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Dissecting Characteristics Nonparametrically

Abstract

We propose a nonparametric method to study which characteristics provide incremental
information for the cross section of expected returns. We use the adaptive group LASSO to
select characteristics and to estimate how they affect expected returns nonparametrically. Our
method can handle a large number of characteristics, allows for a flexible functional form, and
our implementation is insensitive to outliers. Many of the previously identified return predictors
do not provide incremental information for expected returns, and nonlinearities are important.
We study the properties of our method in an extensive simulation study and out-of-sample
prediction exercise and find large improvements both in model selection and prediction
compared to alternative selection methods. Our proposed method has higher out-of-sample
Sharpe ratios and explanatory power compared to linear panel regressions.
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I Introduction

In his presidential address, Cochrane (2011) argues the cross section of the expected return
“is once again descending into chaos.” Harvey et al. (2016) identify “hundreds of papers
and factors” that have predictive power for the cross section of expected returns.! Many
economic models, such as the consumption CAPM of Lucas (1978), Breeden (1979), and
Rubinstein (1976), instead predict that only a small number of state variables suffice to
summarize cross-sectional variation in expected returns.

Researchers typically employ two methods to identify return predictors: (i)
(conditional) portfolio sorts based on one or multiple characteristics, such as size or
book-to-market, and (ii) linear regression in the spirit of Fama and MacBeth (1973). Both
methods have many important applications, but they fall short in what Cochrane (2011)
calls the multidimensional challenge: “[W]hich characteristics really provide independent
information about average returns? Which are subsumed by others?” Portfolio sorts are
subject to the curse of dimensionality when the number of characteristics is large, and
linear regressions make strong functional-form assumptions and are sensitive to outliers.>
In addition, in many empirical settings, most of the variation in characteristic values and
returns are in the extremes of the characteristic distribution and the association between
characteristics and returns appears nonlinear (see Fama and French (2008)). Cochrane
(2011) speculates, “To address these questions in the zoo of new variables, I suspect we
will have to use different methods.”

We propose a nonparametric method to determine which firm characteristics provide
incremental information for the cross section of expected returns without making strong
functional-form assumptions.  Specifically, we use a group LASSO (least absolute
shrinkage and selection operator) procedure developed by Huang, Horowitz, and Wei
(2010) for model selection and nonparametric estimation. Model selection deals with the

question of which characteristics have incremental predictive power for expected returns,

IFigure 1 documents the number of discovered factors over time.
2We discuss these, and related concerns in Section A.2 and compare current methods with our proposed
framework in Section A.3 of the Online Appendix.



given the other characteristics. Nonparametric estimation deals with estimating the effect
of important characteristics on expected returns without imposing a strong functional
form.

We show three applications of our proposed framework. First, we study which
characteristics provide incremental information for the cross section of expected returns.
We estimate our model on 62 characteristics including size, book-to-market, beta, and
other prominent variables and anomalies on a sample period from July 1965 to June
2014. Only 13 variables, including size, total volatility, and past return-based predictors,
have incremental explanatory power for expected returns for the full sample period and all
stocks. A hedge portfolio going long the stocks with the 50% highest predicted returns and
shorting the 50% of stocks with the lowest predicted returns has an in-sample Sharpe ratio
of more than 3. Only 11 characteristics have predictive power for returns in the first half
of our sample. In the second half, instead, we find 14 characteristics are associated with
cross-sectional return premia. For stocks whose market capitalization is above the 20%
NYSE size percentile, only nine characteristics, including changes in shares outstanding,
past returns, and standardized unexplained volume, remain incremental return predictors.
The in-sample Sharpe ratio is still 2.37 for large stocks.

Second, we compare the out-of-sample performance of the nonparametric model with
a linear model. Estimating flexible functional forms raises the concern of in-sample
overfitting. We estimate both the linear and the nonparametric model over a period until
1990 and select return predictors. We then use 10 years of data to estimate the models on
the selected characteristics. In the first month after the end of our estimation period, we
take the selected characteristics, predict one-month-ahead returns, and construct a hedge
portfolio similar to our in-sample exercise. We roll the estimation and prediction period
forward by one month and repeat the procedure until the end of the sample.

Specifically, we perform model selection once until December 1990 for both the linear
model and the nonparametric model. Our first estimation period is from December of

1981 until November of 1990, and the first out-of-sample prediction is for January 1991



using characteristics from December 1990.> We then move the estimation and prediction
period forward by one month. The nonparametric model generates an out-of-sample
Sharpe ratio of 2.83 compared to 0.75 for the linear model.* The characteristics we study
are not a random sample, but have been associated with cross sectional return premia
in the past. Therefore, we focus mainly on the comparison across models rather than
emphasizing the overall magnitude of the Sharpe ratios.

The linear model selects 30 characteristics in-sample compared to only eleven for the
nonparametric model, but performs worse out-of-sample and nonlinearities are important.
We find an increase in out-of-sample Sharpe ratios relative to the Sharpe ratio of the
linear model when we employ the nonparametric model for prediction but use the 30
characteristics the linear model selects. The linear model appears to overfit the data
in-sample. We find an identical Sharpe ratio for the linear model when we use the 11
characteristics selected by the nonparametric model, as we do with the 30 characteristics
selected by the linear model. This latter result underscores once more the importance of
nonlinearities. With the same set of 11 characteristics the nonlinear model selects, we find
the nonparametric model has a Sharpe ratio that is larger by a factor of three relative to
the Sharpe ratio of the linear model using the same set of characteristics.

Third, we study whether the predictive power of characteristics for expected returns
varies over time. We estimate the model using 120 months of data on all characteristics we
select in our baseline analysis, and then estimate rolling one-month-ahead return forecasts.
We find substantial time variation in the predictive power of characteristics for expected
returns. As an example, momentum returns conditional on other return predictors vary
substantially over time, and we find a momentum crash similar to Daniel and Moskowitz
(2016) as past losers appreciated during the recent financial crisis. Size conditional on the
other selected return predictors, instead, has a significant predictive power for expected

returns throughout our sample period similar to the findings in Asness, Frazzini, Israel,

3We merge balance-sheet variables to returns following the Fama and French (1993) convention of
requiring a lag of at least six months, and our results are therefore indeed out-of-sample.
4The linear model we estimate and the results for the linear model are similar to Lewellen (2015).



Moskowitz, and Pedersen (2017).

The method we propose has several “tuning” parameters and one might be concerned
that our conclusions depends on some of the choices we have to make. We document in
an extensive simulation study both aspects of our proposed method: model selection and
and return prediction. Across a wide array of choices regarding the tuning parameters,
we find the adaptive group LASSO performs well along both dimensions, that is, it
has a high probability to select the “right” set of characteristics and performs well in
predicting returns out of sample. We also compare the performance of the nonlinear
adaptive group LASSO for model selection and return prediction to a linear LASSO and
popular recent proposals like increased thresholds for t-statistics or p-value adjustments
for false-discovery rates and find along both dimensions that allowing for nonlinearities
improves performance substantially.

The paper provides a new method in empirical asset pricing to understand which
of the previously published firm characteristics provide information for expected returns
conditional on other characteristics. We see this exercise as a natural first step in the
“multidimensional challenge.” Once we understand which characteristics indeed provide
incremental information, we can aim to relate characteristics to factor exposures, estimate
factors and stochastic discount factors directly, or relate characteristics and factors to

economic models.

A Related Literature

The capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin
(1966) predicts that an asset’s beta with respect to the market portfolio is a sufficient
statistic for the cross section of expected returns. Subsequently, researchers identified
many variables that contain additional independent information for expected returns.
Fama and French (1992) synthesize these findings, and Fama and French (1993) show that
a three-factor model with the market return, a size factor, and a value factor can explain

cross sections of stocks sorted on characteristics that appeared anomalous relative to the



CAPM. In this sense, Fama and French (1993) achieve a significant dimension reduction:
researchers who want to explain the cross section of stock returns only have to explain
the size and value factors.

In the 20 years following the publication of Fama and French (1992), many researchers
joined a “fishing expedition” to identify characteristics and factor exposures that the
three-factor model cannot explain. Harvey, Liu, and Zhu (2016) provide an overview of
this literature and list over 300 published papers that study the cross section of expected
returns. They propose a t-statistic of 3 for new factors to account for multiple testing
on a common data set. However, even employing the higher threshold for the t-statistic
still leaves approximately 150 characteristics as useful predictors for the cross section of
expected returns.

The large number of significant predictors is not a shortcoming of Harvey et al.
(2016), who address the issue of multiple testing. Instead, authors in this literature
usually consider their proposed return predictor in isolation without conditioning on
previously discovered return predictors. Haugen and Baker (1996) and Lewellen (2015)
are notable exceptions. They employ Fama and MacBeth (1973) regressions to combine
the information in multiple characteristics. Lewellen (2015) jointly studies the predictive
power of 15 characteristics and finds that only few are significant predictors for the
cross section of expected returns. Green, Hand, and Zhang (2017) adjust Fama-MacBeth
regressions to avoid overweighting microcaps and adjust p-values for data snooping bias
and find for a sample starting in 1980 that many return predictors do not provide
independent information. Although Fama-MacBeth regressions carry a lot of intuition,
they do not offer a formal method of model selection. We build on Lewellen (2015) and
provide a framework that allows for nonlinear associations between characteristics and
returns, provide a formal framework to disentangle important from unimportant return
predictors, and study many more characteristics.

We build on a large literature in economics and statistics using penalized regressions.

Horowitz (2016) gives a general overview of model selection in high-dimensional models,



and Huang, Horowitz, and Wei (2010) discuss variable selection in a nonparametric
additive model similar to the one we implement empirically. Recent applications of LASSO
methods in finance are Huang and Shi (2016), who use an adaptive group LASSO in
a linear framework and construct macro factors to test for determinants of bond risk
premia. Chinco, Clark-Joseph, and Ye (2018) use a linear model for high-frequency
return predictability using past returns of related stocks, and find their method increases
predictability relative to OLS. Goto and Xu (2015) use a LASSO to obtain a sparse
estimator of the inverse covariance matrix for mean variance portfolio optimization.

Gagliardini, Ossola, and Scaillet (2016) develop a weighted two-pass cross-sectional
regression method to estimate risk premia from an unbalanced panel of individual stocks.
Giglio and Xiu (2016) instead propose a three-pass regression method that combines
principal component analysis and a two-stage regression framework to estimate consistent
factor risk premia in the presence of omitted factors when the cross section of test assets
is large. DeMiguel, Martin-Utrera, Nogales, and Uppal (2016) extend the parametric
portfolio approach of Brandt et al. (2009) to study which characteristics provide valuable
information for portfolio optimization. Kelly, Pruitt, and Su (2017) generalize standard
PCA to allow for time-varying loadings and extract common factors from the universe of
individual stocks. Kozak, Nagel, and Santosh (2017) exploit economic restrictions relating
expected returns to covariances to construct stochastic discount factors.

We, instead, are mainly concerned with formal model selection, that is, which

characteristics provide incremental information in the presence of other characteristics.

II Current Methods and Nonparametric Models

A Expected Returns and Current Methods

One aim of the empirical asset-pricing literature is to identify characteristics that predict
expected returns, that is, find a characteristic in period ¢ — 1 that predicts excess returns

of firm ¢ in the following period, R;;. Formally, we try to describe the conditional mean



function, m; defined as
mi(ci, ..., cs) = B[Ry | Cry1 = c1, ..., Csi—1 = cs). (1)

where C;—1,...,Cg4—1 are the S firm characteristics.

We often use portfolio sorts to approximate m, for a single characteristic. We
typically sort stocks into 10 portfolios and compare mean returns across portfolios.
Portfolio sorts are simple, straightforward, and intuitive, but they also suffer from several
shortcomings. They suffer from the curse of dimensionality, they do not offer formal
guidance to discriminate between characteristics, and they assume returns do not vary
within portfolio.

An alternative to portfolio sorts is to assume linearity of m; and run linear panel

regressions of excess returns on characteristics, namely,

S
Ry = a+ Z BsCsit—1 + €t (2)
s=1

Linear regressions allow us to study the predictive power for expected returns of many
characteristics jointly, but they also have potential pitfalls. Most importantly, no a priori
reason exists why the conditional mean function should be linear.

We discuss many of these shortcomings in more detail in Section A.2 of the online
appendix and how researchers typically address some of the shortcomings. Cochrane
(2011) synthesizes many of the challenges that portfolio sorts and linear regressions face
in the context of many return predictors, and suspects “we will have to use different

methods.”

B Nonparametric Estimation

Cochrane (2011) conjectures in his presidential address, “[Plortfolio sorts are really the

same thing as nonparametric cross-sectional regressions, using nonoverlapping histogram



weights.” We establish a formal equivalence result between portfolio sorts and regressions
in the online appendix. Specifically, suppose we have a single characteristic C ;;—; and
we sort stocks into L portfolios depending on the value of the characteristic. We show in
the appendix a one-to-one relationship exists between the portfolio returns and regression
coefficients in a regression of returns on L indicator functions, where indicator function [
is equal to 1 if stock ¢ is in portfolio [ for [ = 1, ..., L. Hence, portfolio sorts are equivalent
to approximating the conditional mean function with a step function. The nonparametric
econometrics literature also refers to these functions as constant splines. We use a smooth
extension of this estimation strategy with many possible regressors.

Estimating the conditional mean function, my, fully nonparametrically with many
regressors results in a slow rate of convergence and imprecise estimates in practice.’
Specifically, the optimal rate of convergence decreases as the number of characteristics
increases.  Consequently, we get an estimator with poor finite sample properties
if the number of characteristics is large.® Nevertheless, if we are interested in
which characteristics provide incremental information for expected returns given other

characteristics, we cannot look at each characteristic in isolation. A natural solution in

the nonparametric regression framework is to assume an additive model, that is,

S
mt(cl) . 705) - ths(cs)u
s=1

where mys(-) are unknown functions. The main theoretical advantage of the additive
specification is the rate of convergence does not depend on the number of characteristics
S (see Stone (1985), Stone (1986), and Horowitz et al. (2006)).

An important restriction of any additive model, including multivariate linear models

°The literature refers to this phenomenon as the “curse of dimensionality” (see Stone (1982) for a
formal treatment).
5The online appendix contains in Section A.4 some concrete examples.



or Fama-MacBeth regressions, is

827”15(617 s 7CS>

=0
805805/

for all s # ¢'; therefore, the additive model does not allow for cross dependencies
between characteristics. For example, the predictive power of the book-to-market ratio
for expected returns does not vary with firm size (conditional on size). One way around
this shortcoming is to add certain interactions as additional regressors. For instance, we
could interact every characteristic with size to see if small firms are really different. An
alternative solution is to estimate the model separately for small and large stocks. Brandt
et al. (2009) make a similar assumption, but also stress that we can always interpret
characteristics as the cross product of a more basic set of characteristics. In our empirical
application, we show results for all stocks and all-but micro caps, but also show results
when we interact each characteristic with size.

Although the assumption of an additive model is somewhat restrictive, it provides
desirable econometric advantages. In addition, this assumption is far less restrictive than
assuming additivity and linearity, as we do in Fama-MacBeth regressions. Another major
advantage of an additive model is that we can jointly estimate the model for a large
number of characteristics, select important characteristics, and estimate the summands
of the conditional mean function, m,, simultaneously, as we explain in subsection C below.

Before providing the formal model selection procedure, we describe a normalization
of the characteristics, which will allow us to map our nonparametric estimator directly to
portfolio sorts and ensures our results are insensitive to outliers. For each characteristic
s, let C’S’it,l be the rank transformation of Cj;_;, which maps the cross-sectional
distribution of the characteristic to the unit interval; that is, C’S,it,l € [0,1]. Tt is easy to

show that there exists a function m;, such that

mt(él,it—ly PN éS,z‘t—l) = my(Crit—1, .-, Cst—1).
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Hence, knowledge of the conditional mean function m; is equivalent to knowing the
transformed conditional mean function 7, which is the function we estimate.” Similar to
portfolio sorting, we are typically not interested in the actual value of a characteristic in
isolation, but rather in the rank of the characteristic in the cross section. Consider firm
size. Size grows over time, and a firm with a market capitalization of USD 1 billion in the
1960s was considered a large firm, but today it is not. Our normalization considers the

relative size in the cross section rather than the absolute size, similar to portfolio sorting.

