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Abstract 
 
Unfavorable news are often delivered under the disguise of vagueness. But are people 
sufficiently naive to be fooled by such positive spin? We use a theoretical model and a 
laboratory experiment to study the strategic use of vagueness in a voluntary disclosure game. 
Consider a sender who aims at inflating a receiver’s estimate of her type and who may disclose 
any interval that contains her actual type. Theory predicts that when facing a possibly naive 
receiver, the sender discloses an interval that separates her from worse types but is upwardly 
vague. Senders in the experiment adopt this strategy and some (naive) receivers are 
systematically misled by it. Imposing precise disclosure leads to less, but more easily 
interpretable, disclosure. Both theory and experimental data further suggest that imposing 
precision improves overall information transmission and is especially beneficial to naive 
receivers. Our results have implications for the rules that govern the disclosure of quality-
relevant information by firms, the disclosure of research findings by scientists, and testimonies 
in a court of law. 
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1 Introduction

In many settings, informed parties not only decide whether to disclose verifiable private

information, but also enjoy substantial flexibility in how information is disclosed. One way

to exploit flexibility in disclosure is by means of vague messages. Vague messages are

designed to inflate a receiver’s perception of the sender’s type by clearly separating from

worse but not from better types. They are not outright lies, which may invite litigation,

but merely put a positive spin on unfavorable news. Consider the following examples.

A college that ranks 10th in the latest US news ranking is likely to call itself a top

10 college rather than referring to itself as the 10th ranked college. A wine whose sole

designation of origin is France is unlikely to come from the Bordeaux region, renowned

for its superior wine. A wine whose sole designation of origin is Bordeaux is unlikely to

come from Pomerol, an especially beloved subregion of Bordeaux. Researchers often refer

to “significance at the 5 percent level” when a p-value is just below 0.05, while stating the

exact p-value for a highly significant result. During legal proceedings, a defendant may try

to convince a jury of her innocence by answering only those questions that are likely to

exonerate her.

Sophisticated receivers understand and can correct for senders’ strategic use of vague-

ness. But if these deceptive practices are deployed on naive receivers, then they result in

systematic misperceptions. We model voluntary disclosure to receivers of heterogeneous

strategic sophistication under both flexible language, which facilitates vague messages, and

precise language. We then test the model’s assumptions and predictions in the experimental

laboratory. In doing so, we seek to answer three main questions. How do senders optimally

design messages to exploit receivers’ naivete? Are (some) receivers systematically fooled by

vague disclosure? And can restricting senders’ flexibility in disclosure improve information

transmission?
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The Model. Consider a voluntary disclosure game in which a privately informed sender

decides whether and how to disclose verifiable information about her type to a receiver.

The sender’s payoff is increasing in the receiver’s belief about the sender’s type, while the

receiver’s payoff is increasing in the accuracy of her belief. We distinguish between two

language regimes: in the precise language regime, if the sender discloses, then the message

has to reflect her exact type; in the flexible language regime a sender may send vague

messages, i.e. a message that is any interval that contains the sender’s true type.

If all agents are rational, the unique equilibrium outcome of the precise language regime

features full information revelation (Grossman and Hart, 1980; Grossman, 1981; Milgrom,

1981).1 In the flexible language regime, the receiver’s belief that a sender’s type is the

lower bound of the message sent is self-fulfilling (Milgrom and Roberts, 1986). Again, all

information is revealed in equilibrium.

However, the arguments for the full revelation of information and the irrelevance of

language crucially depend on a high degree of strategic sophistication on behalf of the

receiver. In reality, many receivers may be naive and struggle to be maximally skeptical

in the face of nondisclosure or vague messages. Building on Milgrom and Roberts (1986),

Eyster and Rabin (2005) and Hagenbach and Koessler (2017), our model therefore features

both sophisticated and naive receivers.2 When a naive receiver encounters nondisclosure,

she estimates that the sender is the average type. When she encounters a vague message,

she estimates that the sender’s type is the average of the sent interval.

The presence of naive receivers drives both nondisclosure (under precise language) and

the exploitative deployment of vague messaging (under flexible language). Vague messages

take the following simple form. Senders send an interval that spans their actual type and

the upper bound of the message space.

Moving from the flexible language regime to the precise language regime then implies

1The highest type discloses because the disclosed information definitely exceeds receiver expectations.
Because nondisclosure now cannot stem from the highest type, the second highest type is compelled to
disclose. An iteration of this reasoning yields full disclosure.

2These other papers derive many of the behavioral predictions we test in the experiment. Our theo-
retical contribution lies in deriving novel welfare results.
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a trade-off. There is more frequent disclosure in the flexible language regime and more

precise disclosure in the precise language regime. Sophisticated receivers, who are not

fooled by vagueness, form more accurate beliefs under flexible language. Naive receivers

form more accurate beliefs under precise language. Importantly, information transmission,

i.e. the average accuracy of receivers’ beliefs, is higher under precise language, irrespective

of the proportion of naive receivers.

The Experiment. The experiment compares a Flexible and a Precise treatment that

reflect the distinction between the two language regimes in the model. In both treatments,

a sender’s type is uniformly distributed over the integers from 0 to 5. A sender in the

Flexible treatment can disclose any interval containing her actual type. For example, a

sender with type 2 could disclose that her type belongs to the interval between 2 and 5. A

sender in the Precise treatment can only disclose her exact type or nothing.

The theoretical predictions are generally borne out in the experimental data. Senders

disclose more in Flexible than in Precise. In Flexible, senders use vague messages.

Moreover, the exact form of the modal message we observe is remarkably close to the

one predicted by the model. Our Precise treatment replicates the results by Jin et al.

(2018b): we find that sender behavior reflects a threshold equilibrium in which only high

types disclose. A minority of senders in both treatments does not behave according to the

theoretical predictions.

Validating the model’s key assumption, we find strong evidence for the existence of

two distinct receiver types, i.e. naives and sophisticates. We categorize receivers as ei-

ther sophisticated or naive on the basis of their guesses. We find that the average naive

receiver makes fewer mistakes in Precise. Depending on the specification, the average

sophisticated receiver makes more mistakes or no fewer mistakes in Precise.

Finally, when receivers encounter rational senders, information transmission is higher

in Precise. Let us be maximally precise in our disclosure and note that there is no

treatment effect on average information transmission in the raw data. This null result is
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driven by a few senders’ irrational decision, unbalanced across treatments, not to disclose

a high type. However, information transmission is significantly higher in Precise once we

restrict the sample to the two thirds of senders that conform exactly with the theory or

once we eliminate the 12 (out of 1185) observations that feature a sender of the highest

type who remains silent.

Policy implications. In contrast to most field settings, the experimental laboratory

affords us the opportunity to exogenously vary the language at a sender’s disposal. More-

over, whereas most field studies have to infer receivers’ beliefs from sender behavior or other

outcomes, our dataset allows us to characterize the exact nature of receivers’ misinference.

As a result, our treatment comparison can shed light on how policies that impose precise

language on senders are likely to affect information transmission.

Such policies are possible for all of our motivating examples and often feasible where

mandatory disclosure is not (see section 4 for a discussion). In some settings, they are al-

ready in place. For example, the well-known and widely-used independent German certifier

of consumer products, Stiftung Warentest, gives products and services a precise mark and a

vague summary category like “very good”. It imposes precise language by legally requiring

disclosures of its certification to contain the precise product rating. Our results suggest that

restricting flexibility improves average information transmission and redistributes rents to

naive consumers.

The imposition of precise disclosure is also taking root in science. For example, publish-

ing guidelines by the American Psychological Association require authors to disclose the

exact p-value, effect size, degrees of freedom, and statistical test underlying a given result.

Similarly, the field of economics has undergone a general move toward precise disclosure.

For instance, authors of experimental studies increasingly commit to the exact specifica-

tions of statistical tests in pre-analysis plans and thereby, among other things, reduce the

subsequent flexibility in presenting their research findings.

The self-incrimination clause of the fifth amendment of the United States constitution
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affords defendants the right not to testify against themselves in criminal cases.3 In settings

in which lying is impossible (because testimony has to be backed up by hard evidence) or

undesirable (because the expected penalty of perjury exceeds its benefits) the defendant’s

choice between testifying in her own trial or “pleading the fifth” constitutes a voluntary

disclosure game with the jury. Moreover, a majority of US courts take the position that

voluntarily waiving the right against self-incrimination opens a defendant up to cross-

examination on all issues relevant to the trial.4 The right not to self-incriminate therefore

imposes precise voluntary disclosure. In an influential court ruling, the majority opinion

argues against allowing the defendant to “decide how far he will disclose what he has chosen

to tell in part [...]” because “it must be conceded that the privilege is to suppress the truth,

but that does not mean that it is a privilege to garble it.”5 Our results highlight a key

distinction between suppressing the truth and garbling it by means of partial or vague

disclosure and speak to the wisdom in prohibiting the latter.

