𝐿)𝑡𝑃𝑡
𝐻 − (1 − 𝜆𝐻)𝑡(𝑃𝑡

𝐿𝑙𝑛(1 − 𝜆𝐻) + 𝑃𝑡
𝐻𝑙𝑛𝛿). 

We prove first that 𝜙(𝜆𝐻) < 0 for any 𝑡 if 𝜆𝐻 is sufficiently high. 

Since both (1 − 𝜆𝐿)𝑡𝑃𝑡
𝐻 and (1 − 𝜆𝐻)𝑡(𝑃𝑡

𝐿𝑙𝑛(1 − 𝜆𝐻) + 𝑃𝑡
𝐻𝑙𝑛𝛿) are increasing in 𝑡, we have 

𝜙(𝜆𝐻) < (1 − 𝛽0)(1 − 𝜆𝐿)𝑇 𝑙𝑛[𝛿(1 − 𝜆𝐿)] − (1 − 𝜆𝐻)(𝑃1
𝐿𝑙𝑛(1 − 𝜆𝐻) + 𝑃1

𝐻𝑙𝑛𝛿), 

where 𝑇 = max{𝑇𝐻, 𝑇𝐿}.  

Next, (1 − 𝜆𝐻)(𝑃1
𝐿𝑙𝑛(1 − 𝜆𝐻) + 𝑃1

𝐻𝑙𝑛𝛿) > (1 − 𝜆𝐻)(1 − 𝛽0𝜆
𝐿) 𝑙𝑛[𝛿(1 − 𝜆𝐻)] and 

𝑙𝑛[𝛿(1−𝜆𝐻)]

𝑙𝑛[𝛿(1−𝜆𝐿)]
> 1. Therefore, 

(1−𝛽0)(1−𝜆𝐿)
𝑇

(1−𝜆𝐻)(1−𝛽0𝜆𝐿)
> 1 ⟹ 𝜙(𝜆𝐻) < 0. 

Rearranging the above, we have 𝜙(𝜆𝐻) < 0 for any 𝑡 if 𝜆𝐻 > 1 −
(1−𝛽0)(1−𝜆𝐿)

𝑇

(1−𝛽0𝜆𝐿)
.  
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Denote  

𝜆
𝐻

≡ 1 −
(1 − 𝛽0)(1 − 𝜆𝐿)𝑇

(1 − 𝛽0𝜆𝐿)
. 

Therefore, for any 𝑡, 𝜙(𝜆𝐻) < 0 if 𝜆𝐻 > 𝜆
𝐻

 and, consequently, 
𝑑𝜁(𝑡)

𝑑𝑡
< 0 for any 𝑡 if 𝜆𝐻 > 𝜆

𝐻
.  

 We next prove 𝜙(𝜆𝐻) > 0 for any 𝑡 if 𝜆𝐻 is sufficiently low. 

Similarly, because both (1 − 𝜆𝐿)𝑡𝑃𝑡
𝐻 and (1 − 𝜆𝐻)𝑡(𝑃𝑡

𝐿𝑙𝑛(1 − 𝜆𝐻) + 𝑃𝑡
𝐻𝑙𝑛𝛿) are increasing in 𝑡, 

𝜙(𝜆𝐻) > 𝑃1
𝐻(1 − 𝜆𝐿) 𝑙𝑛[𝛿(1 − 𝜆𝐿)] − (1 − 𝜆𝐻)𝑇(𝑃

𝑇
𝐿𝑙𝑛(1 − 𝜆𝐻) + 𝑃

𝑇
𝐻𝑙𝑛𝛿). 

Next, (1 − 𝜆𝐻)𝑇𝑃
𝑇
𝐻 𝑙𝑛[𝛿(1 − 𝜆𝐻)] > (1 − 𝜆𝐻)𝑇(𝑃

𝑇
𝐿𝑙𝑛(1 − 𝜆𝐻) + 𝑃

𝑇
𝐻𝑙𝑛𝛿) and 

𝑙𝑛[𝛿(1−𝜆𝐻)]

𝑙𝑛[𝛿(1−𝜆𝐿)]
> 1.  

Therefore, (1 − 𝛽0𝜆
𝐻)(1 − 𝜆𝐿) < (1 − 𝜆𝐻)𝑇(1 − 𝛽0 + 𝛽0(1 − 𝜆𝐻)𝑇) ⟹ 𝜙(𝜆𝐻) > 0. 

Rearranging the above, we have 𝜙(𝜆𝐻) > 0 for any 𝑡 if 

(1−𝛽0𝜆𝐻)

(1−𝜆𝐻)𝑇
(1 − 𝜆𝐿) < (1 − 𝛽0 + 𝛽0(1 − 𝜆𝐻)𝑇). 

The left-hand side of the above inequality, 
(1−𝛽0𝜆𝐻)

(1−𝜆𝐻)𝑇
(1 − 𝜆𝐿), is increasing in 𝜆𝐻: 

𝑑[
(1−𝛽0𝜆𝐻)

(1−𝜆𝐻)
𝑇

]

𝑑𝜆𝐻 =
−𝛽0(1−𝜆𝐻)+𝑇(1−𝛽0𝜆𝐻)

(1−𝜆𝐻)𝑇+1
> 0. 

The right-hand side of the above inequality, 1 − 𝛽0 + 𝛽0(1 − 𝜆𝐻)𝑇, is decreasing in 𝜆𝐻: 

𝑑[1−𝛽0+𝛽0(1−𝜆𝐻)
𝑇
]

𝑑𝜆𝐻 = −𝛽0𝑇(1 − 𝜆𝐻)𝑇−1 < 0. 

Therefore, there exists a unique value of 𝜆𝐻 = 𝜆𝐻, such that if 𝜆𝐻 < 𝜆𝐻:  
(1−𝛽0𝜆𝐻)

(1−𝜆𝐻)𝑇
(1 − 𝜆𝐿) <

(1 − 𝛽0 + 𝛽0(1 − 𝜆𝐻)𝑇) and 
(1−𝛽0𝜆𝐻)

(1−𝜆𝐻)𝑇
(1 − 𝜆𝐿) > (1 − 𝛽0 + 𝛽0(1 − 𝜆𝐻)𝑇) if 𝜆𝐻 > 𝜆𝐻.  

Denote 𝜆𝐻 as the unique value of 𝜆𝐻 that makes the 𝐿𝐻𝑆 and 𝑅𝐻𝑆 equal 

𝜆𝐻: 
(1−𝛽0𝜆𝐻)

(1−𝜆𝐻)
𝑇

(1 − 𝜆𝐿) = (1 − 𝛽0 + 𝛽0(1 − 𝜆𝐻)
𝑇
). 

Therefore, for any 𝑡, 𝜙(𝜆𝐻) > 0 if 𝜆𝐻 < 𝜆𝐻 and, consequently, 
𝑑𝜁(𝑡)

𝑑𝑡
> 0 for any 𝑡 if 𝜆𝐻 < 𝜆𝐻.  

Step 3. We now prove by contradiction that for 𝜆𝐻 < 𝑚𝑖𝑛{𝜆𝐻(𝜆𝐿), 𝜆̂} and 𝜆̂ < 𝜆𝐿 < 𝜆
𝐻

<

𝜆𝐻, it is optimal to have (𝐼𝐶𝐻,𝐿) binding, i.e., pay rent to both types rather than the low type only.  
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We consider 𝜆̂ < 𝜆𝐿 < 𝜆
𝐻

< 𝜆𝐻 and argue later that case 0 < 𝜆𝐿 < 𝜆𝐻 < min{𝜆𝐻, 𝜆̂} can 

be proven by repeating the same procedure. 

Step 3a. Assume (𝐼𝐶𝐻,𝐿) is not binding and it is optimal to pay rent only to the low type. 

Denote optimal duration of experimentation stage for both types 𝑇𝑆𝐵
𝐿  and 𝑇𝑆𝐵

𝐻 , respectively. We 

prove later in this Appendix A (see Optimal length of experimentation, Case A) that in this case 

𝑇𝐹𝐵
𝐻 < 𝑇𝑆𝐵

𝐻  and 𝑇𝐹𝐵
𝐿 = 𝑇𝑆𝐵

𝐿 .  

Since gamble for the high type is positive if 𝜁(𝑇𝐻) > 𝜁(𝑇𝐿) and 
𝑑𝜁(𝑡)

𝑑𝑡
< 0 for 𝜆𝐻 > 𝜆

𝐻
, it 

must be that 𝑇𝑆𝐵
𝐻 > 𝑇𝐹𝐵

𝐿  (otherwise the gamble for the high type would be positive and both types 

would collect rent). Denote the expected surplus net of costs for 𝜃 = 𝐻, 𝐿 by Ω𝜃(𝜛𝜃) =

𝛽0 ∑ 𝛿𝑡𝑇𝜃

𝑡=1 (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃[𝑉(𝑞𝑆) − 𝑐𝑞𝑆 − 𝛤𝑡] + 𝛿𝑇𝜃
𝑃

𝑇𝜃
𝜃 [𝑉(𝑞𝐹) − 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹 − 𝛤𝑇𝜃].  Since the 

principal optimally distorts 𝑇𝐻, it must be that 

𝜈Ω𝐻(𝑇𝑆𝐵
𝐻 ) + (1 − 𝜈)Ω𝐿(𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝑆𝐵
𝐻 ) > 

𝜈Ω𝐻(𝑇𝐹𝐵
𝐻 ) + (1 − 𝜈)Ω𝐿(𝑇𝐹𝐵

𝐿 ) − 𝜈𝑈𝐻(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ), 

where 𝑈𝐻(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) and 𝑈𝐿(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) appear on the RHS because the 𝑇𝐹𝐵
𝐻 < 𝑇𝐹𝐵

𝐿  and, given and 

𝑑𝜁(𝑡)

𝑑𝑡
< 0, the gamble is positive (so the principal has to pay rent to both types). 

Given that 𝑇𝐹𝐵
𝐿 = 𝑇𝑆𝐵

𝐿 , the condition above simplifies to 

𝜈𝑈𝐻(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) + (1 − 𝜈)𝑈𝐿(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝑆𝐵
𝐻 ) > 𝜈[Ω𝐻(𝑇𝐹𝐵

𝐻 ) − Ω𝐻(𝑇𝑆𝐵
𝐻 )]. 

Step 3b. We now show that our assumption (that (𝐼𝐶𝐻,𝐿) is not binding and it is optimal to pay 

rent only to the low type) leads to a contradiction by proving that the principal can be better off 

by paying rent to both types instead.   

Consider another contract with 𝑇𝐿 = 𝑇𝐹𝐵
𝐿  and 𝑇𝐻 = 𝑇𝐹𝐵

𝐿 − 𝜀, where agent’s rewards are 

chosen optimally given these 𝑇s.35 With 𝑇𝐿 = 𝑇𝐹𝐵
𝐿  and 𝑇𝐻 = 𝑇𝐹𝐵

𝐿 − 𝜀, the principal’s expected 

profit becomes 

𝜈Ω𝐻(𝑇𝐹𝐵
𝐿 − 𝜀) + (1 − 𝜈)Ω𝐿(𝑇𝐹𝐵

𝐿 ) − 𝜈𝑈𝐻(𝑇𝐹𝐵
𝐿 − 𝜀, 𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝐹𝐵
𝐿 − 𝜀, 𝑇𝐹𝐵

𝐿 ). 

 Therefore, the principal is better off with the newly introduced contract (𝑇𝐿 = 𝑇𝐹𝐵
𝐿  and 

𝑇𝐻 = 𝑇𝐹𝐵
𝐿 − 𝜀) than with (𝑇𝐹𝐵

𝐿 , 𝑇𝑆𝐵
𝐻 ) if 

𝜈Ω𝐻(𝑇𝐹𝐵
𝐿 − 𝜀) + (1 − 𝜈)Ω𝐿(𝑇𝐹𝐵

𝐿 ) − 𝜈𝑈𝐻(𝑇𝐹𝐵
𝐿 − 𝜀, 𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝐹𝐵
𝐿 − 𝜀, 𝑇𝐹𝐵

𝐿 ) > 

                                                 
35 Since we consider 𝜆𝐻  sufficiently higher than 𝜆𝐿 , we can always choose 𝑇𝐹𝐵

𝐻 < 𝑇𝐹𝐵
𝐿 + 1 for 𝜆̂ < 𝜆𝐿  and, there 

always exists 𝜀 such that 𝑇𝐹𝐵
𝐿 − 𝜀 > 𝑇𝐹𝐵

𝐻 . 
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𝜈Ω𝐻(𝑇𝑆𝐵
𝐻 ) + (1 − 𝜈)Ω𝐿(𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝑆𝐵
𝐻 ) or, equivalently 

𝜈[Ω𝐻(𝑇𝐹𝐵
𝐿 − 𝜀) − Ω𝐻(𝑇𝑆𝐵

𝐻 )] > 

𝜈𝑈𝐻(𝑇𝐹𝐵
𝐿 − 𝜀, 𝑇𝐹𝐵

𝐿 ) + (1 − 𝜈)𝑈𝐿(𝑇𝐹𝐵
𝐿 − 𝜀, 𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝑆𝐵
𝐻 ). 