C Adaptive Group LASSO

We use a group LASSO procedure developed by Huang et al. (2010) for estimation and
to select those characteristics that provide incremental information for expected returns,
that is, for model selection. To recap, we are interested in modeling excess returns as a

function of characteristics; that is,
s
Ry = ths(cs,itfl) + Eit, (3)
s=1

where mg(+) are unknown functions and C’s,it_l denotes the rank-transformed character-
istic.

The idea of the group LASSO is to estimate the functions m;s nonparametrically,
while setting functions for a given characteristic to 0 if the characteristic does not help
predict returns. Therefore, the procedure achieves model selection; that is, it discriminates
between the functions 7, which are constant, and the functions that are not constant.®

We can interpret portfolio sorts as estimating m;s by a constant within each portfolio.

We also partition the support of each characteristic into L intervals similar to portfolio

"We show in Section A.5 of the online appendix that the general econometric theory we discuss
in subsection C below (model selection, consistency, etc.) also applies to any other monotonic
transformation or the non-transformed conditional mean function.

8The “adaptive” part indicates a two-step procedure, because the LASSO selects too many
characteristics in the first step and is therefore not model-selection consistent unless restrictive conditions
on the design matrix are satisfied (see Meinshausen and Bithlmann (2006) and Zou (2006) for an in-depth
treatment of the LASSO in the linear model).

11



sorts. The endpoints of the intervals are knots and we set them to the quantiles of the
rank transformed characteristic distribution. We then approximate each function m,, by
a quadratic function on each of the intervals, such that the whole function is continuously
differentiable on [0, 1], that is, we approximate ms by quadratic splines. We use these
splines for our baseline results because these are the lowest-order splines such that my, is
continuously differentiable. Thus, we can interpret our estimator as a smooth extension
of portfolio sorts. Interestingly, we can then approximate m;, as a linear combination of

L + 2 basis function, i.e.,
L+2

mts(é> ~ Z Btskpk<é)> (4)

where py(c) are known functions and (4 are parameters we estimate. We provide a formal
definition of splines and the corresponding basis functions in Section A.2 of the online
appendix. The number of intervals L is a user-specified smoothing parameter, analogous
to the number of portfolios. As L increases, the precision of the approximation increases,
but so does the number of parameters we have to estimate and hence the variance. We
discuss these and other choices we have to make and the robustness of our empirical
results in an extensive simulation study in Section IV.

We now discuss the two steps of the adaptive group LASSO. In the first step, we

obtain estimates of the coeflicients as

N S L+2 S L4-2

: :

B, = arg min > (Rit - > bskpk<és,it1)) +A> (Z bi) , ()
bspis=1,....5k=1,...L+2 ] s=1 k=1 s=1 \ k=1

where Bt is an (L 4 2) x S vector of estimates and A; is a penalty parameter.

The first part of equation (5) is just the sum of the squared residuals as in ordinary
least squares regressions; the second part is the LASSO group penalty function. Rather
than penalizing individual coefficients, by, the LASSO penalizes all coefficients associated
with a given characteristic. Thus, we can set the point estimates of an entire expansion
of m; to 0 when a given characteristic does not provide incremental information for

expected returns. Due to the penalty, the LASSO is applicable even when the number

12



of characteristics is larger than the sample size. Yuan and Lin (2006) propose to choose
A1 in a data-dependent way to minimize Bayesian Information Criterion (BIC) which we
follow in our application.

However, the first step of the LASSO may select too many characteristics. Informally
speaking, the LASSO selects all characteristics that predict returns, but also selects
some characteristics that have no predictive power. A second step which introduces
characteristic-specific weights in the LASSO group penalty function as a function of
first-step estimates addresses this problem. The online appendix discusses in Section A.3
the second step, the consistency conditions, and the efficiency properties of the resulting
estimates in detail.

If the cross section is sufficiently large, we could perform model selection and
estimation period by period. Hence, the method allows for the importance of
characteristics and the shape of the conditional mean function to vary over time. For
example, some characteristics might lose their predictive power for expected returns over
time. McLean and Pontiff (2016) show that for 97 return predictors, predictability
decreases by 58% post publication. However, if the conditional mean function was
time-invariant, pooling the data across time would lead to more precise estimates of the
function and therefore more reliable predictions. In our empirical application in Section
ITI, we estimate our model over subsamples and also estimate rolling specifications to

investigate the variation in the conditional mean function over time.

D Interpretation of the Conditional Mean Function

In a nonparametric additive model, the locations of the functions are not identified.

Consider the following example. Let a, be S constants such that Zle as = 0. Then,

s s
my(C1,. .., Cs) :ths Z Mys(Cs) + )
s=1 s=1

13



Therefore, the summands of the transformed conditional mean function, myg, are only
identified up to a constant. The model-selection procedure, expected returns, and the
portfolios we construct do not depend on these constants. However, the constants matter
when we plot an estimate of the conditional mean function for one characteristic.

We report estimates of the functions using the common normalization that the
functions integrate to 0, which is identified.

Section A.6 of the online appendix discusses how we construct confidence bands for
the figures which we report and how we select the number of interpolation points in the

empirical application of Section III below.

III Empirical Application

We now discuss the universe of characteristics we use in our empirical application and
study which of the 62 characteristics provide incremental information for expected returns,

using the adaptive group LASSO for selection and estimation.

A Data

Stock return data come from the Center for Research in Security Prices (CRSP) monthly
stock file. We follow standard conventions and restrict the analysis to common stocks of
firms incorporated in the United States trading on NYSE, Amex, or Nasdaq.

Balance-sheet data are from the Standard and Poor’s Compustat database. We use
balance-sheet data from the fiscal year ending in calendar year ¢t —1 for estimation starting
in June of year t until May of year ¢ 4+ 1 predicting returns from July of year ¢ until June
of year t + 1.

Table 1 provides an overview of the 62 characteristics we apply our method to.
We group them into six categories: past return based predictors such as momentum
(r12_2) and short-term reversal (rp_ 1), investment-related characteristics such as the

annual percentage change in total assets (Investment) or the change in inventory over
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total assets (IVC), profitability-related characteristics such as gross profitability over the
book-value of equity (Prof) or return on operating assets (ROA), intangibles such as
operating accruals (OA) and tangibility (Tan), value-related characteristics such as the
book-to-market ratio (BEME) and earnings-to-price (E2P), and trading frictions such
as the average daily bid-ask spread (Spread) and standard unexplained volume (SUV).
We follow Hou, Xue, and Zhang (2015) in the classification of characteristics.

To alleviate a potential survivorship bias due to backfilling, we require that a firm
has at least two years of Compustat data. Our sample period is July 1965 until June 2014.
Table 2 reports summary statistics for various firm characteristics and return predictors.
We calculate all statistics annually and then average over time. On average we have 1.6
million observations in our analysis.

Section A.1 in the online appendix contains a detailed description of the characteris-

tics, the construction, and the relevant references.

B Selected Characteristics and Their Influence

The purpose of this section is to show different applications of the adaptive group LASSO.
We do not aim to exhaust all possible combinations of characteristics, sample periods,
and firm sizes, or all possible applications but rather aim to provide some insights into
the flexibility of the method in actual data. Section IV contains an extensive simulation
to study the choices researchers have to make when implementing the method, such as
the number of interpolation points, the order of the spline functions, or the information
criterion. Another goal of the simulation is to compare in detail the performance
to alternative (linear) models and model selection techniques such as the t-statistic
adjustment of Harvey et al. (2016) or the false-discovery rate p-value adjustment of Green
et al. (2017).

Table 3 reports average annualized returns with standard errors in parentheses of
10 equally-weighted portfolios sorted on the characteristics we study. Most of the 62

characteristics individually have predictive power for expected returns in our sample
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period and result in large and statistically significant hedge portfolio returns and alphas
relative to the Fama and French three-factor model (Table 4). Thirty-one sorts have
annualized hedge returns of more than 5%, and 13 characteristics are even associated
with excess returns of more than 10%. Thirty-six characteristics have a t-statistic above
2. Correcting for exposure to the Fama-French three-factor model has little impact on
these findings. The vast majority of economic models, that is, the ICAPM (Merton (1973))
or consumption-based models, as surveyed in Cochrane (2007), suggest a low number of
state variables can explain the cross section of returns. Therefore, all characteristics are
unlikely to provide incremental information for expected returns.

To tackle the “multidimensional challenge,” we now estimate the adaptive group
LASSO with 10, 15, 20, and 25 knots. The number of knots corresponds to the smoothing
parameter we discuss in Section II. Ten knots corresponds to 11 portfolios in sorts.

We first show in a series of figures a few characteristics which provide large cross
sectional return premia univariately. However, some of the characteristics do not provide
incremental predictive power once we condition on other firm characteristics.

Figure 2 and Figure 3 plot estimates of the function m(éﬁ_l) for adjusted turnover
(DTO), idiosyncratic volatility (Idio vol), the change in inventories (IVC), and net
operating assets (NOA). The left panels report the unconditional mean functions, whereas
the right panels plot the associations between the characteristics and expected returns
conditional on all selected characteristics.”

Stocks with low change in inventories, low net operating assets but high turnover
and high idiosyncratic volatility have higher expected returns than stocks with high
change in inventories, net operating assets, and low turnover or idiosyncratic volatility
unconditionally. These results are consistent with our findings for portfolio sorts in Table
3. Portfolio sorts result in average annualized hedge portfolio returns of around 13%, 3%,
8%, and 9% for sorts on turnover, idiosyncratic volatility, change in inventories, and net

operating profits, respectively. Change in inventories, net operating assets, and turnover

9We estimate the plots over the full sample and all firms using 20 interpolations points, see column
(1) of Table 5.
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have t-stats relative to the Fama-French three-factor model substantially larger than the
threshold Harvey et al. (2016) suggest (see Table 4).

These characteristics, however, are correlated with other firm characteristics. We now
want to understand whether they have marginal predictive power for expected returns
conditional on other firm characteristics. We see in the right panels that the association
of these characteristics with expected returns vanishes once we condition on other stock
characteristics. The estimated conditional mean functions are now close to constant
and do not vary a lot with the value of the characteristics. The constant conditional
mean functions imply turnover, idiosyncratic volatility, the change in inventories, and net
operating assets have no marginal predictive power for expected returns once we condition
on other firm characteristics.

The examples of turnover, idiosyncratic volatility, the change in inventories, and net
operating assets show the importance of conditioning on other characteristics to infer
the predictive power of characteristics for expected returns. We now study this question
systematically for 62 firm characteristics using the adaptive group LASSO.

Table 5 reports the selected characteristics of the nonparametric model for different
numbers of knots, sets of firms, and sample periods. Theory does not tell us what the right
number of interpolation points is similar to the number of portfolios in sorts but only that
we should use more interpolation points when the sample grows large. Allowing for more
interpolation points allows for a better approximation of the conditional mean function
but comes at the cost of having to estimate more parameters and, hence, higher estimation
uncertainty. Previous research also documents that some firm characteristics have larger
predictive power for smaller firms and that the predictive power of characteristics varies
over time.

We see in column (1) that the baseline estimation for all stocks over the full sample
period using 20 knots selects 13 out of the universe of 62 firm characteristics. The change
in shares outstanding, investment, size, share turnover, the adjusted profit margin, short-

term reversal, momentum, intermediate momentum, closeness to the 52 weeks high, the
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return on cash, standard unexplained volume, and total volatility all provide incremental
information conditional on all other selected firm characteristics. When we allow for a
wider grid in column (2) with only 15 knots, we also select the book to market ratio, net
operating assets, and long-term reversal. We instead select the same characteristics when
we impose a finer grid and estimate the group LASSO with 25 interpolation points (see
column (3)).

Figure 6 shows how the number of characteristics we select varies with the number
of interpolation points. We see the number of selected characteristics is stable around
20 interpolation points and varies between 16 when we use only 10 knots and 12 when
we use 30 interpolation points. We consider the stability of the number and identity of
selected characteristics a success documenting the method we propose is not sensitive to
the choice of tuning parameters but we provide substantially more robustness checks in
the controlled environment of a simulation.

We estimate the nonparametric model only on large stocks above the 10%- and
20%-size quantile of NYSE stocks in columns (4) to (6), reducing the sample size from
more than 1.6 million observations to around 760,000.

The change in shares outstanding, investment, short-term reversal, momentum,
intermediate momentum, the return on cash, standard unexplained volume, and total
volatility are significant return predictors both for a sample of firms above the 10%-size
threshold and the sample of all stocks in column (1), whereas the sales to price ratio
becomes a significant return predictor. For firms above the 20%-size threshold of NYSE
firms, we also see momentum losing predictive power, but returns over the last six months
becoming a significant return predictor. When we impose a coarser grid with only 10 knots
for a sample of firms above the 20%-size threshold of NYSE firms in column (6), we see
closeness to the 52 weeks high and long-term reversal regaining predictive power, whereas
standard momentum driving out intermediate momentum.!°

Columns (7) and (8) split our sample in half and re-estimate our benchmark

10The number of knots increases with the sample size. The penalty function instead increases in the
number of knots, which is why we select fewer characteristics with more knots.
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nonparametric model in both sub-samples separately to see whether the importance
of characteristics for predicted returns varies over time. Only 11 characteristics have
predictive power for expected returns in the sample until 1990, whereas 14 characteristics
provide incremental predictive power in the second half of the sample until 2014.

The change in shares outstanding, short-term reversal, momentum, the closeness to
the previous 52-week high, the return on cash, standardized unexplained volume, and
total volatility are the most consistent return predictors across different sample periods,
number of interpolation points, and sets of firms.

Figure 4 and Figure 5 plot the conditional and unconditional mean functions for
short-term reversal, the closeness to the previous 52-week high, size, and standard
unexplained volume. We see in Figure 4 both for reversal and closeness to the 52 weeks
high a monotonic association between the characteristic distribution and expected returns
both unconditionally and once we condition on other characteristics in the right panel.
Size matters for returns for all firms in the right panel of Figure 5 and the conditional
association is more pronounced than the unconditional relationship in the left panel. This
finding is reminiscent of Asness, Frazzini, Israel, Moskowitz, and Pedersen (2017), who
argue “size matters, if you control your junk.” We see in the lower panels, standardized
unexplained volume is both unconditionally and conditionally positively associated with
expected returns.

This section shows that many of the univariately significant return predictors do not
provide incremental predictive power for expected returns once we condition on other
stock characteristics. In particular, out of the 62 firm characteristics we study, we never
selected 41 of them! The other 21 characteristics were selected at least for some sample
periods, cuts by firm size or number of interpolation points with three of them being

selected for each single cut of the data.
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C Interactions of Firm Characteristics and Selection in the

Linear Model

We discuss in Section II the impact of estimating our model fully nonparametrically on
the rate of convergence of the estimator, the so-called curse of dimensionality, and that
imposing an additive structure on the conditional mean function offers a solution. The
additive structure implies the effect of one characteristic on returns is independent of
other characteristics once we condition on them, a form of conditional independence, just
as in any multivariate regression. Creating pseudo characteristics, which are themselves
interactions of firm characteristics, offers a possible solution to the additive structure
and we now show a simple application. Specifically, we interact each of the 61 firm
characteristics other than firm size with firm size for a total of 123 firm characteristics.
For example, one of the new characteristics is LM E x BEM FE, firm size interacted with
the book-to-market ratio.

Table 6 tabulates the results. Instead of selecting 13 characteristics as in the
baseline (see column (1) of Table 5), we now select a total of 25 out of the 123 firm
characteristics. The model selects 10 of the 13 characteristics it already selected in
the baseline. Interestingly, return on cash, which is one of the most consistent return
predictors in our baseline table across specifications, is no longer a significant return
predictor once we allow for interactions with firm size. Contrary to our baseline, we
also no longer select firm size in levels in the model with interactions. Among the 25
characteristics we select in the new model with interactions, almost half are interactions
with firm size.

