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1 Introduction

Much economic and social activity arises from and gives rise to local interactions at
the level of the neighbourhood. Locally, social and geographic space coincides, and
such interaction can lead to individual outcomes influencing and being influenced by
outcomes of one’s neighbours or peers, endogenous “neighbourhood effects” for short.
This interaction gives rise in turn to local social multipliers which can amplify the
social effect of idiosyncratic events. Here we consider the case of a duration outcome,
specifically, the duration of recent labour immigration spells in the Netherlands. Such
staying durations of immigrants in a host country is a key concern in the migration
literature (see e.g. the survey by Dustmann and Görlach, 2016). Spatially, these
immigrants not only cluster but also segregate along ethnic lines. In this setting, using
Dutch administrative data of the entire population of recent labour immigrants, we
seek to quantify the role of local interactions for the migrant’s return (or outmigration)
decision.

To this end, we propose a new statistical model of locally interdependent return
hazards, and develop new methods for estimation and statistical inference. Specifi-
cally, an individual migrant’s return hazard1 is assumed to depend directly on the
return hazard of others. This direct dependence captures the idea that an individual’s
return hazard is impacted on by the propensity of her peers or co-ethnics in the neig-
hbourhood to return. Our model of interdependent hazards is thus proposed as a
complement to the recent literature of social interactions in duration analysis which
models directly durations as interdependent. This complementarity reflects our diffe-
rent empirical setting. In particular, de Paula (2009) and Honoré and de Paula (2010)
obtain such dependence structurally by considering complete information 2-agent sy-
nchronisation games of optimal switching. We believe their modelling assumptions
too demanding for our specific empirical setting: here, the numbers of peers is very
large in some neighbourhoods, while information is necessarily incomplete, and ties
are weak. For this reason, we have opted to allow directly the propensities of peers or
co-ethnics to return to impact the individual hazard. For the same reason we do not
model the individual hazard to depend on the peers’ survival function, as in Sirakaya
(2006) in a proportional hazard (PH) setting.

Our statistical model of hazards as interdependent has two antecedents. First,
Lillard (1993) considers a simultaneous equation model for hazards in an accelerated
failure time (AFT) setting. Specifically, he studies a statistical model in which the
hazard of fertility depends directly on the hazard of marriage dissolution. The se-
cond antecedent is the so-called timing-of-events method (Abbring and van den Berg
(2003)) in mixed proportional hazard (MPH) models. There, the hazard of one pro-
cess depends directly on the duration and thus the hazard of another, and under the
no-anticipation assumption the latter is interpreted as a dynamic causal treatment
effect.2 Rosholm and Svarer (2006) combine these two approaches in a study of a

1As is standard in duration analysis, we model directly the hazard function, “the focal point of
econometric duration models” (van den Berg (2001)).

2For instance, Osikominu (2013) studies the effects of short-term job search-oriented training
programmes on the time to job entry. In Bijwaard et al. (2014) we study the dynamic effects
of unemployment on out-migration hazards. Drepper and Effraimidis (2015) examine the effect of
first-time drug use on the hazard of drug taking by siblings.
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model where the hazard rate out of unemployment depends on the hazard of entering
an active labour market programme. In our case, the interdependence of the hazards
arises because of local social interactions. As in the timing-of-events method we also
rule out anticipatory effects, in that the expected hazards at some future duration
have no effect on the hazard at the current duration. For these reasons, our appro-
ach also differs from models in which correlations between hazards arise because of
correlated frailties.3

Our modelling approach has also close parallels to the recent literature of binary
choice models with social interactions. Building on the pioneering insights of Brock
and Durlauf (2001), Lee et al. (2014) examine this model under the assumption of
heterogeneous expectations. The resulting statistical model is one of interdependent
choice probabilities, and the equilibrium is the fixed point of this (continuous) map-
ping. The authors derive conditions under which this mapping defines a contraction,
yielding a unique equlibrium. We follow this programme for our model of interdepen-
dent hazards, and obtain the conditions for a contraction mapping. In their empirical
application, Lee et al. (2014) consider the incidence of smoking among adolescents
under peer influence, and seek to disentangle empirically, in the language of Man-
ski (1993) such endogenous effects -the influence of peer outcomes- from contextual
effects - the influence of exogenous own and peer characteristics. In our case, the “out-
come” is a hazard, and the perspective is dynamic in contrast to the static binary
choice model. Interpreting the interaction as spatial at the level of the neighbourhood
also enables us to contribute methodologically and empirically to a growing literature
that confirms the importance of neighbourhood effects, while disentangling endoge-
nous from contextual effects.4