Related Literature. The exploitation of flexibility in voluntary information disclosure

has been documented for car sellers describing their cars on ebay (Lewis, 2011), business

schools referring to third-party rankings (Luca and Smith, 2015), and researchers presenting

their findings (Krawczyk, 2015; Brodeur et al., 2016). Relatedly, there is evidence that firms

shroud (Brown et al., 2010), obfuscate (Ellison and Ellison, 2009) or complexify (Ru and

Schoar, 2016) unfavorable information about their products. In markets where voluntary

disclosure is necessarily precise, nondisclosure often ensues. For example, producers of

salad dressings do not voluntarily disclose fat content if it is high (Mathios, 2000), poor

health maintenance organizations do not obtain independent accreditations (Jin, 2005),

and movie studios avoid pre-release screenings to critics if a movie’s quality is low (Brown

et al., 2012). However, data limitations in the field have thus far kept researchers from

studying the causal impact of different language regimes on information transmission and

3See Amar and Lettow (1995) for a critical discussion of this privilege.
4See Yale Law Journal (1952) and Stanford Law Review (1962) for discussions of the waiver and how

it has and should be interpreted by the law.
5See the opinion by judge Hand in United States v. St. Pierre, 132 F.2d 837 (2d circuit 1942).
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from characterizing the exact nature of receivers’ misinference.6

Our paper builds on a small literature that studies information disclosure in the ex-

perimental laboratory. While no previous experiment compares voluntary disclosure under

precise and flexible language, several studies relate to at least one of our treatments. Our

precise language treatment follows Jin et al. (2018b), who provide evidence for both in-

complete unraveling and receiver naivete. Earlier studies by Forsythe et al. (1989), King

and Wallin (1991b) and Dickhaut et al. (2003) find evidence for full unraveling after a suf-

ficiently high number of repetitions, albeit in a setting that features several receivers and

auctioning mechanisms that potentially permit other explanations for players’ behavior

(Jin et al., 2018b).7

In an experiment that complements our findings in the flexible language treatment,

Jin et al. (2018a) study a mandatory disclosure game in which senders can complexify

their disclosure by revealing their type as the sum of a string of numbers. They find

that low sender types make us of complexity and that some receivers are fooled by it

because they are overconfident in their ability to interpret complex messages. In contrast,

our results suggest that a lack of strategic sophistication leads to the loss in information

transmission associated with vague disclosure. Hagenbach and Perez-Richet (2017) conduct

an experiment that allows for vague messages. Instead of varying the language at a sender’s

disposal, they vary the sender’s incentive structure. Like us, they find that types who wish

to be perceived as another type are more likely to use partial or nondisclosure. They also

find that receivers are better off under acyclical incentive structures, i.e. games in which

masquerading incentives are not circular. An early experiment by King and Wallin (1991a)

allows sellers in a double auction with several buyers to disclose precise as well as coarse

information (i.e. an interval of fixed size). Where a seller’s realized type and the available

interval permit it, sellers frequently send an interval whose lower bound is their type. This

6See Dranove and Jin (2010) for a review of the theory and empirics of disclosure in economic applica-
tions and Loewenstein et al. (2014) for the psychological subtleties surrounding the analysis of disclosure
games.

7Also see Benndorf et al. (2015) for an unraveling failure that is driven by senders’ bounded rationality.
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has a flavor of the senders’ strategies we uncover in the flexible language treatment.

Vague messages have been shown to arise in other strategic domains. Vagueness is a

key ingredient of cheap talk communication (Crawford and Sobel, 1982), where messages

are unverifiable and the interests of the sender and the receiver are typically at least

partially aligned. In these games, vagueness arises in equilibrium even if all receivers are

perfectly rational. In an experimental public good game, Serra-Garcia et al. (2011) find

that vague communication can be socially valuable when truthful communication conflicts

with efficiency. Agranov and Schotter (2012) show that a benevolent announcer may

resort to vague announcements of payoff states to facilitate coordination in an experimental

coordination game.

Finally, a series of papers following Gabaix and Laibson (2006) investigate the cir-

cumstances under which firms fail to educate their own and other firms’ consumers about

unfavorable product attributes or add-on costs (see Heidhues and Koszegi (2018) for a

recent review of the broader behavioral industrial organization literature). However, the

role of the flexibility of language in firms’ communication with ‘behavioral’ consumers has

been largely neglected.

Roadmap. In the next section, we present the model. Section 3 describes experimental

design and results and section 4 discusses policy implications.

2 The Model

2.1 Setup

A sender (S) and a receiver (R) play a persuasion game in which S aims at maximizing

R’s guess, while R wants her guess to be as accurate as possible. When the state of nature

is ω and R’s guess is g, then S’s payoff is US = g. R’s payoff is UR = −(ω − g)2, which

implies that she finds it optimal to guess her expectation of the state. At the initial stage,
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ω is drawn from a continuous uniform distribution with support Ω = [0, 1].8 S privately

observes her type ω and sends a message m before R makes a guess.

Since S cannot make false statements, her message must always include her true type.

Beyond this common requirement, we consider two alternative communication regimes,

which we refer to as precise and flexible language. Under precise language, the set of

messages available to type ω is {ω,Ω}, i.e. S can either reveal her type exactly (m = ω)

or remain silent (m = Ω). Under flexible language, the set of messages available to type

ω is the union of all compact subsets of Ω containing ω, which also includes the option to

remain silent. While we represent the choice to remain silent with the coarsest message

(i.e. m = Ω) for ease of notation, in our interpretation this is conceptually distinct from

actively disclosing as in the case of other messages. Thus, we say that a given type discloses

only when she sends a message that conveys at least some information even if interpreted

at face value. Likewise, we measure the amount of disclosure as the probability that S

sends a message other than m = Ω.

Key to the analysis is that R may lack strategic sophistication. In particular, we take

the posterior distribution of a fully naive R to coincide with the prior truncated over types

for which the message sent is available. Upon message m = Ω, the posterior of a fully

naive R hence coincides with the prior, since that message is available to all types. Upon

message m = ω, her posterior is degenerate at ω. And upon message m = [a, b] ⊂ Ω with

a > b, her posterior is uniform on [a, b]. Receivers’ insufficient skepticism may hence stem

from a failure to take into account the dependence of a sender’s strategy on her type, in

the spirit of cursed equilibrium (Eyster and Rabin, 2005).

We assume that heterogeneity in sophistication is bimodal, as in Milgrom and Roberts

(1986) and Hagenbach and Koessler (2017). In particular, we suppose that R is fully

naive with probability χ ∈ (0, 1) and fully sophisticated with complementary probability.

In Appendix B.1 we generalize the model by allowing for partially naive types and an

arbitrary distribution of sophistication in the population.

8Appendix B.2 considers non-uniform priors.
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A pure strategy of S specifies a message m(ω) based on her type. A pure strategy of

R specifies a guess for a sophisticated and a naive type, which we denote respectively by

g(m) and gχ(m), based on S’s message. Our solution concept is a natural adaptation of

perfect Bayesian equilibrium which takes into account that S’s message is hard evidence

and that R may not be fully strategic. In addition to the usual requirements, upon any

off-the-equilibrium-path message, the support of R’s posterior should not include any type

for which that message is unavailable. Moreover, the guess of a naive R must be optimal

given her possibly wrong and at least partially exogenously given beliefs. Without loss of

generality, we restrict our attention to pure strategy equilibria and adopt the convention

that S refrains from disclosing whenever indifferent.

2.2 Predictions

When language is flexible, S elects to disclose an interval that spans her type and the

highest type. As the equilibrium is necessarily fully separating,9 this strategy is optimal

in that it maximally inflates the guesses of a naive R.

Proposition 1 (Equilibrium under flexible language). Under flexible language, in equilib-

rium m(ω) = [ω, 1], g
(

[a, b]
)

= a and gχ
(

[a, b]
)

= (a+ b)/2.10

Proof. See Milgrom and Roberts (1986).

When language is precise, S finds it optimal to disclose if and only if her type is

sufficiently high. The marginal sender is indifferent between perfectly revealing her type

and remaining silent, which induces a higher guess from a naive R (the prior mean) but

a lower guess from a sophisticated R (the average silent type). Then, higher types indeed

9The reason for why full separation necessarily obtains is that, for any candidate equilibrium pooling
message, the highest type in the pool always has access to another message that would strictly raise the
guess of both a sophisticate and a naive R.

10While the beliefs and guesses of a sophisticated R upon off-the-equilibrium-path messages are not
uniquely pinned down, without loss of generality we adopt the convention that these take the same form
as in the case of on-the-equilibrium-path messages.
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find it optimal to disclose and lower types to remain silent. Also, the disclosure cutoff is

lower than the prior mean and increases with the proportion of naives.

Proposition 2 (Equilibrium under precise language). Under precise language, there exists

a unique cutoff ω∗ = χ
1+χ

such that in equilibrium:

m(ω) =

 ω if ω > ω∗

Ω if ω ≤ ω∗
; g(m) =

 ω if m = ω

ω∗

2
if m = Ω

; gχ(m) =

 ω if m = ω

1
2

if m = Ω
.

Proof. See Eyster and Rabin (2005).11

Comparing the two equilibrium outcomes, we can derive the following predictions about

differences in players’ behavior between the flexible and precise language regime.

Proposition 3 (Predictions on differences in behavior). For any given χ ∈ (0, 1)

1. Sender behavior:

(a) there is more disclosure under flexible than under precise language;

(b) the average disclosing type is higher under precise than under flexible language.

2. Receiver behavior:

(a) R’s expected guess is lower under precise than under flexible language and in

both cases it exceeds S’s expected type;

(b) under both precise and flexible language R’s expected guess increases with χ.

Proof. See section A.1 in the appendix.