Since 𝜈𝑈𝐻(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) + (1 − 𝜈)𝑈𝐿(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝑆𝐵
𝐻 ) > 𝜈[Ω𝐻(𝑇𝐹𝐵

𝐻 ) − Ω𝐻(𝑇𝑆𝐵
𝐻 )] by 

assumption (see step 3a) and 𝜈[Ω𝐻(𝑇𝐹𝐵
𝐻 ) − Ω𝐻(𝑇𝑆𝐵

𝐻 )] > 𝜈[Ω𝐻(𝑇𝐹𝐵
𝐿 − 𝜀) − Ω𝐻(𝑇𝑆𝐵

𝐻 )] because 

𝑇𝑆𝐵
𝐻 − 𝑇𝐹𝐵

𝐻 > 𝑇𝑆𝐵
𝐻 − (𝑇𝐹𝐵

𝐿 − 𝜀), the principal is better off with the newly introduced contract 

(𝑇𝐿 = 𝑇𝐹𝐵
𝐿  and 𝑇𝐻 = 𝑇𝐹𝐵

𝐿 − 𝜀) than with (𝑇𝐹𝐵
𝐿 , 𝑇𝑆𝐵

𝐻 ) if 

𝜈𝑈𝐻(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) + (1 − 𝜈)𝑈𝐿(𝑇𝐹𝐵
𝐻 , 𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝑆𝐵
𝐻 ) > 

𝜈𝑈𝐻(𝑇𝐹𝐵
𝐿 − 𝜀, 𝑇𝐹𝐵

𝐿 ) + (1 − 𝜈)𝑈𝐿(𝑇𝐹𝐵
𝐿 − 𝜀, 𝑇𝐹𝐵

𝐿 ) − (1 − 𝜈)𝑈𝐿(𝑇𝑆𝐵
𝐻 ). 

The above inequality holds for any 𝜀 < 𝑇𝐹𝐵
𝐿 − 𝑇𝐹𝐵

𝐻 , since we prove later in this Appendix A (see 

Sufficient conditions for over/under experimentation) that for 𝜆
𝐻

< 𝜆𝐻 both  
𝜕𝑈𝐻(𝑇𝐻,𝑇𝐿)

𝜕𝑇𝐻 < 0 and 

𝜕𝑈𝐿(𝑇𝐻,𝑇𝐿)

𝜕𝑇𝐻 < 0. Therefore, the principal is better off by paying rent to both types rather than to 

the low type only. 

Consider now 0 < 𝜆𝐿 < 𝜆𝐻 < min{𝜆𝐻, 𝜆̂}. Repeating the same procedure with 𝑇𝐿 =

𝑇𝐹𝐵
𝐻 − 𝜀 and 𝑇𝐻 = 𝑇𝐹𝐵

𝐻  and given that for 𝜆𝐿 < 𝜆𝐻 < min{𝜆𝐻, 𝜆̂} both 
𝑑𝜁(𝑡)

𝑑𝑡
< 0 and 𝑇𝐹𝐵

𝐻 > 𝑇𝐹𝐵
𝐿  a 

similar conclusion follows. 

Q.E.D. 

 

Proof of Propositions 2 and 3 

 

We first characterize the optimal payment structure given 𝑇𝐿 and 𝑇𝐻, 𝑥𝐿, {𝑦𝑡
𝐿}𝑡=1

𝑇𝐿
, 𝑥𝐻 and 

{𝑦𝑡
𝐻}𝑡=1

𝑇𝐻
 (Proposition 3), then the optimal length of experimentation, 𝑇𝐿 and 𝑇𝐻 (Proposition 2).  

Denote the expected surplus net of costs for 𝜃 = 𝐻, 𝐿 by Ω𝜃(𝜛𝜃) = 𝛽0 ∑ 𝛿𝑡𝑇𝜃

𝑡=1 (1 −

𝜆𝜃)
𝑡−1

𝜆𝜃[𝑉(𝑞𝑆) − 𝑐𝑞𝑆 − 𝛤𝑡] + 𝛿𝑇𝜃
𝑃

𝑇𝜃
𝜃 [𝑉(𝑞𝐹) − 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹 − 𝛤𝑇𝜃]. The principal’s optimization 

problem then is to choose contracts 𝜛𝐻 and 𝜛𝐿 to maximize the expected net surplus minus rent 

of the agent, subject to the respective 𝐼𝐶 and 𝐼𝑅 constraints given below: 

 

𝑀𝑎𝑥 𝐸𝜃 {Ω𝜃(𝜛𝜃) − 𝛽0 ∑ 𝛿𝑡𝑇𝜃

𝑡=1 (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃𝑦𝑡
𝜃 − 𝛿𝑇𝜃

𝑃
𝑇𝜃
𝜃 𝑥𝜃} subject to: 

(𝐼𝐶𝐻,𝐿) 𝛽0 ∑ 𝛿𝑡𝑇𝐻

𝑡=1 (1 − 𝜆𝐻)𝑡−1𝜆𝐻𝑦𝑡
𝐻 + 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐻 𝑥𝐻  
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≥ 𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐻)𝑡−1𝜆𝐻𝑦𝑡
𝐿 + 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 [𝑥𝐿 − ∆𝑐𝑇𝐿+1𝑞𝐹],   

(𝐼𝐶𝐿,𝐻) 𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐿 + 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑥𝐿 

≥ 𝛽0 ∑ 𝛿𝑡𝑇𝐻

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐻 + 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 [𝑥𝐻 + ∆𝑐𝑇𝐻+1𝑞𝐹],  

(𝐼𝑅𝑆𝑡
𝐻) 𝑦𝑡

𝐻 ≥ 0 for 𝑡 ≤ 𝑇𝐻, 

(𝐼𝑅𝑆𝑡
𝐿) 𝑦𝑡

𝐿 ≥ 0 for 𝑡 ≤ 𝑇𝐿, 

(𝐼𝑅𝐹
𝑇𝐻
𝐻 ) 𝑥𝐻 ≥ 0, 

(𝐼𝑅𝐹
𝑇𝐿
𝐿 ) 𝑥𝐿 ≥ 0. 

We begin to solve the problem by first proving the following claim. 

Claim: The constraint (𝐼𝐶𝐿,𝐻) is binding and the low type obtains a strictly positive rent. 

Proof: If the (𝐼𝐶𝐿,𝐻) constraint was not binding, it would be possible to decrease the payment to 

the low type until (𝐼𝑅𝑆𝑡
𝐿) and (𝐼𝑅𝐹𝑡

𝐿) are binding, but that would violate (𝐼𝐶𝐿,𝐻) since 

∆𝑐𝑇𝐻+1𝑞𝐹 > 0.           Q.E.D. 

I. Optimal payment structure, 𝒙𝑳, {𝒚𝒕
𝑳}𝒕=𝟏

𝑻𝑳
, 𝒙𝑯 and {𝒚𝒕

𝑯}𝒕=𝟏
𝑻𝑯

  

(Proof of Proposition 3) 

First we show that if the high type claims to be the low type, the high type is relatively 

more likely to succeed if experimentation stage is smaller than a threshold level, 𝑇̂𝐿. In terms of 

notation, we define 𝑓2(𝑡, 𝑇
𝐿) =

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − (1 − 𝜆𝐻)𝑡−1𝜆𝐻 to trace difference in the 

likelihood ratios of failure and success for two types. 

Lemma 1: There exists a unique 𝑇̂𝐿 > 1, such that 𝑓2(𝑇̂
𝐿 , 𝑇𝐿) = 0, and  

𝑓2(𝑡, 𝑇
𝐿) {< 0 for 𝑡 < 𝑇̂𝐿

> 0 for 𝑡 > 𝑇̂𝐿
. 

Proof: Note that  
𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿  is a ratio of the probability that the high type does not succeed to the 

probability that the low type does not succeed for 𝑇𝐿 periods. At the same time, 

𝛽0(1 − 𝜆𝜃)
𝑡−1

𝜆𝜃 is the probability that the agent of type 𝜃 succeeds at period 𝑡 ≤ 𝑇𝐿 of the 

experimentation stage and 
𝛽0(1−𝜆𝐻)

𝑡−1
𝜆𝐻

𝛽0(1−𝜆𝐿)𝑡−1𝜆𝐿 =
(1−𝜆𝐻)

𝑡−1
𝜆𝐻

(1−𝜆𝐿)𝑡−1𝜆𝐿  is a ratio of the probabilities of success at 

period 𝑡 by two types. As a result, we can rewrite 𝑓2(𝑡, 𝑇
𝐿) > 0 as 
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1−𝛽0+𝛽0(1−𝜆𝐻)
𝑇𝐿

1−𝛽0+𝛽0(1−𝜆𝐿)𝑇𝐿 >
(1−𝜆𝐻)

𝑡−1
𝜆𝐻

(1−𝜆𝐿)𝑡−1𝜆𝐿
 for 1 ≤ 𝑡 ≤ 𝑇𝐿 or, equivalently, 

1−𝛽0+𝛽0(1−𝜆𝐻)
𝑇𝐿

(1−𝜆𝐻)𝑡−1𝜆𝐻 
>

1−𝛽0+𝛽0(1−𝜆𝐿)
𝑇𝐿

(1−𝜆𝐿)𝑡−1𝜆𝐿  for 1 ≤ 𝑡 ≤ 𝑇𝐿, 

where 
1−𝛽0+𝛽0(1−𝜆𝜃)

𝑇𝐿

(1−𝜆𝜃)
𝑡−1

𝜆𝜃 
 can be interpreted as a likelihood ratio. 

We will say that when 𝑓2(𝑡, 𝑇
𝐿) > 0 (< 0) the high type is relatively more likely to fail 

(succeed) than the low type during the experimentation stage if he chooses a contract designed 

for the low type. 

There exists a unique time period 𝑇̂𝐿(𝑇𝐿 , 𝜆𝐿 , 𝜆𝐻, 𝛽0) such that 𝑓2(𝑇̂
𝐿 , 𝑇𝐿) = 0 defined as 

𝑇̂𝐿 ≡ 𝑇̂𝐿(𝑇𝐿 , 𝜆𝐿 , 𝜆𝐻, 𝛽0) = 1 +

ln(
𝑃

𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿

𝜆𝐿

𝜆𝐻)

ln(
1−𝜆𝐻

1−𝜆𝐿) 
, 

where uniqueness follows from 
(1−𝜆𝐻)

𝑡−1
𝜆𝐻

(1−𝜆𝐿)𝑡−1𝜆𝐿  being strictly decreasing in 𝑡 and 
𝜆𝐻

𝜆𝐿 > 1 >
𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 .36 In 

addition, for 𝑡 < 𝑇̂𝐿 it follows that 𝑓2(𝑡, 𝑇
𝐿) < 0 and, as a result, the high type is relatively more 

likely to succeed than the low type whereas for 𝑡 > 𝑇̂𝐿 the opposite is true.   Q.E.D. 

We will show that the solution to the principal’s optimization problem depends on 

whether the (𝐼𝐶𝐻,𝐿) constraint is binding or not; we explore each case separately in what follows. 

Case A: The (𝑰𝑪𝑯,𝑳) constraint is not binding. 

In this case the high type does not receive any rent and it immediately follows that 𝑥𝐻 =

0 and 𝑦𝑡
𝐻 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻, which implies that the rent of the low type in this case becomes 

𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹.  Replacing 𝑥𝐿 in the objective function, the principal’s optimization problem 

is to choose 𝑇𝐻, 𝑇𝐿, {𝑦𝑡
𝐿}𝑡=1

𝑇𝐿
 to 

𝑀𝑎𝑥 𝐸𝜃{𝜋𝐹𝐵
𝜃 (𝜛𝜃) − (1 − 𝜐)𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹} subject to: 

(𝐼𝑅𝑆𝑡
𝐿) 𝑦𝑡

𝐿 ≥ 0 for 𝑡 ≤ 𝑇𝐿, 

and (𝐼𝑅𝐹𝑇𝐿) 𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹 − 𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐿 ≥ 0. 

                                                 

36 To explain, 𝑓2(𝑡, 𝑇
𝐿) = 0 if and only if 

1−𝛽0+𝛽0(1−𝜆𝐻)
𝑇𝐿

1−𝛽0+𝛽0(1−𝜆𝐿)
𝑇𝐿 =

(1−𝜆𝐻)
𝑡−1

𝜆𝐻

(1−𝜆𝐿)
𝑡−1

𝜆𝐿
. Given that the right hand side of the 

equation above is strictly decreasing since 
1−𝜆𝐻

1−𝜆𝐿 < 1 and if evaluated at 𝑡 = 1 is equal to 
𝜆𝐻

𝜆𝐿 . Since 

1−𝛽0+𝛽0(1−𝜆𝐻)
𝑇𝐿

1−𝛽0+𝛽0(1−𝜆𝐿)
𝑇𝐿 < 1 and 

𝜆𝐻

𝜆𝐿 > 1 the uniqueness immediately follows.  So 𝑇̂𝐿 satisfies  
𝑃
𝑇𝐿 
𝐻

𝑃
𝑇𝐿 
𝐿 =

(1−𝜆𝐻)
𝑇̂𝐿 −1

𝜆𝐻

(1−𝜆𝐿)
𝑇̂𝐿 −1

𝜆𝐿
. 
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When the (𝐼𝐶𝐻,𝐿) constraint is not binding, the claim below shows that there are no 

restrictions in choosing {𝑦𝑡
𝐿}𝑡=1

𝑇𝐿
 except those imposed by the (𝐼𝐶𝐿,𝐻) constraint. In other words, 

the principal can choose any combinations of nonnegative payments to the low type 

(𝑥𝐿 , {𝑦𝑡
𝐿}𝑡=1

𝑇𝐿
) such that 𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐿 + 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑥𝐿 = 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹. Labeling 

by {𝛼𝑡
𝐿}𝑡=1

𝑇𝐿
, 𝛼𝐿 the Lagrange multipliers of the constraints associated with  (𝐼𝑅𝑆𝑡

𝐿) for 𝑡 ≤ 𝑇𝐿, 

and (𝐼𝑅𝐹𝑇𝐿) respectively, we have the following claim. 

Claim A.1: If (𝐼𝐶𝐻,𝐿) is not binding, we have 𝛼𝐿 = 0 and 𝛼𝑡
𝐿 = 0 for all 𝑡 ≤ 𝑇𝐿.      