The estimation of and inference for spatially interdependent hazard models requi-
res new methods. In particular, although the statistical model has the structure of a
mixed proportional hazard (MPH) model, the reduced form does not. We therefore
develop and study two complementary estimation strategies. First, the reduced form
suggests naturally the application of maximum likelihood techniques, which yields our
spatial mixed proportional hazard (sMPH) estimator. Second, we propose a new spa-
tial linear rank estimator (sLRE) that offers an interesting trade-off for applied work:
while this estimator does not require the estimation of the distribution of individual-
level unobvserved heterogeneity, it requires that the local social interaction parameter
ρ be sufficiently small. We examine the performance of these two estimation appro-
aches in several Monte Carlos. We first show that ignoring local interaction when
they are present biases the standard MPH estimators. The induced spatial biases

3See e.g. Duffie et al. (2009) for a recent model. Such correlated frailties are often parametrised
using copulas, see e.g. Goethals et al. (2008) for a discussion.

4For instance, Topa (2001) considers spatial dependence of unemployment rates in a setting in
which spatial interaction arise from information spillovers. The spatial units are 863 census tracts
in Chicago, and residents in one tract are assumed to exchange information locally with residents
of the adjacent tracts. Instead of unemployment incidences, Gobillon et al. (2010) consider spatial
differences in the duration of unemployment using administrative data for 1300 municipalities in
the Paris region. In their paper the neighbourhood affects the outcome directly, thus defining an
exogenous neighbourhood effect. Bayer et al. (2008) study the propensity of neighbours to work
together by examining whether individuals residing in the same city block are more likely to work
together than those in nearby blocks.
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increases in ρ. The new sMPH estimates ρ very well throughout all experiments,
while the sLRE is complementary for ρ ≤ .4.

Turning to our empirical contributions, durations of stay in the host country are a
key concern in the migration literature (Dustmann and Görlach, 2016). While there
is a presumption in the literature that local social interactions could be important,
standard methods do not permit empirical quantifications. Here, we bring together a
new statistical model, new estimation strategies, and exploit exceptionally rich Dutch
administrative data of the universe of recent immigrants.

The spatial clustering of immigrants is often a manifestation of local social net-
works at work (e.g. Munshi (2003), McKenzie and Rapoport (2010)), and local
interactions are expected to be important for recent labour immigrants since they are
newcomers to the host country and the local labour market.5 Despite this presump-
tion of their importance, severe data limitations - relating foremost to the size of the
spatial units, to sample size and data reliability - have often prevented their rigorous
empirical investigation. The usual data situation in migration analysis is one of small
samples, possibly subject to selectivity and attrition issues, extracted from surveys of
respondents who provide recall data; these problems are particularly acute in studies
of migration durations since survey attrition usually confounds outmigration. If spa-
tial units are reported in survey data at all, these are typically either municipalities
or regions. Such spatial units are excessively large for analyses of local interactions.

We overcome these empirical data challenges using a unique administrative pa-
nel for the entire population of recent labour immigrants to the Netherlands covering
the years 1999-2007, which is extensively described in Data Appendix B. The data
characteristics -large size, repeated and accurate measurement- are fairly unique in
migration analysis, as is the spatial unit, the neighbourhood. This Dutch immigrant
register is based on the legal requirement for immigrants to register with the authori-
ties upon arrival. Moreover, natives as well as immigrants are required to register with
their municipality. Several other official registers are linked by Statistics Netherlands
to this immigrant register, such as the social benefit and the income register (used
by the tax authorities). Sojourn times in the Netherlands, in a specific neighbour-
hood, and in labour market states are thus recorded accurately. Consequently, no
data based on individual recall has to be used, and the administrative population has
no attrition. Moreover, the usual concerns about measurement error are less acute.
Another attractive feature of our data is the administrative report in the immigrant
register (consistent with the visa status at entry) of the immigration motive. This
enables us to focus explicitly and exclusively on labour immigrants. The immigra-
tion motive is usually latent in standard datasets, and our previous work (Bijwaard
(2010)) has confirmed that the systematically different behavioural patterns of labour
and non-labour migrants confound the empirical analysis. The size of our population
data of recent labour migrants permits us to consider specific groups. As in Adda et

5See e.g. Bartel (1989), and Logan et al. (2002) for an examination of ethnic immigrant enclaves
in the US, and Clark and Drinkwater (2002) for the UK. Zorlu and Mulder (2008) observe for the
Dutch case, the subject of our empirical investigation, that “in some neighbourhoods in The Hague,
Amsterdam and Rotterdam, the share of non-Western foreigners has reached levels above 70 per
cent and even 80 per cent” (p.1902). Such spatial concentration strongly suggests the presence of
local interactions.
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al. (2015) in the context of Germany, we consider here the largest ethnic group of re-
cent labour immigrants, namely Turkish labour immigrants (about 8000 individuals),
and refer to return and out-migration as “return” for short.