Predictions on senders’ behavior hinge on the fact that all types disclose under flexible

language while only sufficiently high types disclose under precise language. Predictions

on receivers’ behavior are driven by the guesses of a naive R, since, given the Bayesian

consistency of rational beliefs, the average guess of a sophisticated R always coincides with

11In Eyster and Rabin (2005), the cutoff is ω∗ = 1
1+χ and it types below who disclose, since S’s payoff

is decreasing in R’s guess. Also, as detailed in Appendix B.1, R’s naivete takes a slightly different form.
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the prior mean. For any realization of S’s type, the guess of a naive R is higher under

flexible than under precise language, which explains the first part of prediction 2a, and

always equal or higher than S’s type, which explains the second part. The average guess

of a naive is therefore higher than that of a sophisticate, which entirely drives prediction

2b under flexible language. Under precise language, it is also the case that the average

guess of a naive increases with χ since, as S discloses less often, the set of S’s types she

overestimates increases.

To consider players’ welfare, recall that the expected utility of S is simply the guess

she expects to induce in R, while the expected utility of R is the accuracy of her guess

measured by the mean squared error.12 For a sophisticated R, this error boils down to the

expected residual variance upon S’s disclosure. For a naive R, the error also incorporates

the systematic bias in her updating that S’s strategy introduces. Throughout, we will use

the terms R’s expected payoff and information transmission interchangeably. Moreover, the

ex-ante and ex-post qualifications refer respectively to whether the expectation is computed

unconditionally or conditionally on the player in question having observed her type (i.e.

the state for S and the sophistication level for R).

Proposition 4 (Predictions on differences in payoffs). For any given χ ∈ (0, 1)

3. Sender payoff:

(a) the ex-ante expected payoff of S is higher under flexible language than under

precise language;

(b) this is also true ex-post if and only if S’s type is not too low (in particular, it is

true for all types who disclose under precise language).

4. Receiver payoff:

12While in our setting R’s preference ranking over flexible and precise language can only be defined with
respect to a specific loss function, our results are robust to common alternative measures. When we present
our experimental data we therefore use the absolute mean error, which is more directly interpretable in
that it assigns no heavier relative penalty to larger errors.
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(a) the ex-ante expected payoff of R is higher under precise than under flexible lan-

guage;

(b) ex-post, the expected payoff of a sophisticated R is higher under flexible language

and the expected payoff of a naive R is higher under precise language.

Proof. See section A.2 in the appendix.

Ex ante, S always prefers flexible language because it allows her to more strongly inflate

the expectation of a naive R and it also offers more opportunities to do so. In spite of

this, sufficiently low types still prefer precise language ex post, since it allows them to pool

with higher types even in the eyes of a sophisticate. By the same token, a naive R prefers

precise language, since it limits the scope for deceiving her, while a sophisticated R prefers

flexible language, since it allows her to always perfectly infer the state.

The difference in the preference of sophisticates and naives for precise and flexible

language has been noted by Hagenbach and Koessler (2017).13 In the appendix we show

that this result, obtained in a setting of two extreme levels of sophistication, naturally

extends to settings where sophistication varies continuously in the population (proposition

B.1). More importantly, our setting allows us to sign the overall effect of language on

R’s payoffs: R prefers precise language. Intuitively, since a naive R is deceived more

frequently and more severely under flexible language, the resulting loss has a substantially

larger magnitude than the loss of both a naive and a sophisticate under precise language.

Given the opposing language preferences of naives and sophisticates, one may think that

R’s ex-ante welfare could be higher under flexible language if the population of receivers is

mostly sophisticated. This is not the case because the presence of more sophisticates also

disciplines S’s disclosure behavior under precise language (i.e. as χ goes to zero, so does

the disclosure cutoff ω∗), which fosters information transmission to both sophisticates and

naives.

13Our precise and flexible regimes correspond respectively to simple and rich language in the terminology
of Hagenbach and Koessler (2017).

12



In Appendix B.1, we show that R’s preference for precise language is robust to arbitrary

distributions of naivete in the population. In Appendix B.2, we use numerical simulations

to demonstrate that it holds for a large class of non-uniform priors over the state. There, we

also provide some quantitative measure of R’s welfare gains from precise language and build

some more intuition behind this result by identifying the features of prior distributions that

can give rise to rare counterexamples.

3 The Experiment

3.1 Design

The experiment was programmed in zTree (Fischbacher, 2007). A total of 158 subjects

participated in 8 sessions at the Munich Experimental Laboratory for Economic and Social

Sciences (MELESSA) in the spring of 2017.14 One session lasted for about 45 minutes and

the average earnings (including a AC4 show-up fee) were AC15.05, with minimum earnings of

AC5.90 and maximum earnings of AC23.50. The instructions were read aloud by the exper-

imenter. Screenshots of the decision screens are gathered in Appendix E and instructions

and payoff tables can be found in Appendix F.

The experiment featured a between subject design that compared two variants of a

disclosure game. At the beginning of the experiment, subjects in both treatments were

randomly assigned to the role of a sender or the role of a receiver. A subject remained

in her assigned role for the duration of the experiment. All subjects played 15 rounds of

the disclosure game. In each round, a subject played the game with a randomly selected

anonymous partner in the opposite role.

It was common knowledge that a sender’s type ω was drawn in each round from the set

{0, 1, 2, 3, 4, 5} and that each type was equally likely. After privately observing her type, a

sender decided on a message to send to the receiver. Our two treatments differed only in

14We piloted our design with 58 subjects in the winter of 2016. Here we organized the treatment
variation in a within-subject fashion and find similar results.
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(a) Precise message (b) Vague message

Figure 1 Examples of messages

the type of messages senders were able to send.

In the Flexible language treatment (80 subjects), the sender was allowed to send

any interval containing her type.15 In the Precise language treatment (78 subjects), the

sender could either disclose her precise type or do not disclose. In Flexible, senders were

therefore able to send vague messages and while any feasible message in Precise was also

feasible in Flexible, the reverse was not true. In the case of nondisclosure, the receiver

was notified that “the sender did not send a message” in both treatments. Figure 1 depicts

two messages a sender of type 2 might send in the different treatments.

After seeing the sender’s message, the receiver stated her guess about the sender’s

type, i.e. g ∈ {0, 0.5, . . . , 4.5, 5}. While the sender was incentivized to induce the highest

possible guess in the receiver, the receiver was paid for accuracy. Subjects were paid in

probability points and for a single randomly selected round. After each round, subjects

received information about the receiver’s guess, the sender’s type and the probability points

they earned.

A receiver’s points depended on her guess and the sender’s type as follows

pR =
110− 20|ω−g

1.37
|1.4

110

A sender’s points depended only on the receiver’s guess:

pS =
110− 20|5−g

1.37
|1.4

110

15While sending an interval that contains all possible types was not allowed, the equivalent strategy of
nondisclosure was always at a sender’s disposal.
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The probability points p a subject earned in the payoff-relevant round then determined

the likelihood of winning a AC8 prize. For example, a subject in the receiver role was paid

according to a lottery that yielded a relatively high prize of AC8 with probability pR and a

lower prize of AC1 with the complementary probability 1−pR. Paying subjects in probability

points makes them less liable to the influence of risk preferences (Roth and Malouf, 1979;

Hossain and Okui, 2013; Harrison et al., 2014). To make sure that subjects understood

the incentive structure we provided them with payoff tables that mapped any constellation

of receiver guess and sender type into the relevant probability points and let them solve

comprehension tasks before the experiment.

After the main part of the experiment, we asked senders to state the distribution of

receiver guesses upon nondisclosure in the pilot experiment. Similarly, we asked receivers

to state the belief distribution over non-disclosed sender types. In additional unincen-

tivized elicitations in Flexible, we asked senders about the average receiver guess in

the pilot session after receiving the messages {1, 2, 3, 4, 5}, {2, 3, 4, 5}, {3, 4, 5}, and {4, 5}

and receivers about the most likely message of all six possible sender types.16 Finally, a

post-experimental survey collected some additional sociodemographic data.

3.2 Results

We first describe participants’ behavior in the two treatments and then analyze infor-

mation transmission. Our analysis is based on data that pools observations across rounds.

Appendix C provides results on how player behavior evolves over time. For all statisti-

cal tests we report p-values from a two-sided t-test that comes from a regression-based

approach with robust standard errors clustered at the subject level.

16In the incentivized elicitations, subjects were paid for being close to a variable’s empirical distribution
in the pilot sessions. We find that subjects’ “out-of-sample” beliefs generally reflect their beliefs and
behavior in the experiment, so we do not analyze them separately in what follows.
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Figure 2 Behavior in Flexible: (a) Solid lines show the avg. lower and upper bounds of all messages
sent; hollow diamonds show the model’s point predictions; if a diamond is black, then the prediction
coincides with the modal message. Average and modal messages include nondisclosure.

3.2.1 Behavior

Flexible Language Treatment. According to the theory, a sender in the Flexible

treatment discloses an interval that spans her type and the upper bound of the type

space. Figure 2a depicts the average lower and upper bounds of the messages sent by

different sender types. Observed messages are in line with the predictions of the model.

Upper bounds are close to the highest type and lower bounds increase with the type.

Modal messages, also depicted in the figure, almost perfectly coincide with the theory’s

predictions. The only exception is provided by senders of type 1, who remain silent more

often than they send their predicted message.

