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1 Introduction

GDP volatility in the US exhibited a high degree of time variation in the second part of the

last century. The years ranging from 1960s to early-1980s were characterized by a surge in the

volatility of GDP, which was then followed by a sharp decline which lasted untile the mid-1990s

(see e.g. McConnell and Perez-Quiros, 2000; Stock and Watson, 2002). We refer to these distinct

periods respectively as “great volatility” and “great moderation”. Traditional explanations of GDP

fluctuations relied on economy-wide disturbances, such as aggregate productivity shocks (see e.g.

Lucas, 1977). The origins of such aggregate shocks are, however, still a matter of debate. A

significant branch of the literature, influenced by work of Long and Plosser (1983) and Horvath

(1998, 2000), advanced the hypothesis that fluctuations at the macro level may originate from

micro level, e.g. sectoral, shocks. Dupor (1999) argues instead against the microeconomic origins

of aggregate fluctuations on the basis of a diversification argument: in an economy with a large

number of sectors, the aggregate effect of idiosyncratic sectoral shocks should decay at a rate

proportional to the square root of the number of sectors. More recently, Gabaix (2011) pointed out

that when firms’ size is heterogeneous and distributed according to a Zipf law, aggregate fluctuations

may emerge from shocks originated at the micro level: idiosyncratic shocks to a handful of very

large firms do not wash out in the aggregate and decay at a much lower rate than predicted by

the diversification argument. The work of Di Giovanni et al. (2014) provides empirical evidence for

the importance of firm-specific shocks in explaining aggregate fluctuations. Moreover, Acemoglu

et al. (2012) show that the diversification argument does not hold in the presence of asymmetric

input-output linkages: production complementarities may lead to the amplification of sector-specific

shocks and generate aggregate volatility.

Focusing on the origins of the large fall in GDP volatility associated with the “great modera-

tion”, several papers provided empirical evidence on the importance of sectoral sources in explaining

aggregate fluctuations. Proposed explanations typically connect changes in aggregate volatility to

either changes in the weights of different sectors in the economy or changes in the volatility within

sectors. McConnell and Perez-Quiros (2000) relate the decline in GDP volatility occurred around

1984 to a decline in the volatility within the sector of durable goods. Carvalho and Gabaix (2013)

link changes in aggregate volatility to changes in the structure of the economy described by the
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time-variation of sectoral sales over GDP. Moro (2012) explains the “great moderation” by means

of a structural change described by an increase in the size of the services sector (less intensive in

intermediate inputs) relative to the manufacturing sector (more intensive in intermediate inputs).

Moro (2012) also hypothesizes that the time-variation of total factor productivity (TFP) at the

sectoral level played an important role in shaping aggregate volatility in the first half the 2000s.1

In this paper we consider both a time-varying structure of sectoral weights in the economy

and time-varying sectoral TFP volatility, and study how their interaction shaped GDP volatility.

We frame our analysis in a model with n sectors using capital, labor and intermediate goods to

produce gross output along the lines of Long and Plosser (1983), Jones (2011) and Carvalho and

Gabaix (2013). Our theoretical framework links the dynamics of GDP volatility to the following

time-varying terms: (i) the weights of each sector in the economy defined as “Domar weights”,

i.e. sectoral gross nominal output over GDP (Domar, 1961), (ii) sectoral TFP volatilities, (iii)

a multiplying factor which depends on labor and capital supply decisions of households in the

economy.

We calibrate the model to US data and perform a series of counterfactual exercises in order to

isolate (i) the impact of time-varying sectoral TFP volatilities on GDP volatility, (ii) the amplifi-

cation of idiosyncratic sectoral productivity shocks due to the presence of production linkages, (iii)

the role played by the asymmetry of the input-output network.

Our main findings can be summarized as follows. First, sectoral TFP volatilities are an im-

portant driver of GDP volatility. However, sectoral TFP volatilities alone are not able to fully

describe the behavior of aggregate fluctuations, nor to match the observed level of GDP volatility.

Second, the presence of an input-output network amplifies sectoral-level fluctuations. This ampli-

fication takes place through two channels: (i) the degree of overall intermediate input-intensity of

production, (ii) the asymmetry of production structure. We find that the impact of the asym-

metry on aggregate volatility has greatly changed over time. In particular, from 1970 to 1992

asymmetry had an amplifying effect on volatility, with a rather strong impact around 1980. Before

1Other explanations for the “great moderation” include better inventory management (Kahn et al., 2002), im-
provements in financial markets facilitating consumption and investment smoothing (Blanchard and Simon, 2001),
changes in the volatility of aggregate shocks and impulse-response propagation mechanisms (Stock and Watson, 2002;
Gaĺı and Gambetti, 2009), decline in the variability of the shock specific to the investment account equilibrium con-
dition (Justiniano and Primiceri, 2008), changes in the demographic composition of the workforce (Jaimovich and
Siu, 2009), and better policy (Clarida et al., 2000) among others.
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1970 and after 1992 the asymmetric structure of the economy had a dampening effect on aggregate

volatility. The different impacts cannot be explained by different levels of asymmetry alone, but a

major role is played by changes over time in the correlation between Domar weights and sectoral

TFP volatilities. For example, our findings show that during the “great moderation” the level of

asymmetry remained almost unchanged, while the correlation between Domar weights and TFP

volatilities became more negative. Finally, we show that the “great volatility” and the subsequent

“great moderation” can be largely explained by changes in both the Domar weights and the TFP

volatilities of just a few sectors.

Our paper contributes to the literature on the microeconomic origins of aggregate fluctuations.

It is most related to Carvalho and Gabaix (2013), who introduce a measure of “fundamental

volatility”, i.e. volatility derived only from sectoral shocks, and show that GDP volatility tracks

fundamental volatility. In Carvalho and Gabaix (2013), the evolution of fundamental volatility only

depends on sectoral weights changing over time, while sectoral TFP volatilities are constant. We

build on their theoretical framework and introduce time-varying micro-level TFP volatilities as well

as sector-specific shares of production inputs. We decompose changes in fundamental volatility to

measure the relative contributions of changes in sectoral TFP volatilities and in the Domar weights,

finding that 56% of the increase in fundamental volatility during the “great volatility” period

is explained by changes in idiosyncratic volatilities, while 78% of the reduction in fundamental

volatility occurred during the “great moderation” is due to changes in sectoral TFP volatilities.

Moreover, our results suggest that the time-varying interaction between Domar weights and sectoral

TFP volatilities is a key driver of aggregate volatility. Therefore, explanations of the volatility

dynamics based only on changes of sectoral weights in the economy or only on changes in sectoral

volatilities may overlook the important role played by the interaction between these two factors.