Proof: We can rewrite the Kuhn-Tucker conditions as follows: 

𝜕ℒ

𝜕𝑦𝑡
𝐿 = 𝛼𝑡

𝐿 − 𝛼𝐿𝛽0𝛿
𝑡(1 − 𝜆𝐿)𝑡−1𝜆𝐿 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿; 

𝜕ℒ

𝜕𝛼𝑡
𝐿 = 𝑦𝑡

𝐿 ≥ 0; 𝛼𝑡
𝐿 ≥ 0; 𝛼𝑡

𝐿𝑦𝑡
𝐿 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

Suppose to the contrary that 𝛼𝐿 > 0.  Then, 

𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹 − 𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 (1 − 𝜆𝐿)𝑡−1𝜆𝐿𝑦𝑡
𝐿 = 0, 

and there must exist 𝑦𝑠
𝐿 > 0 for some 1 ≤ 𝑠 ≤ 𝑇𝐿.  Then, we have 𝛼𝑠

𝐿 = 0, which leads to a 

contradiction since 
𝜕ℒ

𝜕𝑦𝑡
𝐿 = 0 cannot be satisfied unless 𝛼𝐿 = 0. 

Suppose to the contrary that 𝛼𝑠
𝐿 > 0 for some 1 ≤ 𝑠 ≤ 𝑇𝐿. Then, 𝛼𝐿 > 0, which leads to a 

contradiction as we have just shown above.         Q.E.D. 

Case B: The (𝑰𝑪𝑯,𝑳) constraint is binding. 

We will now show that when the (𝐼𝐶𝐻,𝐿) becomes binding, there are restrictions on the 

payment structure to the low type.  Denoting by 𝜓 = 𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 − 𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 , we can re-write the 

incentive compatibility constraints as: 

𝑥𝐻𝛿𝑇𝐻
𝜓 = 𝛽0 ∑ 𝛿𝑡𝑇𝐻

𝑡=1 [𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻]𝑦𝑡

𝐻  

+𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 [𝑃
𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿]𝑦𝑡

𝐿  

+𝑃
𝑇𝐿
𝐻 𝑞𝐹(𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1 − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐𝑇𝐿+1), and  

𝑥𝐿𝛿𝑇𝐿
𝜓 = 𝛽0 ∑ 𝛿𝑡𝑇𝐻

𝑡=1 [𝑃
𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻]𝑦𝑡

𝐻  

+𝛽0 ∑ 𝛿𝑡𝑇𝐿

𝑡=1 [𝑃
𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿]𝑦𝑡

𝐿  

+𝑃
𝑇𝐻
𝐿 𝑞𝐹(𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐻 ∆𝑐𝑇𝐻+1 − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1). 
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First, we consider the case when 𝜓 ≠ 0.  This is when the likelihood ratio of reaching the 

last period of the experimentation stage is different for both types i.e., when 
𝑃
𝑇𝐻
𝐻

𝑃
𝑇𝐻
𝐿 ≠

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿  (Case 

B.1).  We showed in Lemma 1 that there exists a time threshold 𝑇̂𝐿 such that if type 𝐻 claims to 

be type 𝐿, he is more likely to fail (resp. succeed) than type 𝐿 if the experimentation stage is 

longer (resp. shorter) than 𝑇̂𝐿.  In Lemma 2 we prove that, if the principal rewards success, it is 

at most once.  In Lemma 3, we establish that the high type is never rewarded for failure.  In 

Lemma 4, we prove that the low type is rewarded for failure if and only if 𝑇𝐿 ≤ 𝑇̂𝐿 and, in 

Lemma 5, that he is rewarded for the very last success if 𝑇𝐿 > 𝑇̂𝐿.  In Lemma 6, we prove that 

𝑇̂𝐿 > 𝑇𝐿(<) for high (small) values of 𝛾. Therefore, if the cost of experimentation is large ( 𝛾 >

𝛾∗), the principal must reward the low type after failure.  If the cost of experimentation is small 

(𝛾 < 𝛾∗ ) , the principal must reward the low type after late success (last period). We also show 

that the high type may be rewarded only for the very first success.   

Finally, we analyze the case when 
𝑃
𝑇𝐻
𝐻

𝑃
𝑇𝐻
𝐿 =

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿  (Case B.2).  In this case, the likelihood ratio 

of reaching the last period of the experimentation stage is the same for both types and 𝑥𝐻 and 𝑥𝐿 

cannot be used as screening variables.  Therefore, the principal must reward both types for 

success and she chooses 𝑇𝐿 > 𝑇̂𝐿. 

 

Case B.1: 𝜓 = 𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 − 𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 ≠ 0. 

Then 𝑥𝐻 and 𝑥𝐿 can be expressed as functions of {𝑦𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝑦𝑡

𝐿}𝑡=1
𝑇𝐿

, 𝑇𝐻, 𝑇𝐿 only from the 

binding (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻). The principal’s optimization problem is to choose 𝑇𝐻, {𝑦𝑡
𝐻}𝑡=1

𝑇𝐻
, 

𝑇𝐿, {𝑦𝑡
𝐿}𝑡=1

𝑇𝐿
 to 

𝑀𝑎𝑥 𝐸𝜃 {
Ω𝜃(𝜛𝜃) − 𝛿𝑇𝜃

𝑃
𝑇𝜃
𝜃 𝑥𝜃({𝑦𝑡

𝐻}𝑡=1
𝑇𝐻

, {𝑦𝑡
𝐿}𝑡=1

𝑇𝐿
, 𝑇𝐻 , 𝑇𝐿)

−𝛽0 ∑ 𝛿𝑡𝑇𝜃

𝑡=1 (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃𝑦𝑡
𝜃

} subject to 

(𝐼𝑅𝑆𝑡
𝜃) 𝑦𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝐼𝑅𝐹𝑇𝜃) 𝑥𝜃({𝑦𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝑦𝑡

𝐿}𝑡=1
𝑇𝐿

, 𝑇𝐻, 𝑇𝐿) ≥ 0 for 𝜃 = 𝐻, 𝐿. 

Labeling {𝛼𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝛼𝑡

𝐿}𝑡=1
𝑇𝐿

, 𝜉𝐻 and 𝜉𝐿 as the Lagrange multipliers of the constraints 

associated with (𝐼𝑅𝑆𝑡
𝐻), (𝐼𝑅𝑆𝑡

𝐿), (𝐼𝑅𝐹𝑇𝐻) and (𝐼𝑅𝐹𝑇𝐿) respectively, the Lagrangian is: 
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ℒ = 𝐸𝜃 {Ω𝜃(𝜛𝜃) − 𝛽0 ∑ 𝛿𝑡𝑇𝜃

𝑡=1 (1 − 𝜆𝜃)
𝑡−1

𝜆𝜃𝑦𝑡
𝜃 −

𝛿𝑇𝜃
𝑃

𝑇𝜃
𝜃 𝑥𝜃({𝑦𝑡

𝐻}𝑡=1
𝑇𝐻

, {𝑦𝑡
𝐿}𝑡=1

𝑇𝐿
, 𝑇𝐻 , 𝑇𝐿)}  

+∑𝛼𝑡
𝐻𝑦𝑡

𝐻

𝑇𝐻

𝑡=1

+ ∑𝛼𝑡
𝐿𝑦𝑡

𝐿

𝑇𝐿

𝑡=1

+ 𝜉𝐻𝑥𝐻({𝑦𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝑦𝑡

𝐿}𝑡=1
𝑇𝐿

, 𝑇𝐻, 𝑇𝐿) 

+𝜉𝐿𝑥𝐿({𝑦𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝑦𝑡

𝐿}𝑡=1
𝑇𝐿

, 𝑇𝐻, 𝑇𝐿). 

We assumed that 𝑇𝐿 > 0 and 𝑇𝐻 > 0.  The Kuhn-Tucker conditions with respect to 𝑦𝑡
𝐻 

and 𝑦𝑡
𝐿 are: 

𝜕ℒ

𝜕𝑦𝑡
𝐻 = −𝜐 {𝛽0𝛿

𝑡(1 − 𝜆𝐻)𝑡−1𝜆𝐻 + 𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐻

𝛽0𝛿
𝑡[𝑃

𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻]

𝛿𝑇𝐻
(𝑃𝑇𝐻

𝐻 𝑃𝑇𝐿
𝐿 − 𝑃𝑇𝐿

𝐻 𝑃𝑇𝐻
𝐿 )

} 

−(1 − 𝜐)𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐿

𝛽0𝛿
𝑡[𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻]

𝛿𝑇𝐿
(𝑃𝑇𝐻

𝐻 𝑃𝑇𝐿
𝐿 − 𝑃𝑇𝐿

𝐻 𝑃𝑇𝐻
𝐿 )

+ 𝛼𝑡
𝐻 

+𝜉𝐻
𝛽0𝛿𝑡[𝑃

𝑇𝐿
𝐻 (1−𝜆𝐿)

𝑡−1
𝜆𝐿−𝑃

𝑇𝐿
𝐿 (1−𝜆𝐻)

𝑡−1
𝜆𝐻]

𝛿𝑇𝐻
(𝑃

𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 −𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 )

+ 𝜉𝐿
𝛽0𝛿𝑡[𝑃

𝑇𝐻
𝐻 (1−𝜆𝐿)

𝑡−1
𝜆𝐿−𝑃

𝑇𝐻
𝐿 (1−𝜆𝐻)

𝑡−1
𝜆𝐻]

𝛿𝑇𝐿
(𝑃

𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 −𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 )

; 

𝜕ℒ

𝜕𝑦𝑡
𝐿 = −(1 − 𝜐) {𝛽0𝛿

𝑡(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐿

𝛽0𝛿
𝑡[𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿]

𝛿𝑇𝐿
(𝑃𝑇𝐻

𝐻 𝑃𝑇𝐿
𝐿 − 𝑃𝑇𝐿

𝐻 𝑃𝑇𝐻
𝐿 )

} 

−𝜐𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐻

𝛽0𝛿
𝑡[𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿]

𝛿𝑇𝐻
(𝑃𝑇𝐻

𝐻 𝑃𝑇𝐿
𝐿 − 𝑃𝑇𝐿

𝐻 𝑃𝑇𝐻
𝐿 )

+ 𝛼𝑡
𝐿 

+𝜉𝐻
𝛽0𝛿𝑡[𝑃

𝑇𝐿
𝐿 (1−𝜆𝐻)

𝑡−1
𝜆𝐻−𝑃

𝑇𝐿
𝐻 (1−𝜆𝐿)

𝑡−1
𝜆𝐿]

𝛿𝑇𝐻
(𝑃

𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 −𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 )

+ 𝜉𝐿
𝛽0𝛿𝑡[𝑃

𝑇𝐻
𝐿 (1−𝜆𝐻)

𝑡−1
𝜆𝐻−𝑃

𝑇𝐻
𝐻 (1−𝜆𝐿)

𝑡−1
𝜆𝐿]

𝛿𝑇𝐿
(𝑃

𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 −𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 )

. 

 

We can rewrite the Kuhn-Tucker conditions above as follows: 

(𝑨𝟏) 
𝜕ℒ

𝜕𝑦𝑡
𝐻 =

𝛽0𝛿𝑡

𝜓
[𝑃

𝑇𝐻
𝐻 𝑓1(𝑡) [𝜐𝑃

𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 −

𝜉𝐿

𝛿𝑇𝐿] +
𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡) +

𝛼𝑡
𝐻𝜓

𝛽0𝛿𝑡] = 0,  

 

(𝑨𝟐)  
𝜕ℒ

𝜕𝑦𝑡
𝐿 =

𝛽0𝛿𝑡

𝜓
[𝑃

𝑇𝐿
𝐿 𝑓2(𝑡) [𝜐𝑃

𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] +
𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡) +

𝛼𝑡
𝐿𝜓

𝛽0𝛿𝑡
] = 0,  

where  

𝑓1(𝑡, 𝑇
𝐻) =

𝑃
𝑇𝐻
𝐿

𝑃
𝑇𝐻
𝐻 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − (1 − 𝜆𝐿)𝑡−1𝜆𝐿, and 

𝑓2(𝑡, 𝑇
𝐿) =

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − (1 − 𝜆𝐻)𝑡−1𝜆𝐻. 

Next, we show that the principal will not commit to reward success in two different 

periods for either type (the principal will reward success in at most one period). 

Lemma 2. There exists at most one time period 1 ≤ 𝑗 ≤ 𝑇𝐿 such that 𝑦𝑗
𝐿 > 0 and at most one 

time period 1 ≤ 𝑠 ≤ 𝑇𝐻 such that 𝑦𝑠
𝐻 > 0.  
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Proof: Assume to the contrary that there are two distinct periods 1 ≤ 𝑘,𝑚 ≤ 𝑇𝐿 such that 𝑘 ≠ 𝑚 

and 𝑦𝑘
𝐿, 𝑦𝑚

𝐿 > 0. Then from the Kuhn-Tucker conditions (𝐴1) and (𝐴2) it follows that 

𝑃
𝑇𝐿
𝐿 𝑓2(𝑘, 𝑇𝐿) [𝜐𝑃

𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] +
𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑘, 𝑇𝐻) = 0, 

and, in addition, 𝑃
𝑇𝐿
𝐿 𝑓2(𝑚, 𝑇𝐿) [𝜐𝑃

𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] +
𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑚, 𝑇𝐻) = 0. 

Thus, 
𝑓2(𝑚,𝑇𝐿)

𝑓1(𝑚,𝑇𝐻)
=

𝑓2(𝑘,𝑇𝐿)

𝑓1(𝑘,𝑇𝐻)
, which can be rewritten as follows: 

(𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑚−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑚−1𝜆𝐻)(𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑘−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑘−1𝜆𝐿) 

= (𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑘−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑘−1𝜆𝐻)(𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑚−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑚−1𝜆𝐿), 

𝜓[(1 − 𝜆𝐻)𝑘−1(1 − 𝜆𝐿)𝑚−1 − (1 − 𝜆𝐿)𝑘−1(1 − 𝜆𝐻)𝑚−1] = 0, 

(1 − 𝜆𝐿)𝑚−𝑘(1 − 𝜆𝐻)𝑘−𝑚 = 1, 

(
1−𝜆𝐿

1−𝜆𝐻)
𝑚−𝑘

= 1, which implies that 𝑚 = 𝑘 and we have a contradiction. 