We see in columns (2) to (4) of Table 6 that interactions with firm size are mainly
important among small stocks. Once we focus on stocks above the 10%- and 20%-size
quantile of NYSE stocks only short-term reversal, momentum, and return over the
previous six months interact with firms size and provide incremental information for
expected returns.

These results are reassuring for previous research which relied on multivariate
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regressions to dissect anomalies, especially for papers which tested models on different
parts of the firm-size distribution.

Table 7 estimates a linear model with the adaptive LASSO to gain some intuition for
the importance of nonlinearities. Specifically, we endow the linear model with the same
two-step LASSO machinery we use for our nonparametric model and report how many
and which characteristics the linear model selects in-sample. We also implement the false
discovery rate p-value adjustment to benchmark our selection results to the influential
findings in Green et al. (2017).

When we compare column (1) in Table 5 for the nonparametric model with column
(1) in Table 7 for the linear model, we see the linear model selects nine more characteristics
in-sample for a total of 24. Interestingly, the linear model selects eight of the 13
characteristics the nonparametric model selects but, e.g., also selects the book-to-market
ratio, the earnings-to-price ratio, or the average bid-ask spread over the previous month.

So far, we used raw characteristics for the linear model, whereas we applied the
rank transformation to characteristics we discuss above in the nonparametric model. We
now estimate a linear model with the adaptive LASSO to see whether the use of raw
characteristics might explain the larger number of characteristics we select in the linear
model. We see in column (2) of Table 7 that estimating a linear model on rank-transformed
characteristics results in an even larger number of characteristics which seem to provide
incremental information for expected returns.

Table 7 shows nonlinearities between characteristics and returns might result in a
larger number of selected characteristics in a linear model, even when we endow it with
the same two-step LASSO machinery that we use for the nonlinear model. Hence, allowing
for nonlinearities between characteristics and returns is important from the perspective
of a data reduction. We explore these features more below in simulations. The selection
of more characteristics for the linear model is something which we will see again below
when we compare the out-of-sample performance of our nonparametric model with the

linear model.
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Column (3) of Table 7 uses the false-discovery rate (FDR) p-value adjustment Green
et al. (2017) suggest for model selection. Similar to the linear LASSO model, we find
FDR selects many more characteristics compared to the nonlinear models. We will study
in detail the differences between linear and nonlinear selection methods in a simulation

study below (see Section IV).

D Time Variation in Return Predictors

McLean and Pontiff (2016) document substantial variation over time in the predictive
power of many characteristics for expected returns. Figure 7 to Figure 10 show the
conditional mean function for a subset of characteristics for our baseline nonparametric
model for all stocks and ten knots over time. We perform model selection on the first 10
years of data. We then fix the selected characteristics and estimate the nonparametric
model on a rolling basis using 10 years of data.

We see in the top panel of Figure 7 that the conditional mean function is non-constant
throughout the sample period for lagged market cap. Small firms have higher expected
returns compared to large firms, conditional on all other selected return predictors.
Interestingly, the size effect seems largest during the end of our sample period, contrary
to conventional wisdom (see Asness et al. (2017) for a related finding). The bottom
panel shows that firms with higher profit margin relative to other firms within the same
industry have higher expected returns conditional on other firm characteristics, contrary
to the unconditional association (see Table 3).

We see in the top panel of Figure 8 that intermediate momentum has a significant
conditional association with expected returns throughout the sample period. Interestingly,
we do not observe a crash for intermediate momentum, because intermediate losers
have always lower returns compared to intermediate winners. In the bottom panel, we
see momentum conditional on other firm characteristics was a particular strong return
predictor in the middle sample but lost part of the predictive power for expected returns

in the more recent period because of high returns of past losers, consistent with findings
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in Daniel and Moskowitz (2016).

Figure 9 shows the effect of short-term reversal on expected returns has been strongest
in the early sample period because recent losers used to appreciate more than they
currently do. The bottom panel shows the association of the change in shares outstanding
and returns has been almost flat until the early 1990s and only afterwards did stocks
with the highest level of issuances earn substantially higher returns than all other stocks
conditional on other firm characteristics.

Figure 10 plots the conditional mean function for turnover and standard unexplained
volume over time. Both high unexplained volume and turnover are associated with high
returns but whereas the effect of unexplained volume conditional on other characteristics
appears stronger early on, the predictive power of turnover seems stronger in the second
part of the sample.

We see those figures as one application of our proposed method for the cross section
of stock returns and do not want to put too much weight on the eyeball econometrics
we performed in the previous section. Ultimately, we cannot tell causal stories and the
results might change when we condition on additional firm characteristics. Nevertheless,
we consider those three-dimensional surface plots for a given characteristic conditional
on other characteristics useful for providing some insights into the time variation of and

possible drivers for disappearing or (re-)appearing predictability of a given characteristic.

E Out-of-Sample Performance and Model Comparison

We argued above the nonparametric method we propose overcomes potential shortcomings
of more traditional methods, and show potential advantages of the adaptive group LASSO
in simulations below.

We now want to compare the performance of the nonparametric model with the linear
model out-of-sample. The out-of-sample context ensures that in-sample overfit does not
explain a potentially superior performance of the nonparametric model.

We estimate the nonparametric model for a period from 1965 to 1990 and carry
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out model selection with the adaptive group LASSO with ten knots, but also use the
adaptive LASSO for model selection in the linear model over the same sample period,
that is, we give both the nonparametric model and the linear model the same machinery
and, hence, equal footing. We then use 10 years of data to estimate the model on the
selected characteristics. In the next month, we take the selected characteristics and
predict one-month-ahead returns and construct a hedge portfolio going long stocks with
the highest predicted returns and shorting stocks with the lowest predicted returns. We
then roll the estimation and prediction period forward by one month and repeat the
procedure until the end of the sample.

Specifically, in our first out-of-sample predictions, we use return data from January
1981 until December 1990 and characteristics data from January 1981 until December
1990 to get estimates of 3.1 We then take the estimated coefficients and characteristics
data of December 1990 to predict returns for January 1991 and form two portfolios for
each method. We buy the stocks with the highest predicted returns and sell the stocks
with the lowest predicted returns. We then move our estimation sample forward by one
month from February 1981 until January 1991, get new estimates B, and predict returns
for February 1991.

Panel A of Table 8 reports the out-of-sample Sharpe ratios for both the nonparametric
and linear models for different sample periods and firms when we go long the 50% of firms
with highest predicted returns and short the 50% of firms with lowest predicted return.
For a sample from 1991 to 2014 and ten knots, the nonparametric model generates an
out-of-sample Sharpe ratio for an equally-weighted hedge portfolio of 2.83 compared to
0.75 for the linear model (compare columns (1) and (2)). The linear model selects 30
characteristics in-sample compared to only 11 for the nonparametric model, but performs
worse out-of-sample.'? Splitting the Sharpe ratio into a return part and a standard

deviation part, we see the nonlinear model generates hedge returns that are twice as large

' To be more precise, for returns until June 1981, many of the balance-sheet variables will be from the
fiscal year ending in 1979.

12The linear model might be misspecified and therefore select more variables (see discussion and
simulation results below in Section IV).
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as the returns the linear mode generates but with only half the standard deviation. The
linear model has slightly higher positive skewness but also substantially larger kurtosis.
When we calculate average turnover statistics over time, we find the nonlinear model
has slightly larger turnover. Turnoverl follows Koijen, Moskowitz, Pedersen, and Vrugt
(2018) and is defined as turn, = iZ;Vt](l + ry)wy 1 — wy| where wy is the portfolio
weight of stock ¢ at time ¢t and N, is the number of stocks and Turnover2 corresponds to
turn, = }LN% vat |wit—1 — wi| where w;; € {—1,0,1} and hence corresponds to the fraction
of stocks that change portfolios. When then follow Lewellen (2015) to study how accurate
the individual models are in predicting returns. Specifically, we regress realized returns at
the stock level on predicted returns months by months and report average slopes and R2s
over time. Ideally, we want to find slope coefficients close to 1 and high predictive power.
Lewellen (2015) discusses slope coefficients below 1 indicate predictive models exaggerate
expected return dispersion. The nonlinear adaptive group LASSO has a slope coefficient
of 0.71 and a R? of about 1%. The slope coefficient for the full sample is very similar to
Lewellen (2015) but the predictive power is somewhat larger. The linear model instead
has an average slope which is only half the size and the predictive power for realized
returns is almost 20% lower. Panel B and C repeat the same statistics but for the long
and the short leg of the hedge portfolio separately. In general, we find higher returns for
the long leg and more negative skewness for the short leg with similar kurtosis.
Nonlinearities are important. We find a substantial increase in out-of-sample Sharpe
ratios relative to the Sharpe ratio of the linear model when we employ the nonparametric
model for prediction on the 30 characteristics the linear model selects (see column (3)).
The linear model appears to overfit the data in-sample. When we use the 11
characteristics we select with the nonparametric model, we find the Sharpe ratio for
the linear model is identical to the one we find when we use the 30 characteristics the
linear model selects (see column (4)). But even with the same set of 11 characteristics,
we find the Sharpe ratio for the linear model is still substantially smaller compared to

the Sharpe ratio of the nonparametric model. In line with our findings above, it appears
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the linear model selects many characteristics in-sample that do not provide incremental
information for return prediction, but also that nonlinearities are important.

Columns (5) and (6) focus on a longer out-of-sample period starting in 1973 to be
comparable to results in the literature (see, e.g., Lewellen (2015)). Results are very similar
to when we split the sample in half.

We see in columns (7) to (10) that Sharpe ratios drop substantially for both models
when we exclude firms below the 10" or 20*" percentile of NYSE stocks. Lewellen (2015)
also finds Sharpe ratios for an equally-weighted hedge portfolio that are lower by 50%
when he excludes “all but tiny stocks.” The Sharpe ratios are still close to 1 for the
nonparametric model for both sets of stocks, whereas Sharpe ratios are only around 0.10
for the linear model.

So far, we invested in all stocks. Table A.1 in the online appendix reports qualitatively
and quantitatively very similar results when we only go long in the 10% of stocks with
highest predicted returns and short the 10% of stocks with lowest predicted returns.
Hedge returns become larger for the more extreme cutoffs but the portfolio volatility also
increases.

Results are also similar when we perform rolling selection. So far, we performed model
selection once, fixed the selected characteristics for the nonparametric and linear model,
and performed rolling model estimation and return prediction. In robustness check, we
also perform annual model selection on a constant sample size of 26 years, fix the selected
characteristics for 12 months and perform rolling monthly estimation and prediction. We
then roll forward the selection period by one year. The first selection period is from
January 1965 until December 1990 and the first out-of-sample return prediction is for
January 1991.

Table 9 reports the results for the rolling selection with 10 knots. Overall, the results
for the rolling selection are very similar to before. The nonlinear model selects fewer
characteristics but has higher out-of-sample Sharpe ratios, higher predictive power for

future returns, and higher R?s. Figure 11 plots the characteristics the nonlinear adaptive
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group LASSO selects over time and Figure 12 the corresponding figure for the linear
adaptive LASSO. Selected characteristics are indicated in dark blue. The nonlinear model
consistently selects a lower number of characteristics over time relative to the linear model
throughout the period and the identity of characteristics the nonlinear model selects
is surprisingly consistent over time suggesting that certain firm characteristics reliably

provide information for return prediction.

IV Simulation

Section III shows the nonlinear adaptive group LASSO achieves a large data reduction
relative to the linear model and increases out-of-sample predictability but so far, we do not
know the assumptions on the data-generating process under which the nonlinear adaptive
group LASSO performs well and what happens to model selection and out-of-sample
prediction when we change assumptions. The aim of this section is to discuss some of
the tuning parameters of the method we lay out in Section II such as the choice of the
penalty parameter or the number of interpolation points and compare the adaptive group
LASSO to alternative model selection methods.

Specifically, we want to simulate returns using our full set of return predictors and
compare model selection techniques and the choices of penalty parameters, knots, and

order of splines in the LASSO. We consider the following selection methods:

e Conventional t-statistic cutoff of 2

e t-statistic cutoff of 3 to account for multiple testing (Harvey et al. (2016))
e The false discovery rate (FDR) p-value adjustment of Green et al. (2017)
e Linear single-step LASSO

e Linear adaptive LASSO

e Nonlinear group LASSO

e Nonlinear adaptive group LASSO.

The single-step LASSO only estimates the first step of the method we outline in
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Section II. The adaptive LASSO consists of two stages. The group LASSO treats a given
characteristic across the whole distribution as a joint return predictor.

Regarding the choice of penalty parameter, we consider:

e Akaike information criterion (AIC)
e Bayesian information criterion (BIC)
e BIC as in Yuan and Lin (2006)

e Ten fold cross validation.

All three information criteria trade off the costs of a larger number of parameters
against the better fit. AIC and BIC differ in how they penalize additional parameters. For
AIC, the penalty is twice the number of parameters, whereas for BIC, it is the number
of parameters times the natural logarithm of the number of observations. Yuan and
Lin (2006) develop an adjusted BIC for the case of grouped variables. In ten fold cross
validation, we partition our data into ten subset, estimate the models on nine subsets
and use the remaining one for out-of-sample return prediction, that is, model validation.
We repeat the procedure nine times, using each sample exactly once for validation and
then average across samples. Cross validation then chooses to penalty parameter which is
associated with the lowest mean-square prediction error. We also study the importance
of the number of knots, the order of the polynomial, and the firm-size distribution, both
for selection and out-of-sample prediction.

Our simulation then proceeds in the following steps:
1. Take the full data set of 62 characteristics, Cj; from Section III
2. Focus on a sample from 1965 to 2012
3. Assume the 13 characteristics of column (1) of Table 5 are the “true” predictors
4. Transform all characteristics to be standard normal distributed

5. Fit a fifth-order polynomial on the true characteristics to estimate g,(Cj,—1) for

each characteristic
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6. Generate returns according to: r; = Ziil 9s(Csit—1) + it
7. i ~ N(0, 0?)
8. o is the empirical standard deviation of the residuals of step 5 (15% per month)
9. Estimate nonparametric model on rank-transformed data with 20 knots
10. Estimate linear model on data from step 4

11. Redo steps 6 to 10 500 times

A Model Selection

The advantage of this setup is that we directly take into account the cross sectional and
time series correlation structure of the actual data in the simulation and do not have to
make any assumption on whether the true model is linear or nonlinear. The aim of the
simulation is then to see how the different methods for model selection perform, which in
our context means: does a given model select on average the right number and identify
of characteristics and does not select characteristics that do not provide information for
returns according to the data generating process. For the selected characteristics, we then
also study the out-of-sample predictive power using two years of data for 2013 to 2014.
Figure 13 graphically illustrates the results of the simulations for the different model
selection methods. We indicate the different models on the x-axis and the characteristics
on the left y-axis. The color scheme on the right y-axis indicates the frequency with
which a given characteristic is selected. The darker the color, the more frequently a
given selection method selects a given characteristic. The darkest blue indicates a given
characteristic is selected in 100% of the simulations and white indicates the characteristic
was never selected. The red horizontal line below Total vol represents the cut-off for
return predictors. The 13 characteristic above the line indicate true return predictors,

whereas the 49 other characteristics below the line do not predict returns.
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Given the structure of the data, we want a model selection method which selects all
relevant return predictors with high probability and does not select all irrelevant return
predictors. Hence, ideally we want to have methods for selection that have dark blue
shaded areas above the red line and white areas below the line. We see in column (1)
the adaptive group LASSO, which corresponds to our baseline model in the empirical
application with 20 interpolation points and second-order polynonial using the BIC of
Yuan and Lin (2006) tends to select 11 out of the 13 true characteristics almost always
and the remaining two with high probability, and it does not select the irrelevant return
predictors. On average, across the 500 simulations, the nonlinear adaptive group LASSO
selects 11.84 characteristics. Column (2) employs the same basic setup for model selection,
but estimates only a single-step LASSO. We see the group LASSO tends to select all
relevant return predictors, but also few irrelevant ones as we would expect from the
irrepresentable condition of Meinshausen and Biithlmann (2006). On average, it selects
15.73 characteristics.