The rest of the paper is organized as follows. In Section 2 we develop the theoretical model

underpinning our empirical analysis. In Section 3 we discuss the data used for our analysis and the

calibration of the model. In Section 4 we discuss the results of our counterfactual exercises, while

in Section 5 we conduct a sectoral-level analysis. Section 6 concludes.
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2 Model

In this section we present an analytically tractable model which will be the basis for our empirical

analysis. A detailed derivation can be found in Appendix A.

There are n sectors producing intermediate goods. Each intermediate good can be used as input

for the production of intermediate goods or it can be aggregated into a single final consumption

good. Households consume and supply labor. Each sector i producing intermediate goods uses a

Cobb-Douglas technology function given by

Qi = Ai

(
Kαi
i H

(1−αi)
i

)(1−wi) n∏
j=1

d
wij
ij , (1)

where Ai is an exogenous productivity term uncorrelated across sectors, Ki and Hi represent

quantities of capital and labor respectively, while dij represents the quantity of good j used in

the production of sector i. The production technology features constant returns to scale so that

0 < αi < 1 and
∑

j wij = wi.

Instead of specifying a utility function over the n different goods, we follow Jones (2011) and

specify a single final good given by a log-linear aggregation of the output of the n sectors

Y =
n∏
i=1

cβii , (2)

where Y denotes the quantity of the final good, ci is the quantity of each intermediate good used

to produce the final good and
∑n

i=1 βi = 1. We set the price of the final good P = 1 so that Y

denotes both real and nominal aggregate good.

Households in the economy are all equal, and can therefore be represented by a representative

household with utility function u(C,H) = C−H1+ 1
φ , where C is consumption, H is supplied labor

and φ > 0 is the Frisch elasticity of labor supply. The competitive equilibrium is the result of the

planner’s problem, which is to maximize the household’s utility subject to the resources constraint:

max u(C,H) = C −H1+ 1
φ (3a)

s.t. C = Y − rK (3b)
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where r is the price of capital. The aggregate good production, or GDP level, in the competitive

equilibrium is given by

log(Y ) = mγ′ε+ Ψ . (4)

Eq. (4) describes (log-)GDP as a weighted sum of sectoral total factor productivities, collected

in vector ε = (log(A1), . . . , log(An))′, where the weights contained in vector γ are known in the

literature as Domar weights (Domar, 1961). The scalar m is a multiplying factor described below,

while the constant Ψ is a convolution of structural parameters which only influences the level of

economic activity. Since we are interested in studying only the impact of productivity shocks on

GDP, we leave the detailed description Ψ to Appendix A and focus below on the Domar weights

γi and on the multiplying factor m.

The Domar weights are defined as γ′ ≡ β′(I −W )−1. The vector β′ = (β1, . . . , βn) contains the

exponents, or shares of intermediate goods, in final good production, while matrix W collecting the

exponents wij is the input-output matrix of intermediate good shares. Matrix W̄ = (I −W )−1 is

the Leontief inverse matrix, whose ij-th element describes how much an increase in productivity in

sector j raises output in sector i taking into account all direct and indirect effects in the production

structure. Multiplying the vector of value-added weights β by the j-th column of matrix W̄ yields

γj =
∑n

i=1 βiw̄ij . Therefore, the j-th element of γ′ sums the effects of sector j on all the other

sector of the economy, weighting by their shares of value-added. In other words, the Domar weights

describe the impact of a change in productivity in a certain sector on the overall value-added in

the economy.

The multiplying factor is defined as m ≡ (1− Γ)−1, where the scalar Γ is given by

Γ ≡ γ′
(
ks + hs

φ

1 + φ

)
. (5)

The vector ks contains the production elasticities (1−wi)αi for capital, while the vector hs contains

the production elasticities (1− wi)(1− αi) for labor.

In this paper we are interested in the impact that changes in sectoral TFPs, denoted as ∆ε =

(∆ log(A1), . . . ,∆ log(An))′, have on GDP. In particular, given Eq. (4), we have that

∆ log(Y ) = mγ′∆ε . (6)
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Denoting the variance of a productivity shock in sector i as σ2i = var(∆εi) and using the fact that

exogenous productivity terms are uncorrelated across sectors we can write GDP volatility defined

as σ2Y = var(∆ log(Y )) as follows:

σ2Y = m2
∑
i

γ2i σ
2
i . (7)

The term
∑

i γ
2
i σ

2
i is referred to as fundamental volatility in Carvalho and Gabaix (2013) and

granular volatility in Gabaix (2011). It describes volatility arising from idiosyncratic shocks to

TFP at the sectoral level, pondered by the Domar weights. Fundamental volatility is multiplied

by the term m2 which describes the contribution of saving and labor supply decisions to aggregate

volatility.

Based on Eq. (7), the model that we take to the data in order to explain GDP volatility in each

period t is the following:

σ2Y t = m2
t

∑
i

γ2itσ
2
it . (8)

The terms mt, γit and σit denote respectively the multiplying factor, the Domar weight and the

TFP volatility of sector i in year t, thus computed using data in year t (see Section 3 for details).

Eq. (8) is similar to the empirical model implemented in Carvalho and Gabaix (2013) since it links

the volatility of GDP to sectoral volatilities and Domar weights, but with the following important

differences. First, in defining the multiplier mt we allow for heterogeneity in capital and labor

shares, as well as heterogeneity in the shares of intermediate inputs across sectors. This enables

us to be consistent with input-output data, resulting in a time-varying expression for production

elasticities, i.e. αit and wit, and thus for the multiplying factor. In the presence of production input

shares α and w homogeneous across sectors the multiplier reduces to the expression implemented

in Carvalho and Gabaix (2013)

m =
1 + φ

1− α
,

which is kept constant over time in their analysis. By considering a time-varying multiplier based

on Eq. (5), where production elasticities are varying over time and calculated using input-output

data, we take into account the time-varying contribution of labor supply and savings decisions

to aggregate volatility. Second, we allow for time-varying sectoral TFP volatilities. This choice is

motivated by previous empirical work which linked changes in GDP volatility to changes in sectoral
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volatility (see e.g. McConnell and Perez-Quiros, 2000; Moro, 2012).2 This enables us to highlight

the impact that changes in the covariance between Domar weights and sectoral TFP volatilities

had on changes in GDP volatility.

In what follows we show that i) our model calibrated to US data can explain the pattern of

aggregate volatility both in deviation from its mean and in level ; ii) by means of counterfactual

analysis, we are able to disentangle the role played by time-varying sectoral TFP volatilities, asym-

metric production linkages and the covariance between γi and σi in explaining aggregate volatility.