As a first step toward analyzing receiver behavior, we normalize guesses. Given a guess

g and a message with lower bound ω and upper bound ω̄ > ω, the normalized guess is

gn =
g − ω
|ω̄ − ω|

.

The normalization allows for the comparison of guesses induced by different messages.

Normalized guesses range from 0 to 1 and are only defined for non or vague disclosure.

A fully naive normalized guess takes a value of 0.5. The theoretical prediction for a

sophisticated normalized guess in Flexible is 0.
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Figure 3 Behavior in Precise: Graph (a) shows 95% confidence intervals around the avg. disclosure
rates.

Figure 2b shows the distribution of normalized guesses. The bimodal distribution with

mass points at 0 and 0.5 vindicates our model’s assumption that there are two distinct re-

ceiver types: sophisticates and fully naive receivers.17 We find that receivers’ average belief

upon observing nondisclosure or receiving a vague message is upwardly biased. While the

average normalized guess is at about 0.25, senders’ average normalized type is significantly

lower at 0.13 (p-value < 0.001).18 Instead, all receivers are able to rationally interpret

singleton intervals, i.e. a precisely disclosed type.

Precise Language Treatment. In the presence of naive receivers, our model predicts

that precise language will give rise to a threshold equilibrium with nondisclosure on behalf

of low types and disclosure on behalf of types above the threshold. Figure 3a depicts

disclosure rates by sender type. In line with an equilibrium threshold of around 2, the

disclosure rate is almost zero for the lowest two types, 40 percent for type 2, and above 80

percent for the highest three types. Note that disclosure rates of less than 100 percent for

the highest types imply a slight departure from our hypothesis of sender rationality.19

All receivers are able to rationally interpret a precisely disclosed type. Figure 3b depicts

17We can reject the null hypothesis of unimodality using the Dip Test introduced by Hartigan and
Hartigan (1985) (pDip-value < 0.001).

18The normalized type is the sender counterpart of the normalized guess and is given by ωn = ω−ω
|ω̄−ω| .

19However, after the initial five rounds the disclosure rate of high types increases markedly, e.g., for
sender type 5, it increases from 70.8 percent to 92.9 percent.
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the distribution of normalized receiver guesses upon nondisclosure. We observe a bimodal

distribution with mass points around 0.2 and at 0.5.20 Because of the threshold strategy, the

sophisticated guess upon nondisclosure is now larger than zero. In particular, a receiver’s

empirical best response is equal to the average non-disclosing type, whose normalized

value is equal to 0.25. Therefore, the histogram’s first mode reflects the accurate beliefs of

sophisticated receivers, whereas the second mode corresponds to the beliefs of a fully naive

receiver.

Receivers average normalized guess upon observing nondisclosure is 0.33, which reflects

a significant overestimation of the average normalized non-disclosed type of 0.25 (p-value

= 0.007).

Treatment Comparison. Disclosure rates are higher in Flexible, where senders dis-

close 75 percent of the time, than in Precise, where they disclose 51.5 percent of the time

(p-value < 0.001). This result seems to be driven by differences in disclosure strategies,

as the average disclosing sender type is significantly higher in Precise than in Flexible

(3.59 versus 3.08; p-value < 0.001).21

We observe that the average receiver guess is slightly lower under Precise than under

Flexible (2.66 in Precise versus 2.85 in Flexible; p-value = 0.095). This difference

indicates that, as the theory predicts, the average sender is better off in Flexible.

3.2.2 Information transmission

We measure information transmission by receivers’ mistakes, which themselves are given

by the absolute difference between a receiver’s guess and a sender’s type. Perfect informa-

tion transmission corresponds to a mistake of zero.

20We can reject the null hypothesis of unimodality using a Dip Test (pDip-value < 0.001).
21Although not significantly different, results also agree with the predicted direction for the differences

in average non-disclosing types: 1.26 in Precise treatment versus 1.07 in Flexible language (p-value
= 0.310).
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Overall information transmission. Our model predicts that average receiver mistakes

are lower in Precise. Table 1 shows the determinants of receivers’ mistakes. Column 1

depicts an OLS regression of receiver mistakes on the treatment and tells us that the

treatment effect of Precise on average mistakes is negative, but insignificant. The in-

significance of the treatment effect is driven by the minority of sender choices that do not

conform to our theoretical predictions. To test this hypothesis, we restrict the sample to

the 828 observations that feature theory-conforming sender behavior. In Flexible, such

behavior takes the form of a message that spans the sender’s type and 5. In Precise, it

takes the form of a threshold strategy, whereby only types of 2 or higher disclose. Here, the

threshold of 2 is the best response to the distribution of receiver guesses upon nondisclosure.

Column 2 focuses on only those interactions in which the sender behavior conforms ex-

actly to the theory. In these cases, restricting our senders to the use of Precise language

leads to lower average receiver mistakes. The significant treatment effect emerges because

our data restriction eliminates a very small number of outlier observations driven by sender

mistakes that disproportionately occurred in Precise.22 Imposed precision therefore im-

proves information transmission in the absence of pronounced sender irrationality that is

unbalanced across language regimes.

A typology of players. The theory predicts that moving from Flexible to Precise

decreases the average mistakes made by naive receivers and increases the average mistakes

made by sophisticated receivers. A corollary of this prediction is that the interaction effect

of imposed precision and a receiver’s naivete on mistakes is negative. In order to test these

predictions, we use our experimental data to classify receivers as naives and sophisticates.

A normalized guess is fully naive if it is equal 0.5. We arrive at our measure of individual

receiver naivete by dividing the number of rounds in which the receiver stated a fully

naive guess by the number of rounds in which the receiver did not encounter precise

22In particular, the treatment effect on average information transmission is also significant at the 10
percent level if we merely drop the 12 observations (1 percent of total observations) that feature a sender
of type 5 who does not disclose and thereby generates a disproportionately large outlier receiver mistake.
11 of these observations occurred in Precise.
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(1) (2) (3) (4) (5) (6)
Dep. variable: Mistake Mistake Mistake Mistake Mistake Mistake

Precise (d) -0.0610 -0.159** -0.252*** -0.231** 0.140* 0.0250
(0.0676) (0.0746) (0.0754) (0.0856) (0.0787) (0.0826)

Round -0.0298*** -0.0207*** -0.0331*** -0.0342*** -0.0257*** -0.00932*
(0.00582) (0.00498) (0.00995) (0.00871) (0.00674) (0.00465)

Constant 1.647*** 1.742*** 2.168*** 2.322*** 1.259*** 1.277***
(0.106) (0.120) (0.165) (0.162) (0.115) (0.130)

Type dummies Yes Yes Yes Yes Yes Yes

Incl. sender choices All Theory- All Theory- All Theory-
conforming conforming conforming

Incl. receivers All All Naives Naives Soph. Soph.

R2 0.172 0.456 0.331 0.605 0.135 0.454
Observations 1185 828 510 360 675 468

Table 1 OLS regressions of the treatment effect on receivers’ absolute mistakes; robust standard errors
clustered at the subject level in parentheses; ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.

disclosure. If this ratio is smaller than 0.15, then we say that a receiver is “hardly ever

naive” or sophisticated. Otherwise, a receiver is deemed naive. Applying this classification

procedure, we find that 57 percent of the receivers in our sample are sophisticated.23

Columns 3 and 4 of Table 1 repeat the regression models of columns 1 and 2, but include

only naive receivers. Regardless of whether or not we only include theory-conforming sender

behavior, the treatment effect on naive receivers is negative and significant. In column 5,

we see that, as the theory predicts, the treatment effect on sophisticated receiver’s mistakes

is positive and weakly significant. However, the result is not robust to considering only

theory-conforming sender behavior and therefore disappears in column 6.

In Appendix D we repeat the regressions in columns 3 through 6 for several alternative

classifications of naivete and sophistication, including subjects’ high school math grade and

various notions of empirical best response. In the majority of specifications, naive receivers

23The fraction of naive receivers is higher in Precise (61.5 percent) than in Flexible (52.5 percent).
However, this difference is not robust to different classification criteria. In general, the proportion of naives
is slightly higher in Precise if the classification is based on the frequency of fully naive choices (as in
our main classification) and slightly lower if the classification is based on the proximity to best-response
behavior, as in Appendix D. Therefore, there is no reason to suspect that the treatment effect on overall
information transmission is driven by differences in the proportion of naives across treatments.
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make significantly smaller mistakes under precise language and sophisticated receivers make

insignificantly larger mistakes under precise language. The appendix also shows that the

data bears out the corollary of our model’s predictions: for all classifications, moving from

flexible to precise language leads to relatively smaller mistakes for naive receivers, i.e. the

interaction effect between the precise treatment and naivete on mistakes is negative.

4 Discussion

Our model and experimental data suggest that information transmission can be in-

creased by restricting senders’ flexibility in disclosing private information to receivers.

Moreover, we find that a move to precise voluntary disclosure is likely to disproportionally

benefit naive receivers. Since sophisticated receivers are (weakly) harmed by restricting

flexibility, while naive receivers benefit, it is tempting to think that the effect of restricting

flexibility on average receiver welfare is generally negative when there are many sophisti-

cated receivers. However, this intuition is wrong: restricting flexibility improves informa-

tion transmission for a broad class of distributions of strategic sophistication. When there

are many sophisticates, precise language features (almost) full disclosure and still beats

out the flexible language regime.