Columns (3) and (4), endow the linear model with the same LASSO method we
used for the nonlinear model. Similar to our empirical application, we see that the linear
LASSO tends to select the relevant return predictors but also many characteristics that are
not associated with returns. The adaptive LASSO tends to select 29.57 characteristics
across simulation and the single-step LASSO even 48. The last three columns of the
figure use the FDR p-value adjustment of Green et al. (2017), a t-statistic cutoff of 3
(t3) to account for multiple testing as Harvey et al. (2016) suggest, and the conventional
t-statistics cutoff of 2 (t2). Across the three selection methods, we see a high probability of
selecting relevant return predictors, but also a high probability to select irrelevant return
predictors. FDR selects 26.58 characteristics, t3 25.81, and t2 of 35.54.

In the online appendix, we graphically illustrates the results of the simulations for
different choices of tuning parameters. Figure A.4 shows the result for the adaptive group
LASSO for different information criteria. Column (1) repeats our baseline choice. In

column (2), we use an AIC to determine the penalty parameters. Using AIC tends to
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result in a high probability of selecting relevant returns predictors, but does also select
a few irrelevant predictors for a total of 15.37 on average. When we use the standard
BIC instead of the one proposed by Yuan and Lin (2006) for group LASSO applications,
we find the standard BIC tends to underselect, that is, it does not select a few relevant
return characteristics, in total only 8.69 on average. The last column uses cross validation
to determine the penalty parameters. We see that for the context of return prediction
when using the actual characteristics data, cross validation does not result in a desirable
model selection. It tends to select all characteristics with high probability for an average
of 54.92.

Figure A.5 studies the effect of choosing a different number of interpolation points
— ranging from 10 to 25 — on the number and identity of selected characteristics. Across
columns, we see a high probability of selecting relevant return predictors and not selecting
irrelevant return predictors. On average, we select 12.77 for 10 knots, 12.44 for 15
knots, 11.84 for 20 knots, and 12.44 for 25 knots. In Figure A.6 instead, we study
how the choice of the order of the splines affects the selection results for our baseline
adaptive group LASSO with 20 knots where order 0 corresponds to a step function,
order 1 to a piecewise linear function, etc. Across orders, splines tend to perform well
in selecting relevant return predictors with the second-order splines that we use for our
baseline empirical analysis underselecting slightly relevant return predictors but the other
splines overselecting slightly irrelevant return predictors. The average number of selected
characteristics across simulations are 12.77 (order 0), 16.58 (order 1), 11.84 (order 2),
16.08 (order 3) and 15.88 (order 4). Selection results for large stocks are similar to results
for all stocks (see Table A.7 in the online appendix).

The simulation study using the true underlying data and functional relationship
between characteristics and returns so far shows that: (i) t-statistics based selection
methods have little power; (ii) nonlinearities are important for selection; and (iii) the
second-stage of the LASSO matters, that is, the irrepresentability condition does not hold

in our data; (iv) the adjusted BIC perform best in selecting relevant return predictors
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and not selecting irrelevant return predictors.

Instead of using the approximated true functional relationship between characteristics
and returns with a fifth-order polynomial on the true characteristics, we can also assume
the true data generating process is linear and simulate returns under this assumption.
Unfortunately, the actual relationship in the data is nonlinear and we do not know the
“true” number and identity of characteristics for a linear model. To ensure the simulation
setup is comparable to the true data-generating process we simulate above, we do the
following: (i) we assume also in the linear model 13 characteristics predict returns; (ii)
we choose the 13 characteristics by “walking along the LASSO path”, that is, we vary the
penalty parameter until the adaptive LASSO in the linear model selects 13 characteristics;
and (iii) we estimate the linear association between these 13 characteristics and returns.

Figure 14 plots the selection results. Again, the 13 characteristics above the red
horizontal line represent the “true” return predictors. In column (1), we see that even
when we assume the data-generating process is linear, allowing for nonlinearities with
the nonlinear adaptive group LASSO does no harm in the model selection stage. The
model selects 12 out of 13 return predictors with high probability and does not the select
irrelevant return predictors. In particular, we also see that the nonlinear adaptive group
LASSO performs as well as the linear adaptive LASSO, FDR, or t3 on a dataset which
by construction favors linear models. Both single-step LASSO procedures and t2 tend
to select too many characteristics that do not provide information for return prediction.
On average, across 500 simulation, the nonlinear adaptive group LASSO selects 11.18
characteristics, the group LASSO 15.67, the linear adaptive LASSO 12.65, the linear
LASSO 16.48, FDR 10.47, t3 10.64 and t2 14.33 characteristics.

Hence, when nonlinearities matter as in the actual data, the nonlinear adaptive group
LASSO performs best in model selection compared to linear methods but when we force
the data-generating process to be linear, the nonlinear adaptive group LASSO does just

as well. Hence, it seems natural to at least allow for nonlinearities.
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B Out-of-Sample Prediction

Overall, we saw that the nonlinear adaptive group LASSO does a good job in selecting
relevant return predictors and not selecting irrelevant return predictors across different
assumptions on the underlying data generating process and tuning parameters. The good
performance in model selection, however, does not necessarily mean that the nonlinear
adaptive group LASSO performs well in out-of-sample return predictions. To study the
latter, we now predict returns out-of-sample for all model selection methods, tuning
parameters, and assumptions regarding the data generating process for a sample from
2013 to 2014. We simulate returns again for 500 times, perform model selection and
estimate the model using the sample form 1964 until 2012 and predict returns. To study
how well the models predict returns, we regress realized returns on predicted returns and
report R?s but also report root mean squared prediction errors (RMSPE).

Panel A of Table 10 reports the results. The first line first reports results for the
true parametric model underlying the simulation. When we regress realized returns that
include sampling uncertainty on predicted returns, we find a R? of 1.5% and a RMSPE
of 0.12. In the following, we directly report R%s and RMSPEs for the different model
selection methods relative to these “true” numbers. The second line reports results for the
“true” nonparametric model, that is, we endow the nonlinear model with the knowledge
on the actual 13 return predictors but estimate the nonlinear functions from the data
before predicting returns. The true nonparametric model without selection uncertainty
achieves a relative R? of almost 88.86% and a RMSPE that is larger by 0.09% relative
to the true model. Line three now reports results for nonlinear adaptive group LASSO.
We see the model achieves a relative R? of almost 88% and a relative RMSPE of 0.1%
which documents the high model selection accuracy of the method. In case we are purely
interested in predicting returns out-of-sample, then we see a group LASSO performs
almost equally well. The following lines show all of the linear models do substantially
worse predicting returns out-of-sample when we follow the true data-generating process.

Independent of whether we use LASSO-based methods for the linear mode, t-statistics
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based methods, or the FDR p-value adjustment of Green et al. (2017), the relative R?
is never larger than 59%, thirty percentage points less than for the nonlinear LASSO
methods and the RMSPE is larger by a factor of 3 relative to the nonlinear LASSO: 0.1%
versus 0.3%.

Panel B of Table 10 reports the results for the linear data-generating process.
We see the true parametric model now achieves a R? of slightly below 1% and the
true nonparametric model, that is, the nonlinear model endowed with the true 13
characteristics, achieves a relative R? of 94%. Both the nonlinear adaptive group and
group LASSO achieve a relative R? which is almost identical. Hence, even when we
counterfactually assume that the data-generating process is linear, we still find a good
out-of-sample return prediction for the nonlinear model. In the following lines, we
see the linear model selection methods have relative out-of-sample R?s between 97%
and almost 100%. Interestingly, from a pure out-of-sample prediction perspective, a
t-statistics threshold of 2 has a higher out-of-sample predictive power than the FDR
p-value adjustment of Green et al. (2017) or a threshold of 3 similar to out-of-sample
prediction results in Green et al. (2017). Both linear and nonlinear models achieve low
relative RMSPE. The linear selection methods achieve a relative RMSPE of around 0.01%,
whereas the nonlinear methods achieve a relative RMSPE of around 0.03%.

When we simulate the true, nonlinear data-generating process, we find large increases
in out-of-sample R?s for the nonlinear models relative to the linear models. When we
instead assume that the data-generating process is linear, we find out-of-sample R? for
the nonlinear models which are almost identical to the linear models. Hence, it appears
natural to us to at least allow for nonlinearities ex-ante in situations in which it is not
clear whether nonlinearities matter.

Table A.2 and Table A.3 show robustness tests for different information criteria,
number of knots, order of splines or only firms above the 20 NYSE size percentile.
Out-of-sample prediction results mirror the model selection conclusions: the BIC of Yuan

and Lin (2006) performs better in out-of-sample prediction relative to a standard BIC,
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results are not very sensitive to the number of knots initially but start to deteriorate
with 25 knots, order 0 and order 1 spline perform worse than our baseline model but
higher-order splines even improve the out-of-sample forecasting performance, and results
for large firms are similar in that the nonlinear models outperform substantially linear

models in out-of-sample predictions.

V Conclusion

We propose a nonparametric method to tackle the challenge posed by Cochrane (2011)
in his presidential address, namely, which firm characteristics provide incremental
information for expected returns. We use the adaptive group LASSO to select important
return predictors and to estimate the model.

We document the properties of our framework in three applications: (i) Which
characteristics have incremental forecasting power for expected returns? (ii) Does the
predictive power of characteristics vary over time? (iii) How does the nonparametric
model compare to a linear model out-of-sample?

Our results are as follows: (i) Out of 62 characteristics, only nine to 16 provide
incremental information depending on the number of interpolation points (similar to the
number of portfolios in portfolio sorts), sample period, and universe of stocks (large
versus small stocks). (ii) Substantial time variation is present in the predictive power of
characteristics. (iii) The nonparametric model selects fewer characteristics than the linear
model in-sample and has a Sharpe ratio that is larger by a factor of 3 out-of-sample.

In a simulation study, we document the nonlinear adaptive group LASSO performs
well in model selection, that is, identifying true return predictors with high probability
and not selecting irrelevant return predictors. Linear model selection methods including
t-statistic based cutoffs or false-discovery rate p-value adjustments result in large
over-selection, that is, they also classify as return predictors characteristics that do

not predict returns. We also show the nonlinear models outperform linear models in
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out-of-sample return prediction and show our conclusions are robust to variations in the
tuning parameters our method has.

We see our paper as a starting point only and pose the following questions for future
research. Are the characteristics we identify related to factor exposures? How many
factors are important? Can we achieve a dimension reduction and identify K factors that
can summarize the N independent dimensions of expected returns with K << N similar

to Fama and French (1993) and Fama and French (1996)7
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Figure 2: Unconditional and Conditional Mean Function: Adjusted Turnover
(DTO) and Idiosyncratic Volatility (Idio vol)
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Effect of normalized adjusted turnover (DTO) and idiosyncratic volatility (Idio
vol) on average returns (see equation (3)). The left panels report unconditional
associations between a characteristic and returns, and the right panels report
associations conditional on all other selected characteristics. The sample period is
January 1965 to June 2014. See Section A.1 in the online appendix for variable
definitions.
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Figure 3: Unconditional and Conditional Mean Function: Change in Inventories
(IVC) and Net Operating Assets (NOA)
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Effect of normalized change in inventories (IVC) and net operating assets (NOA)

on average returns (see equation (3)).

The left panels report unconditional

associations between a characteristic and returns and the right panels report
associations conditional on all other selected characteristics. The sample period is
January 1965 to June 2014. See Section A.1 in the online appendix for variable

definitions.
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Figure 4: Unconditional and Conditional Mean Function: Short-Term Reversal
(r2—1) and Closeness to 52 week’s High (Rel to high price)
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Effect of normalized short-term reversal (ra—1) and closeness to 52 week’s high
(Rel to high price) on average returns (see equation (3)). The left panels
report unconditional associations between a characteristic and returns, and the
right panels report associations conditional on all other selected characteristics.

The sample period is January 1965 to June 2014. See Section A.1 in the online
appendiz for variable definitions.
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Figure 5: Unconditional and Conditional Mean Function:
Standard Unexplained Volume (SUV)
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on average returns (see equation (3)).

The left panels report unconditional

associations between a characteristic and returns, and the right panels report
associations conditional on all other selected characteristics. The sample period is
January 1965 to June 2014. See Section A.1 in the online appendix for variable

definitions.



Figure 6: Number of Selected Characteristics versus Number of Interpolation
Points
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This figure plots the number of firms characteristics we select against the number
of interpolation points in our baseline analysis. We use the adaptive group LASSO
to select significant return predictors out of a universe of 63 characteristics during

a sample period from 1965 to 2014. We detail the method in Section A.3.
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Figure 7: Time-varying Conditional Mean Function: Size (LME) and adjusted
Profit Margin (PM_adj)
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Effect of normalized size (LME) and adjusted profit margin (PM_adj) on
average returns over time (see equation (3)) conditional on all other selected
characteristics. The sample period is January 1965 to June 2014. See Section
A.1 in the online appendix for variable definitions.
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Figure 8: Time-varying Conditional Mean Function: Intermediate Momentum
(r12-7) and Standard Momentum (7r12_5)
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Effect of normalized intermediate momentum (ri12_7) and standard momentum
(r12—2) on average returns over time (see equation (8)) conditional on all other
selected characteristics. The sample period is January 1965 to June 2014. See
Section A.1 in the online appendix for variable definitions.
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Figure 9: Time-varying Conditional Mean Function: Short-Term Reversal
(r2—1) and Change in Shares Outstanding (AShrout)
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Effect of normalized short-term reversal (rsg—13) and the percentage change in
shares outstanding (AShrout) on average returns over time (see equation (8))
conditional on all other selected characteristics. The sample period is January
1965 to June 2014. See Section A.1 in the online appendiz for variable definitions.
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Figure 10: Time-varying Conditional Mean Function: Turnover (Lturnover)
and Standard Unexplained Volume (SUV)

Expected Return [%]

0

Time

Turnover (normalized)

0.02

0.01

o
o
- O

)

Expected Return [%)]

-

0 Time
Standard Unexplained Volume (normalized)

Effect of normalized turnover (Lturnover) and standard unexplained volume
(SUV) on average returns over time (see equation (3)) conditional on all other
selected characteristics. The sample period is January 1965 to June 2014. See
Section A.1 in the online appendiz for variable definitions.
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Figure 11: Selected Characteristics in Rolling Selection: Nonlinear Model
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The figure graphically shows over time which characteristics from the universe of
62 firm characteristics we discuss in Section A.1 of the online appendiz are selected
by the nonlinear adaptive group LASSO. The first selection period is from January
1965 until December 1990. Subsequently, we roll forward the selection period by
one year keeping the selection window constant. Blue indicates the characteristic
is selected. The average number of selected characteristics is 14.13. The sample
period is January 1965 to June 2014.
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Figure 12: Selected Characteristics in Rolling Selection: Linear Model
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The figure graphically shows over time which characteristics from the universe
of 62 firm characteristics we discuss in Section A.1 of the online appendiz are
selected by the linear adaptive LASSO. The first selection period is from January
1965 until December 1990. Subsequently, we roll forward the selection period by
one year keeping the selection window constant. Blue indicates the characteristic
is selected. The average number of selected characteristics is 26.58. The sample
period is January 1965 to June 2014.
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Figure 13: Selected Characteristics in Simulations: Empirical Data-Generating
Process
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The figure graphically shows for different model selection methods the frequency
with which characteristics from the universe of 62 firm characteristics we discuss
in Section A.1 of the online appendix are selected by each method. The darker the
color, the more frequently a given selection method selects a given characteristic.
The true model is nonlinear and consists of the 13 characteristics above the red
vertical line. The average mumber of selected characteristics for the different
methods across 500 simulations are: adaptive group LASSO: 11.84; group LASSO:
15.78; adaptive LASSO linear model: 29.57; LASSO linear model: 48.08; FDR:
26.58; t3 25.81; t2 35.54. The sample period is January 1965 to June 2014.
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Figure 14: Selected Characteristics in Simulations: Linear Data-Generating
Process
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The figure graphically shows for different model selection methods the frequency
with which characteristics from the universe of 62 firm characteristics we discuss
in Section A.1 of the online appendiz are selected by each method. The darker the
color, the more frequently a given selection method selects a given characteristic.
The true model is linear and consists of the 13 characteristics above the red vertical
line. The average number of selected characteristics for the different methods
across 500 simulations are: adaptive group LASSO: 11.18; group LASSO: 15.67;
adaptive LASSO linear model: 12.65; LASSO linear model: 16.48; FDR: 10.47;
t3 10.64; t2 14.22. The sample period is January 1965 to June 2014.
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Table 2: Descriptive Statistics for Firm Characteristics

This table reports average returns, medians, and time series standard deviations for the firm characteristics
discussed in Section A.1 of the online appendix. Frequency is the frequency at which the firm characteristics
varies. m is monthly and y is yearly. The sample period is January 1965 to June 2014.