3 Calibration

A detailed description of the data used to construct all measures below is provided in Appendix B.

Following Carvalho and Gabaix (2013), we consider both a rolling window and an instantaneous

measure of GDP volatility. In order to obtain the first measure, we construct the series of quarterly

HP-detrended log real GDP, denoted as ŷ, and then compute the variance at each quarter q using

a centered rolling window of 20 quarters:

σ2RW,q = var(ŷτ ) for τ ∈ [q − 20, q + 20] .

To obtain volatility in year t, denoted by σ2RW,t, we take the average of σ2RW,q over the quarters of

year t. To compute the second measure of GDP fluctuations we first estimate an AR(1) model on

the quarterly growth rate of real GDP, and then use residuals eq to obtain the series of annualized

instantaneous variance as 4e2q . We then compute the average of 4e2q over the quarters of year t to

obtain

σ2t =
4∑
q=1

e2t:q ,

where t : q denotes the quarter q of year t, and finally obtain the instantaneous measure of GDP

volatility σ2IV,t using the HP-trend of σ2t . In order to explain GDP volatility, measured both as

rolling window (RW) and as instantaneous volatility (IV), we calibrate our model using input-

2Carvalho and Gabaix (2013) consider a measure of time-varying sectoral volatilities estimated using a
GARCH(1,1) model. They find that this measure does not improve the explanatory power of the model when
compared to the case of constant sectoral volatilities. We use instead a non-parametric measure of time-varying
sectoral volatilities improving the explanatory power of the model. See Table C.1 in Appendix C for a comparison
between these models.
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output data from Dale Jorgenson and Associates (see Jorgenson et al., 2005). The dataset contains

input-output yearly tables for 88 sectors for the US economy, ranging from 1960 to 2005. In order

to make our results comparable to previous literature, we consider the same total of 77 sectors

analyzed in Carvalho and Gabaix (2013).

In each year t we compute the shares αit as the ratio between the nominal value of capital

and the total nominal value of primary inputs used by sector i in that year. The shares wit are

computed as the ratio between the sum of the nominal values of all intermediate inputs used by

each sector i in that year t, and the nominal value of gross industry output. The Domar weights

γit are computed as the ratio between nominal output of sector i and nominal GDP in year t. We

use the same dataset to compute sectoral changes in TFP ∆ε employing the accounting methods

outlined in Jorgenson et al. (1987). In order to obtain a time-varying measure of sectoral volatilities

we compute σ2it as the variance of ∆εit using a 10-years rolling window:3

σ2it = var(∆εiτ ) for τ ∈ [t− 5, t+ 5] .

Given the windows’ length, our characterization of aggregate volatility focuses on the years 1966–

2000. The only free parameter left in the model is the Frisch elasticity of labor supply φ, and we

calibrate it in order to match the average level of GDP volatility. In what follows we use σ2RW as our

reference measure of GDP volatility. Robustness of the results to the alternative measure σ2IV are

reported in Appendix C. The resulting calibrated value of the Frisch elasticity is φ = 0.13,4 which

is consistent with estimates in the microeconometric literature (MaCurdy, 1981; Altonji, 1986).5

3The window’s length is consistent both with the number of years used in Carvalho and Gabaix (2013) and with
the length used to compute GDP volatility.

4The minimum distance between the average model-implied volatility and actual average volatility is obtained
with φ = 0.1243. The value of the Frisch elasticity that minimizes the mean squared distance between the two
measures is φ = 0.1363. We take the average between the two values and set φ = 0.13.

5In macroeconomic literature, the typical calibrated value of the Frisch elasticity is between 2 and 4. There exists
a large number of contributions investigating the reasons behind the different values found in the microeconometric
literature and the macroeconomic calibrations (Keane and Rogerson, 2012, 2015; Peterman, 2016). It is beyond the
scope of this paper to take a stand about the actual value of the Frisch elasticity. Therefore, our calibrated value
should be interpreted as a parameter scaling the reaction of the household to technology shocks. Using φ = 2, our
model would overestimate the level of GDP volatility, as in Carvalho and Gabaix (2013).
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3.1 Fit of the model

Fig. 1 displays actual GDP volatility computed using both the rolling-window estimate (RW) the

HP-filtered instantaneous volatility (IV) together with GDP volatility implied by the model in

Eq. (8). Fig. 1 shows that the calibrated model is able to track the pattern of the level of aggregate

volatility over time. In particular, despite the fact that the peak in volatility is slightly shifted to

the right, the model reproduces both the “great volatility” and the subsequent “great moderation”

period.
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Figure 1: Actual GDP volatility computed using a rolling-window estimate (RW) and HP-filtered instantaneous
volatility (IV) together with GDP volatility implied by model (8).

In Table 1 we evaluate the goodness of fit of our model and we compare it with a model with

constant sectoral TFPs. The first column of Table 1 shows that the volatility σ2Y t described in

Eq. (8) explains about 77% of actual GDP volatility σ2RW,t. This regression confirms the ability of

the model to track observed GDP volatility.6 The second column of Table 1 shows that the volatility

σ̄2Y t, i.e. aggregate volatility implied by the model with constant sectoral TFP volatilities σi, is only

able to explain about 57% of actual GDP volatility. This result highlights the importance of

time-varying idiosyncratic volatilities to explain the dynamics of aggregate fluctuations. The third

column of Table 1 shows that, when both measures σ2Y t and σ̄2Y t are included in the regression, the

6In Appendix C we perform a series of robustness checks. We show that the model retains the ability to reproduce
observed GDP volatility also with different measures of time-varying sectoral volatility.
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latter is not significant.

Empirical model: σ2
RW,t = a+ b σ2

Y t + c σ̄2
Y t + ηt

â
-0.0000

(-0.0001,0.0000)

-0.0003
(-0.0005,-0.0001)

-0.0000
(-0.0002,0.0002)

b̂
1.1084

(0.8944,1.3224)
–

1.1767
(0.7281,1.6253)

ĉ –
2.5013

(1.7290,3.2737)

-0.2052
(-1.3844,0.9740)

R2 0.77 0.57 0.77

Table 1: OLS estimates with 95% confidence intervals between brackets. The measure σ̄2
Y t is obtained as σ̄2

Y t =
m2
t

∑
i γ

2
itσ

2
i , where σi denotes constant sectoral TFP volatility of sector i, i.e. computed over the whole sample,

while σ2
Y t is defined in Eq. (8).

