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1. Introduction 
Modelling volatility is crucial for risk management. Following the global financial crisis of 

2008, the Basel III international regulatory framework for banks has imposed more stringent 

capital requirements, and enhanced risk management systems have been developed. Since 

then the international financial system has had to face a new challenge, namely the 

introduction of decentralised cryptocurrencies, the first being Bitcoin, which was created in 

2009 (Nakamoto, 2009). Unlike traditional currencies, cryptocurrencies are based on 

cryptographic proof, which provides many advantages over traditional payment methods 

(such as credit cards) including high liquidity, lower transaction costs, and anonymity (these 

features are discussed by Fantazzini et al., 2016). 

Interest in Bitcoin and other cryptocurrencies has risen considerably in recent years. 

Their market capitalisation increased from approximately 18 billion US dollars at the 

beginning of 2017 to nearly 600 billion at the end of that year, 1 and high returns have 

attracted new investors. In addition, two big exchanges, i.e. the Chicago Mercantile Exchange 

(CME) and the Chicago Board Options Exchange (CBOE), started to trade futures on 

Bitcoin.2 As a result of these developments, central banks have been facing the question of 

whether or not cryptocurrencies should be regulated, given the numerous technical and legal 

issues involved.  

Further, cryptocurrencies are highly volatile and consequently it is important to 

estimate appropriate risk metrics, which can be used for calculating capital requirements, 

margins, hedging and pricing derivatives etc. It is well known that standard GARCH models 

can produce biased results if the series display structural breaks (Bauwens et al. (2010, 

2014)); these are likely to occur in the case of cryptocurrencies, and therefore a suitable 

modelling approach should be used. Ardia et al. (2017) suggest estimating in such cases 

Markov-Switching GARCH models, whose parameters are allowed to change over time 

according to a discrete latent variable. 

The aim of this paper is to find the best model or set of models for modelling volatility 

of the four most popular cryptocurrencies, i.e. Bitcoin, Ethereum, Ripple and Litecoin. More 

than 1,000 GARCH models are fitted to the log returns of the exchange rates of each of these 

cryptocurrencies to estimate a one-step ahead prediction of Value-at-Risk (VaR) and 

Expected Shortfall (ES) on a rolling window basis. The best model or superior set of models 

is then chosen by backtesting VaR and ES as well as using a Model Confidence Set (MCS) 

procedure for their loss functions. 

                                                 
1 Source: https://coinmarketcap.com/  
2 Source: Thomson Reuters 

https://coinmarketcap.com/
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The paper is organised as follows. Section 2 briefly discusses the relevant literature; Section 3 

provides a description of the data; Section 4 outlines the methodology; Section 5 presents the 

empirical results; finally, Section 6 offers some concluding remarks. 

2. Literature Review 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are the most 

commonly used in the literature for modelling volatility and estimating Value-at-Risk (VaR) 

and Expected Shortfall (ES). The original Autoregressive Conditional Heteroskedasticity 

(ARCH) specification was introduced by Engle (1982) and then extended by Bollerslev 

(1986), who put forward the GARCH framework. Additional specifications were then 

developed: the exponential GARCH (EGARCH) model of Nelson (1991), the threshold 

GARCH (TGARCH) model of Zakoian (1994), the Student’s t-GARCH model of Bollerslev 

(1987), the GJRGARCH model of Glosten et al. (1993) and many others (see Bollerslev et al. 

(1992), Bollerslev et al. (1994) and Engle (2004)).  

Recent studies have shown that structural breaks result in biased estimates of GARCH 

models and poor volatility forecasts (Bauwens et al. (2010, 2014)). To overcome this problem 

Markov-switching GARCH models (MSGARCH) have been proposed, whose parameters can 

change over time according to a discrete latent (i.e., unobservable) variable (Ardia et al., 

2017); to make computations easier a normal (or mixture) distribution) is typically assumed. 

This framework has been used in recent papers to analyse various type of assets: commodity 

prices (Alizadeh et al. (2008)), stock returns (Henry (2009)), exchange rate returns (Wilfling 

(2009), Bohl et al. (2011)), etc. Ardia et al. (2017) estimated a large set of MSGARCH 

specifications allowing for various functional forms as well as distributions of the errors. 

They compared two estimation techniques, namely Maximum Likelihood (ML) and Markov 

chain Monte Carlo (MCMC) procedures, and found that MSGARCH outperforms single 

regime models in the case of stock prices, but not of stock indices and currencies.  

GARCH models have also been used for modeling the volatility of cryptocurrencies. 

Glaser et al. (2014) estimated a standard GARCH (1, 1). Gronwald (2014) reported that an 

autoregressive jump-intensity GARCH model fits the Bitcoin data better than a standard 

GARCH. Dyhrberg (2016) estimated an asymmetric GARCH for Bitcoin arguing that it can 

be used for hedging.  

Bouoiyour and Selmi (2016) compared different specifications including EGARCH, 

Asymmetric Power ARCH (APARCH), weighted GARCH and component GARCH with 

multiple thresholds by using in-sample criteria such as the Akaike information criterion 

(AIC), the Bayesian information criterion (BIC) and the Hannan-Quinn information criterion 

(HQC); they concluded that, despite a noticeable decrease in its volatility, Bitcoin cannot yet 
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be considered a mature currency. Katsiampa (2017) found that the AR-CGARCH model gives 

the best fit for Bitcoin, which means that accounting for both the short- and long-term 

components of the conditional variance is important. Chu et al. (2017) fitted 12 GARCH 

specifications with different distributions for the innovation process to seven 

cryptocurrencies; the Integrated GARCH (1, 1) (IGARCH) model with normal innovations 

was found to yield the smallest values of AIC, the corrected AIC (AICc), BIC, HQC and the 

Consistent AIC (CAIC) in the case of Bitcoin, Dash, Litecoin, Maidsafecoin and Monero; 

instead the GJRGARCH (1, 1) and GARCH (1, 1) model with normal innovations produced 

the smallest values for Dogecoin and Ripple respectively. 

3. Data Description  
The series analysed are the daily closing prices of Bitcoin, Ethereum, Ripple and Litecoin. 

The Bitcoin data were taken from the Coindesk Price Index and cover the period from 18 July 

2010 to 30 April of 2018; for the other three series the data source is CoinMarketCap.3  The 

end date is the same for all series, whilst the start date differs: it is 7 August 2015 for 

Ethereum, 4 August 2013 for Ripple, and 28 April 2013 for Litecoin. Prices were transformed 

into log returns by taking first differences of their logarithm (see Figure 1).  

 
Figure 1. Log returns 

Summary statistics for the log returns are shown in Table 1. 

                                                 
3 https://coinmarketcap.com/  

https://coinmarketcap.com/
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Table 1 Descriptive  statistics of log returns 

Statistics Bitcoin Ethereum Ripple Litecoin 

Number of obs. 2 842 996 1 730 1 828 

Minimum -0.491 -0.315 -0.616 -0.514 

Q1 -0.013 -0.027 -0.023 -0.019 

Median 0.002 0 -0.003 0 

Mean 0.004 0.007 0.003 0.002 

Q3 0.023 0.036 0.022 0.018 

Maximum 0.425 0.412 1.027 0.829 

Std Dev. 0.058 0.072 0.080 0.069 

Skewness  -0.326 0.515 1.998 1.777 

Kurtosis 11.811 4.347 26.629 24.961 

As can be seen, they are negatively skewed in the case of Bitcoin and positively skewed in all 

other cases. All four cryptocurrencies exhibit leptokurtosis. The histograms of the log returns 

series are shown in Figure 2. 

