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ABSTRACT

Siegel (1995) has developed a technique with which the systematic risk of a security
(beta) can be estimated without recourse to historical capital market data. Instead,
beta is estimated implicitly from the current market prices of exchange options that
enable the exchange of a security against shares on the market index. Because this
type of exchange options is not currently traded on the capital markets, Siegel’s
technique cannot yet be used in practice. This article will show that beta can also
be estimated implicitly from the current market prices of plain vanilla options, based
on the Capital Asset Pricing Model. We provide empirical evidence on implicit betas

using prices of exchange options from the EUREX over years 2000 to 2004.
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1 Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965)
continues to be of central importance to the valuation of risk-bearing securities,
in theory as well as in practice. The CAPM is still widely used in estimating the
cost of capital of firms and evaluating their performance. Unfortunately, empirical
findings of the CAPM are poor. Empirical problems may be caused by theoretical
problems,; such as simplifying assumptions, or by difficulties in implementing tests
of the CAPM.

According to the CAPM, the expected rate of return on a security depends primarily
on its systematic risk (beta), which is normally estimated by means of a regressive
analysis of historical capital market data. Of all of the numerous empirical tests of
the CAPM, the study by Fama and French (1992) in particular generated much
attention. According to this study, beta has hardly any explanatory power for
the expected rate of return on a security. In fact, the expected rate of return
depends much more on the size of a company and the book-to-market ratio. Berk
(1995) showed nonetheless that these effects can also be traced back to a flawed
measurement of beta.! Statistical errors can be caused in particular by the fact
that beta changes through time.? In order to avoid this problem, Siegel (1995)
proposes a method with which beta can be estimated from current options prices,
without recourse to historical capital market data. However, practical application
of this method requires that exchange options be traded that entitle the exchange
of securities for shares on the market index. Presently, such options are not traded
on the capital market. The purpose of this paper is to universalize Siegel’s method
so that beta can also be estimated from plain vanilla options.

The Siegel (1995) method is based on estimation of implicit volatility according
to Latané and Rendleman (1976), whose technique is considered the standard in
option pricing today.> Siegel (1995) ties this technique together with the valuation
of exchange options according to Margrabe (1978) in order to estimate implicit
beta. Siegel (1997), Campa and Chang (1998), and Walter and Lopez (2000) use
similar approaches to obtain implied correlation of currencies from currency options.

Recently, Skintzi and Refenes (2005) propose a method in forecasting future index

L Fama and French (2004) discuss the empirical problems that may be caused by difficulties in
implementing valid tests of the CAPM.
2Skintzi and Refenes (2005) and Longin and Solnik (2001), for example, observed that corre-

lations of stocks returns increase in highly volatile or bear markets.
3See Blair et al. (2001) for recent studies on the predictive ability of implied volatility.



correlation called implied correlation index that is also based on current option
prices.

In this article the Siegel (1995) method will be universalized in that the implicit
density function of an underlying asset is estimated implicitly from the theoretical

4 The beta of an underlying asset results

CAPM prices of plain vanilla options.
from the moments of this density function. The theoretical basis for calculation of
implicit, risk-neutral density functions originates from Ross (1976) and Breeden and
Litzenberger (1978) and has been used in numerous works to this day: Rubinstein
(1994), Darman and Kani (1994), Jackwerth and Rubinstein (1996), and Brown
and Toft (1999) estimate implicit risk-neutral density functions with the help of
a modified binomial model (Implied Binomial Trees). Shimko (1993), Jarrow and
Rudd (1982), and Longstaff (1995) estimate the price functions of options directly
from their observed market prices, in dependence on the exercise price, and from
there derive risk-neutral density functions. Ait-Sahalia and Lo (2000) and Jackwerth
(2000) determine a clear difference between risk-neutral and subjective expectations
and attempt to draw conclusions from this regarding the risk aversion of market
participants. Jackwerth (2000) arrives furthermore at the result that the historical
capital market rates of return are approximately lognormally distributed.