In order to stress the importance of sectoral volatilities for aggregate fluctuations, we measure

the relative contributions of changes in Domar weights and in sectoral TFP volatilities to changes

in fundamental volatility. Focusing on fundamental volatility rather than on the model-implied

volatility including the multiplying factor allows us to obtain a simple characterization of such

relative contributions. Recalling the definition of fundamental volatility as the combination of

sectoral TFP volatilities pondered by the Domar weights, the change in fundamental volatility

between two time periods t1 and t2 can be written as
∑

i γ
2
i,t2
σ2i,t2 −

∑
i γ

2
i,t1
σ2i,t1 . We can then

decompose this difference to isolate the impacts of changes in γi and σi relative to the total change

in fundamental volatility as

∑
i γ

2
i,t1

(σ2i,t2 − σ
2
i,t1

)∑
i γ

2
i,t2
σ2i,t2 −

∑
i γ

2
i,t1
σ2i,t1

+

∑
i σ

2
i,t2

(γ2i,t2 − γ
2
i,t1

)∑
i γ

2
i,t2
σ2i,t2 −

∑
i γ

2
i,t1
σ2i,t1

= 1 .

The first term describes the relative importance of the change in the idiosyncratic volatilities

between t1 and t2 scaled by the Domar weights in t1, while the second term describes the relative

importance of the change in the Domar weights between t1 and t2 scaled by the idiosyncratic

volatility in t2. Both terms have a simple and intuitive interpretation: the first measures the

change in volatility that would have occurred if only sectoral TFP had changed and Domar weights

had remained constant at their level in t1 (as a fraction of total change in fundamental volatility),

while the second measures the change that would have taken place if the Domar weights had been

the only variables to change (as a fraction of total change in fundamental volatility) with sectoral
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TFP at their level in t2. Computing the two terms for the “great volatility” period spanning from

1966 to 1982, we find that 56% of the increase in fundamental volatility is explained by the change

in idiosyncratic volatilities, while 44% is explained by the change in the Domar weights. Strikingly,

78% of the reduction in volatility occurred during the “great moderation” between 1983 and 1994

is explained by the sectoral volatility term and only 22% by the change in the Domar weights.

This result shows once again that changes in sectoral TFP volatility have significant impact on

the dynamics of aggregate volatility and provides a rationale for the use of time-varying sectoral

volatilities. In the next section we perform a series of counterfactual analysis to understand in

details the determinants of aggregate volatility.

4 Counterfactual analysis

In this section we perform a series of counterfactual exercises to assess the impact of the different

terms in Eq. (8) on aggregate volatility from 1966 to 2000. In particular, the counterfactuals

show the impact on observed changes in GDP volatility of i) changes in idiosyncratic volatility, ii)

changes in aggregate intermediate goods intensity in production and iii) changes in the distribution

of Domar weights, reflecting changes in both the vector of value-added weights β and the input-

output network W . Each of these elements played a role both in the upsurge of aggregate volatility

during the “great volatility” period, and in the reduction of aggregate volatility during the “great

moderation”.

In the first counterfactual we compute the level of aggregate volatility emerging from sectoral

TFP volatilities σ2it in the absence of an input-output network by setting wij = 0 for all sectors

i, j. We label this scenario as “No I–O”. In this case the vector of Domar weights is simply equal

to the vector of exponents in final good production, which we set homogeneous across sectors, i.e.,

γi = βi = 1/n for all i. The scalar Γt in Eq. (5) which defines the multiplying factor mt is then

given by

Γt =
1

n
e′
(
kst + hst

φ

1 + φ

)
, (No I–O)

where e = (1, . . . , 1)′ and the i-th elements of vectors kst and hst are now given respectively by αit

12



and (1− αit). The time-variation of aggregate volatility in this case is described by

σ2Y t = m2
t

1

n2

∑
i

σ2it , (No I–O)

and it depends only on sectoral TFP volatilities and production elasticities for capital and labor.

Fig. 2(a) reports GDP volatility in the No I–O scenario, where the primary input shares αi are

computed using actual input-output tables. We observe that the simulated No I–O aggregate

volatility exhibits a pattern similar to actual GDP volatility (correlation coefficient ≈ 0.65 and

significant at 5% level), but sectoral volatilities alone are not able to explain the level of actual

aggregate fluctuations. This means that changes in sectoral volatilities alone are an important

engine for the time-variation of aggregate volatility, but the network of production linkages plays

an important amplification role.

In order to assess the importance of the input-output network for aggregate volatility, we start

by considering an hypothetical symmetric structure of production linkages. In this second counter-

factual we thus maintain homogeneous exponents in final good production βi = 1/n and we calibrate

the total intermediate input shares wit using input-output data. The symmetric input-output net-

work is then obtained by setting wijt = wit/n for all j. We label this scenario as “Sym I–O”. In this

case the Domar weights sum up to the observed total nominal value of sales over GDP, but they

are homogeneous across sectors. Using actual input-output data to compute total gross nominal

output across sectors, we can compute the homogeneous Domar weights as γit = 1
n

∑
i
pitQit
Yt

= γ̄t

for all i. The scalar Γt in Eq. (5) is thus obtained as

Γt = γ̄te
′
(
kst + hst

φ

1 + φ

)
, (Sym I–O)

and the multiplier mt is computed accordingly. The evolution of GDP volatility is then given by

σ2Y t = m2
t γ̄

2
t

∑
i

σ2it . (Sym I–O)

The variation of volatility over time depends therefore on the average level of sales per unit of GDP,

which is a measure of the importance of intermediate inputs in production. Fig. 2(a) reports GDP

volatility implied by the second counterfactual. By comparing the volatilities obtained in the Sym

13



I–O and the No I–O scenarios we isolate the amplifying effect of a symmetric input-output network.

The mere presence of such a network implies the propagation of idiosyncratic productivity shocks

across sectors via production linkages. The greater the importance of the input-output network

captured by γ̄t, the higher the impact of sectoral shocks on GDP.

Finally, in the third counterfactual exercise we evaluate the contribution of asymmetries in

the vector of value-added weights β and the input-output network W to aggregate volatility. The

considered scenario corresponds to the model in Eq. (8) reported below for convenience and labeled

as “Asy I–O”:

σ2Y t = m2
t

∑
i

γ2itσ
2
it . (Asy I–O)

In this case the sectoral Domar weights are given by observed gross nominal industry output

over GDP. Fig. 2(a) reports model-implied GDP volatility under Asy I–O. The difference between

the Sym I–O and the Asy I–O scenarios is that in the latter we introduce asymmetry in the

production structure by considering observed Domar weights. This allows us to isolate the impact

of asymmetries in the vector of shares in final good production and in the structure of production

linkages.

In order to quantitatively assess the contribution of different volatility sources to aggregate

fluctuations, we compute the ratios between the volatility obtained in the No I–O and Sym I–O

scenarios and the volatility implied by the full model in the Asy I–O scenario. Fig. 2(b) displays

the results.