 
Figure 2 Histograms of log returns 

4. Methodology 
4.1 GARCH models 
Let 𝑦𝑦𝑡𝑡  ∈ 𝑅𝑅 be the percentage log-returns of the financial asset (exchange rate) of interest at 

time t. The general Markov-Switching GARCH specification has the following form: 

𝑦𝑦𝑡𝑡|(𝑆𝑆𝑡𝑡 = 𝑘𝑘, 𝐼𝐼𝑡𝑡−1)~𝐹𝐹�0,ℎ𝑘𝑘,𝑡𝑡,𝜃𝜃𝑘𝑘�, 
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where 𝐹𝐹�0,ℎ𝑘𝑘,𝑡𝑡,𝜃𝜃𝑘𝑘� is a continuous distribution with zero mean, time-varying variance ℎ𝑘𝑘,𝑡𝑡, 

and additional shape parameters contained in the vector 𝜃𝜃𝑘𝑘. Following Ardia et al. (2017), the 

integer-valued stochastic variable 𝑆𝑆𝑡𝑡, defined on the discrete space {1, …, K}, is assumed to 

evolve according to an unobserved first-order ergodic homogeneous Markov chain with 

transition probability matrix 𝑷𝑷 = �𝑝𝑝𝑖𝑖,𝑗𝑗�
𝑘𝑘
𝑖𝑖,𝑗𝑗=1

, with 𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑃𝑃[𝑆𝑆𝑡𝑡 = 𝑗𝑗|𝑆𝑆𝑡𝑡−1 = 𝑖𝑖], with 𝐼𝐼𝑡𝑡−1 being 

the information set available at time t-1. 

As in Haas et al. (2004), the conditional variance of 𝑦𝑦𝑡𝑡 is assumed to follow a GARCH 

process. This is not restricted to be the standard GARCH model: 

ℎ𝑘𝑘,𝑡𝑡 = 𝜔𝜔�𝑦𝑦𝑡𝑡−1,ℎ𝑘𝑘,𝑡𝑡−1,𝜃𝜃𝑘𝑘�, 

where ω(·) – is a 𝐼𝐼𝑡𝑡−1 – measurable function which defines the filter for the conditional 

variance and also ensures its positiveness. By contrast, a variety of GARCH specifications are 

considered, in particular: 

SGARCH (Bollerslev (1986)) 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2

𝑝𝑝

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2

𝑞𝑞

𝑗𝑗=1

. 

EGARCH (Nelson (1991)) 

ln (𝜎𝜎𝑡𝑡2) = 𝑤𝑤 + ��𝛼𝛼𝑖𝑖 ∗ �
|𝜀𝜀𝑡𝑡−𝑖𝑖|
𝜎𝜎𝑡𝑡−𝑖𝑖

− 𝐸𝐸 �
|𝜀𝜀𝑡𝑡−𝑖𝑖|
𝜎𝜎𝑡𝑡−𝑖𝑖

�� + 𝛾𝛾𝑖𝑖
𝜀𝜀𝑡𝑡−𝑖𝑖
𝜎𝜎𝑡𝑡−𝑖𝑖

 � + � ln�𝜎𝜎𝑡𝑡−𝑗𝑗2 �
𝑞𝑞

𝑗𝑗

𝑝𝑝

𝑖𝑖=1

. 

GJRGARCH (Glosten et al. (1993)) 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + ��𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝐼𝐼(𝜀𝜀𝑡𝑡−𝑖𝑖>0)�𝜀𝜀𝑡𝑡−𝑖𝑖2

𝑝𝑝

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2

𝑞𝑞

1

. 

TGARCH (Zakoian (1994)) 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖[(1 − 𝛾𝛾𝑖𝑖)𝜀𝜀𝑡𝑡−𝑖𝑖+

𝑝𝑝

𝑖𝑖=1

− (1 + 𝛾𝛾𝑖𝑖)𝜀𝜀−] + �𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗 
2

𝑞𝑞

𝑗𝑗=1

. 

As for distribution mixture models, suppose that: 

𝑦𝑦𝑡𝑡~𝐷𝐷𝐷𝐷(𝑝𝑝1, … ,𝑝𝑝𝑘𝑘; 𝜇𝜇1, … , 𝜇𝜇𝑘𝑘;ℎ1, … ,ℎ𝑘𝑘), 

where DM is a mixture of densities with the following form: 

𝜗𝜗(𝑦𝑦) = �𝑝𝑝𝑖𝑖𝑓𝑓𝑖𝑖(𝑦𝑦)
𝑘𝑘

1

,�𝑝𝑝𝑖𝑖

𝑘𝑘

1

= 1,𝑓𝑓𝑖𝑖(𝑦𝑦) = 𝑓𝑓(𝑦𝑦; 𝜇𝜇𝑖𝑖;ℎ𝑖𝑖), 

where [𝑝𝑝1, … ,𝑝𝑝𝑘𝑘] is the positive mixing law and 𝑓𝑓 denotes the density function. 

As an example of a distribution mixture model, consider the normal mixture models: 

according to Alexander and Lazar (2006), these can be seen as Markov switching GARCH 
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models in a restricted form, where the transition probabilities are independent of the past 

state. It is assumed that K variances follow some mixture of distributions. For example, the 

normal mixture standard GARCH (1, 1) will be defined as follows: 

𝜎𝜎𝑖𝑖𝑡𝑡2 = 𝜔𝜔𝑖𝑖 + 𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−12 + 𝛽𝛽𝑖𝑖𝜎𝜎𝑖𝑖𝑡𝑡−12 ,𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … ,𝐾𝐾. 

According to the Cifter and Ozun (2007) the overall conditional variance will then be: 

𝜎𝜎𝑡𝑡2 = �𝑝𝑝𝑖𝑖𝜎𝜎𝑖𝑖𝑡𝑡2
𝐾𝐾

𝑖𝑖=1

+ �𝑝𝑝𝑖𝑖𝜇𝜇𝑖𝑖2
𝐾𝐾

𝑖𝑖=1

. 

4.2 Value-at-Risk Backtesting 
Value-at-Risk at level 𝛼𝛼 is defined as the maximum loss one could expect to incur with 

probability 𝛼𝛼 over a specific period. Mathematically: 

𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑋𝑋) = inf{𝑥𝑥|𝐹𝐹𝑋𝑋(𝑥𝑥) ≥ 𝛼𝛼} = 𝐹𝐹𝑋𝑋−(𝑥𝑥), 

where 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑋𝑋) is 𝑉𝑉𝑉𝑉𝑅𝑅 at level 𝛼𝛼 of a random variable 𝑋𝑋, 𝐹𝐹𝑋𝑋(𝑥𝑥) is the cumulative 

distribution function of 𝑋𝑋. Basically, VaR is the 𝛼𝛼-quantile of the underlying distribution. 

For carrying out VaR forecast tests, the first step is to define the “hit sequence” of 

VaR violations: 

𝐼𝐼𝑡𝑡+1 = 1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑡𝑡+1 < −𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡+1𝛼𝛼 , 

𝐼𝐼𝑡𝑡+1 = 0, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑡𝑡+1 > −𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡+1𝛼𝛼 , 

where 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡+1𝑎𝑎  is the VaR prediction at time t+1 for risk level α. Under the null hypothesis of 

correct specification the hit sequence should be an independent Bernoulli distributed variable. 