We have analyzed the disclosure game through the lens of sender rationality. In terms of

the applications we have in mind, it is plausible that professional marketers are able to make

cunning disclosure decisions and that high-paid attorneys are able to advise their clients

on optimal disclosure strategies. And while senders and receivers are often drawn from the

same population in the case of research, authors of papers naturally devote substantially

more time and cognitive resources to a paper than a paper’s readership is able to. Our

theoretical results can accommodate and are robust to some sender irrationality. However,

as our experiment shows, noisy behavior on behalf of senders can make it difficult to detect

the benefits of precise disclosure in the experimental laboratory.

In our simple framework, an easy way to facilitate information transmissions is to

21



legislate the mandatory disclosure of information. Where mandatory disclosure is feasible

and unproblematic, our results suggest that it is crucial to also legislate precise language.

However, for a number of reasons mandatory precise disclosure may often be infeasible or

undesirable where the mere imposition of precision is not.

First, mandatory disclosure may be deemed unfair. Consider a policy maker’s decision

to regulate the disclosure of college rankings by colleges. While informative, rankings

also contain an element of subjectivity and may be subject to dimensions, like students’

entertainment facilities, that a college reasonably neglects. Therefore, it may be deemed

unfair and invite resistance to force a college’s disclosure of a given ranking. Nonetheless,

conditional on a college’s voluntary disclosure, imposing precision by prohibiting disclosure

in selectively broad categories (e.g. “top 30”) is likely to be less contentious. Concerns

about fairness are also at the heart of arguments in favor of the self-incrimination clause

of the fifth amendment.

Second, it may be prohibitively onerous for a regulator to determine whether a firm

chose nondisclosure or simply lacked information. Consider a pharmaceutical company

that tests one of its products only to find that the product has the unfortunate side effect

of hair loss in 9 percent of the study’s participants. In the case of nondisclosure, it may

be hard for the regulator to find out whether a study was ever conducted. However, a

press release that claims that “less than 10 percent” or “a small minority” of participants

experienced hair loss could easily be flagged for vagueness.

Third, mandatory disclosure may yield perverse incentives. For example, consider a

defendant’s right not to self-incriminate. In its absence, law enforcement has an incentive

to use coercion or even torture to extract an admission of guilt. In the case of markets,

Matthews and Postlewaite (1985) and Polinsky and Shavell (2010) demonstrate that forcing

firms to reveal their private information may ultimately hamper information transmission

once firms’ incentives to acquire information are taken into account.

The question of how the presence of naive receivers affects information transmission

when senders are not exogenously endowed with private information about their type is
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an interesting avenue for future research. In particular, it is plausible that mandating

precise language has a disincentive effect on information acquisition, given that it sets

a limit on senders’ ability to use information to deceive receivers. This would limit the

benefits of imposing precision. At the same time, in other settings, flexible language may

be even more harmful than our data suggests. Cain et al. (2005) show that the disclosure

of a conflict of interest can lead advisors to give more biased advice by making them feel

morally licensed to pursue their private goals. Because flexible language leads to both less

information transmission and more disclosure (i.e. moral licensing), it may lead both to a

greater underappreciation of an advisor’s conflict of interest and to poorer advice.

Our results pertain to information transmission to an average receiver. But the ultimate

desirability of precise language may hinge on the weight society attaches to different receiver

types. For example, in the case of research, society may deem that information transmission

to referees, who are mostly sophisticated, is initially more important than information

transmission to the general public, who is more likely to be naive. Yet researchers may

write up their findings in an attempt to persuade both of these audiences. It may then be

the case that flexible language and its superior information transmission to sophisticated

receivers ought to be favored.

Finally, it is not always clear-cut how information transmission maps into welfare in

specific applications. For instance, Ispano and Schwardmann (2018) show that when firms

compete for sophisticated and naive consumers through quality disclosure and pricing,

wrong beliefs on behalf of consumers need not imply inefficient purchasing decisions. Re-

latedly, consumers might simply enjoy thinking of the Bordeaux region while drinking a

blended wine from Roussillon.
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Appendix

A Proofs

A.1 Proof of proposition 3

Prediction 1a and 1b follow straightforwardly from proposition 1 and 2. Next, let Egflex

and Egprec denote R’s expected guess under flexible and precise language

Egflex = χEgflexχ + (1− χ)Egflex1−χ

Egprec = χEgprecχ + (1− χ)Egprec1−χ,

where the subscripts χ and 1− χ refer respectively to the expected guess of a naive and a

sophisticated R. Also, let µ = 1/2 represent the prior mean.

By the law of iterated expectations, Egflex1−χ = Egprec1−χ = µ. Thus, proving prediction

2a boils down to show that Egflexχ > Egprecχ > µ. Let us denote by gflexχ (ω) and gprecχ (ω)

the equilibrium guess of a naive R when the state is ω under precise and flexible language,

respectively. For any ω, gflexχ (ω) ≥ gprecχ (ω), with strict inequality unless ω = 0 or ω = 1, so

that Egflexχ > Egprecχ . Moreover, under precise language gflexχ (ω) ≥ ω with strict inequality

whenever ω ≤ ω∗, so that Egprecχ > µ.

As for prediction 2b, Egflex is strictly increasing in χ since Egflexχ and Egflex1−χ are

independent from χ and Egflexχ > Egflex1−χ . Egprec is strictly increasing in χ since Egprecχ >

Egprec1−χ and, moreover, while Egprec1−χ is independent from χ, Egprec1−χ is strictly increasing.

Indeed

Egprecχ =

∫ ω∗

0

µ dω +

∫ 1

ω∗
ω dω = µ+

∫ ω∗

0

(µ− ω) dω,

which is strictly increasing since so is ω∗ and, as ω∗ < µ, µ − ω > 0 in the relevant

integration range.
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A.2 Proof of proposition 4

Prediction 3a follows directly from prediction 2a. Using the notation introduced in the

previous proof (section A.1), prediction 3b follows from the fact that for types ω > ω∗,

gflexχ (ω) > gprecχ (ω) and gflex1−χ(ω) = gprec1−χ(ω), while for types ω ≤ ω∗ precise language is

preferable if and only

χµ+ (1− χ)
ω∗

2
≥ χ

ω + 1

2
+ (1− χ)ω. (A.1)

The inequality is violated at ω = ω∗/2, verified strictly at ω = 0, and, since the left-hand

side and right-hand side are respectively independent from ω and strictly decreasing, there

is a unique ω̂ ∈ (0, ω∗/2) such that the inequality holds if and only if ω ≤ ω̂.

Next, if we denote the expected loss of R under flexible and precise language as ELflex

and ELprec, respectively, and we use the subscript χ and 1−χ to denote the expected loss

of a naive and a sophisticated R, respectively, we have

ELprec = χ

∫ ω∗

0

(µ− ω)2 dω︸ ︷︷ ︸
ELprecχ

+ (1− χ)

∫ ω∗

0

(
ω∗

2
− ω

)2

dω︸ ︷︷ ︸
ELprec1−χ

=
χ2(3 + χ)

12(1 + χ)3

ELflex = χ

∫ 1

0

(
ω + 1

2
− ω

)2

dω︸ ︷︷ ︸
ELflexχ

+ (1− χ) 0︸︷︷︸
ELflex1−χ

=
χ

12
.

Prediction 4a follows from ELprec1−χ > ELflex1−χ = 0 and

ELflexχ >

∫ ω∗

0

(
ω + 1

2
− ω

)2

dω >

∫ ω∗

0

(µ− ω)2 dω = ELprecχ .

The last inequality holds because in the relevant integration range ω < µ < ω+1
2

. Finally

prediction 4a follows from analytical inspection, i.e. ELprec = cELflex with c = χ(3+χ)
(1+χ)3

< 1.
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B Extensions

B.1 General Distribution of Naivete

In this section we suppose the belief of a χ-naive R upon any given message is a mixture

of the posterior of a fully sophisticated receiver (with weight 1−χ) and a fully naive receiver

(with weight χ). Besides, we assume R’s type χ is drawn form a continuous distribution

h(χ) with full support on [0, 1], mean λ and variance σ2. The binary model we use in

section 2.2 hence obtains as limit and special case when h(χ) puts weight only on 0 and

1. Likewise, the model in Eyster and Rabin (2005) corresponds to a degenerate h(χ) that

puts all weight on a single value of χ.

One can easily verify that proposition 1 still describes S’s behavior under flexible lan-

guage, so that the guess of a χ-naive R upon message [a, b] with b ≥ a is gχ
(

[a, b]
)

=

χ(a+ b)/2 + (1− χ)a. As for S’s behavior under precise language, it is as in proposition 2

except that S’s disclosure cutoff now must solve

ω∗ =

∫ 1

0

(
χ

1

2
+ (1− χ)

ω∗

2

)
h(χ)dχ.

The unique solution is ω∗ = λ
1+λ

. The guess of χ-naive R upon nondisclosure is then

χ1
2

+ (1− χ)ω
∗

2
.

Thus, all results of section 2.2 generalize to this more flexible model. In particular, we

formally establish an equivalent of predictions 4a and 4b.