Mean Median Std Freq Mean Median Std Freq
Past-returns: Value:
ro_1 0.01 0.00 (0.13) m A2ME 3.04 1.62 (5.75) y
Te_2 0.06 0.03 (0.31) m BEME 0.94 0.77 (0.80) y
122 0.14 0.07 (0.51) m BEME, 4 0.01 ~0.13 (0.77) m
ria_7 0.08 0.04 (0.34) m C 0.13 0.07 (0.15) y
T36-13 0.35 0.17 (0.96) m C2D 0.17 0.17 (1.26) y
ASO 0.03 0.00 (0.12) y
Investment: Debt2P 0.86 0.34 (2.37) y
Investment 0.14 0.08 (0.44) y E2P 0.01 0.07 (0.36) y
ACEQ 0.18 0.06 (2.00) y Free CF —0.23 0.05 (9.70) y
API2A 0.09 0.06 (0.22) y LDP 0.02 0.01 (0.05) m
AShrout 0.01 0.00 (0.10) m NOP 0.01 0.01 (0.12) y
Ve 0.02 0.01 (0.06) y 02P 0.03 0.02 (0.13) y
NOA 0.67 0.67 (0.38) y Q 1.63 1.20 (1.47) y
S2p 2.75 1.60 (4.38) y
Profitability: Sales_g 0.37 0.09 (9.81) y
ATO 2.52 1.94 (21.51) y
CTO 1.35 1.18 (1.11) y Trading frictions:
A(AGM-ASales) —0.29 0.00 (17.42) y AT 2,906.94 243.22 (19, 820.90) y
EPS 1.76 1.19 (21.66) y Beta 1.05 0.99 (0.55) m
IPM ~1.01 0.07 (35.76) m Beta daily 0.89 0.81 (1.52) m
PCM —0.60 0.32 (34.01) y DTO 0.00 0.00 (0.01) m
PM —0.99 0.08 (35.90) y Idio vol 0.03 0.02 (0.02) m
PM_ad]j 0.39 0.09 (35.79) m LME 1,562.03 166.44 (7,046.08) m
Prof 1.01 0.64 (11.50) y LME _adj 287.02  —683.49 (6,947.60) m
RNA 0.21 0.14 (6.79) y Lturnover 0.08 0.05 (0.12) m
ROA 0.03 0.04 (0.15) y Rel_to_high_price 0.75 0.79 (0.18) m
ROC —6.86 —1.44 (332.86) m Ret max 0.07 0.05 (0.07) m
ROE 0.06 0.10 (1.42) y Spread 0.03 0.02 (0.04) m
ROIC 0.06 0.07 (0.12) y Std turnover 0.31 0.16 (0.68) m
s2C 84.77 1532 (970.18) y Std volume 162.84 3351 (583.97) m
SAT 1.21 1.08 (0.93) y SUV 0.22 —0.15 (2.39) m
SAT _adj 0.02 —0.06 (0.74) m Total vol 0.03 0.02 (0.02) m
Intangibles:
AOA 5.23 0.07 (285.41) y
oL 1.10 0.95 (0.91) y
Tan 0.54 0.55 (0.12) y
OA —0.47 —0.03 (78.52) ¥
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Table 4: Fama & French Three-Factor alphas for Characteristic-sorted
Portfolios

This table reports FamaéFrench three-factor alphas of long-short portfolios sorted on the characteristics we describe
in Section A.1 of the online appendiz with standard errors in parentheses and t-statistics. The sample period is
July 1965 to June 2015.

app3 SE t-stat apps SE t-stat
Past-return based: Value:
ro_1 —26.48 (2.94) -8.99  A2ME 2.75 (1.93)  1.42
T6—2 9.13 (3.34) 2.73 BEME 7.80 (1.56)  5.00
o2 12.73 (3.48)  3.66 BEME _adj 8.60 (1.56)  5.50
- 10.79 (2.46)  4.39 C 4.48 (1.69)  2.65
r36-13 —6.68 (2.59) -2.58  C2D 0.23 (2.23)  0.10
ASO —9.14 (1.54)  -5.95
Investment: Debt2P —3.21 (1.63) -1.97
Investment —11.85 (1.76) -6.74 E2P 0.56 (2.19) 0.25
ACEQ —8.02 (1.78) -4.50  Free CF 3.29 (2.04) 161
API2A ~9.32 (1.53) -6.07  LDP 0.99 (1.68)  0.59
AShrout 3.57 (1.17)  3.04 NOP 5.74 (1.61)  3.56
IvC —7.30 (1.34) -5.45 o2p 2.74 (1.34) 2.04
NOA ~9.56 (1.50) -6.36  Q —8.09 (1.50)  -5.40
S2P 5.44 (1.91)  2.85
Profitability: Sales_g —7.52 (1.50) -5.02
ATO 0.85 (1.45)  0.59
CTO 0.57 (1.52)  0.37 Trading frictions:
A(AGm-ASales 3.15 (1.18)  2.66 AT ~7.01 (2.27)  -3.09
EPS 1.01 (2.14) 047 Beta —7.83 (2.38)  -3.29
IPM —0.41 (247) 017  Beta daily ~6.39 (1.97) -3.24
PCM 1.87 (1.36) 1.37 DTO 13.08 (1.56)  8.37
PM —0.88 (2.59)  -0.34  Idio vol —2.92 (2.74)  -1.06
PM._adj 3.96 (1.70)  2.32 LME ~15.30 (2.76)  -5.53
Prof 1.73 (1.69) 1.03 LME_adj —4.76 (1.51) -3.14
RNA —0.37 (1.81) -0.21  Lturnover 0.44 (2.03) 0.2
ROA —1.70 (2.36) -0.72 Rel_to_high_price —5.46 (3.54) -1.54
ROC —4.07 (1.37)  -2.96 Ret max —8.41 (2.40) -3.51
ROE ~1.89 (2.39) -0.79  Spread 3.06 (2.74) 1.2
ROIC ~1.75 (2.49) -0.70  Std turnover 4.03 (1.79)  2.26
S2C —0.45 (1.56) -0.29 Std volume —3.55 (1.85) -1.92
SAT 4.43 (1.52) 291 SUvV 21.88 (1.89) 11.59
SAT _adj 5.36 (1.10)  4.88 Total vol —3.94 (2.74)  -1.43
Intangibles:
AOA —4.34 (1.24)  -3.48
OL 4.01 (1.67)  2.39
Tan 4.29 (1.67)  2.58
OA ~5.92 (1.34) -4.41
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Table 6: Selected Characteristics in Nonparametric Model: Size Interactions

This table reports the selected characteristics from the universe of 62 firm characteristics we discuss in Section
A.1 of the online appendiz for different numbers of knots, the sample size, and in-sample Sharpe ratios of an
equally-weighted hedge portfolio going long stocks with the highest predicted returns and shorting stocks with lowest
predicted returns. We interact each firm characteristic with the previous month’s market capitalization. q indicates

the size percentile of NYSE firms. The sample period is January 1965 to June 2014.

Firms All Size > qio Size > q20 Size > q20
Sample Full Full Full Full
Knots 20 15 15 10
Sample Size 1,629,155 959,757 763,850 763,850
# Selected 25 15 9 13
Sharpe Ratio 3.41 2.98 2.42 2.69
Characteristics # Selected (1) (2) (3) (4)
BEME 1 BEME

AShrout 4 AShrout AShrout AShrout AShrout
ASO 4 ASO ASO ASO ASO
DTO 1 DTO

Investment 1 Investment

Lturnover 2 Lturnover Lturnover

NOA 1 NOA

PM_adj 1 PM_adj

o1 1 ro_1

r6—2 2 T6—2 T6—2
T12-2 1 T12-2

r12-7 4 ri2-7 r12-7 r12-7 r12-7
73613 3 73613 73613 73613
Rel_to_high_price 2 Rel_to_high_price Rel_to_high_price Rel_to_high_price
S2P 3 S2P S2P S2P
SUV 4 SUV SUV SUV SUV
Total vol 4 Total vol Total vol Total vol Total vol
Characteristics x Size

A2ME 1 A2ME

BEME_adj 1 BEME_adj

DTO 1 DTO

EPS 1 EPS

NOA 1 NOA

21 4 21 21 21 21
T6—2 4 T6—2 T6—2 T6—2 T6—2
122 4 122 r12-2 122 T12-2
Rel_to_high_price 1 Rel_to_high_price

Ret max 1 Ret max

ROC 1 ROC
ROE 1 ROE

SUV 1 SUV
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Table 7: Selected Characteristics in Linear Model

This table reports the selected characteristics from the universe of 62 firm characteristics we discuss in Section A.1 of
the online appendiz for a linear model and raw characteristics in column (1), a linear model and ranked-transformed
characteristics in column (2), and the false discovery rate adjusted p value selection model of Green et al. (2017) in
(3) and in-sample Sharpe ratios of an equally-weighted hedge portfolio going long stocks with the highest predicted
returns and shorting stocks with lowest predicted returns. The sample period is January 1965 to June 2014.

Firms All All All
Model Linear Model Linear Model: rank normalized Linear Model: FDR
Sample Full Full Full
Sample Size 1,629,155 1,629,155 1,629,155
# Selected 24 35 32
Sharpe Ratio 1.26 2.44 1.46
Characteristics # Selected (1) (2) (3)
A2ME 1 A2ME
AOA 1 AOA

AT 1 AT

BEME 2 BEME BEME BEME
BEME_adj 1 BEME_adj BEME_adj
Beta 1 Beta Beta
C 2 C C C
CTO 1 CTO

ACEQ 1 ACEQ

API2A 1 API2A
AShrout 2 AShrout AShrout AShrout
ASO 1 ASO ASO
Debt2P 1 Debt2P

DTO 2 DTO DTO DTO
E2P 2 E2P E2P E2P
EPS 1 EPS

Idio vol 2 Idio vol Idio vol Idio vol
Investment 2 Investment Investment Investment
IPM 1 IPM
vC 1 IvC
LDP 2 LDP LDP LDP
LME 1 LME

Lturnover 2 Lturnover Lturnover

NOA 1 NOA
OA 1 OA

OL 1 OL OL
PCM 1 PCM

PM 1 PM

PM_adj 1 PM_adj PM_adj
Prof 1 Prof

Q 1 Q Q
ro_1 2 ro_1 ro_1 To—1
T6—2 1 T6—2 T6—2
T12-2 1 T12-2

ri2—7 2 ri2—7 r12-7 ri2—7
T36—13 2 36—13 736—13 736—13
Rel_to_high_price 2 Rel_to_high_price Rel_to_high_price Rel_to_high_price
Ret max 1 Ret max Ret max
ROA 1 ROA

ROE 1 ROE

ROIC 2 ROIC ROIC

S2C 1 S2C

S2P 1 S2P

SAT 1 SAT
SAT _adj 2 SAT _adj SAT _adj SAT _adj
Spread 2 Spread 65 Spread Spread
Std turnover 1 Std turnover
Std volume 1 Std volume

SUV 2 SUV SUV SUV
Tan 1 Tan
Total vol 1 Total vol
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Table 10: Out-of-Sample Predictability in Simulation

This table reports results from an out-of-sample prediction exercise for different model selection methods and data
generating processes. Column (1) reports first the out-of-sample R? of regressing ex-post realized returns on ex-ante
predicted returns for the true model and then the out-of-sample R? for the different model selection techniques
relative to the true out-of-sample R?. Column (2) reports the root mean squared prediction error (RMSPE) of
the true model and the % differences between the RMSPEs of the true model and the different specifications. The
sample period is January 1965 to June 2012 for model selection and 2013 to 2014 for out-of-sample prediction. We
simulate each model 500 times. Panel A reports results for the nonparametric data generating process and Panel
B reports results for the linear data generating process.

(Relative) R? (Relative) RMSPE
(1) (2)

Panel A: Nonlinear Data-Generating Process

True parametric model 0.0152 0.1213
True nonparametric model 88.86% 0.089%
Adaptive group LASSO 87.76% 0.098%
Group LASSO 87.75% 0.099%
Adaptive LASSO linear 57.67% 0.326%
LASSO linear 57.92% 0.324%
FDR 57.91% 0.324%
t3 57.83% 0.320%
t2 58.50% 0.325%

Panel B: Linear Data-Generating Process

True parametric model 0.0089 0.1212
True nonparametric model 94.32% 0.027%
Adaptive group LASSO 94.39% 0.026%
Group LASSO 93.03% 0.034%
Adaptive LASSO linear 99.96% 0.000%
LASSO linear 99.82% 0.001%
FDR 97.41% 0.012%
t3 97.86% 0.003%
t2 99.35% 0.010%
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Online Appendix:
Dissecting Characteristics Nonparametrically

Not for Publication

A.1 Data

This section details the construction of variables we use in the main body of the paper
with CRSP and Compustat variable names in parentheses and the relevant references.
Unless otherwise specified, we use balance-sheet data from the fiscal year ending in year
t — 1 for returns from July of year ¢ to June of year ¢t + 1 following the Fama and French
(1993) timing convention.

A2ME: We follow Bhandari (1988) and define assets-to-market cap as total assets
(AT) over market capitalization as of December t-1. Market capitalization is the product
of shares outstanding (SHROUT) and price (PRC).

AOA: We follow Bandyopadhyay et al. (2010) and define AOA as absolute value of
operation accruals (OA) which we define below.

AT Total assets (AT) as in Gandhi and Lustig (2015).

ATO: Net sales over lagged net operating assets as in Soliman (2008). Net operating
assets are the difference between operating assets and operating liabilities. Operating
assets are total assets (AT) minus cash and short-term investments (CHE), minus
investment and other advances (IVAO). Operating liabilities are total assets (AT), minus
debt in current liabilities (DLC), minus long-term debt (DLTT), minus minority interest
(MIB), minus preferred stock (PSTK), minus common equity (CEQ).

BEME: Ratio of book value of equity to market value of equity. Book equity
is shareholder equity (SH) plus deferred taxes and investment tax credit (TXDITC),
minus preferred stock (PS). SH is shareholders’ equity (SEQ). If missing, SH is the
sum of common equity (CEQ) and preferred stock (PS). If missing, SH is the difference
between total assets (AT) and total liabilities (LT). Depending on availability, we use
the redemption (item PSTKRV), liquidating (item PSTKL), or par value (item PSTK)
for PS. The market value of equity is as of December t-1. The market value of equity is
the product of shares outstanding (SHROUT) and price (PRC). See Rosenberg, Reid,
and Lanstein (1985) and Davis, Fama, and French (2000).

BEME_adj: Ratio of book value of equity to market value of equity minus
the average industry ratio of book value of equity to market value of equity at the
Fama-French 48 industry level as in Asness et al. (2000). Book equity is sharcholder
equity (SH) plus deferred taxes and investment tax credit (TXDITC), minus preferred
stock (PS). SH is shareholders’ equity (SEQ). If missing, SH is the sum of common equity



(CEQ) and preferred stock (PS). If missing, SH is the difference between total assets
(AT) and total liabilities (LT). Depending on availability, we use the redemption (item
PSTKRYV), liquidating (item PSTKL), or par value (item PSTK) for PS. The market
value of equity is as of December t-1. The market value of equity is the product of shares

outstanding (SHROUT) and price (PRC).

Beta: We follow Frazzini and Pedersen (2014) and define the CAPM beta as
product of correlations between the excess return of stock ¢ and the market excess return
and the ratio of volatilities. We calculate volatilities from the standard deviations of
daily log excess returns over a one-year horizon requiring at least 120 observations. We
estimate correlations using overlapping three-day log excess returns over a five-year
period requiring at least 750 non-missing observations.