𝐻𝐻0: 𝐼𝐼𝑡𝑡+1~𝐵𝐵𝐵𝐵𝑓𝑓𝐵𝐵𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖(𝛼𝛼), 

𝑓𝑓(𝐼𝐼𝑡𝑡+1,𝑝𝑝) = (1 − 𝑝𝑝)1−𝐼𝐼𝑡𝑡+1𝑝𝑝𝐼𝐼𝑡𝑡+1 . 

The unconditional coverage (UC) test of Kupiec (1995) uses the fraction of observed 

violations for a particular risk model – 𝜋𝜋 and compares it with p. For this purpose the 

likelihood Bernoulli function is needed: 

𝐿𝐿(𝜋𝜋) = Π(1 − 𝜋𝜋)1−𝐼𝐼𝑡𝑡+1𝜋𝜋𝐼𝐼𝑡𝑡+1 = (1 − 𝜋𝜋)𝑇𝑇0𝜋𝜋𝑇𝑇1 , 

where 𝑇𝑇0,𝑇𝑇1 are the number of 0s and 1s in the sample (𝑇𝑇 = 𝑇𝑇0 + 𝑇𝑇1). The maximum 

likelihood estimator is: 

𝜋𝜋� =
𝑇𝑇1

𝑇𝑇0 + 𝑇𝑇1
, 

The hypothesis of interest can be tested by means of the following likelihood ratio test: 

𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢 = −2 ln �
𝐿𝐿(𝛼𝛼)
𝐿𝐿(𝜋𝜋�)�~𝜒𝜒12, 

Under the null hypothesis that the model is correct 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢 is asymptotically 𝜒𝜒12. 

However, this test focuses only on the number of exceptions. A situation can arise 

when the model passes the unconditional coverage test but all violations are concentrated. In 
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order to reject a VaR with clustered violations a test of independence of the hit sequence is 

needed. Suppose that this exhibits time dependence and follows a first-order Markov 

sequence with the following transition probability matrix: 

Π1 = �1 − 𝜋𝜋01 𝜋𝜋01
1 − 𝜋𝜋11 𝜋𝜋11

�, 

where 𝜋𝜋01is the probability of getting a violation tomorrow given no violation today. 

Then the corresponding likelihood function is the following: 

𝐿𝐿(Π1) = (1 − 𝜋𝜋01)𝑇𝑇00𝜋𝜋01
𝑇𝑇01(1 − 𝜋𝜋11)𝑇𝑇10𝜋𝜋11

𝑇𝑇11 , 

where 𝑇𝑇𝑖𝑖𝑗𝑗 is the number of observations with a j following i.  

If the hit sequence is independent over time, then 𝜋𝜋01 = 𝜋𝜋11 = 𝜋𝜋. The transition probability 

matrix will have the following form: 

Π� = �1 − 𝜋𝜋� 𝜋𝜋�
1 − 𝜋𝜋� 𝜋𝜋��. 

Then, independence can be tested using a likelihood ratio test statistic defined as follows: 

𝐿𝐿𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 = −2 ln �
𝐿𝐿(π�)
𝐿𝐿�Π1��

�~𝜒𝜒12. 

It is important for VaR users to be able to test simultaneously whether the hit sequence is 

independent and the average number of violations is correct; the conditional coverage (CC) 

test developed by Christoffersen (1998) makes this possible. A sequence of VaR forecasts at 

risk level α has the correct conditional coverage if {I𝑡𝑡𝑎𝑎; 𝑡𝑡 = 1, … ,𝐻𝐻} is an independent and 

identically distributed sequence of Bernoulli random variables with parameter α. To test this 

hypothesis a joint test of independence of the series and the unconditional coverage of the 

VaR forecasts the likelihood ratio defined as follows is carried out: 

𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢 =  −2 ln �
𝐿𝐿(𝛼𝛼)
𝐿𝐿�Π1��

�~𝜒𝜒22. 

This is equivalent to testing the null 𝜋𝜋01 = 𝜋𝜋11 = 𝛼𝛼. Note also that 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢 = 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢 + 𝐿𝐿𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖. 

An additional test is the dynamic quantile (DQ) one introduced by Engle and 

Manganelli (2004). It is based on a linear regression of the hit variable on a set of explanatory 

variables including a constant, the lagged values of the hit variable and any useful function of 

past information. Let us denote 𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡(𝛼𝛼) = 𝐼𝐼𝑡𝑡(𝛼𝛼) − 𝛼𝛼. Under the correct model specification, 

the following moment conditions are satisfied: 𝐸𝐸[𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡(𝛼𝛼)] = 0,𝐸𝐸[𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡(𝛼𝛼)|𝐼𝐼𝑡𝑡−1] =

0,𝐸𝐸[𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡(𝛼𝛼)𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡`(𝛼𝛼)] = 0 for 𝑡𝑡 ≠ 𝑡𝑡`. The linear regression is the following: 

𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡(𝛼𝛼) = 𝛿𝛿 + �𝛽𝛽𝑘𝑘𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡−1(𝛼𝛼)
𝐾𝐾

𝑘𝑘=1

+ �𝛾𝛾𝑘𝑘𝑔𝑔[𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡−𝑘𝑘(𝛼𝛼),𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡−𝑘𝑘−1(𝛼𝛼), … ]
𝐾𝐾

𝑘𝑘=1

+ 𝜀𝜀𝑡𝑡, 
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where 𝑔𝑔(. ) is a function of past information. The null hypothesis of conditional efficiency is 

equivalent to testing whether the coefficients are jointly equal to zero: 

𝐻𝐻0: 𝛿𝛿 = 𝛽𝛽1 = ⋯ = 𝛽𝛽𝑘𝑘 = 𝛾𝛾1 = ⋯ = 𝛾𝛾𝑘𝑘 = 0,∀ 𝑘𝑘 = 1, … ,𝐾𝐾. 

However, these tests do not provide any insights into the magnitude of exceedance and 

therefore do not enable the researcher to make model comparisons. 

A final test is due to González-Rivera et al. (2004) and McAleer and Da Veiga (2008). 

It uses the asymmetric linear losses incurred by VaR forecasts. The quantile loss (QL) is 

given by the following function: 

𝑄𝑄𝐿𝐿𝑡𝑡𝑎𝑎 = �𝛼𝛼 − It(𝛼𝛼)�(𝑦𝑦𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡𝑎𝑎). 

4.3 Expected Shortfall Backtesting 
VaR is an elicitable risk measure, where a statistics 𝜙𝜙(𝑌𝑌) of a random variable 𝑌𝑌 is said to be 

elicitable if it minimises the expected value of a scoring function 𝑆𝑆 (Acerbi and Szekely 

(2014)): 

𝜙𝜙 = 𝑉𝑉𝑓𝑓𝑔𝑔min
𝑥𝑥

 𝐸𝐸[𝑆𝑆(𝑥𝑥,𝑌𝑌)]. 

It has been shown that VaR has several shortcomings, and that in particular is not able to 

capture tail risks beyond the 𝛼𝛼-quantile (Artzner et al. (1999), Danielsson et al. (2001), Basel 

Committee (2013)). For these reasons, ES was introduced (Artzner et al. (1997, 1999)). To 

put it simply, ES is the expected loss given that the loss 𝐿𝐿 exceeds VaR (𝐸𝐸𝑆𝑆 = 𝐸𝐸[𝐿𝐿|𝐿𝐿 >

𝑉𝑉𝑉𝑉𝑅𝑅]). Mathematically: 

𝐸𝐸𝑆𝑆𝛾𝛾(𝑋𝑋) =
1
𝛾𝛾
� 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼(𝑋𝑋)
𝛾𝛾

0
𝑑𝑑𝛼𝛼, 

where 𝐸𝐸𝑆𝑆𝛾𝛾(𝑋𝑋) is ES of a random variable 𝑋𝑋 at level 𝛾𝛾. 