The notation and model assumptions are explained in section 2. In section 3, a
model is presented with which calls can be evaluated based on the CAPM when
rates of return are distributed lognormally. On this basis, it is possible to estimate
beta implicitly from the prices of ordinary calls in section 4. In section 5 we apply
this approach to estimating betas from call options traded at the EUREX. Section 6

summarizes the results.

2 Assumptions and Notation

The valuation of options in section 3 is based on the assumptions of the one-period
CAPM:

1. Risk-averse investors maximize the p-o-utility of their end-of-period wealth.

2. Investors have homogeneous expectations about assets returns; the instanta-
neous rate of return on any asset and the market portfolio have a joint normal
distribution.® Investors may borrow or lend unlimited amounts at the risk-free

rate.

4Dennis and Mayhew (2002) investigated the relative importance of beta in explaining the

prices of stock options traded on the Chicago Board Options Exchange.
5For a definition of bivariate normal distribution, see Appendix A.



3. Markets are frictionless. Information is costless and simultaneously available
to all investors. There are no market imperfections such as transaction costs,

taxes, or restrictions on short selling.

The following notation is used throughout the paper:

K Exercise price on an option
XC) Price of a call on an asset S with cashflow Xc
Xcm) Price of a call on the market index X’m with cashflow Xcm

(
(
P(Xee) Price of an exchange option call with cashflow X,
(
(

P XS) Price of an underlying asset S with cashflow X,

p(X,) Current Market index

N Number of shares of asset S to be exchanged under the exchange option
N Number of shares of the market index under the exchange option

R, Standardized cashflow of an underlying asset, R, = X, / p(Xs)

R Standardized cashflow of the market portfolio, R, = X, / p(Xm)

Bs Beta of an underlying asset S with respect to the market index

Tf Instantaneous risk-free rate of interest

Ty Instantaneous rate of return on asset S

Trn Instantaneous rate of return on the market index

s Expected instantaneous rate of return on asset S

fhm Expected instantaneous rate of return on the market index

og Instantaneous variance of the rate of return on asset S

Om Instantaneous variance of the rate of return on the market index

p Instantaneous correlation between the rates of return on asset S and on the

market index
In the case of the given parameters for bivariate normal distribution of rates of
return, the following applies for the expected values, variances and covariances of

the securities’ cash flow and market portfolio’s standardized cash flow®

E[X,] = p(X,) e, (1)
B[R] = et 200, (2)

Var [Ry,] = e2#m+om (e"’%ﬂ - 1> : (3)
Cov [X,, By = p(X,) elmtaomtnstaod (epomos _ 1) (4)

5The moments of lognormal distribution can be calculated with the help of the integrals (38),
(39) and (40) indicated in Appendix A.



For the standard definition of beta, the following results in the case of bivariate

normal distribution”’

o OOU [RS, Rm] €#S+%o’§ . (epo'sa'm _ 1)

= : ()

Var [R,y,] etmTaoh . (eoh — 1)

B

To simplify matters the time-to-maturity of an option is set equal to one throughout

the paper.®

3 The Model

3.1 Option Pricing in an Incomplete Lognormal Market

In an incomplete lognormal market the CAPM may be used for option pricing.” The

well-known certainty equivalent valuation formula of the single-period CAPM is'?

EX]—X Cov[X,Rn) 0 B[R] -(+75) )

1+ Var [Ron]

p(XC) =

In order to be able to apply this equation to the valuation of a call, the expected cash
flow of the call and the covariance between the cash flow of the call and the rates of
return on the market portfolio must first be determined. Under the assumption of

lognormally distributed rates of return, we derive!!