Sectoral TFP volatilities are an important source of GDP fluctuations but, as noted before,

the implied level of volatility in the absence of production linkages is too low. In fact, the average

ratio between volatilities in the No I–O and the Asy I–O scenario is about 0.22. Introducing

a symmetric input-output layer to the model amplifies micro-level volatilities because it allows

idiosyncratic shocks to spread through the network. The “great volatility” is partially explained

by the increase in the use of intermediate goods in the US. Similarly, the “great moderation” is

partially explained by the evolution toward a less intermediate good intensive economy. This last

result is in line with the explanation provided in Moro (2012). However, the change in the intensity

of intermediate goods in production is not able to fully explain observed changes in aggregate

volatility. By comparing the Sym I–O and Asy I–O scenarios it is clear how the non-homogeneous

14
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Figure 2: Panel (a): Model-implied volatilities in the cases of no input-output (No I–O), symmetric (Sym I–O) and
asymmetric (Asy I–O) input-output network. Panel (b): Ratios between volatilities in the No I–O, Sym I–O, Asy
I–O scenarios and volatility in the Asy I–O scenario.

structure of the input-output network had an important amplifying role between 1970 and 1990.

Note that the only difference between Sym I–O and Asy I–O counterfactuals is the distribution

of Domar weights between sectors. The analysis of the Sym I–O and Asy I–O volatilities ratio

reveals that the role played by asymmetries in shaping aggregate volatilities has greatly changed

in time. In particular from 1970 to 1992, asymmetry has amplified the volatility (Sym I–O/Asy

I–O < 1), especially around 1980. However, before 1970 and after 1992, the asymmetric structure

of the economy had a dampening effect on aggregate volatility (Sym I–O/Asy I–O > 1). During

the “great moderation”, for example, there has been a convergence of aggregate volatility towards

the volatility implied by a symmetric input-output network. This convergence could simply be

explained by a reduction of the degree of asymmetry in the input-output network over time, or it

could be due to a change in the effect that a similarly asymmetric network had over time. In the

following section we study the causes of this convergence and investigate further the role played by

asymmetry over time.
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4.1 The time-varying role of asymmetry

Consider the ratio between volatilities in the Asy I–O and Sym I–O scenarios denoted for simplicity

by vAt/vSt:

vAt

vSt
=

mAt

mSt

∑
i γ

2
itσ

2
it

γ̄2t
∑

i σ
2
it

,

where mAt/mSt denotes the ratio between the multiplying factors mt in the Asy I–O and Sym

I–O scenarios. The ratio between the volatility with asymmetric and symmetric input-output

structures depends on the ratio between the multipliers and on a second term which in turn depends,

unsurprisingly, on the distribution of γi, and in particular on the product between the vector of

Domar weights and the vector of sectoral volatilities in each time period t. To help the intuition,

it turns out to be convenient to rewrite the expression above in terms of cross-sectional population

moments to obtain

vA

vS
=

mA

mS

(
E(γ)2 + var(γ)

E(γ)2
+

cov(γ2, σ2)

E(γ)2E(σ2)

)
, (9)

where we have suppressed the time subscript t for notational simplicity. Let us define the terms

Asy ≡ (E(γ)2 + var(γ))/E(γ)2 and Cov ≡ cov(γ2, σ2)/(E(γ)2E(σ2)). The Asy term describes how

the asymmetry of the input–output network evolved over time. When the input-output network is

symmetric, i.e. the Domar weights are homogeneous across sectors (var(γ) = 0), the term Asy is

equal to 1. The Asy term increases with the degree of asymmetry. We remark that the asymmetry

in the production network also impacts the ratio of multipliers mA/mS. The Cov term shows that

the way in which the covariance between the vector of (squared) Domar weights γ2 and the vector

of sectoral TFP volatilities σ2 evolves over time has an impact on aggregate fluctuations. Fig. 3

displays the evolution over time of terms mA/mS, Asy, Cov and compares them with changes in

the volatility ratio vA/vS.

We notice that the ratio mA/mS oscillated between 0.95 and 1.1, meaning that this term did

not play a key role in shaping the time variation of the ratio vA/vS. The level of asymmetry as

summarized by the term Asy decreased almost monotonically from the beginning of the sample

until 1990 and then pretty much stabilized from 1991 on. We therefore conclude that the evolution

of asymmetry alone is not able to explain the different patterns of volatility in the Sym I–O and Asy

I–O scenarios. In particular, the dampening effect of the asymmetric structure of the input-output
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Figure 3: Evolution of terms vA/vS, mA/mS, Asy and Cov over time.

network observed after 1992, or in other words the convergence towards the volatility implied by

the model with homogeneous Domar weights, does not seem to be related to a reduction in the

degree of asymmetry itself. In fact, what explains the different effect of asymmetry over time is

the way in which the Cov term evolved over time. More specifically, the strong amplifying effect of

asymmetric production linkages registered around late-1970s/early-1980s is due to a less negative

Cov term.7 Moreover, the dampening effect of asymmetry observed during the “great moderation”

is due to a higher Cov term (in absolute value). The importance of the term Cov in explaining

aggregate volatility requires a deeper analysis. To ease the interpretation, it is convenient to rewrite

the term Cov as:

cov(γ2, σ2)

E(γ)2E(σ2)
= corr(γ2, σ2)ξ ,

where corr(γ2, σ2) is the correlation between the squared Domar weights and the idiosyncratic

volatilities in each time period, while ξ ≡ std(γ2)std(σ2)
E(γ)2E(σ2)

is a scaling term accounting for dispersion

and size of γ2 and σ2 in each time period. Fig. 4 shows the evolution over time of corr(γ2, σ2) and

ξ. The time variation of corr(γ2, σ2) qualitatively matches the pattern of vA/vS. In fact, most of

the contribution of the asymmetry in the input-output network to the change of aggregate volatility

7Since the term Asy + Cov is always below Asy in Fig. 3, the term Cov is always negative.
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Figure 4: Panel (a): Evolution over time of correlation term corr(γ2, σ2). Panel (b): Evolution over time of scaling
term ξ .

can be traced back to changes in the correlation between Domar weights and sectoral volatilities. In

particular, asymmetry in the production network played an important role in the “great volatility”

because in those decades the correlation between Domar weights and sectoral volatilities increased,

becoming less negative. In other words, the increase of aggregate volatility can be explained by

the fact that relatively volatile sectors became more “central” in the production network and rela-

tively important sectors became more volatile. On the opposite, during the “great moderation” the

correlation decreased and became more negative, i.e. less volatile sectors became relatively impor-

tant in the production structure and relatively important sectors became less volatile. Our results

stress that the interaction between asymmetric production network and heterogeneous idiosyncratic

volatilities plays an important role in explaining the dynamics of aggregate fluctuations.
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5 Sectoral analysis and aggregate volatility