The transition from VaR to ES as the main market risk metric (Basel Committee, 2016) 

makes it necessary to have a reliable backtesting procedure of ES. 

McNeil and Frey (2000) suggested an exceedance residual (ER) test that involves 

fitting a (volatility) model to the return data, estimating predictions of the mean and volatility, 

and then calculating the implied model residuals. Next, extreme value theory (EVT) can be 

applied, while treating the residuals as a white noise process, to model the tail of the marginal 

distribution. Lastly, the EVT model can be used to estimate the upper quantile of the marginal 

distribution.  One can then test whether the expected value of ER is zero against the one-sided 

alternative that it is greater than zero or, equivalently, that ES is systematically 

underestimated. 

The most recent test is the regression-based one of Bayer and Dimitriadis (2018),  

known as the ESR test. These authors use a joint regression framework for the quantile and 
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the ES, and present two-sided and one-sided versions of the test. Suppose that 𝐵𝐵𝑡𝑡�  is the ES 

forecast and 𝑌𝑌𝑡𝑡 is the log return. Then one can regress returns on the ES forecast as follows: 

𝑌𝑌𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽 ∗ �̂�𝐵𝑡𝑡 + 𝐵𝐵𝑡𝑡𝑒𝑒 , 

where 𝐸𝐸𝑆𝑆𝛾𝛾(𝐵𝐵𝑡𝑡𝑒𝑒|ℱ𝑡𝑡−1) = 0. One can then test the joint hypothesis that 𝛼𝛼 is equal to 0 and 𝛽𝛽 is 

equal to 1, 𝐻𝐻0: (𝛼𝛼,𝛽𝛽) = (0, 1), against the alternative that 𝐻𝐻1: (𝛼𝛼,𝛽𝛽) ≠ (0, 1). 

As the functional ES is not elicitable, these authors estimate semi-parametrically the 

following system: 

𝑌𝑌𝑡𝑡 = 𝛼𝛼0 + 𝛽𝛽0 ∗ 𝐵𝐵𝑡𝑡� + 𝐵𝐵𝑡𝑡
𝑞𝑞 , 

𝑌𝑌𝑡𝑡 = 𝛼𝛼1 +   𝛽𝛽1 ∗ 𝐵𝐵𝑡𝑡� + 𝐵𝐵𝑡𝑡𝑒𝑒 , 

where 𝑉𝑉𝑉𝑉𝑅𝑅𝛾𝛾�𝐵𝐵𝑡𝑡
𝑞𝑞�ℱ𝑡𝑡−1� = 0 and 𝐸𝐸𝑆𝑆𝛾𝛾(𝐵𝐵𝑡𝑡𝑒𝑒|ℱ𝑡𝑡−1) = 0. 

A Wald statistic is then carried out using the parameters (𝛼𝛼,𝛽𝛽): 

𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸 = ((𝛼𝛼,𝛽𝛽)′ − (0, 1)′)′ΣES−1� ((𝛼𝛼,𝛽𝛽)′ − (0, 1)′)′, 

where ΣES�  is an estimator for the (asymptotic) covariance matrix of the M-estimator of the 

parameters (𝛼𝛼,𝛽𝛽). Hence, the test statistics follows asymptotically a 𝜒𝜒22 distribution. 

The test described above has been named the bivariate ESR test by Bayer and 

Dimitriadis (2018). Since in their opinion the possibility of underestimating risk is the main 

issue for regulators, they also suggest another regression-based backtesting procedure for the 

ES: 

𝑌𝑌𝑡𝑡 − 𝐵𝐵𝑡𝑡� = 𝛼𝛼 + 𝐵𝐵𝑡𝑡𝑒𝑒 , 

where 𝐸𝐸𝑆𝑆𝛾𝛾(𝐵𝐵𝑡𝑡𝑒𝑒|ℱ𝑡𝑡−1) = 0 and the null hypothesis is that 𝛼𝛼 is zero. These are t-tests based on 

the asymptotic covariance. 

4.4 Model Confidence Set 
The backtesting procedures described above cannot help to select the best GARCH 

specification (even QL is not sufficiently informative). For this purpose we shall use instead 

the model confidence set (MCS) procedure introduced by Hansen et al. (2011). This consists 

of a sequence of tests that is used to construct a set of “superior” models (SSM) for which the 

null hypothesis of equal predictive ability (EPA) is not rejected.  

Specifically, consider a set, 𝐷𝐷0, that contains a finite number of models (𝑖𝑖 =

1, … ,𝑚𝑚0); these are evaluated in terms of a specified loss function for the i-th model at time t, 

𝐿𝐿𝑖𝑖,𝑡𝑡, where 𝑡𝑡 =  1, … ,𝐵𝐵. 

Let the performance variable be:  

𝑑𝑑𝑖𝑖𝑗𝑗,𝑡𝑡 = 𝐿𝐿𝑖𝑖,𝑡𝑡 − 𝐿𝐿𝑗𝑗,𝑡𝑡 ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷0. 

Then define the relative sample loss statistics  
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�̅�𝑑𝑖𝑖𝑗𝑗 =
1
𝐵𝐵
�𝑑𝑑𝑖𝑖𝑗𝑗,𝑡𝑡

𝑖𝑖

𝑡𝑡=1

, 

and 

�̅�𝑑𝑖𝑖. =
1
𝑚𝑚
� �̅�𝑑𝑖𝑖𝑗𝑗
𝑗𝑗∈𝑀𝑀

. 

Finally assume that 

𝜇𝜇𝑖𝑖𝑗𝑗 = 𝐸𝐸�𝑑𝑑𝑖𝑖𝑗𝑗� 𝑉𝑉𝐵𝐵𝑑𝑑 𝜇𝜇𝑖𝑖. = 𝐸𝐸(𝑑𝑑𝑖𝑖. ) 

is finite and does not depend on 𝑡𝑡 ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷0. 

Therefore, the set of superior models is defined as 

𝐷𝐷∗ = �𝑖𝑖 ∈ 𝐷𝐷0: 𝜇𝜇𝑖𝑖𝑗𝑗 ≤ 0 ∀ 𝑗𝑗 ∈ 𝐷𝐷0�. 

In order to eliminate inferior elements of the set 𝐷𝐷0 the following EPA hypotheses are tested 

𝐻𝐻0,𝑀𝑀: 𝜇𝜇𝑖𝑖𝑗𝑗 = 0 ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷, 

𝐻𝐻𝐴𝐴,𝑀𝑀: 𝜇𝜇𝑖𝑖𝑗𝑗 ≠ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑚𝑚𝐵𝐵 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 

or 

𝐻𝐻0,𝑀𝑀: 𝜇𝜇𝑖𝑖. = 0 ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷, 

𝐻𝐻𝐴𝐴,𝑀𝑀: 𝜇𝜇𝑖𝑖.≠ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑚𝑚𝐵𝐵 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷 

where 𝐷𝐷 ⊂ 𝐷𝐷0.  