E[X] = p(X,) - 37 . D (d) — K - ® (dy), (7)
COU [ cy }ém] = p(Xs) : eus-‘réag-f-ltm-f-%mzn : (epasam - O (d3> - (dl))

— K et (0 (dy) — @ (dy)), (8)
di = (In(p(X)/K) + )/ (02) + o, (9)
d> = (In(p(X,)/K) + ps) /(0), (10)
ds = (In(p(X,)/K) + ps)/(05) + 05 + p o, (11)
di = (In(p(X,)/K) + 1) /(0,) + p oo (12)

If we insert (7) and (8) in (6), after further conversion we get a representation that

allows a comparison with the valuation equation according to Black and Scholes

"For a general definition of beta, see Copeland et al. (2005), p. 152.

8However, one can easily adjust the model to any time-to-maturity ¢ different from one year
using the following transformations: =1t ..., 0% =t- (71274@. and 7 =1 -7fpaq..

90ptions are redundant securities in a complete market. However, the empirical results of

Vanden (2004) indicate that options are nonredundant for explaining the returns on risky assets.
0See Copeland et al. (2005), p. 157.
1See Appendix B. Put prices follow from put-call parity.



(1973)12

p(X.) = p(X,)0) — K e 6 (13)

where 6, = ebr+3oi=ms (q> (dy) — X el 390 (ep750m (dy) — B (dl))) (14)
Oy = P (do) — X "2 (B (dy) —  (do)) . (15)

This model can be applied to the special case of complete markets. On complete
markets, a risk-neutral valuation always leads to the correct valuation result.'® In a
risk-neutral world, the rate of return of the expected cash flow of a given risk-bearing

financial title and that of the market portfolio equal the risk-free interest rate'?

MS+U§/2:7’f, (16)
Hom + 07271/2 =T (17>

This correlation can also be intuitively justified. Market participants may only
expect a risk premium for their risk-bearing financial title if they cannot nullify
the risk through diversification of their portfolio. Because systematic risk can be
nullified through diversification in complete markets, the market price of the risk is
zero. From (16) and (17) follows A =0, 6, = ® (d;) and 05 = ® (d2). The valuation

equation (13) is reduced accordingly with risk-neutral valuation to

p(X IA=0)= p()N( ) @ (1n(p()”(s)/K)+rf+a§/2> _Kerd <1n(p()”(s)/K)+rf_gg/2>
(18)

which equals the valuation equation of Black and Scholes (1973).

3.2 Pricing Options on the Market Index

Jarrow and Madan (1997) developed a valuation model for calls on the market index
that is also based on the assumptions of the CAPM and lognormally distributed rates

of return. If we use the notation established above, then the value of a call on the

12 Ritchken (1985a) developed a similar valuation equation for options based on the CAPM.
This model is not consistent with the Black and Scholes (1973) model in the case of risk-neutral

valuation, however.
13See Cox and Ross (1976).
141f the expected instantaneous rate of return on a security equals j and the rate of return is

lognormally distributed, then the rate of return on the expected cash flow equals s + 02 /2.



market index equals'®

p(Xcm) = p(Xm) le - Ke_rf 9m2 (20)

where 6 = efmt3om—rs (<I> (dmy) — A elmt 3 (eofncb (dms) — @ (dm1)>) ,
(1)
® (dmy) — A e'mt 2% (@ (dmy) — @ (dms)), (22)
(In(p(Xm)/K) + pim +02) / (0m) , (23)
(1 (24)
(1 (25)

9m2 -

dm1

0(p(Xn)/K) + pm) / (0m) 24

n(p(X)/K) + ptm +202) / (01) - 25

This valuation equation is solely a special case of (13); for calls on the market index,

the following apply: p =1, us = p, and o5 = opy,.

4 Implicit Beta

4.1  FEstimating Beta Using Exchange Options

Siegel (1995) assumes that continuous security trading on perfect capital markets

is possible.!6

This standard assumption of options price theory enables a risk-
neutral valuation of options and is equivalent to the assumption of complete capital
markets.!” Because the theoretical option prices in the case of risk-neutral valuation
are independent of the correlation of cash flow of the underlying asset with that

of the market portfolio, beta cannot be implicitly estimated from simple options.