Our dataset identifies the neighbourhood the immigrant lives in, defined by Sta-
tistics Netherlands as areas that include approximately 2,000 households on average.
There are about 14,000 neighbourhoods. The extent of spatial clustering and segre-
gation among the four principal ethnic immigrant groups (Turks and three others for
comparison) is extensively documented in Data Appendix B.1 and B.2. For instance,
the Lorenz curve analysis shows that about 80% (70%) of this immigrant population
lives in about the 20% (10%) most concentrated neighbourhoods, and the mapping
of the 100 most concentrated neighbourhoods for each group reveals little spatial
overlap. This descriptive evidence suggests that there is scope for local interactions
resulting in interdependent return hazards.

The econometric analysis confirms the importance of such local social interactions.
The estimated social interaction parameter is fairly high (ρ̂ = .75), which then in-
duces a large social multiplier whose role increases as durations increase: local social
interactions accelerate migrants’ return probabilities, and this acceleration increases
as the duration of stay increases. This multiplier effect (and its interaction with co-
variates) is further explored in several counterfactual experiments that manipulate
individual migrant profiles and global push and pull factors. By contrast, the usual
MPH estimator is shown to fail to account for these effets, which results in a sub-
stantial under-estimation of return probabilities. For instance, in our illustration, at
month 60 the sMPH-based predicted return probability is about 3 times larger than
the spatially biased MPH estimate. The new methods developed in this paper are
thus also empirically important.

The outline of this paper is as follows. In the next section, the empirical setting
is presented in greater detail, as it informs our modelling choices. In Section 3, we
present and discuss the properties of the statistical model of locally interdependent
hazards. Our two complementary approaches to estimation are set out in Section 4.
We then study their performance in several Monte Carlos. Section 5 is devoted to the
empirical analysis. We also quantify the social multipliers for return probabilities in
several factual and counterfactual experiments, where we vary pull and push factors
as well as immigrant characteristics. All proofs are collected in the Appendix A.
Appendix B contains a detailed description of the data, as well as evidence about the
spatial clustering and segregation of the different immigrant groups.

2 The empirical setting: The population of recent

Turkish labour migrants

We proceed to present in some detail our empirical setting, focussing on spatial as-
pects, since the features of our statistical model of locally interdependent hazards
will be informed by this. We consider the population of recent labour immigrants to
The Netherlands, who have entered the host country during our observation window
1999-2007. The administrative data, covering this entire population, is extensively
described in Data Appendix B.1. Specifically, we focus on the largest ethnic group,
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namely Turkish immigrants (as in Adda et al. (2015) in the context of Germany). In
(Data) Appendix B.2 we have extensively documented that immigrants not only clus-
ter but also spatially segregate along ethnic lines. This applies particularly to Turkish
immigrants, and suggests that there is scope for local interactions as captured by the
econometric model.

Table 1: Summary statistics by neighbourhood concentration: Recent Turkish labour
migrants

neighbourhoods
all top 50 top 100 top 200 not top 200

N 7617 1109 1687 2582 5034
% Female 21 18 20 20 21
% Married 66 62 68 72 63
% with children 21 22 22 23 20
Average age at entry 28 28 28 27 28
Income at entry
0 < income p.m. < e 1000 [%] 77 65 73 78 77
Neighbourhood average :
% Turks 10 42 33 35 2
% unemployed 3.5 3.2 3.3 3.4 3.5
average income [×103] 11.4 8.4 8.9 9.4 12.3
global :
quaterly unempl. rate at entry 2.9 3.1 3.0 3.0 2.9
Length of stay at return [%]
< 6 months 4.1 4.6 4.3 4.3 4.0
6-12 months 19.3 42.5 37.8 31.3 10.5
12-18 months 14.2 15.9 15.1 14.2 14.0
18-24 months 12.9 18.9 16.7 16.1 10.6
24-60 months 35.8 11.7 18.0 23.7 44.6
> 5 years 13.8 6.4 8.0 10.3 16.3
censoringa[%] 80.2 60.6 70.2 75.9 82.5

Notes. Summary statistics for all recent Turkish labour immigrants for the subpopulations
residing in the 50, 100 or 200 most concentrated neighbourhoods in terms of the Turkish
population.

a Migrants who remain in the country until the end of the observation period.