From these statistics the following t-statistics can be constructed 

𝑡𝑡𝑖𝑖𝑗𝑗 =
�̅�𝑑𝑖𝑖𝑗𝑗

�𝑣𝑣𝑉𝑉𝑓𝑓� (�̅�𝑑𝑖𝑖𝑗𝑗)
 and 𝑡𝑡𝑖𝑖 . =

�̅�𝑑𝑖𝑖.
�𝑣𝑣𝑉𝑉𝑓𝑓� (�̅�𝑑𝑖𝑖.)

 for 𝑖𝑖, 𝑗𝑗 ∈ 𝐷𝐷. 

The two EPA hypotheses map into the two test statistics 

𝑇𝑇𝐸𝐸,𝑀𝑀 = max
𝑖𝑖,𝑗𝑗 ∈ 𝑀𝑀

�𝑡𝑡𝑖𝑖𝑗𝑗�  𝑉𝑉𝐵𝐵𝑑𝑑 𝑇𝑇𝑚𝑚𝑎𝑎𝑥𝑥,𝑀𝑀 = max
𝑖𝑖∈𝑀𝑀

𝑡𝑡𝑖𝑖 . 

As mentioned before, the MCS procedure is a sequential testing procedure that removes the 

worst model that removes the worst model at each step, until the hypothesis of EPA is not 

rejected for all models in the SSM. The choice of the worst model to be eliminated is made 

using an elimination rule that is coherent with the statistic tests defined above, namely: 

𝐵𝐵𝑚𝑚𝑎𝑎𝑥𝑥,𝑀𝑀 = 𝑉𝑉𝑓𝑓𝑔𝑔max
𝑖𝑖∈𝑀𝑀

�̅�𝑑𝑖𝑖.
𝑣𝑣𝑉𝑉𝑓𝑓� (�̅�𝑑𝑖𝑖.)

, 𝐵𝐵𝐸𝐸,𝑀𝑀 = 𝑉𝑉𝑓𝑓𝑔𝑔max
𝑖𝑖

⎩
⎨

⎧
𝑠𝑠𝐵𝐵𝑝𝑝
𝑗𝑗∈𝑀𝑀 

�̅�𝑑𝑖𝑖𝑗𝑗

�𝑣𝑣𝑉𝑉𝑓𝑓� ��̅�𝑑𝑖𝑖𝑗𝑗�
 

⎭
⎬

⎫
. 

To summarise, the MCS procedure consist of the following steps: 

1. set 𝐷𝐷 = 𝐷𝐷0, 

2. Test for the EPA hypothesis; if EPA is not rejected terminate the algorithm and set 

𝐷𝐷 = 𝐷𝐷∗, otherwise use the elimination rule and find the worst model, 
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3. Remove the worst model, and go to step 2. 

The MCS procedure requires a loss function. For the VaR the QL will be used. However, the 

choice of a loss function is not straightforward. Various papers have attempted to develop a 

consistent scoring function. Here we shall use the same loss function for ES backtesting as in 

Bayer and Dimitriadis (2018), which belongs to a class of functions originally introduced by 

Fissler and Ziegel (2016) in the context of forecast evaluation. They derived a consistent 

scoring function for (𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼, 𝐸𝐸𝑆𝑆𝛼𝛼) in the following way. 

Let 𝛼𝛼 ∈ (0, 1). Also let ℱ be a class of distribution functions on ℛ with finite first 

moments and unique 𝛼𝛼-quantiles, and 𝐴𝐴0 = {𝑥𝑥 ∈ ℛ2: 𝑥𝑥1 ≥ 𝑥𝑥2}. A scoring function S is then 

defined as follows: 𝐴𝐴0 × ℛ → ℛ of the form 

𝑆𝑆(𝑥𝑥1, 𝑥𝑥2,𝑦𝑦) = �1{𝑦𝑦≤𝑥𝑥1} − 𝛼𝛼�𝐺𝐺1(𝑥𝑥1) − 1{𝑦𝑦≤𝑥𝑥1}𝐺𝐺1(𝑦𝑦) + 𝐺𝐺2(𝑥𝑥2)�𝑥𝑥2 − 𝑥𝑥1 +
1
𝛼𝛼

1{𝑦𝑦≤𝑥𝑥1}(𝑥𝑥1 − 𝑦𝑦)�

− 𝒢𝒢2(𝑥𝑥2) + 𝑉𝑉(𝑦𝑦), 

where 𝐺𝐺1,𝐺𝐺2,𝒢𝒢2, 𝑉𝑉 ∶ ℛ → ℛ,𝒢𝒢2′ = 𝐺𝐺2,𝑉𝑉 is ℱ-integrable and 1(−∞;𝑥𝑥1]𝐺𝐺1 is ℱ-integrable 

∀ 𝑥𝑥1 ∈ ℛ, is ℱ-consistent for (𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝐸𝐸𝑆𝑆𝛼𝛼) if 𝐺𝐺1 is increasing and 𝒢𝒢2 is increasing and convex. 

If 𝒢𝒢2 is strictly increasing and strictly convex, then S is strictly ℱ-consistent for (𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼,𝐸𝐸𝑆𝑆𝛼𝛼). 

Bayer and Dimitriadis (2018) used the scoring function defined above as follows: 

𝑆𝑆(𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡 ,𝐸𝐸𝑆𝑆𝛼𝛼𝑡𝑡 ,𝑦𝑦𝑡𝑡) =
1

−𝐸𝐸𝑆𝑆𝛼𝛼𝑡𝑡
�𝐸𝐸𝑆𝑆𝛼𝛼𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡 +

(𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼𝑡𝑡 − 𝑦𝑦𝑡𝑡)1{𝑦𝑦≤𝑥𝑥1}

𝛼𝛼
� + log(−𝐸𝐸𝑆𝑆𝛼𝛼𝑡𝑡 ), 

which is the 0-homogeneous loss function (see Dimitriadis and Bayer (2017), Taylor (2017), 

Patton et al. (2017), Barendse (2017) and Nolde and Ziegel (2017)). 

5. Empirical Results 
As mentioned above, we estimate the following GARCH specifications: SGARCH, 

EGARCH, GJRGARCH and TGARCH. Normal (norm), skewed normal (snorm), Student’s t 

(std), skewed Student’s t (sstd), generalized error (GED) and skewed generalized error 

distributions (sged) are used. Finally, the mixture parameter is included; if this takes the value 

of one (TRUE) then the model becomes the distribution mixture GARCH, if it is instead set 

equal to zero (FALSE) it yields the MSGARCH specification. In total, 1176 GARCH models 

were estimated for each cryptocurrency.  

The results were obtained from 1-step ahead VaR and ES predictions. A moving 

window with refitting at every step was used for the estimates and the predictions. The 

window size is 70% of the total number of observations. The models that did not fail the 

backtesting procedures were then used in the MCS procedure in order to obtain the best 

model or set of models. The p-values in the MCS procedure was set equal to 30%.  
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5.1 Value-at-Risk Results 
Table 2 reports p-values for the backtesting procedures and the MCS procedure for the 

superior set of models (SSM) for Bitcoin. As can be seen, 24 models out of 1176 satisfy the 

VaR and ES backtesting procedures and were selected by MCS as models with equal 

predictive power with respect to QL. Note that none of the single regime models was selected 

for the SSM.  