Beta_daily: Beta_daily is the sum of the regression coefficients of daily excess
returns on the market excess return and one lag of the market excess return as in
Lewellen and Nagel (2006).

C: Ratio of cash and short-term investments (CHE) to total assets (AT) as in
Palazzo (2012).

C2D: Cash flow to price is the ratio of income and extraordinary items (IB) and
depreciation and amortization (dp) to total liabilities (LT).

CTO: We follow Haugen and Baker (1996) and define capital turnover as ratio of
net sales (SALE) to lagged total assets (AT).

Debt2P: Debt to price is the ratio of long-term debt (DLTT) and debt in current
liabilities (DLC) to the market capitalization as of December t-1 as in Litzenberger

and Ramaswamy (1979). Market capitalization is the product of shares outstanding
(SHROUT) and price (PRC).

Aceq: We follow Richardson et al. (2005) in the definition of the percentage change
in the book value of equity (CEQ).

A(AGm-ASales): We follow Abarbanell and Bushee (1997) in the definition of the
difference in the percentage change in gross margin and the percentage change in sales
(SALE). We define gross margin as the difference in sales (SALE) and costs of goods
sold (COGS).

ASo: Log change in the split adjusted shares outstanding as in Fama and
French (2008). Split adjusted shares outstanding are the product of Compustat shares
outstanding (CSHO) and the adjustment factor (AJEX).

Ashrout: We follow Pontiff and Woodgate (2008) in the definition of the percentage
change in shares outstanding (SHROUT).



API2A: We define the change in property, plants, and equipment following
Lyandres, Sun, and Zhang (2008) as changes in property, plants, and equipment
(PPEGT) and inventory (INVT) over lagged total assets (TA).

DTO: We follow Garfinkel (2009) and define turnover as ratio of daily volume
(VOL) to shares outstanding (SHROUT) minus the daily market turnover and de-trend
it by its 180 trading day median. We follow Anderson and Dyl (2005) and scale down
the volume of NASDAQ securities by 38% after 1997 and by 50% before that to address
the issue of double-counting of volume for NASDAQ securities.

E2P: We follow Basu (1983) and define earnings to price as the ratio of income
before extraordinary items (IB) to the market capitalization as of December t-1. Market
capitalization is the product of shares outstanding (SHROUT) and price (PRC).

EPS: We follow Basu (1977) and define earnings per share as the ratio of income
before extraordinary items (IB) to shares outstanding (SHROUT) as of December t-1..

Free CF: Cash flow to book value of equity is the ratio of net income (NI),
depreciation and amortization (DP), less change in working capital (WCAPCH), and
capital expenditure (CAPX) over the book-value of equity defined as in the construction
of BEME (see Hou et al. (2011)).

Idio vol: Idiosyncratic volatility is the standard deviation of the residuals from a
regression of excess returns on the Fama and French (1993) three-factor model as in Ang,
Hodrick, Xing, and Zhang (2006). We use one month of daily data and require at least
fifteen non-missing observations.

Investment: We define investment as the percentage year-on-year growth rate in
total assets (AT) following Cooper, Gulen, and Schill (2008).

IPM: We define pre-tax profit margin as ratio of pre-tax income (PI) to sales (SALE).

IVC: We define IVC as change in inventories (INVT) between ¢t — 2 and ¢t — 1 over
the average total assets (AT) of years ¢t —2 and t — 1 following Thomas and Zhang (2002).

Lev: Leverage is the ratio of long-term debt (DLTT) and debt in current liabilities
(DLC) to the sum of long-term debt, debt in current liabilities, and stockholders’ equity
(SEQ) following Lewellen (2015).

LDP: We follow Litzenberger and Ramaswamy (1979) and define the dividend-price
ratio as annual dividends over last months price (PRC). We measure annual dividends as
the sum of monthly dividends over the last 12 months. Monthly dividends are the scaled

difference between returns including dividends (RET) and returns excluding dividends
(RETX).



LME: Size is the total market capitalization of the previous month defined as price
(PRC) times shares outstanding (SHROUT) as in Fama and French (1992).

LME_adj: Industry-adjusted-size is the total market capitalization of the previous
month defined as price (PRC) times shares outstanding (SHROUT) minus the average
industry market capitalization at the Fama-French 48 industry level as in Asness et al.
(2000).

LTurnover: Turnover is last month’s volume (VOL) over shares outstanding
(SHROUT) (Datar, Naik, and Radcliffe (1998)).

NOA: Net operating assets are the difference between operating assets minus
operating liabilities scaled by lagged total assets as in Hirshleifer, Hou, Teoh, and Zhang
(2004). Operating assets are total assets (AT) minus cash and short-term investments
(CHE), minus investment and other advances (IVAO). Operating liabilities are total
assets (AT), minus debt in current liabilities (DLC), minus long-term debt (DLTT),
minus minority interest (MIB), minus preferred stock (PSTK), minus common equity

(CEQ).

NOP: Net payout ratio is common dividends (DVC) plus purchase of common and
preferred stock (PRSTKC) minus the sale of common and preferred stock (SSTK) over
the market capitalization as of December as in Boudoukh, Michaely, Richardson, and
Roberts (2007).

O2P: payout ratio is common dividends (DVC) plus purchase of common and
preferred stock (PRSTKC) minus the change in value of the net number of preferred
stocks outstanding (PSTKRV) over the market capitalization as of December as in
Boudoukh, Michaely, Richardson, and Roberts (2007).

OA: We follow Sloan (1996) and define operating accruals as changes in non-cash
working capital minus depreciation (DP) scaled by lagged total assets (TA). Non-cash
working capital is the difference between non-cash current assets and current liabilities
(LCT), debt in current liabilities (DLC) and income taxes payable (TXP). Non-cash
current assets are current assets (ACT) minus cash and short-term investments (CHE).

OL: Operating leverage is the sum of cost of goods sold (COGS) and selling, general,
and administrative expenses (XSGA) over total assets as in Novy-Marx (2011).

PCM: The price-to-cost margin is the difference between net sales (SALE) and
costs of goods sold (COGS) divided by net sales (SALE) as in Gorodnichenko and Weber
(2016) and D’Acunto, Liu, Pflueger, and Weber (2017).

PM: The profit margin is operating income after depreciation (OTADP) over sales
(SALE) as in Soliman (2008).



PM_adj: The adjusted profit margin is operating income after depreciation
(OIADP) over net sales (SALE) minus the average profit margin at the Fama-French 48
industry level as in Soliman (2008).

Prof: We follow Ball, Gerakos, Linnainmaa, and Nikolaev (2015) and define
profitability as gross profitability (GP) divided by the book value of equity as defined
above.

Q: Tobin’s Q is total assets (AT), the market value of equity (SHROUT times PRC)
minus cash and short-term investments (CEQ), minus deferred taxes (TXDB) scaled by
total assets (AT).

Rel to High: Closeness to 52-week high is the ratio of stock price (PRC) at the
end of the previous calendar month and the previous 52 week high price defined as in
George and Hwang (2004).

Ret_max: Maximum daily return in the previous month following Bali, Cakici, and
Whitelaw (2011).

RINA: The return on net operating assets is the ratio of operating income after
depreciation to lagged net operating assets (Soliman (2008)). Net operating assets are
the difference between operating assets minus operating liabilities. Operating assets are
total assets (AT) minus cash and short-term investments (CHE), minus investment and
other advances (IVAO). Operating liabilities are total assets (AT), minus debt in current
liabilities (DLC), minus long-term debt (DLTT), minus minority interest (MIB), minus
preferred stock (PSTK), minus common equity (CEQ).

ROA: Return-on-assets is income before extraordinary items (IB) to lagged total
assets (AT) following Balakrishnan, Bartov, and Faurel (2010).

ROC: ROC is the ratio of market value of equity (ME) plus long-term debt (DLTT)
minus total assets to Cash and Short-Term Investments (CHE) as in Chandrashekar and
Rao (2009).

ROE: Return-on-equity is income before extraordinary items (IB) to lagged
book-value of equity as in Haugen and Baker (1996).

ROIC: Return on invested capital is the ratio of earnings before interest and taxes
(EBIT) less nonoperating income (NOPI) to the sum of common equity (CEQ), total
liabilities (LT), and Cash and Short-Term Investments (CHE) as in Brown and Rowe
(2007).

ri2_o : We define momentum as cumulative return from 12 months before the return
prediction to two months before as in Fama and French (1996).



ri2_7: We define intermediate momentum as cumulative return from 12 months
before the return prediction to seven months before as in Novy-Marx (2012).

re_o : We define r4_5 as cumulative return from 6 months before the return prediction
to two months before as in Jegadeesh and Titman (1993).

ro_1 : We define short-term reversal as lagged one-month return as in Jegadeesh
(1990).

rse_13 : Long-term reversal is the cumulative return from 36 months before the
return prediction to 13 months before as in De Bondt and Thaler (1985).

S2C: Sales-to-cash is the ratio of net sales (SALE) to Cash and Short-Term
Investments (CHE) following Ou and Penman (1989).

S2P: Sales-to-price is the ratio of net sales (SALE) to the market capitalization as
of December following Lewellen (2015).

Sales_g: Sales growth is the percentage growth rate in annual sales (SALE)
following Lakonishok, Shleifer, and Vishny (1994).

SAT: We follow Soliman (2008) and define asset turnover as the ratio of sales
(SALE) to total assets (AT).

SAT _adj: We follow Soliman (2008) and define adjusted asset turnover as the ratio
of sales (SALE) to total assets (AT) minus the average asset turnover at the Fama-French
48 industry level.

SGA2S: SG&A to sales is the ratio of selling, general and administrative expenses
(XSGA) to net sales (SALE).

Spread: The bid-ask spread is the average daily bid-ask spread in the previous
months as in Chung and Zhang (2014).

Std_turnover: Std_turnover is the standard deviation of the residuals from a
regression of daily turnover on a constant as in Chordia, Subrahmanyam, and Anshuman
(2001). Turnover is the ratio of volume (VOL) times shares outstanding (SHROUT) We
use one month of daily data and require at least fifteen non-missing observations.

Std_volume: Std_volume is the standard deviation of the residuals from a regression
of daily volume on a constant as in Chordia, Subrahmanyam, and Anshuman (2001). We

use one month of daily data and require at least fifteen non-missing observations.

SUV: Standard unexplained volume is difference between actual volume and



predicted volume in the previous month. Predicted volume comes from a regression of
daily volume on a constant and the absolute values of positive and negative returns.
Unexplained volume is standardized by the standard deviation of the residuals from the
regression as in Garfinkel (2009).

Tan: We follow Hahn and Lee (2009) and define tangibility as (0.715 X total
receivables (RECT) + 0.547 x inventories (INVT) + 0.535 x property, plant and
equipment (PPENT) + cash and short-term investments (CHE)) / total assets (AT).

Total vol: Total volatility is the standard deviation of the residuals from a
regression of excess returns on a constant as in Ang, Hodrick, Xing, and Zhang (2006).

We use one month of daily data and require at least fifteen non-missing observations.



A.2 Current Methodology

A Expected Returns and the Curse of Dimensionality

One aim of the empirical asset-pricing literature is to identify characteristics that predict
expected returns, that is, find a characteristic C' in period t—1 that predicts excess returns
of firm ¢ in the following period, R;;. Formally, we try to describe the conditional mean

function,

E[th | Cl,it—17 SRR CS,it—l]- <A1>

We often use portfolio sorts to approximate equation (1) for a single characteristic.
We typically sort stocks into 10 portfolios and compare mean returns across portfolios.
Portfolio sorts are simple, straightforward, and intuitive, but they also suffer from
several shortcomings. First, we can only use portfolio sorts to analyze a small set of
characteristics. Imagine sorting stocks jointly into five portfolios based on CAPM beta,
size, book-to-market, profitability, and investment. We would end up with 5° = 3125
portfolios, which is larger than the number of stocks at the beginning of our sample.?
Second, portfolio sorts offer little formal guidance to discriminate between characteristics.
Consider the case of sorting stocks into five portfolios based on size, and within these,
into five portfolios based on the book-to-market ratio. If we now find the book-to-market
ratio only leads to a spread in returns for the smallest stocks, do we conclude it does
not matter for expected returns? Fama and French (2008) call this second shortcoming
“awkward.” Third, we implicitly assume expected returns are constant over a part of the
characteristic distribution, such as the smallest 10% of stocks, when we use portfolio sorts
as an estimator of the conditional mean function. Fama and French (2008) call this third
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shortcoming “clumsy.”® Nonetheless, portfolio sorts are by far the most commonly used

technique to analyze which characteristics have predictive power for expected returns.

!The curse of dimensionality is a well-understood shortcoming of portfolio sorts. See Fama and French
(2015) for a recent discussion in the context of the factor construction for their five-factor model. They
also argue not-well-diversified portfolios have little power in asset-pricing tests.

ZPortfolio sorts are a restricted form of nonparametric regression. We will use the similarities of
portfolio sorts and nonparametric regressions to develop intuition for our proposed framework below.



Instead of (conditional) double sorts, we could sort stocks into portfolios and perform
spanning tests, that is, we regress long-short portfolios on a set of risk factors. Take 10
portfolios sorted on profitability and regress the hedge return on the three Fama and
French (1993) factors. A significant time-series intercept would correspond to an increase
in Sharpe ratios for a mean-variance investor relative to the investment set the three Fama
and French (1993) factors span (see Gibbons, Ross, and Shanken (1989)). The order
in which we test characteristics matters, and spanning tests cannot solve the selection
problem of which characteristics provide incremental information for the cross section of
expected returns.

An alternative to portfolio sorts and spanning tests is to assume linearity of equation

(1) and run linear panel regressions of excess returns on .S characteristics, namely,

s
Ry = a+ Z BsCsit—1 + Eit. (A.2)

s=1

Linear regressions allow us to study the predictive power for expected returns of many
characteristics jointly, but they also have potential pitfalls. First, no a priori reason
exists why the conditional mean function should be linear.> Fama and French (2008)
estimate linear regressions as in equation (2) to dissect anomalies, but raise concerns
over potential nonlinearities. They make ad hoc adjustments and use, for example, the
log book-to-market ratio as a predictive variable. Second, linear regressions are sensitive
to outliers and extreme observations of the characteristics might drive point estimates.
Researchers often use ad hoc techniques to mitigate these concerns, such as winsorizing
observations and estimating linear regressions separately for small and large stocks (see
Lewellen (2015) for a recent example).

Cochrane (2011) synthesizes many of the challenges that portfolio sorts and linear

regressions face in the context of many return predictors, and suspects “we will have to

3Fama and MacBeth (1973) regressions also assume a linear relationship between expected returns and
characteristics. Fama-MacBeth point estimates are numerically equivalent to estimates from equation (2)
when characteristics are constant over time.



use different methods.”

B Equivalence between Portfolio Sorts and Regressions

Cochrane (2011) conjectures in his presidential address, “[Plortfolio sorts are really the
same thing as nonparametric cross-sectional regressions, using nonoverlapping histogram

7

weights.” Additional assumptions are necessary to show a formal equivalence, but his
conjecture contains valuable intuition to model the conditional mean function formally.
We first show a formal equivalence between portfolio sorts and regressions and then use
the equivalence to motivate the use of nonparametric methods.*

Suppose we observe excess returns R; and a single characteristic Cj;_; for stocks
1=1,..., Ny and time periods t = 1,...,T. We sort stocks into L portfolios depending on
the value of the lagged characteristic, C;;_;.% Specifically, stock i is in portfolio [ at time ¢ if
Ciy—1 € Iy, where I indicates an interval of the distribution for a given firm characteristic.
For example, take a firm with lagged market cap in the 45" percentile of the firm size
distribution. We would sort that stock in the 5™ out of 10 portfolios in period ¢. For each
time period ¢, let Ny be the number of stocks in portfolio I, Ny = ZZV:’SI 1(Cy1 € Iy).

The excess return of portfolio [ at time t, Py, is then

| X
ZRitl(Cit—l € Iy).