In this section we investigate which sectors contributed the most to the “great volatility” and to

the “great moderation”. Defining the index Hi(t1, t2) as

Hi(t1, t2) =
γ2i,t2σ

2
i,t2
− γ2i,t1σ

2
i,t1∑

i γ
2
i,t2
σ2i,t2 −

∑
i γ

2
i,t1
σ2i,t1

,

we can measure the contribution of a given sector i to the change of aggregate volatility between

periods t1 and t2. As argued in Section 3.1, focusing on fundamental volatility rather than on the

model-implied volatility including the multiplying factor allows us to obtain a simple characteriza-

tion of such contributions. We divide our sample into two subsamples, namely 1966 – 1982 (“great

volatility”) and 1983 – 1994 (“great moderation”) and compute the values of Hi for each sector i

in both subsamples. Fig. 5(a) displays the distribution of Hi(1966, 1982), while Fig. 5(b) plots the

distribution of Hi(1983, 1994).
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Figure 5: Panel (a): Distribution of Hi(1966, 1982). Panel (b): Distribution of Hi(1983, 1994). Labels show the 5
most relevant sectors.

The five most important sectors for the “great volatility” period, namely Oil and gas extractions,

Petroleum and coal products, Wholesale trade, Gas utilities and Farms, jointly account for about
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Figure 6: Panel (a): Time variation of γ2
i (in log10 scale) for first 5 sectors ranked according to Hi(1966, 1982).

Darker to lighter color reflects decreasing sector importance according to Hi. Point size is proportional to σ2
i . Panel

(b): Time variation of γ2
i (in log10 scale) for first 5 sectors ranked according to measure Hi(1983, 1994). Darker to

lighter color reflects decreasing sector importance according to Hi. Point size is proportional to σ2
i .

20



79% of the increase in aggregate volatility. On the other hand, the five most relevant sectors for

the “great moderation”, namely Oil and gas extractions, Construction, Wholesale trade, Petroleum

and coal products and Gas utilities are jointly responsible for about 83% of the decline in GDP

volatility. Figs. 6(a) and 6(b) display instead the logarithm of the Domar weight associated to each

sector over time, with the size of the circles proportional to idiosyncratic volatility. For the sake of

readability, we highlighted the five most important sectors according to Hi(1966, 1982) (Fig. 6(a))

and to Hi(1983, 1994) (Fig. 6(b)), while darker to lighter color reflects decreasing sector importance

according to Hi.

Fig. 6(a) shows that some very large sectors in the US production structure, such as Farms and

Whole trade, experienced an increase in their TFP volatility while their Domar weights remained

roughly constant. On the other hand, sectors related to fossil fuels displayed an increase in both

their importance in terms of Domar weights and their TFP volatility. These phenomena can explain

the increase in the correlation between the vectors of Domar weights and TFP volatilities depicted

in Figure 4(a). As shown in Fig. 6(b), the reduction in aggregate volatility leading to the “great

moderation” is explained by the fact that sectors related to fossil fuel became less central in the

production network and less volatile. On the other hand, the Construction and Wholesale trade

sectors became less volatile while their Domar weights remained roughly constant. Finally, we

remark that from the second half of 1990s, the volatility of the sector related to Petroleum and

coal products largely increased, causing an upward trend in GDP volatility in the final part of the

sample.

6 Conclusions

This paper highlights the importance of the interaction between the structure of the production net-

work and sectoral volatilities in determining GDP volatility. We show that sectoral TFP volatilities

are important sources of GDP fluctuations. Sectoral volatilities are transmitted at the aggregate

level and amplified through the network of production linkages. The amplification effect depends

on two factors. First, the intermediate goods intensity of the production system, measured as total

gross nominal production over GDP. Second, the asymmetry of the production structure deter-

mined by the distribution of value-added weights β and the topology of the input-output network
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W . We explain the rise and fall of aggregate volatility as the combination of three factors. First, an

increase in the average sectoral volatility, which then decreased starting from mid-1980s (No I–O

counterfactual). Second, an increase and a subsequent decrease of the intermediate input intensity

of the production structure occurred in the same years (Sym I–O counterfactual). The higher the

intermediate input intensity, the higher the amplification effect. Third, the change over time of the

impact of asymmetry on the transmission of sectoral shocks (Asy I–O counterfactual). We observed

that asymmetry had both an amplifying and a dampening effect on aggregate volatility. In fact,

although the literature typically associates asymmetric production networks to stronger amplifica-

tion of micro-level volatility, we find that the actual effect depends on the correlation between the

vectors of Domar weights and sectoral TFP volatilities. We find that this correlation is negative

throughout our sample, implying that on average sectors with higher Domar weights are associ-

ated to lower volatilities. The peak in aggregate volatility is associated to an higher correlation

(less negative) and thus to a stronger amplifying effect of asymmetry. In the first and last part

of the sample, correlation is relatively more negative implying that more volatile sectors are more

peripheral in the production network, leading therefore to a dampening effect of asymmetry.
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A Detailed model derivation

We first derive the competitive equilibrium of the economy and express total production of the

aggregate good as a function of sectoral TFPs, Domar weights and aggregate levels of primary

inputs. We then derive the optimal level of capital and labor supply as a solution to the planner’s

problem. Finally, we compute GDP volatility.

Final good sector: A representative firm produces the final good using the technology:

Y =

n∏
i=1

cβii ,

with
∑n

i=1 βi = 1. The profit maximization of this firm reads as follows:

max
ci

Y −
∑

pici ,

where pi denotes the price of input i and we assume that the price index for the aggregate good is

P = 1. The first order conditions imply that

βi =
pici
Y

. (A.1)

Intermediate goods sectors: Intermediate goods are produced using the following technology:

Qi = Ai

(
Kαi
i H

(1−αi)
i

)(1−wi) n∏
j=1

d
wij
ij

where wi =
∑

j wij . The profit maximization reads as follows:

max piQi −
∑
j

pjdij − rKi − wHi ,
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where r and w denote the prices of capital and labor respectively. The first order conditions are

given by

rKi = αi(1− wi)piQi (A.2)

wHi = (1− αi)(1− wi)piQi (A.3)

pjdij = wijpiQi . (A.4)

We now derive an expression for (log-)GDP as a function in terms of sectoral TFP and Domar

weights.