Standard GARCH models prevail in the first and second regimes. Interestingly, the 

normal distribution prevails in the first regime, but whilst the Student’s t distribution is 

appropriate for 70% of the models in the second regime. Mixture models represent 

approximately 60% of those selected for the SSM. It is also noteworthy that in the first regime 

a variety of specifications appear to be appropriate, whilst in the second standard GARCH 

and GJRGRACH account for more than 90% of the specifications. The same pattern emerges 

for the distribution functions: in the second regime the Student’s t and normal distribution are 

chosen in 87.5% of the cases. Interestingly, no models with a skewed GED distribution are 

selected for the SSM, and none with skewed distributions in the second regime. Specifications 

that account for leverage effects at least in one of the regimes represent more than 75% of 

those selected for the SSM. 
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Table 2 P-values of Bitcoin backtesting procedures and MCS procedure for VaR loss function 

  UC CC DQ ER ESR MCS 
tGARCH-sGARCH-sstd-std-TRUE 63% 84% 99% 68% 87% 100% 
tGARCH-gjrGARCH-sstd-std-TRUE 61% 83% 100% 81% 80% 100% 
eGARCH-sGARCH-snorm-std-TRUE 86% 89% 99% 71% 97% 100% 
sGARCH-sGARCH-norm-std-TRUE 87% 91% 100% 66% 94% 100% 
sGARCH-sGARCH-norm-std-FALSE 85% 91% 100% 58% 96% 100% 
sGARCH-gjrGARCH-norm-std-FALSE 85% 91% 100% 59% 96% 100% 
gjrGARCH-eGARCH-ged-std-TRUE 59% 81% 100% 66% 71% 100% 
gjrGARCH-gjrGARCH-norm-std-FALSE 85% 91% 100% 67% 89% 99% 
eGARCH-sGARCH-sstd-std-TRUE 60% 82% 100% 68% 56% 98% 
sGARCH-gjrGARCH-snorm-std-FALSE 87% 90% 99% 67% 95% 97% 
gjrGARCH-sGARCH-norm-ged-FALSE 87% 90% 100% 81% 68% 97% 
eGARCH-sGARCH-std-std-TRUE 60% 82% 100% 54% 62% 96% 
sGARCH-sGARCH-snorm-std-FALSE 87% 90% 100% 67% 99% 95% 
gjrGARCH-gjrGARCH-std-std-TRUE 85% 91% 97% 57% 73% 94% 
sGARCH-sGARCH-snorm-std-TRUE 87% 91% 100% 65% 94% 94% 
eGARCH-gjrGARCH-norm-norm-TRUE 87% 90% 99% 84% 85% 94% 
sGARCH-gjrGARCH-snorm-norm-TRUE 87% 90% 99% 72% 91% 78% 
sGARCH-tGARCH-std-std-TRUE 89% 92% 100% 77% 81% 74% 
sGARCH-sGARCH-norm-ged-FALSE 59% 81% 100% 65% 81% 74% 
tGARCH-sGARCH-norm-ged-TRUE 59% 81% 100% 54% 91% 71% 
tGARCH-sGARCH-std-norm-FALSE 59% 81% 100% 72% 65% 67% 
gjrGARCH-sGARCH-norm-std-FALSE 85% 91% 100% 59% 97% 67% 
sGARCH-sGARCH-std-norm-FALSE 59% 81% 100% 58% 84% 66% 
gjrGARCH-sGARCH-std-std-TRUE 60% 82% 92% 59% 92% 66% 

Table 3 shows the results for Ethereum. Only one model was selected. It is a mixture 

of GJRGARCH with Student’s t distribution in the first regime and TGARCH with skewed 

Student’s t distribution in the second regime. 
Table 3 P-values of Ethereum backtesting procedures and MCS procedure for VaR loss function 

  UC CC DQ ER ESR MCS 
gjrGARCH-tGARCH-std-sstd-TRUE 96% 97% 99% 100% 65% 100% 

Table 4 reports the results for Ripple. Only eight models satisfied all backtesting 

procedures and were selected by the MCS procedure. For the first regime models with 

standard GARCH or TGARCH were chosen by this procedure. For the second regime 50% of 

the models selected for the SSM have a TGARCH specification and 25% of them has either a 

standard GARCH or GJRGARCH specification. In the first regime normal and skewed 

normal distributions prevail, while in the second the Student-t and skewed Student-t 

distributions are found to be appropriate for all models. The same percentage of mixture 

models and Markov-switching models are selected for the SSM. Specifications accounting for 

leverage effects at least in one of the regimes represent more than 75% of those in the SSM. 
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Table 4 P-values of Ripple backtesting procedures and MCS procedure for VaR loss function 

  UC CC DQ ER ESR MCS 
sGARCH-sGARCH-snorm-sstd-TRUE 30% 57% 100% 54% 66% 100% 
tGARCH-gjrGARCH-sstd-sstd-FALSE 11% 28% 87% 89% 61% 100% 
sGARCH-tGARCH-sged-sstd-FALSE 11% 28% 96% 100% 84% 100% 
sGARCH-tGARCH-snorm-std-TRUE 12% 29% 95% 6% 58% 100% 
tGARCH-gjrGARCH-norm-std-FALSE 30% 57% 96% 99% 10% 99% 
tGARCH-tGARCH-norm-sstd-FALSE 44% 68% 94% 100% 10% 98% 
sGARCH-tGARCH-norm-std-TRUE 11% 28% 84% 100% 99% 69% 
sGARCH-sGARCH-snorm-std-TRUE 94% 95% 100% 79% 85% 64% 

Table 5 shows that MCS selects the highest percentage of models satisfying the 

backtesting procedures in the case of Litecoin; in total, 33 models out of 1176 were chosen. In 

the first regime TGARCH models represent 40% of those selected, standard GARCH ones 

30% and EGARCH and GJRGARCH the rest; the most common distribution is the normal, 

followed by the skewed normal and Student’s t. In the second regime standard GARCH 

models exceed 50%, and the Student’s t and skewed Student’s t distributions are also selected 

in more than 50% of the cases for the SSM. Mixture models represent more than 80% of those 

in the SSM. Specifications allowing for leverage at least in one regime account for 

approximately 76% of those in the SSM. 
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Table 5 P-values of Litecoin backtesting procedures and MCS procedure for VaR loss function 