15 Jarrow and Madan (1997) define the parameter ., as the rate of return of the expected value,
while we use it to identify the expected rate of return. In order to establish comparability with
our results, the parameter y must be replaced with u + 02/2 in the work by Jarrow and Madan
(1997),

p(Xem) = (a + b K) p(Xn) e T29m & (dmy) — a K® (dms) — bp(Xm)2 e2mtom) (dmg)  (19)

where a = (e"fn_rf ~(umt30 )) / (e”gn -1)

b= <+ = 1)/ (p(K) 207 (7 — 1)

If we furthermore assume that the investor’s planning horizon and the time to maturity of the
option are identical, following elementary conversions, the valuation equation (20) results from the
valuation equation (19). However, for the special case of calls on the market index, the Ritchken

(1985a) model is not identical with the Jarrow and Madan (1997) model.
16See Assumption 1 in Siegel (1995).
17See Coz et al. (1979).



Siegel (1995) therefore recourses to exchange options, which securitize the right for
exchange of a financial title for shares on the market portfolio. The theoretical price
of an exchange option in terms of risk-neutral valuation depends on the correlation
of the cash flow of a financial title with the rates of return of the market portfolio and
is therefore generally suitable for determining implicit beta factors. The risk-neutral

valuation of exchange options is based on Margrabe (1978),

ns P():(s) ns P():(s)

) = nop) o (MR ) (BRI gy

Oe Oe

whereby the volatility o. depends on the volatilities of the underlying assets and the

correlation of their rates of return,
2 _ S a1 2, 2
o; =Var[rs —ty] = 0; 4+ 05, — 2 psm s O, - (27)

Siegel (1995) assumes that three types of options are traded on the capital market:
options on a common asset, options on the market index, and options that entitle the
exchange of securities for shares on the market index. His idea for determination of
implicit beta factors consists of first estimating the volatilities of the two underlying
assets and the volatility o, of the exchange option implicitly from traded options.

The correlation coefficient is then derived from correlation (27),
psm = (03 + 07, = 07) [ (205 0). (28)
According to Siegel (1995), this results in the beta factor of the asset,
Bl = pan 05 | Om = (07 + 0y, = 07) [ (207,). (29)

Leland  (1999) describes definition (29) as modified beta. Even in risk-neutral

valuation, this definition does not equal the standard definition of beta'®

D D POsOm __
_ Cov [RSlRm] _ € : ‘ (30)
Var [R,,] em — 1

Bs

Regardless of this, from a practical view there is the problem - as Siegel (1995)

himself notes - that exchange options are not currently traded on the capital markets.

4.2 Estimating Beta Using Plain Vanilla Options

On incomplete markets, beta can be estimated implicitly with the valuation equa-

tions (13) and (20). As a result of the state of data typically given on the capital

BInserting (16) and (17) in (5) results in (30).
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market, a two-stage process for estimating implicit beta is advisable. In a first step,
expectations of the market participant with regard to the market index are esti-
mated. Based on the valuation equation (20) for options on the market index, the
sum of the squared relative differences between the empirical options prices p(Xcm)*
and theoretical options prices (20) is minimized through selection of the parameter

fir and 6,

min i (p (Xcm):f b (Xcm)i) . (31)

- p(Xc )i

Based on the parameters i, and &,,, estimated in the first step, the parameters ji

and 0, can be determined with the same method for any asset S ,

4 (p(ffc)j p()”(c)j)?

p(Xe),

J

(32)
j=1

Through the application of relative instead of absolute differences, it is avoided that

in-the-money options influence estimations of the parameters much stronger than

out-of-the-money options.