Proposition B.1. For any distribution of naivete in the population

B.a the ex-ante expected payoff of R is higher under precise language than under flexible

language

B.b ex-post, the expected payoff of a χ-naive R is higher under precise language than

under flexible language if and only if χ is above some cutoff χ∗ ∈ (0, 1).
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Proof. The expected loss of R under flexible and precise language are now

ELflex =

∫ 1

0

∫ 1

0

(
χ
ω + 1

2
+ (1− χ)ω − ω

)2

dω h(χ)dχ =

∫ 1

0

χ2

12︸︷︷︸
ELflexχ (χ)

h(χ)dχ

ELprec =

∫ 1

0

∫ ω∗

0

(
χ

1

2
+ (1− χ)

ω∗

2
− ω

)2

dω h(χ)dχ =

∫ 1

0

1

12
ω∗ ((ω∗)2 + 3(1− ω∗)2χ2

)
︸ ︷︷ ︸

ELprecχ (χ)

h(χ)dχ,

where ELflexχ and ELprecχ denote the expected loss of type χ. Prediction B.b follows from

ELflexχ (0) = 0 <
(ω∗)3

12
= ELprecχ (0),

ELflexχ (1) =
1

12
>

1

2
ω∗(3− 6ω∗ + 4(ω∗)2) = ELprecχ (1),

dEaflex

dχ
=
χ

6
>

1

2
ω∗(1− ω∗)2χ =

dEaprec

dχ
.

As for prediction B.a, we may write

ELprec − ELflex =
1

12

∫ 1

0

(
(ω∗)3 − (1− 3(1− ω∗)2ω∗)χ2

)
h(χ)dχ

∝ λ3 − (1 + λ2(3 + λ))E [χ2]

(1 + λ)3
.

Thus, ELprec ≥ ELflex if and only if

E
[
χ2
]
≤ λ3

1 + 3λ2 + λ3
.

Using E [χ2] ≡ λ2 + σ2, one sees that this is impossible as σ2 > 0 and λ2 > λ3

1+3λ2+λ3
.

B.2 General Distribution of the State of Nature

The equilibrium behavior described at proposition 1 and 2 naturally generalizes to any

arbitrary prior distribution f(ω) which is continuous and has full-support in the interior

of [0, 1]. Let F (ω) denote its cumulative distribution and µ the prior mean. Under flexible
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language, the equilibrium is identical except that the guess of a naive R upon message [a, b]

with b ≥ a is now

gχ
(

[a, b]
)

= E
[
ω |ω ∈ [a, b]

]
=

∫ b
a
ωf (ω) dω

F (b)− F (a)
.

Under precise language, the equilibrium is again characterized by a disclosure cutoff ω∗ ∈

(0, 1). For a given ω∗, the guess of a rational and naive R upon nondisclosure are now

respectively g1−χ(∅) = E [ω |ω < ω∗] =
∫ ω∗
0 ωf(ω)dω

F (ω∗)
and gχ(∅) = µ, so that the disclosure

cutoff now solves24

ω∗ = χµ+ (1− χ)

∫ ω∗

0
ωf (ω) dω

F (ω∗)
. (B.1)

The expected loss of R under flexible and precise language are then

ELflex =χ

∫ 1

0

(∫ 1

ω
t f (t) dt

1− F (ω)
− ω

)2

f(ω)dω︸ ︷︷ ︸
ELflexχ

ELprec =χ

∫ ω∗

0

(∫ 1

0

tf (t) dt− ω
)2

f (ω) dω︸ ︷︷ ︸
ELprecχ

+(1− χ)

∫ ω∗

0

(∫ ω∗

0
tf (t) dt

F (ω∗)
− ω

)2

f (ω) dω︸ ︷︷ ︸
ELprec1−χ

.

All predictions of section 2.2 other than 4a easily extend to this setting and their proofs

at section A intentionally rely on general arguments.25 In particular, prediction 4b obtains

since ELprec1−χ > ELflex1−χ = 0 and

ELflexχ >

∫ ω∗

0

(
E
[
ω |ω ∈ [ω, 1]

]
− ω

)2
f (ω) dω >

∫ ω∗

0

(µ− ω)2 f (ω) dω = ELprecχ ,

where again the last inequality holds since in the relevant integration range ω < µ <

E
[
ω |ω ∈ [ω, 1]

]
.

24The solution is not necessarily unique. A sufficient condition for this to be the case is that f(ω) is
log-concave.

25For the sake of precision, prediction 2b now requires equation B.1 to have a unique solution and
prediction 3b requires the equivalent of inequality A.1, i.e.

χµ+ (1− χ)E [ω |ω < ω∗] ≥ χE [ω |ω ≥ ω∗] + (1− χ)ω,

to hold with equality for a unique ω. Log-concavity of f(ω) guarantees both.
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As for prediction 4a, we investigate it by simulation. In detail, we use as family of

priors the beta distribution, which is defined on [0, 1] and can take a wide range of shapes

(u-shaped, hill-shaped, increasing, decreasing) depending on its parameters α > 0 and

β > 0.26 We numerically solve the model for different values of α and β, each ranging from

1/10 to 10, and of χ, ranging from 1/20 to 19/20, and check whether ELflex−ELprec > 0.27

The inequality is verified for 2226 out of 2250 parameter combinations. The 24 coun-

terexamples all obtain when α ≥ 3 and β = 1/10, i.e. when the prior mean ( α
α+β

) is very

large and the probability mass concentrated around 1.28 The sender’s ability to make up-

wardly vague claims under flexible language is then somehow limited by construction, while

the set of types who disclose under precise language can be very small. This explains why

information transmission may eventually be higher under flexible language. This occurs for

intermediate levels of naivete in the population (in all counterexamples χ ∈ [13/20, 17/20]),

so that the disclosure cutoff under precise language remains large while at the same time

the welfare of sophisticates has non-negligible weight in average receiver’s welfare. Notice,

however, that in all counterexamples the percentage reduction in information transmission

that imposing precise language entails is small, i.e. ELflex−ELprec
ELflex

< −4%, while in ”‘reg-

ular”’ instances the correspondent percentage gain is typically larger (larger than 20% in

95% of the regular instances, and as high as 99%).29

26The density of a beta distribution with shape parameters α > 0 and β > 0 is

f(ω) =
ωα−1(1− ω)β−1∫ 1

0
tα−1(1− t)β−1dt

.

27When α < 1 or β < 1, equation (B.1) can in principle have multiple solutions. Since ELprec is
increasing in the disclosure cutoff, we programmed both a more stringent test which uses the largest
solution and a weaker test which uses the smallest one. This precaution proved unnecessary as in all
instances ω∗ turned out to be unique.

28When α > 1 and β < 1, the density of the beta distribution is hyperbolic increasing with a vertical
asymptote at 1 and, as α/β increases, the distribution gets steeper at high values of ω and flatter elsewhere.

29Interestingly, the highest percentage gains from imposing precise language obtain for the same dis-
tributions that generate counterexamples but for different fractions of naives, namely, for χ very small.
This suggests that imposing precise language might still be on average preferable even for these prior
distributions if the regulator faces some uncertainty about the level of sophistication in the population.
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C Evolution of play

After each round, each subject receives feedback about the sender’s type and the re-

ceiver’s guess in her pair. Tables 2 and 3 summarize how sender behavior evolves over

rounds in Flexible and Precise, respectively. We split the total number of rounds in

three phases of five rounds each, i.e phase 1 (rounds 1 to 5), phase 2 (rounds 6 to 10)

and phase 3 (rounds 11 to 15). In Flexible, the most frequent messages of types 3, 4,

and 5 coincide with the theoretical predictions in all phases. Types 1 and 2 in rounds 1-5

use most frequently nondisclosure rather than their theoretically predicted message, i.e.

respectively {1, 2, 3, 4, 5} and {2, 3, 4, 5}. However, over time their behavior get closer to

the theoretical predictions. In particular, in rounds 6-10 and 11-15 types 2 most frequently

send the predicted message. Likewise, in rounds 11-15, the predicted message of type 1 is

almost as frequent as nondisclosure (14 subjects of type 1 do not disclose, 12 subjects send

{1, 2, 3, 4, 5} and 2 subjects send {1, 2, 3, 4}).

In Precise, we observe that over time disclosure rates generally increase for high types

and decrease for low types. The sharp increase in the disclosure rate of types 2 is likely

to reflect a shift in the disclosure threshold, i.e. a strategic response to the increase in

receiver skepticism documented below. Instead, the increase in the disclosure rate of types

5 is likely to be the result of learning, i.e. a reduction in noisy behavior.

Table 2 Modal sender messages over time in Flexible

type=0 type=1 type=2 type=3 type=4 type=5
rounds 1-5 nondisclosure nondisclosure nondisclosure {3, 4, 5} {4, 5} {5}
rounds 6-10 nondisclosure nondisclosure {2, 3, 4, 5} {3, 4, 5} {4, 5} {5}
rounds 11-15 nondisclosure nondisclosure {2, 3, 4, 5} {3, 4, 5} {4, 5} {5}

Table 3 Disclosure rates over time in Precise

type=0 type=1 type=2 type=3 type=4 type=5
rounds 1-5 6.3% 10% 20.6% 71.1% 83.8% 70.8%
rounds 6-10 3.5% 3% 38.9% 92.1% 93.1% 93.3%
rounds 11-15 5% 3% 66.7% 85.2% 93% 92.9%
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On the receiver side, the average normalized guess decreases over time, suggesting

that receivers become more skeptical (see also prediction 2b). In Flexible, the average

normalized guess is 32% in rounds 1-5, 23.1% in rounds 6-10, and 19% in rounds 11-15. In

Precise, it decreases from 38.2%, to 33.7% in rounds 6-10, and to 27% in rounds 11-15.