  UC CC DQ ER ESR MCS 
gjrGARCH-tGARCH-norm-sstd-TRUE 51% 78% 62% 100% 85% 100% 
tGARCH-sGARCH-snorm-sstd-TRUE 52% 79% 100% 56% 51% 100% 
sGARCH-sGARCH-norm-sstd-FALSE 83% 91% 97% 60% 83% 100% 
sGARCH-sGARCH-norm-std-FALSE 83% 91% 93% 70% 82% 100% 
gjrGARCH-gjrGARCH-norm-sged-TRUE 50% 78% 99% 53% 59% 100% 
gjrGARCH-tGARCH-sstd-std-TRUE 51% 78% 100% 63% 67% 100% 
tGARCH-sGARCH-sged-sstd-TRUE 51% 78% 100% 50% 71% 100% 
sGARCH-sGARCH-std-sstd-TRUE 83% 93% 100% 58% 90% 99% 
tGARCH-gjrGARCH-std-sstd-TRUE 84% 94% 100% 57% 51% 99% 
sGARCH-sGARCH-norm-sged-TRUE 83% 91% 100% 54% 76% 98% 
sGARCH-sGARCH-snorm-std-TRUE 53% 75% 99% 63% 99% 98% 
sGARCH-sGARCH-sstd-std-TRUE 83% 93% 100% 66% 80% 98% 
gjrGARCH-sGARCH-sstd-std-TRUE 83% 93% 100% 68% 54% 97% 
tGARCH-tGARCH-snorm-ged-TRUE 53% 80% 100% 86% 79% 97% 
sGARCH-sGARCH-std-std-TRUE 51% 78% 100% 57% 74% 97% 
tGARCH-tGARCH-norm-ged-TRUE 50% 78% 100% 58% 65% 95% 
tGARCH-gjrGARCH-ged-sstd-TRUE 86% 94% 100% 86% 65% 93% 
tGARCH-sGARCH-ged-sstd-TRUE 51% 78% 100% 66% 79% 93% 
gjrGARCH-gjrGARCH-std-std-TRUE 50% 78% 100% 52% 54% 93% 
tGARCH-sGARCH-sstd-std-TRUE 84% 94% 100% 88% 56% 84% 
gjrGARCH-sGARCH-std-sged-TRUE 50% 78% 99% 54% 66% 81% 
eGARCH-sGARCH-ged-sged-TRUE 50% 78% 100% 54% 67% 78% 
gjrGARCH-eGARCH-norm-std-FALSE 50% 78% 100% 57% 53% 76% 
eGARCH-tGARCH-snorm-ged-TRUE 50% 78% 100% 57% 60% 74% 
sGARCH-tGARCH-snorm-ged-TRUE 50% 78% 100% 52% 54% 72% 
eGARCH-gjrGARCH-snorm-sged-TRUE 50% 78% 100% 52% 53% 69% 
tGARCH-sGARCH-sged-std-TRUE 51% 78% 99% 56% 57% 68% 
sGARCH-sGARCH-snorm-sged-TRUE 83% 93% 100% 51% 85% 64% 
tGARCH-sGARCH-sstd-sstd-TRUE 82% 91% 100% 86% 51% 63% 
tGARCH-eGARCH-sstd-snorm-TRUE 85% 95% 100% 69% 53% 53% 
tGARCH-sGARCH-norm-ged-FALSE 51% 78% 99% 99% 79% 52% 
sGARCH-eGARCH-std-sged-FALSE 83% 91% 99% 64% 81% 38% 
tGARCH-sGARCH-std-ged-FALSE 51% 78% 100% 94% 82% 34% 

5.2 Expected Shortfall Results 
Table 6 reports p-values for all backtesting procedures and the MCS procedure to choose the 

best set of models for Bitcoin. As can be seen 25 models out of 1176 satisfy the VaR and ES 

backtesting procedures and were selected by MCS as models with equal predictive power 

with respect to the joint loss function. Note that none of the single regime models was 

selected for the SSM.  

The results from the MCS procedure with a joint loss function are mostly the same as 

those for QL, since SSM is constructed from the same set of models that did not fail the VaR 

and ES backtesting procedures. Standard GARCH models prevail in the first and second 

regimes. Interestingly, the normal distribution prevails in the first regime, but in the second 

the Student’s t distribution is selected in 70% of the cases. Mixture models represent 60% of 

those in the SSM. In the first regime there is more variety of specifications, whilst in the 

second standard GARCH and GJRGRACH represent 90% of the chosen models. Similarly, 

the Student’s t and normal distribution prevail in the second regime being selected in 88% of 
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the cases. No models with a skewed GED distribution are included in the SSM, and none with 

a skewed distribution in the second regime. Specifications accounting for leverage effects at 

least in one of the regimes represent 80% of those in the SSM. 
Table 6 P-values of Bitcoin backtesting procedures and MCS procedure for joint loss function 

  UC CC DQ ER ESR MCS 
eGARCH-sGARCH-snorm-std-TRUE 86% 89% 99% 71% 97% 100% 
eGARCH-sGARCH-sstd-std-TRUE 60% 82% 100% 68% 56% 100% 
gjrGARCH-gjrGARCH-std-std-TRUE 85% 91% 97% 57% 73% 100% 
tGARCH-sGARCH-sstd-std-TRUE 63% 84% 99% 68% 87% 100% 
sGARCH-sGARCH-norm-std-FALSE 85% 91% 100% 58% 96% 100% 
sGARCH-sGARCH-norm-std-TRUE 87% 91% 100% 66% 94% 100% 
gjrGARCH-sGARCH-norm-ged-FALSE 87% 90% 100% 81% 68% 100% 
gjrGARCH-gjrGARCH-norm-std-FALSE 85% 91% 100% 67% 89% 100% 
tGARCH-gjrGARCH-sstd-std-TRUE 61% 83% 100% 81% 80% 100% 
sGARCH-gjrGARCH-norm-std-FALSE 85% 91% 100% 59% 96% 100% 
eGARCH-sGARCH-std-std-TRUE 60% 82% 100% 54% 62% 100% 
sGARCH-sGARCH-norm-ged-FALSE 59% 81% 100% 65% 81% 100% 
sGARCH-sGARCH-std-norm-FALSE 59% 81% 100% 58% 84% 100% 
gjrGARCH-eGARCH-ged-std-TRUE 59% 81% 100% 66% 71% 99% 
tGARCH-sGARCH-std-norm-FALSE 59% 81% 100% 72% 65% 99% 
tGARCH-sGARCH-norm-ged-TRUE 59% 81% 100% 54% 91% 99% 
sGARCH-gjrGARCH-snorm-std-FALSE 87% 90% 99% 67% 95% 99% 
gjrGARCH-sGARCH-std-std-TRUE 60% 82% 92% 59% 92% 99% 
sGARCH-sGARCH-snorm-std-FALSE 87% 90% 100% 67% 99% 97% 
sGARCH-tGARCH-std-std-TRUE 89% 92% 100% 77% 81% 97% 
eGARCH-gjrGARCH-norm-norm-TRUE 87% 90% 99% 84% 85% 93% 
sGARCH-gjrGARCH-snorm-norm-TRUE 87% 90% 99% 72% 91% 79% 
tGARCH-gjrGARCH-norm-std-TRUE 86% 91% 100% 67% 89% 48% 
sGARCH-gjrGARCH-norm-norm-TRUE 87% 90% 99% 61% 88% 43% 
gjrGARCH-sGARCH-norm-std-FALSE 85% 91% 100% 59% 97% 39% 

Table 7 shows the results for Ethereum, which are essentially the same as for QL. 
Table 7 P-values of Ethereum backtesting procedures and MCS procedure for joint loss function 

  UC CC DQ ER ESR MCS 
gjrGARCH-tGARCH-std-sstd-TRUE 96% 97% 99% 100% 65% 100% 

Table 8 reports the results for Ripple. Only five models did not fail the backtesting 

procedures and were selected by the MCS procedure. In the first regime standard GARCH or 

TGARCH models were chosen by MCS procedure; in the second a TGARCH specification is 

selected for the SSM in 60% of the cases, and GARCH or GJRGARCH ones in 20% of them. 

Normal and skewed normal distributions prevail in the first regime, whilst Student’s t and 

skewed Student’s t distributions are chosen in all cases in the second. Markov-switching and 

mixture models represent respectively 60% and 40% of those included in the SSM. 