GDP as function of sectoral TFPs and Domar weights: We start by writing the resource

constraints

cj +
n∑
i=1

dij = Qj , (A.5)

according to which the quantity of intermediate good j used in the production of the final good

plus the quantity of intermediate good j used in the production of intermediate goods equals the

total production of intermediate good j. Multiplying both sides of Eq. (A.5) by pj and substituting

Eq. (A.4) to eliminate the terms dij we get

pjcj +
n∑
i=1

wijpiQi = pjQj .

Using Eq. (A.1) to substitute for prices in the equation above we get

βjY

cj
cj +

n∑
i=1

wij
βiY

ci
Qi =

βjY

cj
Qj

βj +

n∑
i=1

wij
βi
ci
Qi =

βj
cj
Qj .

Defining vj ≡ βjQj/cj and matrix W whose ij-th element is given by wij , we can write the equation

above in vector form

β +W ′v = v ,
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from which we get an expression for the Domar weights given by

v∗ = (I −W ′)−1β ≡ γ . (A.6)

In fact, using Eq. (A.1) we obtain γj = βjQj/cj = pjQj/Y . In order to interpret the weights in γ

we can write γ′ = β′(I −W )−1. Matrix W̄ = (I −W )−1 is the Leontief inverse matrix, whose ij-th

element describes how much an increase in productivity in sector j raises output in sector i taking

into account all direct and indirect effects in the production structure. Multiplying this matrix by

the vector of value-added weights β yields β′W̄ =
∑n

i=1 βiw̄ij . Therefore, the j-th element of γ′

sums the effects of sector j on all the other sector of the economy, weighting by their shares of

value-added. In other words, Domar weights describe the impact of a change in productivity in a

certain sector on the overall value-added in the economy.

In order to write production of the aggregate good as a function of the Domar weights we notice

that Eq. (A.1) implies that

pi
pj

=
βi
βj

cj
ci
,

which can be substituted in Eq. (A.4) to get

dij =
βi
βj

cj
ci
Qiwij .

Given that γj = pjQj/Y = βjQj/cj , we can write the FOC for the optimal choice of intermediate

input above as

dij =
γi
γj
Qjwij . (A.7)

Moreover, using again that γj = pjQj/Y = βjQj/cj , we can write the FOCs for optimal capital

and labor choices in Eqs. (A.3)–(A.4) as

Ki =
αi(1− wi)γiY

r

Hi =
(1− αi)(1− wi)γiY

w
,
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from which it follows that

Ki∑
iKi

=
Ki

K̄
=

αi(1− wi)γiY∑
i αi(1− wi)γiY

≡ Θ̄Ki (A.8)

Hi∑
iHi

=
Hi

H̄
=

(1− αi)(1− wi)γiY∑
i(1− αi)(1− wi)γiY

≡ Θ̄Hi . (A.9)

Substituting the expressions for the production inputs derived in Eqs. (A.7)–(A.9) in the inter-

mediate goods production function we obtain

Qi = Ai

((
ΘKiK̄

)αi (ΘHiH̄
)1−αi)1−wi n∏

j=1

(
wijQjγi
γj

)wij
,

which can be rewritten in logs as

log(Qi) = log(Ai) + (1− wi)αi
(
log(Θ̄Ki) + log(K̄)

)
+ (1− wi)(1− αi)

(
log(Θ̄Hi) + log(H̄)

)
+∑

j

wij (log(wij) + log(Qj) + log(γi)− log(γj))

Let us define ωK , ωH and ωd as the vectors whose i-th elements are given by

[ωK ]i = (1− wi)αi log(Θ̄Ki)

[ωH ]i = (1− wi)(1− αi) log(Θ̄Hi)

[ωd]i =
∑
j

wij log(wijγi/γj) ,

and ωq = ωK + ωH + ωd. Defining the vectors of sectoral capital shares (1 − wi)αi and labor

shares (1−wi)(1−αi) respectively as ks and hs, we can finally write the expression for the sectoral

productions derived above as

q = ε+ ωq + ks log(K̄) + hs log(H̄) +Wq ,

where q is the vector collecting sectoral productions, i.e. log(Qi), and ε is the vector collecting

sectoral TFPs, i.e. log(Ai). Solving for q we get

q = (I −W )−1ε+ (I −W )−1
(
ωq + ks log(K̄) + hs log(H̄)

)
. (A.10)

29



After having derived the equilibrium expressions for gross sectoral outputs, we proceed by

writing the equilibrium expression of intermediate goods used in the production of the aggregate

good. Recalling that ci = βiQi/γi, we can write

log(ci) = log(βi) + log(Qi)− log(γi) ,

or using vector notation

c = ωc + q , (A.11)

where c is the vector collecting sectoral outputs aggregated into final good, i.e. log(ci), and ωc is a

vector whose i-th element is defined as [ωc]i = log(βi)− log(γi).

Finally, using the production technology for the final good in logs, i.e. log(Y ) =
∑n

i=1 βi log(ci) =

β′c, and Eq. (A.11) we can write

log(Y ) = β′(ωc + q) . (A.12)

Substituting in Eq. (A.12) the equilibrium expression for q derived in Eq. (A.10) we obtain

log(Y ) = β′ωc + β′(I −W )−1ε+ β′(I −W )−1
(
ωq + ks log(K̄) + hs log(H̄)

)
. (A.13)

Defining the scalar Ξ ≡ β′ωc + β′(I −W )−1
(
ωq + ks log(K̄) + hs log(H̄)

)
we can write Eq. (A.13)

as

log(Y ) = β′(I −W )−1ε+ Ξ

which leads to the expression of (log-)GDP as a function of sectoral TFPs aggregated using the

Domar weights

log(Y ) = γ′ε+ Ξ . (A.14)

Optimal capital and labor supply: The competitive equilibrium implements the planner’s

problem defined as

max u(C,H) = C −H1+ 1
φ

s.t. C = Y − rK

where r is the price of capital.
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The FOCs for capital and labor can respectively be written as

Y
∂ log(Y )

∂K
− r = 0 (A.15)

Y
∂ log(Y )

∂H
− 1 + φ

φ
H

1
φ = 0 . (A.16)

Using Eq. (A.13) and the fact that ωc and ωq do not depend neither on K nor on H, we get

∂ log(Y )

∂K
= β′(I −W )−1ksK

−1

∂ log(Y )

∂H
= β′(I −W )−1hsH

−1 .

Substituting the above expressions in Eqs. (A.15)–(A.16) we get

K =
Y β′(I −W )−1ks

r

H =

(
Y β′(I −W )−1hs

φ

1 + φ

) φ
1+φ

.