In the minimization, the correlation coefficient p cannot be estimated independently

of the parameters fi; and 6, as the CAPM equilibrium condition must be considered

as an additional condition for the underlying asset,

. E[X,]—\- X.. R E[R, — (1 +r
p(Xs) — [ s] A CO*U [ S Rm] where \ = [ ] (N Tf) ' (33)
L+ 7} Var [R,,)
Following several conversions, inserting (1), (2), (3) and (4) in (33) results in
r (e%m —
el rE ) = e ) (34)

(e7h — 1) + (e~ (m+390=70) — 1) (epomos —1)

Implicit beta (5) of an asset S can be calculated with the estimated parameters. In

order to calculate beta, (34) must be resolved accordingly,

2 2
62/Lm+0'm (607” - 1> 6#5"‘%0’? _ eTf

eum+%afn — et euer%U?nJruer%U?

ponos=1In|1+ ) (35)

and inserted in (5).

19This technique is also applied by Rubinstein (1994) for the estimation of implicit risk-neutral

density functions.



5 Empirical Illustration

We apply the new technique to call options traded at the Eurex, the European
electronic exchange (futures exchange) based in Frankfurt, Germany. It is one of
the world’s largest derivatives exchanges. Implicit betas are estimated for those
nine call options on stocks with the highest trading volumes at the Eurex.?’ The
following data screening procedures were applied: options with no transactions or
missing volume were removed. Furthermore, options with expiration dates smaller
than 30 days or larger than two years were deleted.?! In order to keep the empirical
application as simple as possible, we also disregard from dividend payments.

Table 1 displays the names of the underlying assets as well as the frequencies of trade
(number of transactions), volume of transactions in units and volume of transactions
in € (turnover) for each of the nine options over the years 2000 to 2004.%2 Tt
is worth noting that the call options, e.g. on Allianz AG, EON AG, Muenchener
Rueckversicherung AG or SAP AG show an increase both in terms of transactions
as well as in volumes over this period, demonstrating the growing importance of the
option trade in general. The highest volumes can be observed for call options on
the market index; the DJ EuroStoXX 50 had about a 33 billion € turnover in 2004.
On the other hand, there are examples of call options, e.g on Deutsche Telekom
AG where trade volume in € decreased during the observation period.

For each trading day of the year, the model is estimated using non-linear least
squares.?? In order to reduce the impact of influential observations, we assign weights
less than one to out-of-money calls.?* In the estimations, we employ the restriction
that p, + 0.502, > r; to ensure that the instantaneous rate of return of the market
index is always greater than the instantaneous risk-free rate of interest, 7.

Figure 1 shows the estimates of u,, and o,, for each day obtained in the first step

20We thank the Deutsche Boerse AG for kindly providing the data.
21 Call options with expiration dates less than 30 days yielded implausible estimates or aggravated

convergence problems in the model estimations.
22The descriptive statistics of Table 1 are based on the call options traded at the Eurex; this

explains the difference in comparison to the market statistics for all options reported by the EUREX

available at http://www.eurexchange.com/index.html.
23The estimation was carried out using the proc model procedure in SAS 9.1. We also tried

estimations on a weekly basis. Overall, the results on a weekly basis are very similar to those

obtained from the day-to-day estimations.
AThe following definitions were wused for the weights. Let ratio =

strike price/current stock price. If ratio > 1 then the weight in the estimation is given
as 2+ (1 — ®((ratio —1)/0.3)). For example, if ratio = 1.3 then weight = 0.317, if ratio = 1.6
then weight = 0.045.



of the analysis (refer to eq. 31). These estimations are based on the observed trans-
actions of call options on the DJ Eurostoxx 50 index. It can be stated that the
overall pattern of u,, and o, over time appears to be quite plausible. We observe
an increase of u,, and o, in the second half of 2002, but the estimates gradually
decline afterwards. We also find a strong correlation between fi,, and oZ,.