Specifications with leverage effects at least in one of the regimes represent 80% of the total in 

the SSM. 
Table 8 P-values of Ripple backtesting procedures and MCS procedure for joint loss function 

  UC CC DQ ER ESR MCS 
sGARCH-sGARCH-snorm-sstd-TRUE 30% 57% 100% 54% 66% 100% 
sGARCH-tGARCH-sged-sstd-FALSE 11% 28% 96% 100% 84% 100% 
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sGARCH-tGARCH-snorm-std-TRUE 12% 29% 95% 6% 58% 91% 
tGARCH-tGARCH-norm-sstd-FALSE 44% 68% 94% 100% 10% 79% 
tGARCH-gjrGARCH-sstd-sstd-FALSE 11% 28% 87% 89% 61% 45% 

Table 9 show the results of the MCS procedure for Litecoin with a joint loss function. 

In total 47 models were chosen, the highest percentage of models satisfying the VaR and ES 

backtesting procedures. Standard GARCH is chosen in one third of the cases in the first 

regime, and in approximately half of them in the second. The Student’s t distribution and its 

skewed version prevail in both regime, whilst the percentages for the normal distribution and 

its skewed version are 40% and 4% respectively in the two regimes. The corresponding 

percentages for the GED distribution are 44% and 18% respectively. Mixture models are 

selected in 80% of the cases for the SSM. Specifications with leverage effects are also chosen 

in 80% of the cases at least in one regime. 
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Table 9 P-values of Litecoin backtesting procedures and MCS procedure for joint loss function 

  UC CC DQ ER ESR MCS 
sGARCH-sGARCH-norm-std-FALSE 83% 91% 93% 70% 82% 100% 
sGARCH-sGARCH-norm-sstd-FALSE 83% 91% 97% 60% 83% 100% 
gjrGARCH-tGARCH-norm-sstd-TRUE 51% 78% 62% 100% 85% 100% 
tGARCH-sGARCH-snorm-sstd-TRUE 52% 79% 100% 56% 51% 100% 
tGARCH-sGARCH-sged-sstd-TRUE 51% 78% 100% 50% 71% 100% 
gjrGARCH-gjrGARCH-norm-sged-TRUE 50% 78% 99% 53% 59% 100% 
sGARCH-sGARCH-std-sstd-TRUE 83% 93% 100% 58% 90% 100% 
sGARCH-sGARCH-snorm-std-TRUE 53% 75% 99% 63% 99% 100% 
tGARCH-sGARCH-ged-sstd-TRUE 51% 78% 100% 66% 79% 99% 
sGARCH-sGARCH-sstd-std-TRUE 83% 93% 100% 66% 80% 97% 
gjrGARCH-sGARCH-std-sged-TRUE 50% 78% 99% 54% 66% 97% 
tGARCH-gjrGARCH-std-sstd-TRUE 84% 94% 100% 57% 51% 96% 
sGARCH-sGARCH-norm-sged-TRUE 83% 91% 100% 54% 76% 95% 
sGARCH-sGARCH-std-std-TRUE 51% 78% 100% 57% 74% 95% 
gjrGARCH-tGARCH-sstd-std-TRUE 51% 78% 100% 63% 67% 94% 
tGARCH-tGARCH-norm-ged-TRUE 50% 78% 100% 58% 65% 94% 
gjrGARCH-sGARCH-sstd-std-TRUE 83% 93% 100% 68% 54% 92% 
tGARCH-sGARCH-sstd-sstd-TRUE 82% 91% 100% 86% 51% 91% 
eGARCH-tGARCH-snorm-ged-TRUE 50% 78% 100% 57% 60% 89% 
tGARCH-sGARCH-std-ged-FALSE 51% 78% 100% 94% 82% 88% 
eGARCH-sGARCH-snorm-sged-TRUE 50% 78% 100% 50% 53% 88% 
sGARCH-eGARCH-std-sged-FALSE 83% 91% 99% 64% 81% 87% 
tGARCH-tGARCH-snorm-ged-TRUE 53% 80% 100% 86% 79% 86% 
tGARCH-gjrGARCH-ged-sstd-TRUE 86% 94% 100% 86% 65% 85% 
gjrGARCH-eGARCH-norm-std-FALSE 50% 78% 100% 57% 53% 85% 
tGARCH-sGARCH-sstd-std-TRUE 84% 94% 100% 88% 56% 85% 
sGARCH-sGARCH-sged-sstd-FALSE 50% 78% 100% 55% 60% 82% 
gjrGARCH-eGARCH-sstd-ged-TRUE 50% 78% 99% 53% 67% 79% 
eGARCH-gjrGARCH-snorm-sged-TRUE 50% 78% 100% 52% 53% 79% 
sGARCH-tGARCH-snorm-ged-TRUE 50% 78% 100% 52% 54% 71% 
eGARCH-sGARCH-ged-sged-TRUE 50% 78% 100% 54% 67% 70% 
sGARCH-tGARCH-norm-ged-TRUE 50% 78% 100% 52% 60% 69% 
gjrGARCH-gjrGARCH-std-std-TRUE 50% 78% 100% 52% 54% 68% 
sGARCH-eGARCH-std-snorm-TRUE 50% 78% 97% 51% 59% 64% 
sGARCH-eGARCH-ged-sged-TRUE 50% 78% 100% 53% 63% 63% 
sGARCH-tGARCH-sged-sstd-FALSE 50% 78% 100% 63% 68% 61% 
eGARCH-sGARCH-snorm-sged-FALSE 50% 78% 100% 52% 58% 59% 
tGARCH-eGARCH-sstd-snorm-TRUE 85% 95% 100% 69% 53% 59% 
tGARCH-sGARCH-norm-ged-FALSE 51% 78% 99% 99% 79% 56% 
gjrGARCH-eGARCH-std-std-TRUE 50% 78% 96% 61% 72% 55% 
eGARCH-tGARCH-sstd-sstd-TRUE 53% 80% 100% 71% 69% 52% 
sGARCH-sGARCH-snorm-sged-TRUE 83% 93% 100% 51% 85% 50% 
tGARCH-sGARCH-sged-std-TRUE 51% 78% 99% 56% 57% 43% 
sGARCH-eGARCH-std-sged-TRUE 50% 78% 98% 55% 68% 42% 
sGARCH-gjrGARCH-sstd-ged-TRUE 50% 78% 100% 58% 71% 40% 
gjrGARCH-tGARCH-snorm-ged-FALSE 51% 78% 99% 96% 64% 38% 
eGARCH-sGARCH-std-std-TRUE 50% 78% 100% 62% 59% 35% 

6. Conclusions 
This paper has used VaR and ES backtesting as well as the MCS procedure to select the best 

model or superior set of GARCH volatility models for four of the main cryptocurrencies, 

namely Bitcoin, Ethereum, Ripple and Litecoin. Two-regime GARCH models are found to 

produce better VaR and ES predictions than single-regime models. In particular, models that 
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allow for asymmetry prevail in the superior set of models on the basis of both VaR and joint 

loss functions. Mixture GARCH models prevail for almost all cryptocurrencies with both a 

quantile loss function and a joint loss function.  

On the whole, our findings are consistent with those reported in the existing literature 

showing that cryptocurrencies exhibit extreme volatility and leverage effects. They also 

indicate that using standard GARCH models may yield incorrect VaR and ES predictions, and 

hence result in ineffective risk-management, portfolio optimisation, pricing of derivative 

securities etc. These could be improved by using instead the model specifications suggested 

by our analysis, from which both investors and regulators (such as the US Securities and 

Exchange Commission (SEC), which is planning to regulate the cryptocurrency exchanges) 

can benefit.  

Future work will use intraday data to address the issue of the large number of the 

observations required by some of the tests carried out in the present paper, and also estimate 

multivariate GARCH models, e.g. to examine the linkages between Altcoin and Bitcoin.  
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