Following similar steps, one could show that there exists at most one time period 1 ≤ 𝑠 ≤ 𝑇𝐻 

such that 𝑦𝑠
𝐻 > 0.                    Q.E.D. 

For later use, we prove the following claim: 

Claim B.1. 
𝜉𝐿

𝛿𝑇𝐿 ≠ 𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿  and 

𝜉𝐻

𝛿𝑇𝐻 ≠ 𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 . 

Proof: By contradiction. Suppose 
𝜉𝐿

𝛿𝑇𝐿 = 𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 . Then combining conditions (𝐴1) 

and (𝐴2) we have 

𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)  

= (𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻)[𝜐𝑃

𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ]  

+(𝑃
𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿)[𝜐𝑃

𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ]  

= −𝜓((1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻), 

which implies that −𝜓((1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻) +
𝛼𝑡

𝐿𝜓

𝛽0𝛿𝑡 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

Thus, 
𝛼𝑡

𝐿

𝛽0𝛿𝑡 = (1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻 > 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿, which leads 

to a contradiction since then 𝑥𝐿 = 𝑦𝑡
𝐿 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿 which implies that the low type does 

not receive any rent. 

Next, assume 
𝜉𝐻

𝛿𝑇𝐻 = 𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 . Then combining conditions (𝐴1) and (𝐴2) gives  

𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)  

= (𝑃
𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿)[𝜐𝑃

𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ]  

+(𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻)[𝜐𝑃

𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ]  

= −𝜓((1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻), 

which implies that −𝜓((1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻) +
𝛼𝑡

𝐻𝜓

𝛽0𝛿𝑡 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻. 
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Then 
𝛼𝑡

𝐻

𝛽0𝛿𝑡 = (1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻 > 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻, which leads to a 

contradiction since then 𝑥𝐻 = 𝑦𝑡
𝐻 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻 (which implies that the high type does not 

receive any rent and we are back in Case A.)       Q.E.D. 

 Now we prove that the high type may be only rewarded for success. Although the proof 

is long, the result should appear intuitive: Rewarding high type for failure will only exacerbates 

the problem as the low type is always relatively more optimistic in case he lies and 

experimentation fails. 

Lemma 3: The high type is not rewarded for failure, i.e., 𝑥𝐻 = 0. 

Proof: By contradiction. We consider separately Case (a) 𝜉𝐻 = 𝜉𝐿 = 0, and Case (b) 𝜉𝐻 = 0 and 

𝜉𝐿 > 0. 

Case (a): Suppose that 𝜉𝐻 = 𝜉𝐿 = 0, i.e., the (𝐼𝑅𝐹
𝑇𝐻
𝐻 )  and (𝐼𝑅𝐹

𝑇𝐿
𝐿 ) constraints are not binding. 

We can rewrite the Kuhn-Tucker conditions (𝐴1) and (𝐴2) as follows: 

𝜕ℒ

𝜕𝑦𝑡
𝐻 =

𝛽0𝛿𝑡

𝜓
[𝑃

𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝛼𝑡
𝐻𝜓

𝛽0𝛿𝑡] = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻; 

𝜕ℒ

𝜕𝑦𝑡
𝐿 =

𝛽0𝛿𝑡

𝜓
[𝑃

𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

𝛼𝑡
𝐿𝜓

𝛽0𝛿𝑡] = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

Since 𝑓1(𝑡, 𝑇
𝐻) is strictly positive for all 𝑡 < 𝑇̂𝐻 from 𝑃

𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 +

(1 − 𝜐)𝑃
𝑇𝐿
𝐿 ] = −

𝛼𝑡
𝐻𝜓

𝛽0𝛿𝑡
 it must be that 𝛼𝑡

𝐻 > 0 for all 𝑡 < 𝑇̂𝐻 and 𝜓 < 0. In addition, since 

𝑓2(𝑡, 𝑇
𝐿) is strictly negative for 𝑡 < 𝑇̂𝐿 from 𝑃

𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] = −

𝛼𝑡
𝐿𝜓

𝛽0𝛿𝑡 it must 

be that that 𝛼𝑡
𝐿 > 0 for 𝑡 < 𝑇̂𝐿 and 𝜓 > 0, which leads to a contradiction37. 

Case (b): Suppose that 𝜉𝐻 = 0 and 𝜉𝐿 > 0, i.e., the (𝐼𝑅𝐹
𝑇𝐻
𝐻 ) constraint is not binding but 

(𝐼𝑅𝐹
𝑇𝐿
𝐿 ) is binding. 

We can rewrite the Kuhn-Tucker conditions (𝐴1) and (𝐴2) as follows: 

𝜕ℒ

𝜕𝑦𝑡
𝐻 =

𝛽0𝛿𝑡

𝜓
[𝑃

𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) [𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 −

𝜉𝐿

𝛿𝑇𝐿] +
𝛼𝑡

𝐻𝜓

𝛽0𝛿𝑡
] = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻; 

𝜕ℒ

𝜕𝑦𝑡
𝐿 =

𝛽0𝛿𝑡

𝜓
[𝑃

𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) +
𝛼𝑡

𝐿𝜓

𝛽0𝛿𝑡
] = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

                                                 
37 If there was a solution with 𝜉𝐻 = 𝜉𝐿 = 0 then with necessity it would be possible only if 𝑇𝐻 and 𝑇𝐿 are such that 

it holds simultaneously 𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 − 𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 > 0 and 𝑃

𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 − 𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 < 0, since the two conditions are mutually 

exclusive the conclusion immediately follows. Recall that we assumed so far that 𝜓 ≠ 0; we study 𝜓 = 0 in details 

later in Case B.2. 
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 If 𝛼𝑠
𝐻 = 0 for some 1 ≤ 𝑠 ≤ 𝑇𝐻 then 𝑃

𝑇𝐻
𝐻 𝑓1(𝑠, 𝑇

𝐻) [𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 −

𝜉𝐿

𝛿𝑇𝐿] = 0, 

which implies that 
𝜉𝐿

𝛿𝑇𝐿 = 𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 38. Since we rule out this possibility it immediately 

follows that all 𝛼𝑡
𝐻 > 0 for all 1 ≤ 𝑡 ≤ 𝑇𝐻 which implies that 𝑦𝑡

𝐻 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻. 

Finally, from 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) [𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 −

𝜉𝐿

𝛿𝑇𝐿] = −
𝛼𝑡

𝐻𝜓

𝛽0𝛿𝑡 we conclude that 𝑇𝐻 ≤

𝑇̂𝐻 and there can be one of two sub-cases:39  (b.1) 𝜓 > 0 and 
𝜉𝐿

𝛿𝑇𝐿 > 𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿  , or (b.2) 

𝜓 < 0 and 
𝜉𝐿

𝛿𝑇𝐿 < 𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 . We consider each sub-case next. 

Case (b.1): 𝑇𝐻 ≤ 𝑇̂𝐻, 𝜓 > 0,  
𝜉𝐿

𝛿𝑇𝐿 > 𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 , 𝜉𝐻 = 0, 𝛼𝑡

𝐻 > 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻. 

We know from Lemma 3 that there exists only one time period 1 ≤ 𝑗 ≤ 𝑇𝐿 such that 

𝑦𝑗
𝐿 > 0 (𝛼𝑗

𝐿 = 0). This implies that 

𝑃
𝑇𝐿
𝐿 𝑓2(𝑗, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑗, 𝑇

𝐻) = 0  

and 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) = −
𝛼𝑡

𝐿𝜓

𝛽0𝛿𝑡 < 0 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿. 

Alternatively, 𝑓2(𝑡, 𝑇
𝐿) <

𝑓1(𝑡,𝑇𝐻)

𝑓1(𝑗,𝑇𝐻)
𝑓2(𝑗, 𝑇

𝐿) for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿.  

If 𝑓1(𝑗, 𝑇
𝐻) > 0 (𝑗 < 𝑇̂𝐻) then  

(𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻)(𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑗−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑗−1𝜆𝐿) 

< (𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑗−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑗−1𝜆𝐻)(𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿). 

𝜓[(1 − 𝜆𝐻)𝑡−1(1 − 𝜆𝐿)𝑗−1 − (1 − 𝜆𝐿)𝑡−1(1 − 𝜆𝐻)𝑗−1] < 0 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿. 

𝜓 [1 − (
1−𝜆𝐿

1−𝜆𝐻)
𝑡−𝑗

] < 0, which implies that 𝑡 > 𝑗 for all 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿 or, equivalently, 𝑗 = 1.   

If 𝑓1(𝑗, 𝑇
𝐻) < 0 (𝑗 > 𝑇̂𝐻) then the opposite must be true and 𝑡 < 𝑗 for all 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿 or, 

equivalently, 𝑗 = 𝑇𝐿. 

For 𝑗 > 𝑇̂𝐻 we have 𝑓1(𝑗, 𝑇
𝐻) < 0 and it follows that 𝑃

𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) < −𝜓((1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻) < 0, which implies that 

𝑦𝑗
𝐿 > 0 is only possible for 𝑗 < 𝑇̂𝐻. Thus, this case is only possible if 𝑗 = 1.  

Case (b.2): 𝑇𝐻 ≤ 𝑇̂𝐻, 𝜓 < 0,  
𝜉𝐿

𝛿𝑇𝐿 < 𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 , 𝜉𝐻 = 0, 𝛼𝑡

𝐻 > 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻. 

As in the previous case, from Lemma 3 it follows that there exists only one time period 

1 ≤ 𝑠 ≤ 𝑇𝐿 such that 𝑦𝑠
𝐿 > 0 (𝛼𝑠

𝐿 = 0). This implies that 𝑃
𝑇𝐿
𝐿 𝑓2(𝑠, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

                                                 
38 If 𝑠 = 𝑇̂𝐻, then both 𝑥𝐻 > 0 and 𝑦

𝑇̂𝐻
𝐻 > 0 can be optimal. 

39 If 𝑇𝐻 > 𝑇̂𝐻 then there would be a contradiction since 𝑓1(𝑡, 𝑇
𝐻) must be of the same sign for all 𝑡 ≤ 𝑇𝐻 . 
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𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑠, 𝑇

𝐻) = 0 and 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) = −
𝛼𝑡

𝐿𝜓

𝛽0𝛿𝑡 > 0 

for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐿. Alternatively, 𝑓2(𝑡, 𝑇
𝐿) >

𝑓1(𝑡,𝑇𝐻)

𝑓1(𝑠,𝑇𝐻)
𝑓2(𝑠, 𝑇

𝐿).  

If 𝑓1(𝑠, 𝑇
𝐻) > 0 (𝑠 < 𝑇̂𝐻) then 𝑓2(𝑡, 𝑇

𝐿)𝑓1(𝑠, 𝑇
𝐻) > 𝑓1(𝑡, 𝑇

𝐻)𝑓2(𝑠, 𝑇
𝐿)  

(𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻)(𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑠−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑠−1𝜆𝐿) 

> (𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑠−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑠−1𝜆𝐻)(𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿). 

𝜓 [1 − (
1−𝜆𝐿

1−𝜆𝐻
)

𝑠−𝑡

] < 0, which implies that 𝑡 > 𝑠 for all1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐿 or, equivalently, 𝑠 = 1.   

If 𝑓1(𝑠, 𝑇
𝐻) < 0 (𝑠 > 𝑇̂𝐻)  then the opposite must be true and 𝑡 < 𝑠 for all 1 ≤ 𝑡 ≠ 𝑠 ≤

𝑇𝐿 or, equivalently, 𝑠 = 𝑇𝐿. 

For 𝑡 > 𝑇̂𝐻 it follows that 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿)[𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 ] +

𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) 

> −𝜓((1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻) > 0, which implies that 𝑦𝑠
𝐿 > 0 is only 

possible for 𝑠 < 𝑇̂𝐻, which is only possible if 𝑠 = 1. 

For both cases we just considered, we have  

𝑥𝐻 =
𝛽0𝛿𝑃

𝑇𝐿
𝐿 (−𝑓2(1,𝑇𝐿))𝑦1

𝐿

𝛿𝑇𝐻
𝜓

+ 𝑞𝐹

𝑃
𝑇𝐿
𝐻 (𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
−𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐

𝑇𝐿+1
)

𝛿𝑇𝐻
𝜓

≥ 0; 

𝑥𝐿 =
𝛽0𝛿𝑃

𝑇𝐻
𝐻 𝑓1(1,𝑇𝐻)𝑦1

𝐿

𝛿𝑇𝐿
𝜓

+ 𝑞𝐹

𝑃
𝑇𝐻
𝐿 (𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐻 ∆𝑐

𝑇𝐻+1
−𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
)

𝛿𝑇𝐿
𝜓

= 0.  

 Note that Case B.2 is possible only if 𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹 − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐𝑇𝐿+1𝑞𝐹 > 040. This 

fact together with 𝑥𝐻 ≥ 0 implies that 𝜓 > 0. Since 𝑓1(1, 𝑇𝐻) > 0, 𝑥𝐿 = 0 is possible only if 

𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐻 ∆𝑐𝑇𝐻+1𝑞𝐹 − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 < 0. However, 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞

𝐻(𝑐
𝑇𝐻+1
𝐻 ) >

𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐿 ∆𝑐𝑇𝐿+1𝑞𝐹 implies that 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐻 ∆𝑐𝑇𝐻+1𝑞𝐹 > 𝛿𝑇𝐿 𝑃

𝑇𝐻
𝐻

𝑃
𝑇𝐻
𝐿 𝑃

𝑇𝐿
𝐿 ∆𝑐𝑇𝐿+1𝑞𝐹. Note that 𝑃

𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 −

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 > 0 implies 

𝑃
𝑇𝐻
𝐻

𝑃
𝑇𝐻
𝐿 𝑃

𝑇𝐿
𝐿 > 𝑃

𝑇𝐿
𝐻 , and then 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐻 ∆𝑐𝑇𝐻+1𝑞𝐹 > 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹, which 

implies 𝑥𝐿 > 0 and we have a contradiction. Thus, 𝜉𝐻 > 0 and the high type gets rent only after 

success (𝑥𝐻 = 0).          Q.E.D. 