Table 2 contains the location and dispersion statistics for the estimated implicit
betas using the obtained us and o, for each call from the second step estimation.
Again, the estimation is carried out for each day with observation weights for out-
of-money calls as described above and the restriction that p,, + 0.502, > r; is used.
Generally, there are 253 to 255 trading days per year. Table 2 also displays the
number of days of the year for which the parameter estimates are obtained in the
second step. Missing estimates of u, and o, for some days are mainly the result
of non-convergence in the model estimations, and sometimes due to an insufficient
number of observations. Furthermore, estimates of y; and o, that give |p| > 1 (refer
to eq. 35) are set to missing.

Table 2 shows that the yearly averages of estimated betas for the underlying assets
are in plausible ranges. The computed 95% confidence intervals (C.I.) for expected
values of betas show that in all cases expected values of betas are significantly
different from zero. The implicit beta estimates for the technology-company Nokia
corporation are higher than the implicit beta estimates for E.ON AG, a big utility
company, again confirming the plausibility of the results. Another interesting result
is that implicit betas show some considerable variation over time. For instance,
Deutsche Telekom AG had implicit betas larger than one over the years 2000 to 2002,
but afterwards had lower implicit betas, a development which can also be observed
for SAP. Accordingly, an analysis based on the assumption of time-invariance on

betas might provide misleading evidence.

6 Summary and Conclusions

This article presents a technique with which beta can be estimated implicitly from
the prices of plain vanilla options, without recourse to historical capital market data.
The fundamental idea resembles that of Latané and Rendleman (1976) in the esti-
mation of implicit volatilities from options prices: beta is estimated implicitly from
options traded on the capital market, under the assumption of normally distributed
rates of return based on the CAPM. To illustrate the applicability of this new ap-
proach, we provide evidence on implicit beta estimates using data on call options

from the EUREX. We find that most of implicit betas are in a plausible range, and

10



the dispersion of betas within years appears to be reasonable. The estimation results
highlight that beta values change over the years, which implies that the results from
the conventional regressive analysis using historical data to obtain betas might be
misleading if time-invariance of beta is assumed. This issue will be an interesting

avenue for future research.

11



Appendix A: The Lognormal Distribution

The definition of density of normal distribution is

fz) =

1 _(z—%ﬁ 36
\/2%02.6 o (36)

®(-) is the standard normal distribution (u = 0 and ¢ = 1). A variate is lognor-

mally distributed if its natural logarithm is normally distributed. The definition of

bivariate normal distribution is

_ 1 (zfuz) (z—pz)(y—Hy) (?!*My)2
_ 1 2(1—p2) ( o2 —2p oz Iy + oy )
f(‘rv y) - €

21y Jo20%(1 — p?)

Two variates are bivariate lognormally distributed if their natural logarithms are

(37)

bivariate normally distributed. In order to be able to calculate the moments of log-
normally distributed variates (1), (2), (3) and (4), the simplifications of the following

special integrals are required:

e}

e f(z) dx = etttz (c0)® | (*aﬂurcaQ) (38)

o

// @2 f(xy,x9) dry deg = echatsz(co)? | @ <_“+“1+c’”1‘72> (39)

—0o0 a

—atpitoi+
/ /exleczg f(x17$2) dil?l d$2 _ eul—f— Ul—i-cug-l— (002) +cporoa | ) < a+p1+o7 Cp01<72>

o1

(40)

In order to keep the proofs of (38), (39) and (40) concise in the following, it is

convenient to use the conditional density. The definition of the conditional density

is
f(xla xQ)
faglay) = ————.
f(a1)
If we apply this definition to the bivariate normal distribution, we get
1 7(962 ( 2+p(,1 (z1— Ml)))2
f($2|1’1) = -e 203(1-5%) . (41)

2mo3(1 — p?)
Note that the conditional density of the bivariate normal distribution equals the

density of the normal distribution with the parameters
02
Haslay = H2 + pa—l(ifl — 1) und (42)