Table 1 provides selective summary statistics for our data. In order to explore
spatial difference, we also contrast these summary statistics for all recent Turkish
labour immigrants for the subpopulations residing in the 50, 100 or 200 most concen-
trated neighbourhoods (in terms of the Turkish population). 15% of our individuals
reside in the top 50 neighbourhoods, and 22% in the top 100 neighbourhoods. We
complete the description of the spatial concentration with Figure 1, where we plot the
histogram and the kernel density estimate of the number of other (recently arrived)
Turkish labour migrants (“peers” for short). It is evident that the density is bimodal,
with a substantial number of individuals having many connections. The first and
third quartile are 27 and 657 connections, while the median and mean number of
connections are 75 and 263.
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The majority of these recent Turkish labour immigrants are men, albeit married,
and fairly young at arrival, the mean age being 28 years. These labour immigrants are
typically poor, as the vast majority earn less that e 1000 p.m. in their first job after
entry. Turks living in more concentrated neighbourhoods are more often male and
less often on very low incomes in the first job. The most concentrated neighbourhoods
exhibit slightly lower unemployment rates (e.g. 3.2% compared to an average 3.5%),
but also average lower incomes (e.g. e 8.4K compared to e 11.4K).

Figure 1: Histogram of the number of peers in neighbourhood
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Notes. Also included is the kernel density estimate (dashed line).

Next, we turn to the outcome of interest, namely the time spent in the host coun-
try. Table 1 indicates that while censoring is high, the incidence of outmigration (we
do not observe destinations) or return (“return” for short) is also substantial. Among
Turkish returnees, 24% have left again within one year of arrival. Turks living in
more concentrated neighbourhoods leave more often and faster. In order to take into
account the censoring of the data, we consider next the non-parametric Kaplan Meier
estimates of the return probabilities. As this estimator ignores spatial dependences,
the estimator is biased, and used here only as a descriptive benchmark. In order
to explore whether spatial difference are in evidence in the data, we juxtapose these
Kaplan Meier estimates for recent Turkish labour immigrants residing in and outside
the 100 most concentrated neighbourhoods. Figure 2 suggests that for all survival
times, Turks in the 100 most concentrated neighbourhoods (22% of our data) have
higher probabilities of return. In particular, for all survival times after 20 months,
the spatial difference is around 7 percentage points. Hence these comparisons bet-
ween concentrated and not concentrated neighbourhoods indicate important spatial
differences, but cannot distinguish between systematic differences in neighbourhood
characteristics (contextual effects) and endogenous local interaction. We disentangle
these using a new statistical model that is presented next.
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Figure 2: Kaplan Meier estimates of the return probabilities by neighbourhoods
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3 Local social interactions in duration models

We first present the new statistical model of locally interdependent hazards, before
discussing its key aspects in the context of the leading literature. We then study
identification, and propose new methods for estimation and statistical inference.

3.1 Interdependent hazards

Since we consider a duration outcome, we follow the literature and focus directly
on the hazard function, “the focal point of econometric duration models”, our point
of departure being a mixed proportional hazard (MPH) specification, as “MPH mo-
dels are the most popular reduced-form duration models in econometrics” (van den
Berg (2001), who provides an extensive survey). The observational units are recent
labour immigrants in the host country (the Netherlands), the duration variate, deno-
ted by T , is the time spent in the Netherlands, and the associated hazard is denoted
by λ.

For expositional clarity, we present first a restricted model of the migration dura-
tion which ignores the endogenous social interaction effect. This non-spatial model
will also serve as a natural benchmark in our assessment of spatial biases presented
below in Section 4.3.