The regressions in Table 1 show that there is also a negative time trend in receiver mistakes.

However, receivers keep significantly overestimating sender types in all phases (two-tailed

t-tests with clustering on subject and on pair level, for all phases p-value< 0.001).

Columns (1) to (4) in Table 4 document no differential treatment effect on information

transmission across phases. In column (5), we observe that the treatment effect for so-

phisticated receivers significantly increases in the direction predicted by theory in rounds

11-15. Column (6) confirms the estimation from Table 1 and shows no significant variation

over time. However, we acknowledge that the analysis of interactions between time effects

and treatment may suffer from a lack of power.

D Alternative classification of naives and sophisticates

This appendix demonstrates the robustness of results in columns 3 through 6 of Table

1 by repeating the analysis using different classifications of sophistication and naivete. In

columns 1 and 2 of Table 5, receivers are classified as sophisticated if they are “rarely

naive”, i.e. if they make the fully naive choice in less than 30 percent of the rounds in

which they face either vague disclosure or nondisclosure. In columns 3 and 4 of Table 5,

receivers are classified as sophisticated if they are “never naive”, i.e. if they never make a

fully naive choice in the rounds in which they face either vague disclosure or nondisclosure.

In columns 5 and 6 of Table 5, we use a measure that is exogenous to receiver’s choices in

the experiment for the classification: we classify receivers with a high school math grade

(Abitur) of 1 or 2 as sophisticated and receivers with a math grade of 3, 4, 5 or 6 as naives.

This classification is equivalent to a median split.

When we use the “rarely naive” criterion, we find that naives make significantly smaller
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(1) (2) (3) (4) (5) (6)
Dep. variable: Mistake Mistake Mistake Mistake Mistake Mistake

Precise (d) -0.115 -0.196* -0.227* -0.316*** -0.0267 -0.0404
(0.0911) (0.101) (0.126) (0.0993) (0.110) (0.108)

Rounds 1-5 (d) 0 0 0 0 0 0
(.) (.) (.) (.) (.) (.)

Rounds 6-10 (d) -0.257*** -0.188** -0.302*** -0.314*** -0.284*** -0.148
(0.0692) (0.0757) (0.107) (0.0990) (0.0768) (0.0919)

Rounds 11-15 (d) -0.349*** -0.276*** -0.328** -0.434*** -0.380*** -0.128
(0.0785) (0.0922) (0.130) (0.142) (0.0841) (0.109)

Precise × Rounds 1-5 (d) 0 0 0 0 0 0
(.) (.) (.) (.) (.) (.)

Precise × Rounds 6-10 (d) 0.0694 0.0959 0.0247 0.113 0.209 0.177
(0.107) (0.0989) (0.160) (0.134) (0.132) (0.113)

Precise × Rounds 11-15 (d) 0.0911 0.0641 -0.103 0.148 0.292** 0.0423
(0.124) (0.111) (0.186) (0.173) (0.141) (0.118)

Constant 1.624*** 1.757*** 2.120*** 2.319*** 1.270*** 1.299***
(0.102) (0.119) (0.165) (0.156) (0.113) (0.133)

Type dummies Yes Yes Yes Yes Yes Yes

Incl. sender choices All Theory- All Theory- All Theory-
conforming conforming conforming

Incl. receivers All All Naives Naives Soph. Soph.

R2 0.173 0.457 0.338 0.608 0.136 0.454
Observations 1185 828 510 360 675 468

Table 4 OLS regressions of the treatment effect on receivers’ absolute mistakes over time; robust stan-
dard errors clustered at the subject level in parentheses; ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.

mistakes under precise language and that sophisticates make insignificantly larger mistakes

under precise language. This mimics our findings when we use the “hardly ever naive”

criterion in the main text. When we use the “never naive” criterion (columns 3 and 4),

naives make insignificantly smaller mistakes under precise language, while sophisticates

make significantly larger mistakes. The “never naive” criterion results in a more selective

pool of sophisticates who are hurt by moving from flexible to precise language. When we

classify receivers based on their high school math grade (columns 5 and 6), we find that

naives do significantly worse and that sophisticates do insignificantly better under precise

language.

The above criteria, except for the math grade, are based on the incidence of naive

choices and therefore pool all other choices under the label of sophisticated behavior.
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Alternatively, we may call a receiver sophisticated if her choices line up well with empirical

best response behavior. Table 5 uses three notions of empirical best response behavior to

classify receivers. Consider the criterion “best response 1”. As in section C, we divide our

experiment into phase 1 (rounds 1 to 5), phase 2 (rounds 6 to 10) and phase 3 (rounds 11

to 15). For each phase and each possible message, including nondisclosure, we calculate

the average type that actually sent this message. The use of phases allows us to arrive at

a more precise measure of average behavior. We call a receiver’s guess a noisy empirical

best response if it lies less than 0.5 above and less than 0.5 below the average sender type

conditional on a given message. The criterion “best response 1” then classifies a receiver

as sophisticated if her guess is a noisy best response in more than 75 percent of rounds

that featured either vague disclosure or nondisclosure. The criterion “best response 2”

is laxer and classifies an individual as sophisticated if her guess is a noisy best response

in more than 50 percent of rounds that featured either vague disclosure or nondisclosure.

The criterion “best response 3” is defined like “best response 1” except that is allows for

a 1-unit deviation from the true average type in defining the empirical best response.

In Table 5, columns 1 and 2 feature the criterion “best response 1” and columns 3 and 4

the same criterion, but only theory-conforming sender behavior. Columns 5 and 6 feature

best response 2, whereas columns 7 and 8 feature best response 3. In all cases, naives

are found to make significantly smaller mistakes under precise language, while there is no

treatment effect on sophisticates. A direct implication of our model’s prediction that naives

are better off and sophisticates are worse off under precise language is that the negative

treatment effect of imposing precise language on receiver mistakes is larger for naives, i.e.

that there is a significant interaction effect between treatment and sophistication. Table 6

confirms that the data bears out this prediction for all criteria we have introduced above.
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(1) (2) (3) (4) (5) (6)
Mistake Mistake Mistake Mistake Mistake Mistake

Precise (d) -0.186* 0.0294 -0.0856 0.188*** -0.343*** 0.0265
(0.0971) (0.0762) (0.0853) (0.0633) (0.0928) ( 0.0822)

Round -0.0202 -0.0319*** -0.0333*** -0.0207** -0.0491*** -0.0250***
(0.0138) (0.00607) (0.00755) (0.00852) (0.0106) (0.00653)

Constant 2.189*** 1.445*** 1.977*** 1.008*** 2.411*** 1.432***
(0.250) (0.112) (0.136) (0.0961) (0.142) (0.112)

Type dummies Yes Yes Yes Yes Yes Yes

Incl. receivers Naives Soph. Naives Soph. Naives Soph.

Criterion Rarely naive Never naive Math grade

R2 0.361 0.138 0.265 0.116 0.375 0.130
Observations 300 885 750 435 330 855

Table 5 OLS regressions of the treatment effect on receivers’ absolute mistakes; robust standard errors
clustered at the subject level in parentheses; ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.

(1) (2) (3) (4) (5) (6) (7) (8)
Mistake Mistake Mistake Mistake Mistake Mistake Mistake Mistake

Precise (d) -0.257*** 0.125 -0.359*** 0.0297 -0.311*** -0.0775 -0.257*** 0.00789
(0.0810) (0.0814) (0.0873) (0.0482) (0.0811) (0.0746) (0.0932) (0.0439)

Round -0.0280*** -0.0339*** -0.0198*** -0.0206*** -0.0178 -0.0361*** -0.0219*** -0.0185***
(0.00774) (0.00852) (0.00670) (0.00572) (0.0105) (0.00634) (0.00762) (0.00439)

Constant 2.050*** 1.220*** 2.179*** 1.219*** 2.240*** 1.458*** 2.286*** 1.238***
(0.132) (0.115) (0.144) (0.111) (0.174) (0.110) (0.164) (0.0975)

Type dummies Yes Yes Yes Yes Yes Yes Yes Yes

Incl. receivers Naives Soph. Naives Soph. Naives Soph. Naives Soph.