Py=—
Ny —
=1

Alternatively, we can run a pooled time-series cross-sectional regression of excess
returns on dummy variables, which equal 1 if firm ¢ is in portfolio [ in period t. We

denote the dummy variables by 1(Cj;—1 € I;) and write,

L

Ry = Zﬁll(Citfl € ly)+ei.

=1

4Cattaneo et al. (2016) develop inference methods for a portfolio-sorting estimator and also show the
equivalence between portfolio sorting and nonparametric estimation.
5We only consider univariate portfolio sorts in this example to gain intuition.
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Let R be the NT' x 1 vector of excess returns and let X be the NT x L matrix of dummy
variables, 1(Cy_1 € Iy). Let B be an OLS estimate, B = (X'X)"1X'R. Tt is easy to show

that

. 1 & N,

B = = Tptl-
T t=1 %Zt:l Ny

Now suppose we have the same number of stocks in each portfolio [ for each time

period t, that is, Ny = N, for all t. Then
1
b= ; Py

and
T

By — By = %Z(Pﬂ — Pu).

t=1
Hence, the slope coefficients in pooled time-series cross-sectional regressions are equivalent
to average portfolio returns, and the difference between two slope coefficients is the excess
return between two portfolios.

If the number of stocks in the portfolios changes over time, then portfolio sorts and
regressions typically differ. We can restore equivalence in two ways. First, we could take
the different number of stocks in portfolio [ over time into account when we calculate

averages, and define excess return as

T T

1 1
I E NyPy — ———— E Ny Py

T 1L tl T t’ Ll
zt:1 Ny t=1 Zt:l Ny =1

which equals Bl — Bl’-
Second, we could use the weighted least squares estimator, B = (X'WX)"' X'WR,

where the NT x NT weight matrix W is a diagonal matrix with the inverse number of

11



stocks on the diagonal, diag(1/Ny). With this estimator, we again get

L 1 &
B — By = T Z(Ptl — Py).

t=1

A.3 Nonparametric Estimation

We now use the relationship between portfolio sorts and regressions to develop intuition
for our nonparametric estimator, and show how we can interpret portfolio sorts as a
special case of nonparametric estimation. We then show how to select characteristics
with incremental information for expected returns within that framework.

Suppose we knew the conditional mean function m;(c) = E[Ry | Ci—1 = ¢].5 Then,

E[th | Ci—1 € ]lt] = mt(c)fcit—ﬂoit—leltl(C) dC,

Iy

where fc,,_,|c,,_ €1, 1s the density function of the characteristic in period ¢ —1, conditional
on Cy_y € Iy. Hence, to obtain the expected return of portfolio I, we can simply
integrate the conditional mean function over the appropriate interval of the characteristic
distribution. Therefore, the conditional mean function contains all information for
portfolio returns. However, knowing m;(c) provides additional information about
nonlinearities in the relationship between expected returns and characteristics, and the
functional form more generally.

To estimate the conditional mean function, m,, consider again regressing excess

returns, Ry, on L dummy variables, 1(Cy_1 € 1),

L
Ry = Zﬂll(citfl € ly)+ei.
=1

6We take the expected excess return for a fixed time period ¢.
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In nonparametric estimation, we call indicator functions of the form 1(Cj;_; € I;) constant
splines. Estimating the conditional mean function, m;, with constant splines, means we
approximate it by a step function. In this sense, portfolio sorting is a special case of
nonparametric regression. A step function is nonsmooth and therefore has undesirable
theoretical properties as a nonparametric estimator, but we build on this intuition to
estimate m; nonparametrically.”

Figures A.1-A.3 illustrate the intuition behind the relationship between portfolio
sorts and nonparametric regressions. These figures show returns on the y-axis and book-
to-market ratios on the x-axis, as well as portfolio returns and the nonparametric estimator
we propose below for simulated data.

We see in Figure A.1 that most of the dispersion in book-to-market ratios and returns
is in the extreme portfolios. Little variation in returns occurs across portfolios 2-4 in line
with empirical settings (see Fama and French (2008)). Portfolio means offer a good
approximation of the conditional mean function for intermediate portfolios. We also see,
however, that portfolios 1 and 5 have difficulty capturing the nonlinearities we see in the
data.

Figure A.2 documents that a nonparametric estimator of the conditional mean
function provides a good approximation for the relationship between book-to-market
ratios and returns for intermediate values of the characteristic, but also in the extremes
of the distribution.

Finally, we see in Figure A.3 that portfolio means provide a better fit in the tails of
the distribution once we allow for more portfolios. Portfolio mean returns become more
comparable to the predictions from the nonparametric estimator the larger the number

of portfolios.

"We formally define our estimator in Section A.3. C below.
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A Multiple Regression & Additive Conditional Mean Function

Both portfolio sorts and regressions theoretically allow us to look at several characteristics
simultaneously. Consider small (S) and big (B) firms and value (V') and growth (G) firms.
We could now study four portfolios: (SV),(SG),(BV),and (BG). However, portfolio
sorts quickly become infeasible as the number of characteristics increases. For example,
if we have four characteristics and partition each characteristic into five portfolios, we
end up with 5% = 625 portfolios. Analyzing 625 portfolio returns would, of course, be
impractical, but would also result in poorly diversified portfolios.

In nonparametric regressions, an analogous problem arises.  Estimating the
conditional mean function, m,, fully nonparametrically with many regressors results in
a slow rate of convergence and imprecise estimates in practice.® Specifically, with S
characteristics and N; observations, assuming technical regularity conditions, the optimal

), which is always smaller than the rate of

rate of convergence in mean square is N;4/ (4+s
convergence for the parametric estimator of N, !. Notice the rate of convergence decreases
as S increases.” Consequently, we get an estimator with poor finite sample properties if
the number of characteristics is large.

As an illustration, suppose we observe one characteristic, in which case, the rate of
convergence is Nt_4/ ° Now suppose instead we have 11 characteristics, and let N; be the

number of observations necessary to get the same rate of convergence as in the case with

one characteristic. We get,
(Nt*)f4/15 _ Nt*4/5 = Nt* _ th'

Hence, in the case with 11 characteristics, we have to raise the sample size to the power
of 3 to obtain the same rate of convergence and comparable finite sample properties as

in the case with only one characteristic. Consider a sample size, N, of 1,000. Then, we

8The literature refers to this phenomenon as the “curse of dimensionality” (see Stone (1982) for a
formal treatment).
9We assume the conditional mean function, m, is twice continuously differentiable.
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would need 1 billion return observations to obtain similar finite sample properties of an
estimated conditional mean function with 11 characteristics.

Conversely, suppose S = 11 and we have N; = 1,000 observations. This combination
yields similar properties as an estimation with one characteristic and a sample size N; =
(N2 of 10.

Nevertheless, if we are interested in which characteristics provide incremental
information for expected returns given other characteristics, we cannot look at each
characteristic in isolation. A natural solution in the nonparametric regression framework

is to assume an additive model,

s
mi(cr, ..., cs) = ths(cs),
s=1

where mys(-) are unknown functions. The main theoretical advantage of the additive
specification is that the rate of convergence is always Nt_4/ ® which does not depend on
the number of characteristics S (see Stone (1985), Stone (1986), and Horowitz et al.
(2006)).

An important restriction of the additive model is

Pmy(cy,. .. cs)
Ocg0cy

=0

for all s # s. For example, the predictive power of the book-to-market ratio for
expected returns does not vary with firm size (conditional on size). One way around
this shortcoming is to add certain interactions as additional regressors. For instance,
we could interact every characteristic with size to see if small firms are really different.
An alternative solution is to estimate the model separately for small and large stocks.
Brandt et al. (2009) make a similar assumption, but also stress that we can always
interpret characteristics ¢ as the cross product of a more basic set of characteristics.
In our empirical application, we show results for all stocks and all-but micro caps, but

also show results when we interact each characteristic with size.
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Although the assumption of an additive model is somewhat restrictive, it provides
desirable econometric advantages. In addition, we always make this assumption when we
estimate multivariate regressions and in our context this assumption is far less restrictive
than assuming linearity right away, as we do in Fama-MacBeth regressions. Another
major advantage of an additive model is that we can jointly estimate the model for a large
number of characteristics, select important characteristics, and estimate the summands

of the conditional mean function, m;, simultaneously, as we explain in Section C.

B Normalization of Characteristics

We now describe a suitable normalization of the characteristics, which will allow us to map
our nonparametric estimator directly to portfolio sorts. As before, define the conditional

mean function m; for S characteristics as
mi(Chit—1,...,Csi—1) = E[Rit | Crit—1, ..., Csit—1].

For each characteristic s, let Fy,(-) be a known strictly monotone function and denote its

inverse by sttl(-). Define C’S,it_l = F,4(Cs 1) and
my(Cy,...,Cs) = mt(Fftl(C'l), e FS_;(C’S))

Then,

my(Crit—1,- -, Csit—1) = mt(él,itfla e >C~’S,it71)-

Knowledge of the conditional mean function m; is equivalent to knowing the transformed
conditional mean function m,;. Moreover, using a transformation does not impose any
additional restrictions and is therefore without loss of generality.

Instead of estimating m;, we will estimate m; for a rank transformation that has
desirable properties and nicely maps to portfolio sorting. When we sort stocks into

portfolios, we are typically not interested in the value of a characteristic in isolation,
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but rather in the rank of the characteristic in the cross section. Consider firm size. Size
grows over time, and a firm with a market capitalization of USD 1 billion in the 1960s
was considered a large firm, but today it is not. Our normalization considers the relative
size in the cross section rather than the absolute size, similar to portfolio sorting.

Hence, we choose the rank transformation of C,;_; such that the cross-sectional
distribution of a given characteristic lies in the unit interval; that is, Cs;—1 € [0, 1].

Specifically, let

Fuu(Copr) = " Cect)
Here, rank(min;—; n, Csi—1) = 1 and rank(max;— n, Csi—1) = Ni. Therefore, the a
quantile of C’Sﬂ-t,l is . We use this particular transformation because portfolio sorting
maps into our estimator as a special case.'”
Although knowing m; is equivalent to knowing m;, in finite samples, the estimates

of the two typically differ; that is,

Au(er,. . es) #ma(Frt(er), -, Fgl(cs)):

In simulations and in the empirical application, we found m; yields better out-of-sample
predictions than m;. The transformed estimator appears to be less sensitive to outliers
thanks to the rank transformation, which could be one reason for the superior out-of-
sample performance.

In summary, the transformation does not impose any additional assumptions, directly
relates to portfolio sorting, and works well in finite samples because it appears more robust

to outliers.!t

0The general econometric theory we discuss in Section C' (model selection, consistency, etc.) also
applies to any other monotonic transformation or the non-transformed conditional mean function.

" Cochrane (2011) stresses the sensitivity of regressions to outliers. Our transformation is insensitive
to outliers and nicely addresses his concern.
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C Adaptive Group LASSO

We use a group LASSO procedure developed by Huang et al. (2010) for estimation and
to select those characteristics that provide incremental information for expected returns,
that is, for model selection. To recap, we are interested in modeling excess returns as a

function of characteristics; that is,
s
Ry = Z Mys(Csit—1) + €t (A.3)
s=1

where mg(+) are unknown functions and és,it—l denotes the rank-transformed character-
istic.

The idea of the group LASSO is to estimate the functions m;s nonparametrically,
while setting functions for a given characteristic to 0 if the characteristic does not help
predict returns. Therefore, the procedure achieves model selection; that is, it discriminates
between the functions 77, which are constant, and the functions that are not constant.!?

In portfolio sorts, we approximate m;s by a constant within each portfolio. We
instead propose to estimate quadratic functions over parts of the normalized characteristic
distribution. Let 0 =ty < t; < --- < tr_1 < tr, = 1 be a sequence of increasing numbers
between 0 and 1 similar to portfolio breakpoints, and let I, for { = 1, ..., L be a partition
of the unit interval, that is, I, = [ti—1,t) for I =1,...,L —1 and I; = [tr—1,tr]. We
refer to to,...,tr—1 as knots and choose t; = [/L for all [ =0,...,L — 1 in our empirical
application. Because we apply the rank transformation to the characteristics, the knots
correspond to quantiles of the characteristic distribution and we can think of I; as the [*»
portfolio.

To estimate m;, we use quadratic splines; that is, we approximate m; as a quadratic

function on each interval I;. We choose these functions so that the endpoints are connected

and 7, is differentiable on [0, 1]. We can approximate each 7,5 by a series expansion with

12The “adaptive” part indicates a two-step procedure, because the LASSO selects too many
characteristics in the first step and is therefore not model-selection consistent unless restrictive conditions
on the design matrix are satisfied (see Meinshausen and Bithlmann (2006) and Zou (2006) for an in-depth
treatment of the LASSO in the linear model).
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these properties, i.e.,
L+2

mts(é) ~ Z Btsk’pk(é)a (A4>

where py,(c) are known basis functions.!?

The number of intervals L is a user-specified smoothing parameter, similar to the
number of portfolios. As L increases, the precision of the approximation increases, but so
does the number of parameters we have to estimate and hence the variance. Recall that
portfolio sorts can be interpreted as approximating the conditional mean function as a
constant function over L intervals. Our estimator is a smooth and more flexible estimator,
but follows a similar idea (see again Figures A.1 — A.3).

We now discuss the two steps of the adaptive group LASSO. In the first step, we

obtain estimates of the coefficients as

N S L+2 S L+-2

2 :

B, = arg min > (Rit - > bskpk(és,itl)) +A) (Z bi) , (A.5)
bopis=LosSik=1,.., L4254 s=1 k=1 s=1 \k=1

where Bt is an (L 4 2) x S vector of estimates and A; is a penalty parameter.

The first part of equation (5) is just the sum of the squared residuals as in ordinary
least squares regressions; the second part is the LASSO group penalty function. Rather
than penalizing individual coefficients, by, the LASSO penalizes all coefficients associated
with a given characteristic. Thus, we can set the point estimates of an entire expansion
of m; to 0 when a given characteristic does not provide incremental information for
expected returns. Due to the penalty, the LASSO is applicable even when the number
of characteristics is larger than the sample size. Yuan and Lin (2006) propose to choose
A1 in a data-dependent way to minimize Bayesian Information Criterion (BIC) which we
follow in our application.

However, as in a linear model, the first step of the LASSO selects too many

characteristics unless restrictive conditions on the design matrix hold. Informally

13n particular, p1(c) = 1, p2(c) = ¢, p3(c) = 2, and pi(c) = max{c — ty_3,0}2 for k =4,... L + 2.
See Chen (2007) for an overview of series estimation.
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speaking, the LASSO selects all characteristics that predict returns, but also selects some
characteristics that have no predictive power. A second step addresses this problem.

We first define the following weights:

1
L+2 52 \ 2 L+2
(Sera) © i o
Wis = Lo
00 it S

(A.6)

Intuitively, these weights guarantee we do not select any characteristic in the second step
that we did not select in the first step.

In the second step of the adaptive group LASSO, we solve

N S Lt2 2 s L+2 3
ﬂt = arg min Z zt Z Z bskpk s, it— 1 + )\2 Z Wi Z bgk .
bsk:s=1,...,S;k=1,....L+2 i1 s—1 kel o—1 )
(A.7)
We again follow Yuan and Lin (2006) and choose Ay to minimize BIC.

Huang et al. (2010) provide conditions under which B, is model-selection consistent;
that is, it correctly selects the non-constant functions with probability approaching 1 as
the sample size grows large.

Denote the estimated coefficients for characteristic s by B,,. The estimator of the

function my, is then
L+2

mts Z Btskpk

If the cross section is sufficiently large, model selection and estimation could
be performed period by period. Hence, the method allows for the importance of
characteristics and the shape of the conditional mean function to vary over time. For
example, some characteristics might lose their predictive power for expected returns over
time. McLean and Pontiff (2016) show that for 97 return predictors, predictability
decreases by 58% post publication. However, if the conditional mean function was
time-invariant, pooling the data across time would lead to more precise estimates of the

function and therefore more reliable predictions. In our empirical application in Section
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ITI, we estimate our model over subsamples and also estimate rolling specifications to

investigate the variation in the conditional mean function over time.