The optimal capital and labor supply expressions in logs are thus given by

log(K) = log(Y ) + ΓK (A.17)

log(H) =
φ

1 + φ
log(Y ) +

φ

1 + φ
ΓH , (A.18)

where ΓK ≡ log(β′(I −W )−1ks)− log(r) and ΓH ≡ log
(
β′(I −W )−1hs

(
φ

1+φ

))
.

Optimal aggregate production and GDP volatility: Substituting Eqs. (A.17)–(A.18) in

Eq. (A.13) we get

log(Y ) = γ′ε+ β′ωc + γ′
(
ωq + ks(log(Y ) + ΓK) + hs

(
φ

1 + φ
log(Y ) +

φ

1 + φ
ΓH

))
log(Y ) = γ′ε+ β′ωc + γ′

(
ks + hs

φ

1 + φ

)
log(Y ) + γ′

(
ωq + ksΓK + hs

φ

1 + φ
ΓH

)
.

Defining the scalar Γ ≡ γ′
(
ks + hs

φ
1+φ

)
and collecting terms yields

log(Y ) = (1− Γ)−1γ′ε+ (1− Γ)−1Ψ̄ , (A.19)
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where Ψ̄ ≡ β′ωc + γ′
(
ωq + ksΓK + hs

φ
1+φΓH

)
. Defining m ≡ (1 − Γ)−1 and Ψ ≡ mΨ̄ leads to

Eq. (4) in the main text.

B Data

We use sectoral data provided by Dale Jorgenson and Associates (see Jorgenson et al., 2005) and

downloaded from the on line appendix of Carvalho and Gabaix (2013). Data includes annual input-

output tables for 88 US sectors from 1960 to 2005. In this dataset, for each year and each sector we

observe the nominal value in US$ of gross output, capital input, labor input, intermediate input of

commodities from all 88 sectors and corresponding price indexes. Following Carvalho and Gabaix

(2013) we concentrate on private sector industries, thus excluding the following sectors: 8. Uranium,

thorium ores; 60. Real Estate- owner occupied; 62. Renting of machinery; 81. Federal gen govt excl.

health; 82. Federal govt enterprises; 83. Government Hospitals; 84. Govt other health; 85. S&L

education; 86. S&L excl. health,educ.; 87. S&L govt. enterprises; 88. Military.

To compute US GDP volatility we use US Real Gross Domestic Product (GDPC1) retrieved

from FRED, Federal Reserve Bank of St. Louis.

C Robustness to alternative measures of volatility

In this appendix we test the robustness of our results by comparing different measures of sectoral

and aggregate volatility. We start by defining the following alternative measures of sectoral TFP

volatility:

a) Instantaneous sectoral volatility. We estimate an AR(1) model on the growth rate of sectoral

TFP of each sector i and compute the series of residuals eit. Since E(eit) = 0 is known,

σ2it = e2it is an unbiased estimator of variance in year t. We consider the HP-trend of σ2it,

denoted as σ2a,it.

b) 10-years rolling window instantaneous sectoral volatility. The estimation of variance con-

sidered in a) is based on only one observation. To improve the precision of the volatility
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estimation we consider also a 10-years rolling window average of the same measure:

σ2b,it =
1

11

t+5∑
τ=t−5

e2iτ .

•

c) Garch(1,1) We estimate a third measure of sectoral volatility σ2c,it by running a GARCH(1,1)

for each sector i. This measure of time-varying sectoral volatility has been used in Carvalho

and Gabaix (2013).

GDP volatility corresponding to each of these measures is computed as follows:

σ2M,Y t = m2
t

∑
i

γ2itσ
2
M,it ,

where σ2M,it denotes sectoral volatility implied by measure M ∈ {RW, a, b, c}, where RW refers to

our benchmark time-varying volatility measure used in the main text. Panel a) in Fig. C.1 displays
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Figure C.1: Panel (a): Average sectoral volatility. Panel (b): GDP volatility computed using the different measures
of sectoral volatility.

the dynamics of average sectoral volatility. Average sectoral volatilities estimated using measures

RW , a and b display similar qualitative pattern: they increase from mid-60s to mid-80s and decrease

from mid-1980s to mid-1990s. Although the Garch(1,1) measure displays a high degree of variability,

the long-term dynamics follows roughly the dynamics exhibited by the other considered measures.
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Panel b) in Fig. C.1 shows the GDP volatility computed using the different measures of sectoral

volatility. Observed GDP volatility is represented using both the RW and the IV measure, while the

volatility implied by the benchmark model is denoted as “model RW”. Regardless of the considered

measure, the model reproduces both the “great volatility” and the “great moderation” phenomena.

To compare the performance of the model in explaining observed GDP volatility using the different

measures of sectoral volatility, we estimate the following regression:

σ2RW,t = α+ β σ2M,Y t + ηt . (C.1)

Results of the regressions are shown in Table C.1. The first important result to highlight in Table C.1

Dependent variable: σ2RW
model: RW a b c

α̂
-0.0000

(-0.0001,0.0000)

-0.0000
(-0.0001,-0.0000)

-0.0001
(-0.0001,0.0001)

0.0000
(-0.0001,0.0001)

β̂
1.1084

(0.8944,1.3224)

0.9464
(0.7018,1.1910)

1.3821
(1.1533,1.6109)

0.8573
(0.4441,1.2705)

R2 0.77 0.65 0.83 0.35

Table C.1: Coefficients (95% confidence intervals). OLS estimation of Eq. (C.1).

is that each model yields α̂ very close to 0 and β̂ very close to 1, meaning that all models are capable

of representing GDP volatility dynamics. The second important result is that the R2 statistic is

high in all regressions but the regression involving model c, which measures sectoral volatility

by estimating a GARCH(1,1). This is due to the very erratic behavior of the resulting sectoral

volatility, as evident from the behavior of the its average sectoral volatility displayed in Panel (a)

of Fig. C.1. As a further robustness check, we perform the same analysis using instantaneous

Dependent variable: σ2IV
model: RW a b c

α̂
-0.0000

(-0.0001,0.0001)

0.0000
(-0.0001,0.0002)

-0.0001
(-0.0002,0.0000)

0.0001
(-0.0001,0.0002)

β̂
1.0892

(0.7016,1.4768)

0.9376
(0.5467,1.3284)

1.4462
(1.0192,1.8732)

0.7319
(0.1608,1.3030)

R2 0.50 0.42 0.60 0.17

Table C.2: Coefficients (95% confidence intervals). OLS estimation of Eq. (C.1) with σ2
IV,t as dependent variable.
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volatility, σ2IV,t as dependent variable. Results are shown in Table C.2 and they confirm the ability

of the model to match the observed GDP volatility with different measures of sectoral volatility.
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