We now prove that the low type is rewarded for failure only if the duration of the 

experimentation stage for the low type, 𝑇𝐿, is relatively short: 𝑇𝐿 ≤ 𝑇̂𝐿. 

Lemma 4. 𝜉𝐿 = 0 ⇒  𝑇𝐿 ≤ 𝑇̂𝐿, 𝛼𝑡
𝐿 > 0 for 𝑡 ≤ 𝑇𝐿 (it is optimal to set 𝑥𝐿 > 0, 𝑦𝑡

𝐿 = 0 for 𝑡 ≤

𝑇𝐿) and 𝛼𝑡
𝐻 > 0 for all 𝑡 > 1 and 𝛼1

𝐻 = 0 (it is optimal to set 𝑥𝐻 = 0, 𝑦𝑡
𝐻 = 0 for all 𝑡 > 1 and 

𝑦1
𝐻 > 0).  

                                                 
40 Otherwise the (𝐼𝐶𝐻,𝐿) is not binding. 
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Proof: Suppose that 𝜉𝐿 = 0, i.e., the (𝐼𝑅𝐹
𝑇𝐿
𝐿 ) constraint is not binding. We can rewrite the Kuhn-

Tucker conditions (𝐴1) and (𝐴2) as follows: 

𝜕ℒ

𝜕𝑦𝑡
𝐻 =

𝛽0𝛿𝑡

𝜓
[𝑃

𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) +
𝛼𝑡

𝐻𝜓

𝛽0𝛿𝑡
] = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻; 

𝜕ℒ

𝜕𝑦𝑡
𝐿 =

𝛽0𝛿𝑡

𝜓
[𝑃

𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) [𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] +
𝛼𝑡

𝐿𝜓

𝛽0𝛿𝑡] = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

If 𝛼𝑠
𝐿 = 0 for some 1 ≤ 𝑠 ≤ 𝑇𝐿 then 𝑃

𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) [𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] = 0, 

which implies that 
𝜉𝐻

𝛿𝑇𝐻 = 𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 41. Since we already rule out this possibility it 

immediately follows that 𝛼𝑡
𝐿 > 0 for all 1 ≤ 𝑡 ≤ 𝑇𝐿 which implies that 𝑦𝑡

𝐿 = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿.  

Finally, 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) [𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] = −
𝛼𝑡

𝐿𝜓

𝛽0𝛿𝑡
 for 1 ≤ 𝑡 ≤ 𝑇𝐿 and we 

conclude that 𝑇𝐿 ≤ 𝑇̂
𝐿
 and there can be one of two sub-cases:42 (a) 𝜓 > 0 and 

𝜉𝐻

𝛿𝑇𝐻 < 𝜐𝑃
𝑇𝐻
𝐻 +

(1 − 𝜐)𝑃
𝑇𝐻
𝐿 , or (b) 𝜓 < 0 and 

𝜉𝐻

𝛿𝑇𝐻 > 𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 . We consider each sub-case next. 

Case (a): 𝑇𝐿 ≤ 𝑇̂
𝐿
, 𝜓 > 0,  

𝜉𝐻

𝛿𝑇𝐻 < 𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 , 𝜉𝐿 = 0, 𝛼𝑡

𝐿 > 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

From Lemma 2, there exists only one time period 1 ≤ 𝑗 ≤ 𝑇𝐻 such that 𝑦𝑗
𝐻 > 0 (𝛼𝑗

𝐻 =

0). This implies that 

𝑃
𝑇𝐻
𝐻 𝑓1(𝑗, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑗, 𝑇

𝐿) = 0 and 

𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) = −
𝛼𝑡

𝐻𝜓

𝛽0𝛿𝑡 < 0 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐻. 

Alternatively, 𝑓1(𝑡, 𝑇
𝐻) <

𝑓1(𝑗,𝑇𝐻)

𝑓2(𝑗,𝑇𝐿)
𝑓2(𝑡, 𝑇

𝐿) for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐻. 

If 𝑓2(𝑗, 𝑇
𝐿) > 0 (𝑗 > 𝑇̂

𝐿
) then 𝑓1(𝑡, 𝑇

𝐻)𝑓2(𝑗, 𝑇
𝐿) < 𝑓1(𝑗, 𝑇

𝐻)𝑓2(𝑡, 𝑇
𝐿) 

(𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑗−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑗−1𝜆𝐻)(𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿) 

< (𝑃
𝑇𝐿
𝐻 (1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝑃

𝑇𝐿
𝐿 (1 − 𝜆𝐻)𝑡−1𝜆𝐻)(𝑃

𝑇𝐻
𝐿 (1 − 𝜆𝐻)𝑗−1𝜆𝐻 − 𝑃

𝑇𝐻
𝐻 (1 − 𝜆𝐿)𝑗−1𝜆𝐿), 

𝜓 [1 − (
1−𝜆𝐿

1−𝜆𝐻
)

𝑗−𝑡

] < 0, 

which implies that 𝑡 < 𝑗 for all 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐻 or, equivalently, 𝑗 = 𝑇𝐻.   

If 𝑓2(𝑗, 𝑇
𝐿) < 0 (𝑗 < 𝑇̂

𝐿
) then the opposite must be true and 𝑡 > 𝑗 for all 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐻 

or, equivalently, 𝑗 = 1. 

For 𝑡 > 𝑇̂
𝐿
 it follows that 𝑃

𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) 

< −𝜓((1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻) < 0, which implies that 𝑦𝑗
𝐻 > 0 is only 

possible for 𝑗 < 𝑇̂
𝐿

 and we have 𝑗 = 1.        

Case (b): 𝑇𝐿 ≤ 𝑇̂
𝐿
, 𝜓 < 0,  

𝜉𝐻

𝛿𝑇𝐻 > 𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 , 𝜉𝐿 = 0, 𝛼𝑡

𝐿 > 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

                                                 
41 If 𝑡 = 𝑇̂𝐿, then both 𝑥𝐿 > 0 and 𝑦

𝑇̂𝐿
𝐿 > 0 can be optimal. 

42 If 𝑇𝐿 > 𝑇̂𝐿, then there would be a contradiction since 𝑓2(𝑡, 𝑇
𝐿) must be of the same sign for all 𝑡 ≤ 𝑇𝐿 .. 



46 

 

From Lemma 2, there exists only one time period 1 ≤ 𝑗 ≤ 𝑇𝐻 such that 𝑦𝑗
𝐻 > 0 (𝛼𝑗

𝐻 =

0). This implies that  

𝑃
𝑇𝐻
𝐻 𝑓1(𝑗, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑗, 𝑇

𝐿) = 0 and 

𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) = −
𝛼𝑡

𝐻𝜓

𝛽0𝛿𝑡
> 0 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐻.  

Alternatively, 𝑓1(𝑡, 𝑇
𝐻) >

𝑓1(𝑗,𝑇𝐻)

𝑓2(𝑗,𝑇𝐿)
𝑓2(𝑡, 𝑇

𝐿) for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐻. 

If 𝑓2(𝑗, 𝑇
𝐿) > 0 (𝑗 > 𝑇̂

𝐿
) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻
)
𝑡−𝑗

] < 0, which implies that 𝑡 < 𝑗 for all 

1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐻 or, equivalently, 𝑗 = 𝑇𝐻.   

If 𝑓2(𝑗, 𝑇
𝐿) < 0 (𝑗 < 𝑇̂𝐿)  then the opposite must be true and 𝑡 > 𝑗 for all 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐻 

or, equivalently, 𝑗 = 1. 

For 𝑡 > 𝑇̂𝐿 (𝑓2(𝑡, 𝑇
𝐿) > 0) it follows that 

𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻)[𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 ] +

𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) 

> −𝜓((1 − 𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 + 𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻) > 0, 

which implies that 𝑦𝑗
𝐻 > 0 is only possible for 𝑗 < 𝑇̂

𝐿
 and we have 𝑗 = 1.    

If 𝑇𝐿 < 𝑇̂𝐿, from the binding incentive compatibility constraints, we derive the optimal 

payments: 

𝑦1
𝐻 = 𝑞𝐹

𝑃
𝑇𝐿
𝐻 (𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐

𝑇𝐿+1
−𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
)

𝛽0𝛿𝑃
𝑇𝐿
𝐿 𝑓2(1,𝑇𝐿)

≥ 0; 𝑥𝐿 =
𝛿𝑇𝐿

𝜆𝐿𝑃
𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
−𝛿𝑇𝐻

𝜆𝐻𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1

𝛿𝑇𝐿
𝑃
𝑇𝐿
𝐿 𝑓2(1,𝑇𝐿)

> 0.   

            Q.E.D. 

 We now prove that the low type is rewarded for success only if the duration of the 

experimentation stage for the low type, 𝑇𝐿, is relatively long: 𝑇𝐿 > 𝑇̂
𝐿
. 

Lemma 5: 𝜉𝐿 > 0 ⇒ 𝑇𝐿 > 𝑇̂𝐿, 𝛼𝑡
𝐿 > 0 for 𝑡 < 𝑇𝐿, 𝛼

𝑇𝐿
𝐿 = 0 and 𝛼𝑡

𝐻 > 0 for 𝑡 > 1, 𝛼1
𝐻 = 0 (it is 

optimal to set 𝑥𝐿 = 0, 𝑦𝑡
𝐿 = 0 for 𝑡 < 𝑇𝐿, 𝑦

𝑇𝐿
𝐿 > 0 and 𝑥𝐻 = 0, 𝑦𝑡

𝐻 = 0 for 𝑡 > 1, 𝑦1
𝐻 > 0) 

Proof: Suppose that 𝜉𝐿 > 0, i.e., the (𝐼𝑅𝐹𝑇𝐿) constraint is binding. We can rewrite the Kuhn-

Tucker conditions (𝐴1) and (𝐴2) as follows: 

[𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) [𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 −

𝜉𝐿

𝛿𝑇𝐿] +
𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) +
𝛼𝑡

𝐻𝜓

𝛽0𝛿𝑡
] = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻; 

[𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) [𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] +
𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) +
𝛼𝑡

𝐿𝜓

𝛽0𝛿𝑡] = 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

Claim: If both types are rewarded for success, it must be at extreme time periods, i.e. only at the 

last or the first period of the experimentation stage.  

Proof: Since (See Lemma 2) there exists only one time period 1 ≤ 𝑗 ≤ 𝑇𝐿 such that 𝑦𝑗
𝐿 > 0 

(𝛼𝑗
𝐿 = 0) it follows that 
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𝑃
𝑇𝐿
𝐿 𝑓2(𝑗, 𝑇

𝐿) [𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] +
𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑗, 𝑇

𝐻) = 0 and 

𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) [𝜐𝑃
𝑇𝐻
𝐻 + (1 − 𝜐)𝑃

𝑇𝐻
𝐿 −

𝜉𝐻

𝛿𝑇𝐻] +
𝜉𝐿

𝛿𝑇𝐿 𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) = −
𝛼𝑡

𝐿𝜓

𝛽0𝛿𝑡 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿. 

Alternatively, 
𝜉𝐿

𝛿𝑇𝐿 [𝑓1(𝑡, 𝑇
𝐻) −

𝑓2(𝑡,𝑇𝐿)𝑓1(𝑗,𝑇𝐻)

𝑓2(𝑗,𝑇𝐿)
] = −

𝛼𝑡
𝐿𝜓

𝛽0𝛿𝑡𝑃
𝑇𝐻
𝐻  for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿. 

Suppose 𝜓 > 0. Then 𝑓1(𝑡, 𝑇
𝐻) −

𝑓2(𝑡,𝑇𝐿)𝑓1(𝑗,𝑇𝐻)

𝑓2(𝑗,𝑇𝐿)
< 0 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿. 

If 𝑓2(𝑗, 𝑇
𝐿) > 0 (𝑗 > 𝑇̂𝐿) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻)
𝑗−𝑡

] < 0 which implies 1 − (
1−𝜆𝐿

1−𝜆𝐻)
𝑗−𝑡

< 0 or, 

equivalently, 𝑗 > 𝑡 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿 which implies that 𝑗 = 𝑇𝐿 > 𝑇̂𝐿. 

If 𝑓2(𝑗, 𝑇
𝐿) < 0 (𝑗 < 𝑇̂𝐿) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻)
𝑗−𝑡

] > 0 which implies 1 − (
1−𝜆𝐿

1−𝜆𝐻)
𝑗−𝑡

> 0 or, 

equivalently, 𝑗 < 𝑡 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿 which implies that 𝑗 = 1. 

Suppose 𝜓 < 0. Then 𝑓1(𝑡, 𝑇
𝐻) −

𝑓2(𝑡,𝑇𝐿)𝑓1(𝑗,𝑇𝐻)

𝑓2(𝑗,𝑇𝐿)
> 0 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿. 

If 𝑓2(𝑗, 𝑇
𝐿) > 0 (𝑗 > 𝑇̂𝐿) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻)
𝑗−𝑡

] > 0 which implies 1 − (
1−𝜆𝐿

1−𝜆𝐻)
𝑗−𝑡

< 0 or, 

equivalently, 𝑗 > 𝑡 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿 which implies that 𝑗 = 𝑇𝐿 > 𝑇̂𝐿. 

If 𝑓2(𝑗, 𝑇
𝐿) < 0 (𝑗 < 𝑇̂𝐿) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻)
𝑗−𝑡

] < 0 which implies 1 − (
1−𝜆𝐿

1−𝜆𝐻)
𝑗−𝑡

> 0 or, 

equivalently, 𝑗 < 𝑡 for 1 ≤ 𝑡 ≠ 𝑗 ≤ 𝑇𝐿 which implies that 𝑗 = 1. 