D Interpretation of the Conditional Mean Function

In a nonparametric additive model, the locations of the functions are not identified.

Consider the following example. Let o, be S constants such that ZSSZI as = 0. Then,

S

S
(G, 8s) = () = (&) + o).

s=1

Therefore, the summands of the transformed conditional mean function, mg, are only
identified up to a constant. The model-selection procedure, expected returns, and the
portfolios we construct do not depend on these constants. However, the constants matter
when we plot an estimate of the conditional mean function for one characteristic.

We report estimates of the functions using the common normalization that the
functions integrate to 0, which is identified.

Section A.6 of the online appendix discusses how we construct confidence bands for
the figures which we report and how we select the number of interpolation points in the

empirical application of Section III.

A.4 Additive Conditional Mean Function

Estimating the conditional mean function, my;, fully nonparametrically with many
regressors results in a slow rate of convergence and imprecise estimates in practice.'*
Specifically, with S characteristics and NV; observations, assuming technical regularity

(4+S)

o : . a4 Do
conditions, the optimal rate of convergence in mean square is N, / , which is always

smaller than the rate of convergence for the parametric estimator of N; '. Notice the rate

4The literature refers to this phenomenon as the “curse of dimensionality” (see Stone (1982) for a
formal treatment).
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of convergence decreases as S increases.'® Consequently, we get an estimator with poor
finite sample properties if the number of characteristics is large.

As an illustration, suppose we observe one characteristic, in which case, the rate of
convergence is N[4/ ° Now suppose instead we have 11 characteristics, and let N; be the
number of observations necessary to get the same rate of convergence as in the case with

one characteristic. We get,
(Nt*)_4/15 — Nt_4/5 = Nt* _ th'

Hence, in the case with 11 characteristics, we have to raise the sample size to the power
of 3 to obtain the same rate of convergence and comparable finite sample properties as
in the case with only one characteristic. Consider a sample size, NV;, of 1,000. Then, we
would need 1 billion return observations to obtain similar finite sample properties of an
estimated conditional mean function with 11 characteristics.

Conversely, suppose S = 11 and we have N; = 1,000 observations. This combination
yields similar properties as an estimation with one characteristic and a sample size N; =
(N3 of 10.

Nevertheless, if we are interested in which characteristics provide incremental
information for expected returns given other characteristics, we cannot look at each
characteristic in isolation. A natural solution in the nonparametric regression framework

is to assume an additive model,

S
mt(cl) .. 705) - ths(cs)u
s=1

where mys(-) are unknown functions. The main theoretical advantage of the additive
specification is that the rate of convergence is always Nt_4/ 5, which does not depend on
the number of characteristics S (see Stone (1985), Stone (1986), and Horowitz et al.
(2006)).

15We assume the conditional mean function, my, is twice continuously differentiable.
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An important restriction of the additive model is

azmt(ch s 7CS>

=0
805805/

for all s # ¢'; therefore, the additive model does not allow for cross dependencies
between characteristics. For example, the predictive power of the book-to-market ratio
for expected returns does not vary with firm size (conditional on size). One way around
this shortcoming is to add certain interactions as additional regressors. For instance,
we could interact every characteristic with size to see if small firms are really different.
An alternative solution is to estimate the model separately for small and large stocks.
Brandt et al. (2009) make a similar assumption, but also stress that we can always
interpret characteristics ¢ as the cross product of a more basic set of characteristics.
In our empirical application, we show results for all stocks and all-but micro caps, but
also show results when we interact each characteristic with size.

Although the assumption of an additive model is somewhat restrictive, it provides
desirable econometric advantages. In addition, we always make this assumption when we
estimate multivariate regressions and in our context this assumption is far less restrictive
than assuming linearity right away, as we do in Fama-MacBeth regressions. Another
major advantage of an additive model is that we can jointly estimate the model for a large
number of characteristics, select important characteristics, and estimate the summands

of the conditional mean function, m;, simultaneously, as we explain in Section C'.

A.5 Normalization of Characteristics

We now describe a suitable normalization of the characteristics, which will allow us to map
our nonparametric estimator directly to portfolio sorts. As before, define the conditional

mean function m; for S characteristics as

me(Chit—1,...,Csit—1) = E[Rit | Crit—1,...,Csit—1].
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For each characteristic s, let Fy,(-) be a known strictly monotone function and denote its

inverse by sttl(-). Define C’sﬁ_l = F,4(Cs4—1) and
my(Ch, ..., Cs) = my(FT/(Ch), ..., Fg; (Cs)).

Then,

mi(Chit—1,...,Csit—1) = mt(él,it—la e ,C'S,it—1)-

Knowledge of the conditional mean function m; is equivalent to knowing the transformed
conditional mean function m;. Moreover, using a transformation does not impose any
additional restrictions and is therefore without loss of generality.

Instead of estimating m,;, we will estimate m; for a rank transformation that has
desirable properties and nicely maps to portfolio sorting. When we sort stocks into
portfolios, we are typically not interested in the value of a characteristic in isolation,
but rather in the rank of the characteristic in the cross section. Consider firm size. Size
grows over time, and a firm with a market capitalization of USD 1 billion in the 1960s
was considered a large firm, but today it is not. Our normalization considers the relative
size in the cross section rather than the absolute size, similar to portfolio sorting.

Hence, we choose the rank transformation of C,;_; such that the cross-sectional
distribution of a given characteristic lies in the unit interval; that is, Cs;—1 € [0, 1].

Specifically, let

Foa(Cor) = “C)
Here, rank(min;—; n, Csi—1) = 1 and rank(max;— n, Csi—1) = Ni. Therefore, the a
quantile of CN’SJ-t,l is . We use this particular transformation because portfolio sorting
maps into our estimator as a special case.'¢

Although knowing m; is equivalent to knowing m;, in finite samples, the estimates

16The general econometric theory we discuss in subsection C' below (model selection, consistency, etc.)
also applies to any other monotonic transformation or the non-transformed conditional mean function.
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of the two typically differ; that is,

Au(er,. . es) #ma(Ft(er), - Fglcs)):

In simulations and in the empirical application, we found m; yields better out-of-sample
predictions than m;. The transformed estimator appears to be less sensitive to outliers
thanks to the rank transformation, which could be one reason for the superior out-of-
sample performance.

In summary, the transformation does not impose any additional assumptions, directly
relates to portfolio sorting, and works well in finite samples because it appears more robust

to outliers.!”

A.6 Confidence Bands

We also report uniform confidence bands for the estimated functions in the plots later to
gain some intuition for estimation uncertainty. Note that the set of characteristics the
LASSO selects does not rely on these confidence bands. As explained above, we assume

that
S ~
Ry = Z s (Csit—1) + Eit-
s=1

In a linear model, we could report confidence intervals for the individual slope coefficients.
Analogously, because we are mainly interested in the slopes of the functions m;, and
because the levels of the functions are not separately identified, we report estimates and
confidence bands for the functions 7u(¢s) — [ 74s(¢5)dés. That is, we normalize the
functions such that they are 0 on average. By inspecting the confidence bands we can
then test hypotheses that do not depend on the levels of the functions, such as whether a
constant function or a linear function is consistent with the data. However, the bands are

not informative about the levels of the estimated functions similar to confidence intervals

17Cochrane (2011) stresses the sensitivity of regressions to outliers. Our transformation is insensitive
to outliers and nicely addresses his concern.
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for slope coefficients in a linear model.

Recall that we approximate mys(¢és) by Ziif Biskpr(¢s) and estimate it by
25;2 Btskpk(és). Let pr(¢s) = p(@s) — [ pr(€s)dés be the normalized basis functions and
let p(¢s) = (p1(€s),...,Dr+2(Cs)) be the corresponding vector of basis functions. Next
let ;s be the L + 2 x L + 2 covariance matrix of \/ﬁ(Bts — Bis). We define S, as the
heteroscedasticity-consistent estimator of ;5 and define 645(¢s) = 1/ p(s)’ f]tsﬁ(és), which
is the estimated standard error of Zf:f Btskﬁk(és). Just as in the linear model, ,4(¢)
depends on which other characteristics are included in the model. For example, if two
characteristics are highly correlated, the standard deviations of the estimated functions
are typically high.

The uniform confidence band for 7u(¢s) — [ mus(¢s)dcs is of the form
L+2 L+2
[Z ﬁtskﬁk(&e) - dtsa-ts<és) ;Z 6tskﬁk<és) + dts&ts(és)] )
k=1 k=1

where d;, is a constant. Thus, the width of the confidence band is proportional to the
standard deviation of the estimated function. To choose the constant, let Z ~ N (0, f]ts)

and let czts be such that

P sup
és€[0,1]

We can calculate the probability on the left-hand side using simulations.

Z'p(¢c)

Ots Cs)

SdAts|its> =1-a.

Given consistent model selection and under the conditions in Belloni, Chernozhukov,

Chetverikov, and Kato (2015), it follows that

L+2 . . L+2 . .
P (mts(és) - /mts(és)dés S [Z /Btskﬁk(és) - dtsa-ts(és) 7ZBtskﬁk(és) + dtsé-ts(és)] v65 S [07 1])
k=1

k=1

converges to 1 — « as the sample size increases.
To better understand why these bands are useful, suppose that no linear function fits

in the confidence band. Then, we can reject the null hypothesis that 1 (¢s) — [ s (¢5)dcs
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is linear at a significance level of 1 — a. But since m(¢5) — [ 17u45(5)dés is linear if and
only if mys(¢s) is linear, we can then also reject the null hypothesis that my,(¢,) is linear.
Similar, by inspecting the band we can test if 772,5(¢;) is constant.

We want to stress that the selection of characteristics in the LASSO does not rely on
these confidence bands and we report the confidence bands only to provide intuition and

to summarize sampling uncertainty.

A Knot Selection

Theory tells us the number of interpolation points should grow as the sample size grows.
Empirically, this statement is not too helpful in guiding our choices. We therefore
document that the number and identify of characteristics is stable for reasonable variations

in the number of knots (see Figure 6 which we discuss below).
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Figure A.1: 5 Portfolios Sorted on Book-to-Market
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Portfolios Sorted on Book—to—Market

This figure plots returns on the y-azis against the book-to-market ratio on the x-axis
as well as portfolio mean returns for simulated data.
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Figure A.2: 5 Portfolios Sorted on Book-to-Market and Nonparametric

Estimator
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Portfolios Sorted on Book—to—Market

This figure plots returns on the y-axis against the book-to-market ratio on the x-azxis
as well as portfolio mean returns and a nonparametric conditional mean function

for simulated data.
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Figure A.3: 10 Portfolios sorted on Book-to-Market and Nonparametric

Estimator
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Portfolios Sorted on Book—to—Market

This figure plots returns on the y-axis against the book-to-market ratio on the x-azxis
as well as portfolio mean returns and a nonparametric conditional mean function

for simulated data.
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Figure A.4: Selected Characteristics in Simulations: Empirical Data-Generating

Process (different Information Criteria)
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The figure graphically shows for the nonlinear adaptive group LASSO for different
information criteria the frequency with which characteristics from the universe of
62 firm characteristics we discuss in Section A.1 of the online appendizx are selected
by each information criteria. The darker the color, the more frequently a given
selection method selects a given characteristic. The true model is nonlinear and
consists of the 13 characteristics above the red vertical line. The average number of
selected characteristics for the different information criteria across 500 simulations
are: BIC: 11.84; AIC: 15.37; BIC alternative: 8.69; CV (cross validation): 54.92.
The sample period is January 1965 to June 2014.
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Figure A.5: Selected Characteristics in Simulations: Empirical Data-Generating

Process (different Knot Numbers)
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The figure graphically shows for the nonlinear adaptive group LASSO for different
number of knots the frequency with which characteristics from the universe of 62
firm characteristics we discuss in Section A.1 of the online appendix are selected
by each information criteria. The darker the color, the more frequently a given
selection method selects a given characteristic. The true model is nonlinear and
consists of the 13 characteristics above the red vertical line. The average number of
selected characteristics for the different information criteria across 500 simulations
are: 10 knots: 12.77; 15 knots: 12.44; 20 knots: 11.84; 25 knots: 12.44. The

sample period is January 1965 to June 2014.
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Figure A.6: Selected Characteristics in Simulations: Empirical Data-Generating

Process (different Order Splines)
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The figure graphically shows for the nonlinear adaptive group LASSO for different
order splines the frequency with which characteristics from the universe of 62 firm
characteristics we discuss in Section A.1 of the online appendiz are selected by each
information criteria. The darker the color, the more frequently a given selection
method selects a given characteristic. The true model is nonlinear and consists of
the 13 characteristics above the red vertical line. The average number of selected
characteristics for the different information criteria across 500 simulations are: 0
order: 12.77; 1 order: 16.58; 2 order: 11.84; 8 order: 16.08; 4 order: 15.88. The
sample period is January 1965 to June 2014.
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Figure A.7: Selected Characteristics in Simulations: Empirical Data-Generating

Process (large Firms)
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The figure graphically shows for different model selection methods the frequency
with which characteristics from the universe of 62 firm characteristics we discuss
in Section A.1 of the online appendix are selected by each method for firms above
the 20" size percentile. The darker the color, the more frequently a given selection
method selects a given characteristic. The true model is nonlinear and consists of
the 9 characteristics above the red vertical line. The average number of selected
characteristics for the different methods across 500 simulations are: adaptive group
LASSO: 9.49; group LASSO: 11.89; adaptive LASSO linear model: 10.66; LASSO
linear model: 15.62; FDR: 9.08; t3 9.72; t2 17.90. The sample period is January
1965 to June 2014.
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Table A.2: Out-of-Sample Predictability in Simulation: Robustness Nonlinear
Model

This table reports results from an out-of-sample prediction exercise for different model selection methods and data
generating processes. Column (1) reports first the out-of-sample R? of regressing ex-post realized returns on ex-ante
predicted returns for the true model and then the out-of-sample R? for the different model selection techniques
relative to the true out-of-sample R?. Column (2) reports the root mean squared prediction error (RMSPE) of
the true model and the % differences between the RMSPEs of the true model and the different specifications. The
sample period is January 1965 to June 2012 for model selection and 2013 to 2014 for out-of-sample prediction.
We simulate each model 500 times. Panel A reports results for different information criteria, Panel B for different
number of knots, and Panel C for different order splines. We use the nonparametric adaptive group LASSO for
model selection with the BIC of Yuan and Lin (2006), 20 knots, and order 2 splines as baseline model.

Relative R? Relative RMSPE
(1) (2)

Panel A: Different Information Criteria

BIC 87.76% 0.098%
AIC 87.74% 0.100%
BIC alternative 81.38% 0.146%
CV 60.85% 0.598%

Panel B: Different Knots Numbers

10 knots 86.93% 0.099%
15 knots 88.27% 0.089%
20 knots 87.76% 0.098%
25 knots 79.46% 0.183%

Panel C: Different Order Splines

Order 0 71.17% 0.222%
Order 1 83.52% 0.129%
Order 2 87.76% 0.098%
Order 3 90.69% 0.073%
Order 4 91.53% 0.068%
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Table A.3: Out-of-Sample Predictability in Simulation: Large Firms

This table reports results from an out-of-sample prediction exercise for different model selection methods and data
generating processes. Column (1) reports first the out-of-sample R? of regressing ex-post realized returns on ex-ante
predicted returns for the true model and then the out-of-sample R? for the different model selection techniques
relative to the true out-of-sample R?. Column (2) reports the root mean squared prediction error (RMSPE) of
the true model and the % differences between the RMSPEs of the true model and the different specifications. The
sample period is January 1965 to June 2012 for model selection and 2013 to 2014 for out-of-sample prediction. We
simulate each model 500 times. Large firms are all firms above the 200" size percentile.

(Relative) R? (Relative) RMSPE
(1) (2)

True parametric 0.0063 0.0830
True nonparametric 90.63% 0.034%
Adaptive group LASSO 90.03% 0.036%
Group LASSO 86.98% 0.049%
Adaptive LASSO linear 78.78% 0.067%
LASSO linear 78.52% 0.067%
FDR 75.86% 0.076%
t3 76.26% 0.072%
t2 77.05% 0.075%
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