O ol = 02(1 = p°) (43)

12



We next prove equation (38).

o0 o0
1 _(a=pm? 1 _ 22— 2wpu—2c0%0 4>
/ecm . ce” 202 dx = e 202 dx
oV 2T o\ 2T
a a
oo
1 _ 2?2 —20(utco?) 442
= N 202 dZL‘
o\ 2T
a
oo
1 _ 2®—20(utco?) +(uteo®)? —(uteo?)2 442
= . 202 €T
oV 2T
a
o0
1 _—(utea?)? _ —(uteo?) 2442
= e 202 - e 202 de
o\ 2r
a
oo
1. 42 1 _ (@—(utco?))?
= ecl‘+§(c‘7) / .e 202 dx
oV 21

Equation (38) follows with 1 — @(M) = @(M) The proof for equa-

tion (39) is given under consideration of the conditional density indicated above,

/ /6%2 f(z1,22) doy dy = / / e fwa|y) dug | f(21) day

The integral in brackets can be interpreted in that the expected value and the
variance according to (42) and (43) are transformed and the equation (38) is subse-

quently used,

o 1
/ / e f(xo|zy) dro| f(aq)day = / lec(“ﬁpaf(xl’“)>+262<U§(1p2))} f(x1) dz
o 1 o
= ereergmtzetol-yios /ec'odimf(m)dm .
If we define the helping variable ¢* := cpg—i, we arrive at the equation (39) after

application of (38) and shortening of the terms in exponents. The proof for equa-

tion (40) can be shown analogously,

//ecxgex1 f(x17x2) dxy dzs :/ /ecm f(xQ‘:Cl) ds eaclf(xl)dlj

[eo]

72 122 1222 72
cua—c, +5c°05—5c0 ¢ T1+T
= M P TR oeTRe02p /epvl T () day

If we define the helping variable ¢™ := cp?2 + 1, we arrive at the desired result (40)

after repeated application of equation (38) and shortening of the terms in exponents.
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Appendix B: Option Pricing Using the CAPM

In order to calculate the expected value of a call (7), we use equation (38),

oo

E [Xc] = / max <p()~(8) e — K, O) f(rs)drs
o) [ e frdr, - K [ 100,
In(K/P(Xs) In(K/P(Xs)
= p(X,)e+27 . <1n(p(Xs)/K)+us+U§> _K® (m(p(ffs)/K)m) . (44)

We can simplify the calculation of the covariance through application of the decom-

position theorem. From equations (39) and (40) result

E X'R / /max s — K,0) - €™ f(rs,Tm) drp drg
/ / X K)-e™ f(rg,ry)dry, drs
—00 In(K/AXs)
/ / e f(rs,rm) dry drs — K - / / " f(rs, ) di drs
—00 In(K/PXy) —00 In(K/PXs)

Os

5 1,2 1,2 —In(K/p(Xs))+us+o2+posom
— p(Xs) . eﬂs+20's+llm+20'm+pa'sa'm . @ ( ( )

LK.t g (IH(K/MS))*“W”S””) . (45)

Os

Following the decomposition theorem, we arrive at the covariance (8) with (44) und

(45), after elementary conversions.

Appendix C: Tables and Figures
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Table 1: Description of Call Options and the Names of Underlying Assets