 Since (from Lemma 2) there exists only one time period 1 ≤ 𝑠 ≤ 𝑇𝐻 such that 𝑦𝑠
𝐻 > 0 

(𝛼𝑠
𝐻 = 0) it follows that  

𝑃
𝑇𝐻
𝐻 𝑓1(𝑠, 𝑇

𝐻) [𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 −

𝜉𝐿

𝛿𝑇𝐿] +
𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑠, 𝑇

𝐿) = 0, 

𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) [𝜐𝑃
𝑇𝐿
𝐻 + (1 − 𝜐)𝑃

𝑇𝐿
𝐿 −

𝜉𝐿

𝛿𝑇𝐿] +
𝜉𝐻

𝛿𝑇𝐻 𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) = −
𝛼𝑡

𝐻𝜓

𝛽0𝛿𝑡 < 0 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻. 

Alternatively, 
𝜉𝐻

𝛿𝑇𝐻 [𝑓2(𝑡, 𝑇
𝐿) −

𝑓2(𝑠,𝑇𝐿)𝑓1(𝑡,𝑇𝐻)

𝑓1(𝑠,𝑇𝐻)
] = −

𝛼𝑡
𝐻𝜓

𝛽0𝛿𝑡𝑃
𝑇𝐿
𝐿  for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻. 

Suppose 𝜓 > 0. Then 𝑓2(𝑡, 𝑇
𝐿) −

𝑓2(𝑠,𝑇𝐿)𝑓1(𝑡,𝑇𝐻)

𝑓1(𝑠,𝑇𝐻)
< 0 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻. 

If 𝑓1(𝑠, 𝑇
𝐻) > 0 (𝑠 < 𝑇̂𝐻) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻)
𝑡−𝑠

] < 0 which implies 1 − (
1−𝜆𝐿

1−𝜆𝐻)
𝑡−𝑠

< 0 or, 

equivalently, 𝑡 > 𝑠 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻 which implies that 𝑠 = 1. 

If 𝑓1(𝑠, 𝑇
𝐻) < 0 (𝑠 > 𝑇̂𝐻) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻)
𝑡−𝑠

] > 0 which implies 1 − (
1−𝜆𝐿

1−𝜆𝐻)
𝑡−𝑠

> 0 or, 

equivalently, 𝑡 < 𝑠 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻 which implies that 𝑠 = 𝑇𝐻 > 𝑇̂𝐻. 

Suppose 𝜓 < 0. Then 𝑓2(𝑡, 𝑇
𝐿) −

𝑓2(𝑠,𝑇𝐿)𝑓1(𝑡,𝑇𝐻)

𝑓1(𝑠,𝑇𝐻)
> 0 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻. 

If 𝑓1(𝑠, 𝑇
𝐻) > 0 (𝑠 < 𝑇̂𝐻) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻)
𝑡−𝑠

] > 0 which implies 1 − (
1−𝜆𝐿

1−𝜆𝐻)
𝑡−𝑠

< 0 or, 

equivalently, 𝑡 > 𝑠 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻 which implies that 𝑠 = 1. 
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If 𝑓1(𝑠, 𝑇
𝐻) < 0 (𝑠 > 𝑇̂𝐻) then 𝜓 [1 − (

1−𝜆𝐿

1−𝜆𝐻
)
𝑡−𝑠

] < 0 which implies 1 − (
1−𝜆𝐿

1−𝜆𝐻
)
𝑡−𝑠

> 0 or, 

equivalently, 𝑡 < 𝑠 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻 which implies that 𝑠 = 𝑇𝐻 > 𝑇̂𝐻.   Q.E.D. 

The Lagrange multipliers are uniquely determined from (𝐴1) and (𝐴2) as follows: 

𝜉𝐿

𝛿𝑇𝐿 =
𝜓[𝜐(1−𝜆𝐻)

𝑠−1
𝜆𝐻+(1−𝜐)(1−𝜆𝐿)

𝑠−1
𝜆𝐿]𝑓2(𝑗,𝑇𝐿)

𝑃
𝑇𝐻
𝐻 [𝑓1(𝑗,𝑇𝐻)𝑓2(𝑠,𝑇𝐿)−𝑓1(𝑠,𝑇𝐻)𝑓2(𝑗,𝑇𝐿)]

> 0, 

𝜉𝐻

𝛿𝑇𝐻 =
𝜓[𝜐(1−𝜆𝐻)

𝑗−1
𝜆𝐻+(1−𝜐)(1−𝜆𝐿)

𝑗−1
𝜆𝐿]𝑓1(𝑠,𝑇𝐻)

𝑃
𝑇𝐿
𝐿 [𝑓1(𝑗,𝑇𝐻)𝑓2(𝑠,𝑇𝐿)−𝑓1(𝑠,𝑇𝐻)𝑓2(𝑗,𝑇𝐿)]

> 0, 

which also implies that 𝑓2(𝑗, 𝑇
𝐿) and 𝑓1(𝑠, 𝑇

𝐻) must be of the same sign. 

Assume 𝑠 = 𝑇𝐻 > 𝑇̂𝐻. Then 𝑓1(𝑠, 𝑇
𝐻) < 0 and the optimal contract involves 

𝑥𝐻 =
𝛽0𝛿𝑇𝐻

𝑃
𝑇𝐿
𝐿 𝑓2(𝑇𝐻,𝑇𝐿)𝑦

𝑇𝐻
𝐻 −𝛽0𝛿𝑃

𝑇𝐿
𝐿 𝑓2(1,𝑇𝐿)𝑦1

𝐿

𝛿𝑇𝐻
𝜓

+ 𝑞𝐹

𝑃
𝑇𝐿
𝐻 (𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
−𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐

𝑇𝐿+1
)

𝛿𝑇𝐻
𝜓

= 0;  

𝑥𝐿 =
𝛽0𝑃

𝑇𝐻
𝐻 𝛿𝑓1(1,𝑇𝐻)𝑦1

𝐿−𝛽0𝛿𝑇𝐻
𝑃
𝑇𝐻
𝐻 𝑓1(𝑇𝐻,𝑇𝐻)𝑦

𝑇𝐻
𝐻

𝛿𝑇𝐿
𝜓

+ 𝑞𝐹

𝑃
𝑇𝐻
𝐿 (𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐻 ∆𝑐

𝑇𝐻+1
−𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
)

𝛿𝑇𝐿
𝜓

= 0. 

Since Case B.2 is possible only if 𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞

𝐻(𝑐
𝑇𝐻+1
𝐻 ) − 𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐿 ∆𝑐𝑇𝐿+1𝑞

𝐿(𝑐
𝑇𝐿+1
𝐿 ) > 043, 

we have a contradiction since −𝑓2(1, 𝑇𝐿) > 0 and 𝑓2(𝑇
𝐻, 𝑇𝐿) > 0 imply that 𝑥𝐻 > 0. As a 

result, 𝑠 = 1. Since 𝑓2(𝑗, 𝑇
𝐿) and 𝑓1(𝑠, 𝑇

𝐻) must be of the same sign we have 𝑗 = 𝑇𝐿 > 𝑇̂𝐿. 

If 𝑇𝐿 > 𝑇̂𝐿, from the binding incentive compatibility constraints, we derive the optimal 

payments: 

𝑦1
𝐻 = 𝑞𝐹

𝛿𝑇𝐻
𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
(1−𝜆𝐻)

𝑇𝐿−1
𝜆𝐻−𝛿𝑇𝐿

𝑃
𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
(1−𝜆𝐿)

𝑇𝐿−1
𝜆𝐿

𝛽0𝛿𝜆𝐿𝜆𝐻((1−𝜆𝐿)𝑇𝐿−1−(1−𝜆𝐻)𝑇𝐿−1)
≥ 0; 

𝑦
𝑇𝐿
𝐿 = 𝑞𝐹

(𝛿𝑇𝐻
𝜆𝐻𝑃

𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
−𝛿𝑇𝐿

𝜆𝐿𝑃
𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
)

𝛽0𝛿𝑇𝐿
𝜆𝐿𝜆𝐻((1−𝜆𝐿)𝑇𝐿−1−(1−𝜆𝐻)𝑇𝐿−1)

> 0.      Q.E.D. 

 

We now prove that 𝑇̂𝐿 > 𝑇𝐿(<) for high (small) values of 𝛾. 

Lemma 6. There exists a unique value of 𝛾∗ such that 𝑇̂𝐿 > 𝑇𝐿 (<) for any 𝛾 > 𝛾∗ (<). 

Proof: We formally defined 𝑇̂𝐿 as: 
(1−𝜆𝐻)

𝑇̂𝐿−1
𝜆𝐻

(1−𝜆𝐿)𝑇̂𝐿−1𝜆𝐿
≡

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 , for any 𝑇𝐿.  This explicitly determines 𝑇̂𝐿 

as a function of 𝑇𝐿: 

𝑇̂𝐿(𝑇𝐿) = 1 + log
(
1−𝜆𝐻

1−𝜆𝐿)

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿

𝜆𝐻

𝜆𝐿 . 

                                                 
43 Otherwise the (𝐼𝐶𝐻,𝐿) is not binding. 
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We will prove next that there exist a unique value of 𝑇̈𝐿 > 0 such that 𝑇̂𝐿 > 𝑇𝐿 (<) for 

any 𝑇𝐿 < 𝑇̈𝐿 (>).  With that aim, we define the function 𝑓(𝑇𝐿) ≡ 𝑇̂𝐿(𝑇𝐿) − 𝑇𝐿 = 1 +

log
(
1−𝜆𝐻

1−𝜆𝐿 )

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿

𝜆𝐻

𝜆𝐿
− 𝑇𝐿 

= 1 + log
(
1−𝜆𝐻

1−𝜆𝐿 )

𝜆𝐻

𝜆𝐿 + log
(
1−𝜆𝐻

1−𝜆𝐿)

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 − 𝑇𝐿. 

Then 
𝑑𝑓

𝑑𝑇𝐿
=

(𝛽0(1−𝜆𝐻)
𝑇𝐿

ln(1−𝜆𝐻))𝑃
𝑇𝐿
𝐿 −𝑃

𝑇𝐿
𝐻 (𝛽0(1−𝜆𝐿)

𝑇𝐿
ln(1−𝜆𝐿))

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 ln(

1−𝜆𝐻

1−𝜆𝐿)(𝑃
𝑇𝐿
𝐿 )

2
− 1 

=
(𝛽0(1−𝜆𝐻)

𝑇𝐿
ln(1−𝜆𝐻))𝑃

𝑇𝐿
𝐿 −𝑃

𝑇𝐿
𝐻 (𝛽0(1−𝜆𝐿)

𝑇𝐿
ln(1−𝜆𝐿))

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐿
𝐻 ln(

1−𝜆𝐻

1−𝜆𝐿)
− 1  

=
𝑃
𝑇𝐿
𝐿 ln(1−𝜆𝐻)(𝛽0(1−𝜆𝐻)

𝑇𝐿
−𝑃

𝑇𝐿
𝐻 )+𝑃

𝑇𝐿
𝐻 ln(1−𝜆𝐿)(𝑃

𝑇𝐿
𝐿 −𝛽0(1−𝜆𝐿)

𝑇𝐿
)

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐿
𝐻 ln(

1−𝜆𝐻

1−𝜆𝐿)
=

(1−𝛽0)(𝑃
𝑇𝐿
𝐻 ln(1−𝜆𝐿)−𝑃

𝑇𝐿
𝐿 ln(1−𝜆𝐻))

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐿
𝐻 ln(

1−𝜆𝐻

1−𝜆𝐿)
. 

Since 𝑃
𝑇𝐿
𝐻 < 𝑃

𝑇𝐿
𝐿  and |ln(1 − 𝜆𝐻)| > |ln(1 − 𝜆𝐿)|, 𝑃

𝑇𝐿
𝐻 ln(1 − 𝜆𝐿) − 𝑃

𝑇𝐿
𝐿 ln(1 − 𝜆𝐻) > 0 

and, as a result, 
𝑑𝑓

𝑑𝑇𝐿 < 0. Since 𝑓(0) > 0 there is only one point where 𝑓(𝑇̈𝐿) = 0. Thus, there 

exist a unique value of 𝑇̈𝐿 such that 𝑇̂𝐿 > 𝑇𝐿 (<) for any 𝑇𝐿 < 𝑇̈𝐿 (>).  Furthermore, 𝑇̈𝐿 >0. 

Finally, since the optimal 𝑇𝐿 is strictly decreasing in 𝛾, and 𝑓(∙) is independent of 𝛾, it follows 

that there exists a unique value of 𝛾∗ such that 𝑇̂𝐿 > 𝑇𝐿 (<) for any 𝛾 > 𝛾∗ (<).  Q.E.D. 

Finally, we consider the case when the likelihood ratio of reaching the last period of the 

experimentation stage is the same for both types, 
𝑃

𝑇𝐻
𝐻

𝑃
𝑇𝐻
𝐿 =

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 . 

Case B.2: knife-edge case when 𝝍 = 𝑷
𝑻𝑯
𝑯 𝑷

𝑻𝑳
𝑳 − 𝑷

𝑻𝑳
𝑯 𝑷

𝑻𝑯
𝑳 = 𝟎. 

Define a 𝑇̂𝐻 similarly to 𝑇̂𝐿, as done in Lemma 1, by 
𝑃
𝑇𝐻
𝐿

𝑃
𝑇𝐻
𝐻 =

(1−𝜆𝐻)
𝑇̂𝐻−1

𝜆𝐻

(1−𝜆𝐿)𝑇̂𝐻−1𝜆𝐿
. 

Claim B.2.1.  𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 − 𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 = 0 ⟺ 𝑇̂𝐻 = 𝑇̂𝐿 for any 𝑇𝐻, 𝑇𝐿 .  