Criterion Best response 1 Best response 1 Best response 2 Best response 3

Sender choices All Theory- All All
conforming

R2 0.264 0.134 0.532 0.569 0.359 0.124 0.550 0.592
Observations 720 465 519 309 420 765 410 418

Table 6 OLS regressions of the treatment effect on receivers’ absolute mistakes; robust standard errors
clustered at the subject level in parentheses; ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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(1) (2) (3) (4) (5) (6) (7)
Mistake Mistake Mistake Mistake Mistake Mistake Mistake

Precise (d) -0.255*** 0.213 -0.209** -0.0824 -0.256*** -0.326*** -0.161*
(0.0785) (0.157) (0.102) (0.0852) (0.0814) (0.0915) (0.0891)

Round -0.0299*** -0.0299*** -0.0299*** -0.0299*** -0.0299*** -0.0299*** -0.0299***
(0.00583) (0.00582) (0.00582) (0.00582) (0.00583) (0.00583) (0.00583)

Hardly ever naive (d) -0.471***
(0.0684)

Precise x Hardly naive (d) 0.384***
(0.111)

Math grade 0.100*
(0.0515)

Precise x Math grade (d) -0.132**
(0.0615)

Rarely naive (d) -0.366***
(0.0774)

Precise x Rarely naive (d) 0.229*
(0.127)

Never naive (d) -0.419***
(0.0666)

Precise x Never naive (d) 0.247**
(0.107)

Best response 1 (d) -0.448***
(0.0732)

Precise x Best resp. 1 (d) 0.345***
(0.111)

Best response 2 (d) -0.398***
(0.0830)

Precise x Best resp. 2 (d) 0.229*
(0.118)

Best response 3 (d) -0.448***
(0.0733)

Precise x Best resp. 3 (d) 0.205*
(0.108)

Constant 1.907*** 1.450*** 1.908*** 1.765*** 1.888*** 1.995*** 1.892***
(0.0978) (0.148) (0.100) (0.105) (0.105) (0.102) (0.106)

R2 0.208 0.177 0.192 0.197 0.205 0.189 0.213
Observations 1185 1185 1185 1185 1185 1185 1185

Table 7 OLS regressions of the treatment effect on receivers’ absolute mistakes; robust standard errors
clustered at the subject level in parentheses; ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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E Decision Screens

Figure 4 shows an example sender decision screen in Precise. Here, the senders were

provided with the two options in random order.

Figure 5 shows the decision screen in Flexible. The sender could freely specify the

interval to send by clicking on and herewith selecting the respective types to be included.

A preview window showed how the message would appear on the receiver’s screen.

Figure 4 Sender’s decision screen in Precise

Figure 5 Sender’s decision screen in Flexible
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F Instructions

F.1 Flexible treatment

This experiment is composed of 15 rounds. At the beginning of this experiment, it will

be determined randomly whether you are player S or player E. You will keep this role in

all 15 rounds. In each round you play a game with a randomly chosen participant in the

opposite role. It is very unlikely, that you are paired up with the same participant in two

consecutive rounds.

The Game

In each round, player S receives a number on the range 0, 1, 2, 3, 4, 5 via the computer.

All the numbers are equally likely. Player E does not see which number player S receives.

However, player S can send a message regarding his or her number to player E. Player E

must guess the number of player S. At the end of each round both players are informed

about the number of player S and the guess of player E.

Decision of player S

After receiving the number, player S can decide about whether or not he or she would like

to send a message to the recipient. Player S can decide which message he or she would like

to send. In doing so, three rules must be complied with:

1. The sent message must contain the true number of the sender

Example: If the sender receives number 3, he can only send messages that contain

the number 3.

2. The sent message must not contain gaps.

Example: The sender with number 3 must not send the numbers 2, 3, 5 as possible

numbers because the 4 is missing in this row.

3. The send message may contain maximum five numbers.
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Probability Payoff
PP% 8 Euro

(100-PP)% 1 Euro

Example: The sender with the number 3 may only send 5 of is possible numbers in

total. The sender may not send all six numbers (i.e. 0, 1, 2, 3, 4, 5).

When player S has received, for example, the number 3, he or she can send a message

that contains the true number and no gaps or send no message at all. This, for example,

applies to the message “My number is 3.”. Graphically, the message “My number is 3”

will be depicted by a green box above number 3 and red crosses above 0, 1, 2, 4 and 5:

Decision of player E

Player E either sees the message sent by player S or he or she will see the note “Player S

has not sent you a message.” if player S has decided not to send a message. Then, player

E must enter his or her guess about the actual number of player S. Here, every number

can be entered in 0.5-intervals (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5).

Payoff

The payment is determined by the following rules: The higher the guess of

player E, the higher the payment of player S. And the closer the guess of

player E is to the true number of player S, the higher the payment of player

E.

Hereafter, the mechanism which determines the payment is explained in detail.

In each round you can earn between 0 and 100 probability points (PP). The more

probability points you earn, the higher the probability that you win the subsequent lottery:

If you gain 0 probability points you receive with certainty (with 100%) 1 Euro. If you

gain 100 probability points you receive with certainty (with 100%) 8 Euro. If you gain
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e.g. 70 probability points, you receive, with the probability of 70%, 8 Euro and, with the

probability of 30% 1 Euro. The more probability points you gain, the more probable it is

that you receive 8 instead of 1.

Thus, you should try to gain as many probability points as possible.

The amount of your probability points in one round depends on both the number of

player S and the guess of player E. The payoff table, which you can find at your spot,

makes this clear. If player S e.g. receives the number 3 and player E guesses number 4.5,

player E gains 79 probability points and player S 96 probability points. But, if player E

guesses that the number of Player S is 1, player E gains 69 probability points and player

S only 19 probability points.

Only one of the 15 rounds is chosen randomly and then is actually relevant to the

payoff. Your probability points in this round determine the lottery that is played by the

computer at the end of the experiment. Since you do not know, which of the 15 rounds is

relevant to the payoff you should think carefully about your decisions in each round.

Summary

• Player S receives a random number that is unknown to player E.

• Player S decides whether or not to send a message to player E regarding the number.

The message must contain the number of player S.

• What the message contains is determined by player S.

• Player E must guess the number of player S.

• The higher player E guesses the number of player S, the higher the chances of achiev-

ing a higher profit for player S.

• The more accurate the guess of player E for the number is, the higher the chances of

profits for player E.
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F.2 Precise treatment

This experiment is composed of 15 rounds. At the beginning of this experiment, it will

be determined randomly whether you are player S or player E. You will keep this role in

all 15 rounds. In each round you play a game with a randomly chosen participant in the

opposite role. It is very unlikely, that you are paired up with the same participant in two

consecutive rounds.

The Game

In each round, player S receives a number on the range 0, 1, 2, 3, 4, 5 via the computer.

All the numbers are equally probable. Player E does not see which number player S

receives. However, player S can send a message regarding his or her number to player E.

Player E must guess the number of player S.

At the end of each round both players are informed about the number of player S and

the guess of player E.

Decision of player S

After receiving the number, player S can decide about whether or not he or she would

like to send a message to the recipient. If player S does send a message, player E will be

informed about the number. If player S does not send a message, player E will not be

informed about the number.

When player S has received e.g. the number 3, he or she can send a message that

contains the true number or send no message at all. This, for example, applies to the

message “My number is 3”. Graphically, the message “My number is 3” will be depicted

by a green box above number 3 and red crosses above 0, 1, 2, 4 and 5:

Decision of player E

45



Player E either sees the message sent by player S or sees the note “Player S has not sent

you a message.” if player S has decided not to send a message.

Then, player E must enter his or her guess about the actual number of player S. Here,

every number can be entered in 0.5-intervals (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5).

Payoff

The payment is determined by the following rules: The higher the guess of

player E, the higher the payment of player S. And the closer the guess of

player E is to the true number of player S, the higher the payment of player E.

Hereafter, the mechanism which determines the payment is explained in detail.

In each round you can earn between 0 and 100 probability points (PP). The more

probability points you earn, the higher the probability that you win the subsequent lottery:

Probability Payoff
PP% 8 Euro

(100-PP)% 1 Euro

If you gain 0 probability points you receive with certainty (with 100%) 1 Euro. If you

gain 100 probability points you receive with certainty (with 100%) 8 Euro. If you gain

e.g. 70 probability points, you receive, with the probability of 70%, 8 Euro and, with the

probability of 30% 1 Euro. The more probability points you gain, the more probable it is

that you receive 8 Euro instead of 1 Euro.

Thus, you should try to gain as many probability points as possible.

The amount of your probability points in one round depends on both the number of

player S and the guess of player E. The payoff table, which you can find at your spot,

makes this clear. If player S e.g. receives the number 3 and player E guesses number 4.5,

player E gains 79 probability points and player S 96 probability points. But, if player E

guesses that the number of player S is 1, then player E gains 69 probability points and

player S only 19 probability points.

Only one of the 15 rounds is chosen randomly and then is actually relevant to the

payoff. Your probability points in this round determine the lottery which is played by the
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computer at the end of the experiment. Since you do not know, which of the 15 rounds is

relevant to the payoff you should think about your decisions in each round.

Summary

• Player S receives a random number that is unknown to player E.

• Player S decides whether or not to send a message to player E regarding the number.

The message must contain the number of player S.

• What the message contains is determined by player S.

• Player E must guess the number of player S.

• The higher player E guesses the number of player S, the higher the chances of profits

for player S.

• The more accurate the guess of player E for the number is, the higher the chances of

profits for player E.

F.3 Payoff tables

Table 8 Payoffs of Player E

Guess of Player E
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of Player S

0 100 96 88 79 69 58 46 32 19 4 0
1 88 96 100 96 88 79 69 58 46 32 19
2 69 79 88 96 100 96 88 79 69 58 46
3 46 58 69 79 88 96 100 96 88 79 69
4 19 32 46 58 69 79 88 96 100 96 88
5 0 4 19 32 46 58 69 79 88 96 100

Table 9 Payoffs of Player S

Guess of Player E
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of Player S

0 0 4 19 32 46 58 69 79 88 96 100
1 0 4 19 32 46 58 69 79 88 96 100
2 0 4 19 32 46 58 69 79 88 96 100
3 0 4 19 32 46 58 69 79 88 96 100
4 0 4 19 32 46 58 69 79 88 96 100
5 0 4 19 32 46 58 69 79 88 96 100
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