Call Option On  SECU 2000 2001 2002 2003 2004
DJ EURO OES { transactions 8069 13214 15810 17976 14578
STOXX 50 INDEX f contracts [million] 4.14 9.99 20.19 29.84 31.21
volu in € [billion] 7.82 16.1 29.85 35.67 33.09
ALLIANZ AG ALV 1 transactions 4712 6766 10425 12129 10108
f contracts [million] 0.5 0.99 3.32 13.97 16.04
volu in € [billion] 0.12 0.13 0.25 0.68 0.73
DEUTSCHE DBK f transactions 7636 9518 10434 7963 7562
BANK AG t contracts [million] 3.49 5.38 591 5.63 5385
volu in € [billion] 3.06 292 227 232 27
DAIMLER DCX { transactions 8603 9392 10567 7989 7125
CHRYSLER AG f contracts [million] 3.35 5.75 5.64 4.2  4.57
volu in € [billion] 092 1.6 161 079 1.22
DEUTSCHE DTE { transactions 11919 11118 10886 8310 7932
TELEKOM AG f contracts [million] 6.27 11.89 9.46 854 8.03
volu in € [billion] 3.19 233 0.87 078 0.61
E.ON AG EOA { transactions 1876 3622 4116 4387 4076
f contracts [million] 0.29 1.17 0.64 1.2 1.68
volu in € [billion]  0.09 0.17 0.13 0.2 0.65
MUENCHNER MUV { transactions 2342 2511 4898 7890 7711
RUECKVERS AG f contracts [million] 0.23 0.3 0.96 7.24 10.28
volu in € [billion] 0.04 0.03 0.09 043 0.29
NOKIA CORP. NOA { transactions 6061 11284 11557 8575 8502
f contracts [million] 2.27 837 11.41 7.28 9.57
volu in € [billion]  1.09 219 1.84 0.69 0.64
SAP AG SAP { transactions — 4894 11387 10107 7924
f contracts [million] —  0.61 3.81 9.42 7.85
volu in € [billion] — 0.65 249 759 525
SIEMENS AG SIE  § transactions 10657 13713 13013 9798 7639
f contracts [million] 2.3 4.44 4.63 4.3 3.86
volu in € [billion] 3.13 239 1.83 134 1.87

16



Table 2: Estimation Results for Implicit Betas

SECU 2000 2001 2002 2003 2004

ALV mean Beta 0.464 0.585 0.952 1.480 1.007
95% C.I. [0.38,0.54] [0.50,0.67] [0.87,1.03] [1.40,1.56] [0.91,1.10]

f days 211 214 229 207 202

DBK mean Beta 0.811 0.966 1.047 1.002 0.916
95% C.I. [0.72,0.90] [0.87,1.06] [1.00,1.10] [0.93,1.08] [0.83,1.01]

f days 226 227 236 223 199

DCX mean Beta 1.163 1.051 1.297 1.183 1.254
95% C.I. [1.10,1.23] [0.96,1.14] [1.26,1.33] [1.13,1.23] [1.20,1.31]

f days 206 180 214 212 152

DTE mean Beta 2.120 1.767 1.468 0.561 1.124
95% C.I. [2.04,2.20] [1.63,1.90] [1.39,1.55] [0.49,0.64] [1.05,1.20]

f days 215 187 218 251 174

EOA mean Beta 0.875 0.594 0.712 0.725 0.685
95% C.I. [0.78,0.97] [0.49,0.69] [0.66,0.76] [0.66,0.79] [0.59,0.78]

f days 107 154 194 181 122

MUV  mean Beta 0.945 0.511 1.002 1.476 0.890
95% C.I. [0.79,1.10] [0.40,0.62] [0.91,1.09] [1.39,1.56] [0.79,0.99]

f days 129 147 210 200 202

NOA mean Beta 1.924 2.373 1.723 1.014 1.641
95% C.I. [1.79,2.06] [2.21,2.54] [1.62,1.83] [0.93,1.10] [1.58,1.70]

f days 201 197 219 237 160

SAP  mean Beta — 1.311 1.106 0.787 0.489
95% C.I. — [1.13,1.49] [0.99,1.22] [0.69,0.88] [0.40,0.58]

f days — 122 226 239 210

SIE  mean Beta 1.334 1.439 1.233 0.938 0.915
95% C.I. [1.23,1.44] [1.34,1.54] [1.17,1.30] [0.87,1.01] [0.84,0.99]

# days 229 211 237 238 196
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