Proof: Recall that 𝑇̂𝐿 was determined by 
𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 =

(1−𝜆𝐿)
𝑇̂𝐿−1

𝜆𝐿

(1−𝜆𝐻)𝑇̂𝐿−1𝜆𝐻
.  Next, 𝑃

𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 − 𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 = 0 ⟺

𝑃
𝑇𝐻
𝐿

𝑃
𝑇𝐻
𝐻 =

𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐿
𝐻 , which immediately implies that 
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𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 − 𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 = 0 ⟺

(1−𝜆𝐻)
𝑇̂𝐻−1

𝜆𝐻

(1−𝜆𝐿)𝑇̂𝐻−1𝜆𝐿
=

(1−𝜆𝐻)
𝑇̂𝐿−1

𝜆𝐻

(1−𝜆𝐿)𝑇̂𝐿−1𝜆𝐿
; 

(
1−𝜆𝐻

1−𝜆𝐿)
𝑇̂𝐻−𝑇̂𝐿

= 1 or, equivalently 𝑇̂𝐻 = 𝑇̂𝐿.    Q.E.D. 

We prove now that the principal will choose 𝑇𝐿 and 𝑇𝐻 optimally such that 𝜓 = 0 only if 

𝑇𝐿 > 𝑇̂𝐿. 

Lemma B.2.1. 𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 − 𝑃

𝑇𝐿
𝐻 𝑃

𝑇𝐻
𝐿 = 0 ⇒ 𝑇𝐿 > 𝑇̂𝐿, 𝜉𝐻 > 0, 𝜉𝐿 > 0, 𝛼𝑡

𝐻 > 0 for 𝑡 > 1 and 𝛼𝑡
𝐿 >

0 for 𝑡 < 𝑇𝐿 (it is optimal to set 𝑥𝐿 = 𝑥𝐻 = 0, 𝑦𝑡
𝐻 = 0 for 𝑡 > 1 and 𝑦𝑡

𝐿 = 0 for 𝑡 < 𝑇𝐿). 

Proof: Labeling {𝛼𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝛼𝑡

𝐿}𝑡=1
𝑇𝐿

, 𝛼𝐻, 𝛼𝐿, 𝜉𝐻 and 𝜉𝐿 as the Lagrange multipliers of the 

constraints associated with (𝐼𝑅𝑆𝑡
𝐻), (𝐼𝑅𝑆𝑡

𝐿), (𝐼𝐶𝐻,𝐿), (𝐼𝐶𝐿,𝐻), (𝐼𝑅𝐹𝑇𝐻) and (𝐼𝑅𝐹𝑇𝐿) 

respectively, we can rewrite the Kuhn-Tucker conditions as follows: 

𝜕ℒ

𝜕𝑥𝐻 = −𝜐𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐻 + 𝜉𝐻 = 0, which implies that 𝜉𝐻 > 0 and, as a result, 𝑥𝐻 = 0; 

𝜕ℒ

𝜕𝑥𝐿 = −(1 −  𝜐)𝛿𝑇𝐿
𝑃

𝑇𝐿
𝐿 + 𝜉𝐿 = 0, which implies that 𝜉𝐿 > 0 and, as a result, 𝑥𝐿 = 0; 

𝜕ℒ

𝜕𝑦𝑡
𝐻 = −𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻 + 𝛼𝐻𝑃

𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) − 𝛼𝐿𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) +
𝛼𝑡

𝐻

𝛿𝑡𝛽0
= 0 for 1 ≤ 𝑡 ≤ 𝑇𝐻; 

𝜕ℒ

𝜕𝑦𝑡
𝐿 = −(1 −  𝜐)(1 − 𝜆𝐿)𝑡−1𝜆𝐿 − 𝛼𝐻𝑃

𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) + 𝛼𝐿𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) +
𝛼𝑡

𝐿

𝛿𝑡𝛽0
= 0 for 1 ≤ 𝑡 ≤ 𝑇𝐿. 

Similar results to those from Lemma 2 hold in this case as well. 

Lemma B.2.2. There exists at most one time period 1 ≤ 𝑗 ≤ 𝑇𝐿 such that 𝑦𝑗
𝐿 > 0 and at most 

one time period 1 ≤ 𝑠 ≤ 𝑇𝐻 such that 𝑦𝑠
𝐻 > 0.  

Proof: Assume to the contrary that there are two distinct periods 1 ≤ 𝑘,𝑚 ≤ 𝑇𝐻 such that 𝑘 ≠

𝑚 and 𝑦𝑘
𝐻, 𝑦𝑚

𝐻 > 0. Then from the Kuhn-Tucker conditions it follows that 

−𝜐(1 − 𝜆𝐻)𝑘−1𝜆𝐻 + 𝛼𝐻𝑃
𝑇𝐿
𝐿 𝑓2(𝑘, 𝑇𝐿) − 𝛼𝐿𝑃

𝑇𝐻
𝐻 𝑓1(𝑘, 𝑇𝐻) = 0, 

and, in addition, −𝜐(1 − 𝜆𝐻)𝑚−1𝜆𝐻 + 𝛼𝐻𝑃
𝑇𝐿
𝐿 𝑓2(𝑚, 𝑇𝐿) − 𝛼𝐿𝑃

𝑇𝐻
𝐻 𝑓1(𝑚, 𝑇𝐻) = 0. 

Combining the two equations together, 𝛼𝐿𝑃
𝑇𝐻
𝐻 (𝑓1(𝑘, 𝑇𝐻)𝑓2(𝑚, 𝑇𝐿) − 𝑓1(𝑚, 𝑇𝐻)𝑓2(𝑘, 𝑇𝐿)) 

+𝜐𝜆𝐻((1 − 𝜆𝐻)𝑘−1𝑓2(𝑚, 𝑇𝐿) − (1 − 𝜆𝐻)𝑚−1𝑓2(𝑘, 𝑇𝐿)) = 0, which can be rewritten as 

follows44: 

𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 𝜆𝐿((1 − 𝜆𝐻)𝑘−1(1 − 𝜆𝐿)𝑚−1 − (1 − 𝜆𝐻)𝑚−1(1 − 𝜆𝐿)𝑘−1) = 0, 

                                                 
44 After some algebra, one could verify that 𝑓1(𝑘, 𝑇𝐻)𝑓2(𝑚, 𝑇𝐿) − 𝑓1(𝑚, 𝑇𝐻)𝑓2(𝑘, 𝑇𝐿) 

= 𝜓
𝜆𝐻𝜆𝐿

𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐿
𝐿 [(1 − 𝜆𝐻)𝑚−1(1 − 𝜆𝐿)𝑘−1 − (1 − 𝜆𝐿)𝑚−1(1 − 𝜆𝐻)𝑘−1]. 



51 

 

(
1−𝜆𝐻

1−𝜆𝐿)
𝑚−𝑘

= 1, which implies that 𝑚 = 𝑘 and we have a contradiction. 

In the same way, there exists at most one time period 1 ≤ 𝑗 ≤ 𝑇𝐿 such that 𝑦𝑗
𝐿 > 0.           Q.E.D 

Lemma B.2.3: Both types may be rewarded for success only at extreme time periods, i.e. only at 

the last or the first period of the experimentation stage.  

Proof: Since (See Lemma B.2.2) there exists only one time period 1 ≤ 𝑠 ≤ 𝑇𝐻 such that 𝑦𝑠
𝐻 > 0 

(𝛼𝑠
𝐻 = 0) it follows that −𝜐(1 − 𝜆𝐻)𝑠−1𝜆𝐻 + 𝛼𝐻𝑃

𝑇𝐿
𝐿 𝑓2(𝑠, 𝑇

𝐿) − 𝛼𝐿𝑃
𝑇𝐻
𝐻 𝑓1(𝑠, 𝑇

𝐻) = 0 and 

−𝜐(1 − 𝜆𝐻)𝑡−1𝜆𝐻 + 𝛼𝐻𝑃
𝑇𝐿
𝐿 𝑓2(𝑡, 𝑇

𝐿) − 𝛼𝐿𝑃
𝑇𝐻
𝐻 𝑓1(𝑡, 𝑇

𝐻) = −
𝛼𝑡

𝐻

𝛿𝑡𝛽0
 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻.  

Combining the equations together, 𝛼𝐿𝑃
𝑇𝐻
𝐻 (𝑓1(𝑠, 𝑇

𝐻)𝑓2(𝑡, 𝑇
𝐿) − 𝑓1(𝑡, 𝑇

𝐻)𝑓2(𝑠, 𝑇
𝐿)) 

+𝜐𝜆𝐻((1 − 𝜆𝐻)𝑠−1𝑓2(𝑡, 𝑇
𝐿) − (1 − 𝜆𝐻)𝑡−1𝑓2(𝑠, 𝑇

𝐿)) = −
𝛼𝑡

𝐻

𝛿𝑡𝛽0
𝑓2(𝑠, 𝑇

𝐿), which can be rewritten 

as follows: 

𝑃
𝑇𝐿
𝐻 (1−𝜆𝐻)

𝑡−1
(1−𝜆𝐿)

𝑡−1

𝑃
𝑇𝐿
𝐿 ((1 − 𝜆𝐻)𝑠−𝑡 − (1 − 𝜆𝐿)𝑠−𝑡) = −

𝛼𝑡
𝐻

𝛿𝑡𝛽0
𝑓2(𝑠, 𝑇

𝐿) for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻. 

If 𝑓2(𝑠, 𝑇
𝐿) > 0 (𝑠 > 𝑇̂𝐻) then (1 − 𝜆𝐻)𝑠−𝑡 − (1 − 𝜆𝐿)𝑠−𝑡 < 0, which implies that 𝑡 < 𝑠 

for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻 and it must be that 𝑠 = 𝑇𝐻 > 𝑇̂𝐻. If 𝑓2(𝑠, 𝑇
𝐿) < 0 (𝑠 < 𝑇̂𝐻) then 

(1 − 𝜆𝐻)𝑠−𝑡 − (1 − 𝜆𝐿)𝑠−𝑡 < 0, which implies that 𝑡 > 𝑠 for 1 ≤ 𝑡 ≠ 𝑠 ≤ 𝑇𝐻 and it must be 

that 𝑠 = 1. In a similar way, for 1 ≤ 𝑗 ≤ 𝑇𝐿 such that 𝑦𝑗
𝐿 > 0 it must be that either 𝑗 = 1 or 𝑗 =

𝑇𝐿 > 𝑇̂𝐿.           Q.E.D. 

Finally, from 
𝜕ℒ

𝜕𝑦1
𝐻 = −𝜐𝜆𝐻 + 𝛼𝐻𝑃

𝑇𝐿
𝐿 𝑓2(1, 𝑇𝐿) − 𝛼𝐿𝑃

𝑇𝐻
𝐻 𝑓1(1, 𝑇𝐻) = 0 when 𝑦1

𝐻 > 0 and 

𝜕ℒ

𝜕𝑦1
𝐿 = −(1 −  𝜐)𝜆𝐿 − 𝛼𝐻𝑃

𝑇𝐿
𝐿 𝑓2(1, 𝑇𝐿) + 𝛼𝐿𝑃

𝑇𝐻
𝐻 𝑓1(1, 𝑇𝐻) = 0 when 𝑦1

𝐿 > 0 we have a 

contradiction. As a result, 𝑦1
𝐻 > 0 implies 𝑦

𝑇𝐿
𝐿 > 0 with 𝑇𝐿 > 𝑇̂𝐿.    Q.E.D. 

 

II. Optimal length of experimentation  

(Proposition 2) 

Since 𝑇𝐿 and 𝑇𝐻 affect the information rents, 𝑈𝐿 and 𝑈𝐻, there will be a distortion in the 

duration of the experimentation stage for both types: 

𝜕ℒ

𝜕𝑇𝜃
=

𝜕(𝐸𝜃 Ω𝜃(𝜛𝜃)−𝜐 𝑈𝐻−(1−𝜐) 𝑈𝐿)

𝜕𝑇𝜃
= 0. 

The exact values of 𝑈𝐻 and 𝑈𝐿 depend on whether we are in Case A ((𝐼𝐶𝐻,𝐿) is slack) or Case B 

(both (𝐼𝐶𝐿,𝐻) and (𝐼𝐶𝐻,𝐿) are binding.) In Case A, by Claim A.1, the low type’s rent 

𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹 is not affected by 𝑇𝐿. Therefore, the F.O.C. with respect to 𝑇𝐿 is identical to 

that under first best: 
𝜕ℒ

𝜕𝑇𝐿 =
𝜕𝐸𝜃 Ω𝜃(𝜛𝜃)

𝜕𝑇𝐿 = 0, or, equivalently, 𝑇𝑆𝐵
𝐿 = 𝑇𝐹𝐵

𝐿  when (𝐼𝐶𝐻,𝐿) is not 
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binding.  However, since the low type’s information rent depends on 𝑇𝐻, there will be a 

distortion in the duration of the experimentation stage for the high type: 

𝜕ℒ

𝜕𝑇𝐻 =
𝜕(𝐸𝜃 Ω𝜃(𝜛𝜃)−(1−𝜐) 𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
𝑞𝐹)

𝜕𝑇𝐻 = 0. 

Since the informational rent of the low-type agent, 𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹, is non-monotonic 

in 𝑇𝐻, it is possible, in general, to have 𝑇𝑆𝐵
𝐻 > 𝑇𝐹𝐵

𝐻  or 𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻 . 

 In Case B, the exact values of 𝑈𝐻 and 𝑈𝐿 depend on whether 𝑇𝐿 < 𝑇̂𝐿 (Lemma 4) or 

𝑇𝐿 > 𝑇̂𝐿 (Lemma 5), but in each case 𝑈𝐿 > 0 and 𝑈𝐻 ≥ 0.  It is possible, in general, to have 

𝑇𝑆𝐵
𝐻 > 𝑇𝐹𝐵

𝐻  or 𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻  and 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿  or 𝑇𝑆𝐵
𝐿 < 𝑇𝐹𝐵

𝐿 .   

We provide sufficient conditions for over and under experimentation next. 