The proportional hazard (PH) model expresses this return hazard as the product
between a baseline hazard, λ0(t, α), which is a function of the duration (or time-
to-event) alone (and a parameter vector α) and common to all individuals, and a
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covariate function, exp(x(t)β), which accelerates or decelerates exits: λ(t|x(t); θ) =
λ0(t, α) exp(x(t)β) with θ = (α′, β′)′ and x(t) being the history of the covariate pro-
cess x(.) up to duration t. The parameter space Θ is assumed to be convex. The
covariate vector x(t) is allowed to change over time, but we assume that their sample
paths are piecewise constant, i.e. the derivative with respect to t is 0 almost every-
where, and left continuous. As regards the baseline hazard, we assume that λ(t, α)
is a positive function, that it is twice differentiable, and that its second derivative is
bounded in α and t. In our empirical application the baseline hazard is modelled as
piecewise constant, so λ0(t, α) = exp

(
α0 + α′−0A(t)

)
with A(t) =

(
I1(t), . . . , Ik(t)

)′
denoting the vector of interval indicators. In order to accommodate unobserved
heterogeneity, the mixed proportional hazard model (MPH) extends the PH mo-
del by multiplying it by a time-invariant person-specific positive error term, say
v with some distribution G, assumed to be independent of the covariate process:
λ(t|x(t), v; θ) = vλ0(t, α) exp(x(t)β). It is well known that both baseline hazard and
G are non-parametrically identifiable (see e.g. Elbers and Ridder (1982)), so that
genuine duration dependence can be distinguished from dynamic sorting, provided
that some restrictions are imposed on one of these two objects: either v has a finite
mean, or the tail behaviour of G is restricted, or λ(t, α) is positive and finite for t
close to zero.

We augment this basic MPH specification by including local interactions that lead
to a direct interdependence of the hazards. However, it will also turn out that the
resulting reduced form is no longer of the MPH form (see (3) below). In order to record
whether any two individuals are neighbours, we follow common practice in spatial
and social network econometrics and collect this information in a spatial interaction
matrix W . Specifically, consider migrant i in a particular neighbourhood. Denote the
set of i’s co-ethnics in the same immigration cohort residing in the same or close-by
neighbourhood (the “peers” for short) by Ni(t) with i = 1, .., n. Since individuals
might move during the observation window, this set can vary with duration t. The
number of relevant peers is denoted by #Ni(t). The resulting n×n spatial interaction
matrix is W (t) = [wij(t)]i=1,..,n;j=1,..,n with wii(t) = 0, wij(t) = 1/#Ni(t) if j ∈ Ni(t)
and zero otherwise. Hence all peers of i have the same weight, and these weights
sum to 1. In our empirical application W is non-sparse, and its size will render it
challenging to invert. We address this problem below.

We are now in the position to formalise the idea that an individuals return hazard
is impacted on by the propensity of her peers in the neighbourhood to return: Hazards
are assumed to be locally interdependent, as the return hazards of peers of migrant
i ({j ∈ Ni(t) : λj}) influence and are influenced by the return hazard of migrant i.
This interdependence gives rise to the endogenous local effect.6 Since we are working
within the MPH paradigm, it is consistent to assume that this effect is proportional,
so that it is the geometric mean  ∏

j∈Ni(t)

λj

1/#Ni(t)

6Such endogenous effects differ fundamentally from exogenous spatial effect, as modelled in e.g.
Gobillon et al. (2010) in their study of spatial effects on unemployment durations, using a PH model
in which baseline hazards are estimated for each location.
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that impacts on i’s hazard λi. We thus obtain the following model of interdependent
hazards:

λi(t|.) = viλ0(t, α) exp
(
xi(t)β + ρwi.(t) ln

[
λ(t)

])
, (1)

with λ(t) ≡ [λi(t|.)]i=1,..,n denoting the n×1 vector whose ith element is λi(t|.) and wi.
denoting the ith row of W . The coefficient ρ captures the strength of the endogenous
local interaction effect, and we seek to estimate below this local social interaction
parameter. Taking logs of equation (1) shows that the local interaction effect is
modelled in a way similar to the standard linear model used in network and spatial
econometrics.7

The statistical model captures the idea that an individual’s return hazard is im-
pacted on by the propensity of her peers or co-ethnics in the neighbourhood to return.
We believe that this paradigm is appropriate in our setting, in which possibly many
peers co-reside in a neighbourhood (recall Figure 1, where the second mode is centered
around 800), but no one is completely informed about the decisions of survivors. It
is for this reason that, unlike Sirakaya (2006) in a proportional hazard (PH) setting,
we do not model the individual hazard to depend on the peers’ survival function.