 

Sufficient conditions for over/under experimentation 

Case A: If (𝐼𝐶𝐻,𝐿) is not binding, 𝑇𝐹𝐵
𝐻 < 𝑇𝑆𝐵

𝐻  if 𝜆𝐻 > 𝜆
𝐻

 and 𝑇𝐹𝐵
𝐻 > 𝑇𝑆𝐵

𝐻  if 𝜆𝐻 < 𝜆𝐻. 

Proof: If (𝐼𝐶𝐻,𝐿) is not binding, the rent to the low type is 𝑈𝐿 = 𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹. Given that 

∆𝑐𝑡 = (𝑐 − 𝑐)(𝛽𝑡
𝐿 − 𝛽𝑡

𝐻), the rent becomes 𝑈𝐿 = 𝛿𝑇𝐻
𝑃

𝑇𝐻
𝐿 (𝛽

𝑇𝐻+1
𝐿 − 𝛽

𝑇𝐻+1
𝐻 )(𝑐 − 𝑐)𝑞𝐹.  

Recall the function 𝜁(𝑡) ≡ 𝛿𝑡𝑃𝑡
𝐿(𝛽𝑡+1

𝐿 − 𝛽𝑡+1
𝐻 ) from the proof for Sufficient Conditions 

for (𝐼𝐶𝐻,𝐿) to be binding. Rent to the low type can be rewritten as 𝑈𝐿 = 𝜁(𝑇𝐻)(𝑐 − 𝑐)𝑞𝐹. In 

proving sufficient condition for (𝐼𝐶𝐻,𝐿) to be binding we proved that for any 𝑡, 
𝑑𝜁(𝑡)

𝑑𝑡
< 0 for 

𝜆𝐻 > 𝜆
𝐻

, and 
𝑑𝜁(𝑡)

𝑑𝑡
> 0 for 𝜆𝐻 < 𝜆𝐻. Therefore, if 𝜆𝐻 > 𝜆

𝐻
(< 𝜆𝐻) then  

𝑑𝑈𝐿

𝑑𝑇𝐻 < 0 (> 0) and we 

have over (under) experimentation.       Q.E.D. 

Case B: If both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) are binding, 𝑇𝐹𝐵
𝐻 < 𝑇𝑆𝐵

𝐻  if 𝜆𝐻 > 𝜆
𝐻

 and 𝑇𝐹𝐵
𝐻 > 𝑇𝑆𝐵

𝐻  if 𝜆𝐻 <

𝜆𝐻, and 𝑇𝐹𝐵
𝐿 < 𝑇𝑆𝐵

𝐿  if 𝜆𝐻 < 𝜆𝐻. 

Proof: If both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) are binding, rent paid to the low and high type is  

𝑈𝐿 = 𝑞𝐹

(1−𝜆𝐿)
𝑇𝐿−1

(𝛿𝑇𝐻
𝜆𝐻𝑃

𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
−𝛿𝑇𝐿

𝜆𝐿𝑃
𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
)

𝜆𝐻((1−𝜆𝐿)𝑇𝐿−1−(1−𝜆𝐻)𝑇𝐿−1)
 and 

 𝑈𝐻 = 𝑞𝐹

𝛿𝑇𝐻
𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
(1−𝜆𝐻)

𝑇𝐿−1
𝜆𝐻−𝛿𝑇𝐿

∆𝑐
𝑇𝐿+1

(1−𝜆𝐿)
𝑇𝐿−1

𝜆𝐿

𝜆𝐿((1−𝜆𝐿)𝑇𝐿−1−(1−𝜆𝐻)𝑇𝐿−1)
, respectively.  

Given that ∆𝑐𝑡 = (𝑐 − 𝑐)(𝛽𝑡
𝐿 − 𝛽𝑡

𝐻), we have 
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𝑈𝐿 = 𝑞𝐹(𝑐 − 𝑐)
(𝛿𝑇𝐻

𝜆𝐻𝑃
𝑇𝐻
𝐿 (𝛽

𝑇𝐻+1
𝐿 −𝛽

𝑇𝐻+1
𝐻 )−𝛿𝑇𝐿

𝜆𝐿𝑃
𝑇𝐿
𝐻 (𝛽

𝑇𝐿+1
𝐿 −𝛽

𝑇𝐿+1
𝐻 ))

𝜆𝐻(1−(
1−𝜆𝐻

1−𝜆𝐿 )
𝑇𝐿−1

)

  

and 𝑈𝐻 = 𝑞𝐹(𝑐 − 𝑐)
𝛿𝑇𝐻

𝑃
𝑇𝐻
𝐿 (𝛽

𝑇𝐻+1
𝐿 −𝛽

𝑇𝐻+1
𝐻 )(

1−𝜆𝐻

1−𝜆𝐿 )
𝑇𝐿−1

𝜆𝐻−𝛿𝑇𝐿
𝑃
𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
𝜆𝐿

𝜆𝐿(1−(
1−𝜆𝐻

1−𝜆𝐿 )
𝑇𝐿−1

)

. 

Recall function 𝜁(𝑡) ≡ 𝛿𝑡𝑃𝑡
𝐿(𝛽𝑡+1

𝐿 − 𝛽𝑡+1
𝐻 ). Then 𝑈𝐿 and 𝑈𝐻 can be rewritten as 

𝑈𝐿 = 𝑞𝐹(𝑐 − 𝑐)

(𝜆𝐻𝜁(𝑇𝐻)−
𝜆𝐿𝜁(𝑇𝐿)𝑃

𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 )

𝜆𝐻(1−(
1−𝜆𝐻

1−𝜆𝐿 )
𝑇𝐿−1

)

, and 

𝑈𝐻 = 𝑞𝐹(𝑐 − 𝑐)

𝜁(𝑇𝐻)(
1−𝜆𝐻

1−𝜆𝐿 )
𝑇𝐿−1

𝜆𝐻−
𝜁(𝑇𝐿)𝑃

𝑇𝐿
𝐻 𝜆𝐿

𝑃
𝑇𝐿
𝐿

𝜆𝐿(1−(
1−𝜆𝐻

1−𝜆𝐿 )
𝑇𝐿−1

)

. 

Consider first 𝑇𝐻. Both 𝑈𝐿 and 𝑈𝐻 are increasing in 𝜁(𝑇𝐻). In proving sufficient 

condition for (𝐼𝐶𝐻,𝐿) to be binding we proved that 
𝑑𝜁(𝑇𝐻)

𝑑𝑇𝐻 < 0 for 𝜆𝐻 > 𝜆
𝐻

, and 
𝑑𝜁(𝑇𝐻)

𝑑𝑇𝐻 < 0 for 

𝜆𝐻 < 𝜆𝐻. Therefore, it is optimal to let the high type over experiment (𝑇𝐹𝐵
𝐻 < 𝑇𝑆𝐵

𝐻 ) if 𝜆𝐻 > 𝜆
𝐻

 

and under experiment (𝑇𝐹𝐵
𝐻 > 𝑇𝑆𝐵

𝐻 ) if 𝜆𝐻 < 𝜆𝐻.  

Consider now 𝑇𝐿. Since (
1−𝜆𝐻

1−𝜆𝐿)
𝑇𝐿−1

 is decreasing in 𝑇𝐿, both 𝑈𝐿 and 𝑈𝐻 will be 

decreasing in 𝑇𝐿 if 
𝜁(𝑇𝐿)𝑃

𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿  is increasing in 𝑇𝐿. We next prove that 

𝜁(𝑇𝐿)𝑃
𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿  is increasing in 𝑇𝐿 

for small values of 𝜆𝐻. 

To simplify, 
𝜁(𝑇𝐿)𝑃

𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 =

𝛿𝑇𝐿
𝑃
𝑇𝐿
𝐿 (𝛽

𝑇𝐿+1
𝐿 −𝛽

𝑇𝐿+1
𝐻 )𝑃

𝑇𝐿
𝐻

𝑃
𝑇𝐿
𝐿 = 𝛿𝑇𝐿

𝛽0(1−𝛽0)((1−𝜆𝐿)
𝑇𝐿

−(1−𝜆𝐻)
𝑇𝐿

)

𝑃
𝑇𝐿
𝐿 . 

𝑑

[
 
 
 
 

𝛿𝑇𝐿
((1−𝜆𝐿)

𝑇𝐿

−(1−𝜆𝐻)
𝑇𝐿

)

𝑃
𝑇𝐿
𝐿

]
 
 
 
 

𝑑𝑇𝐿 =  

𝛿𝑇𝐿
((1 − 𝜆𝐿)𝑇𝐿

𝑙𝑛(1 − 𝜆𝐿) − (1 − 𝜆𝐻)𝑇𝐿
𝑙𝑛(1 − 𝜆𝐻))𝑃

𝑇𝐿
𝐿

− 𝛽
0
(1 − 𝜆𝐿)𝑇𝐿

𝑙𝑛(1 − 𝜆𝐿)((1 − 𝜆𝐿)𝑇𝐿
− (1 − 𝜆𝐻)𝑇𝐿

)

(𝑃𝑇𝐿
𝐿 )

2
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+𝛿𝑇𝐿
𝑙𝑛 𝛿

𝑃
𝑇𝐿
𝐿 ((1 − 𝜆𝐿)𝑇𝐿

− (1 − 𝜆𝐻)𝑇𝐿
)

(𝑃𝑇𝐿
𝐿 )

2
 

 

= 𝛿𝑇𝐿 𝑙𝑛(1−𝜆𝐿)(1−𝜆𝐿)
𝑇𝐿

𝑃
𝑇𝐿
𝐻 −(1−𝜆𝐻)

𝑇𝐿
𝑙𝑛(1−𝜆𝐻)𝑃

𝑇𝐿
𝐿

(𝑃
𝑇𝐿
𝐿 )

2 + 𝛿𝑇𝐿
𝑙𝑛 𝛿

𝑃
𝑇𝐿
𝐿 ((1−𝜆𝐿)

𝑇𝐿
−(1−𝜆𝐻)

𝑇𝐿
)

(𝑃
𝑇𝐿
𝐿 )

2
 

  

= 𝛿𝑇𝐿 (1−𝜆𝐿)
𝑇𝐿

[𝑃
𝑇𝐿
𝐻 𝑙𝑛(1−𝜆𝐿)+𝑃

𝑇𝐿
𝐿 𝑙𝑛 𝛿]−(1−𝜆𝐻)

𝑇𝐿
𝑃
𝑇𝐿
𝐿 𝑙𝑛[𝛿(1−𝜆𝐻)]

(𝑃
𝑇𝐿
𝐿 )

2 . 

𝛿𝑇𝐿
((1−𝜆𝐿)

𝑇𝐿
−(1−𝜆𝐻)

𝑇𝐿
)

𝑃
𝑇𝐿
𝐿  increases with 𝑇𝐿 if and only if 𝜅(𝜆𝐻) > 0, 

𝜅(𝜆𝐻) = (1 − 𝜆𝐿)𝑇𝐿
[𝑃

𝑇𝐿
𝐻 𝑙𝑛(1 − 𝜆𝐿) + 𝑃

𝑇𝐿
𝐿 𝑙𝑛 𝛿] − (1 − 𝜆𝐻)𝑇𝐿

𝑃
𝑇𝐿
𝐿 𝑙𝑛[𝛿(1 − 𝜆𝐻)]. 

We prove next that 𝜅(𝜆𝐻) > 0 for any 𝑡 if 𝜆𝐻 is sufficiently low. 

Since both (1 − 𝜆𝐻)𝑇𝐿
𝑃

𝑇𝐿
𝐿  and (1 − 𝜆𝐿)𝑇𝐿

[𝑃
𝑇𝐿
𝐻 𝑙𝑛(1 − 𝜆𝐿) + 𝑃

𝑇𝐿
𝐿 𝑙𝑛 𝛿] are increasing in 𝑡, we 

have 𝜅(𝜆𝐻) > (1 − 𝜆𝐿)[𝑃1
𝐻𝑙𝑛(1 − 𝜆𝐿) + 𝑃1

𝐿 𝑙𝑛 𝛿] − (1 − 𝜆𝐻)𝑇𝑃
𝑇
𝐿 𝑙𝑛[𝛿(1 − 𝜆𝐻)], 

where 𝑇 = max{𝑇𝐻, 𝑇𝐿}.  

Next, (1 − 𝜆𝐿)[𝑃1
𝐻𝑙𝑛(1 − 𝜆𝐿) + 𝑃1

𝐿 𝑙𝑛 𝛿] > (1 − 𝜆𝐿)𝑃1
𝐿 𝑙𝑛[𝛿(1 − 𝜆𝐿)] and 

𝑙𝑛[𝛿(1−𝜆𝐻)]

𝑙𝑛[𝛿(1−𝜆𝐿)]
> 1. Therefore, 

(1−𝜆𝐿)𝑃1
𝐿

(1−𝜆𝐻)𝑇𝑃
𝑇
𝐿
< 1 ⟹ 𝜅(𝜆𝐻) > 0. 

Rearranging the above, we have 𝜅(𝜆𝐻) > 0 for any 𝑡 if 𝜆𝐻 < 1 − (
(1−𝜆𝐿)𝑃1

𝐿

𝑃
𝑇
𝐿 )

1

𝑇
.  

Denote  

𝜆𝐻 ≡ 1 − (
(1 − 𝜆𝐿)𝑃1

𝐿

𝑃
𝑇
𝐿 )

1

𝑇
. 

Therefore, for any 𝑡, 𝜅(𝜆𝐻) > 0 if 𝜆𝐻 < 𝜆𝐻 and, consequently, both 𝑈𝐿 and 𝑈𝐻 are 

decreasing in 𝑇𝐿. Consequently, it is optimal to let the low type over experiment (𝑇𝐹𝐵
𝐿 < 𝑇𝑆𝐵

𝐿 ) if 

𝜆𝐻 < 𝜆𝐻.           Q.E.D. 
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