Our statistical model of interdependent hazards has two antecedents. First, Lillard
(1993) considers a simultaneous equation model for hazards in an accelerated failure
time (AFT) setting in which the log hazard is modelled linearly. Specifically, he
studies a statistical model in which the hazard of fertility depends directly on the
hazard of marriage dissolution. The second antecedent is the so-called timing-of-
events method (Abbring and van den Berg (2003)) in MPH models. There, the hazard
of one process depends directly on the duration and thus the hazard of another, and
under the no-anticipation assumption the latter is interpreted as a dynamic causal
treatment effect. Rosholm and Svarer (2006) combine these two approaches in a study
of a model where the hazard rate out of unemployment depends directly on the hazard
of entering an active labour market programmes. In our case, the interdependence
of the hazards arises because of local social interactions. As in the timing-of-events
method we also rule out anticipatory effects, in that the expected hazards at some
future duration have no effect on the hazard at the current duration.8

Our analysis of locally interdependent hazards contributes to and is proposed as a
complement to the recent literature of social interactions in duration analysis that ge-
nerates interdependent durations. These are obtained structurally in de Paula (2009)
and Honoré and de Paula (2010) by considering complete information 2-agent sy-
nchronisation games of optimal switching. We believe their modelling assumptions
too demanding for our specific empirical setting: here, the numbers of peers is very
large in some neighbourhoods, while information is necessarily incomplete, and ties
are weak. For this reason, we have opted to allow directly the propensities of peers or
co-ethnics to return to impact the individual hazard. For the same reason we believe

7This standard linear model is, to be precise, y = α+xβ+Wxδ+ρWy+ ε, where y = [yi]i=1,..,n

is a n−vector of outcomes, x is the matrix collecting exogenous characteristics and W is the social
interaction matrix. As in our case, ρ captures endogenous neighbourhood effect, and δ the exogenous
neighbourhood effect. See e.g. Bramoullé et al. (2009) for an analysis of identification in this linear
model.

8For these reasons, our approach also differs from models in which correlations between hazards
arise because of correlated frailties (e.g. Duffie et al. (2009) for a recent model).

10



that an application of the timing-of-events framework to be problematic in our set-
ting, as this would require the presence of one central or pioneering individual whose
duration-to-first-exit influences all other return hazards in the neighbourhood.9

3.2 Heterogeneous rational expectations

It is of interest to note that our model of interdependent hazards given by (1) has
a structure that is very similar to the binary choice model of social interactions
with heterogeneous expectations. The properties of the binary choice model with
homogeneous expectations have been extensively analysed in the pioneering work of
Brock and Durlauf (2001). Recently, Lee et al. (2014) have considered the case
of heterogeneous expectations, and have studied a model of interdependent choice
probabilities. There,10 as in our case, the vector of equilibrium equations depends on
network characteristics as well as the characteristics of each of its members, captured
by the vector xi. They obtain conditions under which this mapping is a contraction,
leading to a unique solution. We follow this programme in our setting.

Specifically, define the rational expectations equilibrium as the vector λ∗ = (λ∗1, · · · , λ∗n)
such that model (1) is coherent, namely

λi(t|.)∗ = viλ0(t, α) exp
(
xi(t)β + ρwi.(t) ln

[
λ∗(t)

])
,

for i = 1, · · · , n. This defines a system, λ = M(λ), where M is n × 1, and the ith

element is given by the right hand side of (1). Since this mapping is continuous, the
existence of the equilibrium follows from Brouwer’s fixed point theorem. Uniqueness
follows if M defines a contraction. We follow Lee et al. (2014) and consider the
maximum row sum norm, denoted by ||.||∞. The derivative of the ith element of M
with respect to λj equals ρwijλi/λj. Let λmax = maxi,j∈N(i)λi/λj ≥ 1. Then the
maximum row sum norm of the gradient of M satisfies

||∂M(λ)

∂λ′
||∞ = |ρ| max

i=1,...,n

n∑
j=1

|wij|
λi
λj
≤ |ρ|λmax||W ||∞ = |ρ|λmax

since W is row-sum normalised. Hence the mapping M is a contraction for the
maximum row sum norm if |ρ| < λ−1

max ≤ 1, i.e if the social interaction parameter is
sufficiently small.

3.3 The reduced form

Let v = [vi]i=1,..,n, X(t) = [xi(t)]i=1,..,n, and X(t) and W (t) denote the history of the
covariate process and the spatial interactions. Then solving (1) yields the reduced
form

λ
(
t|θ, ρ,X(t),W (t), v

)
= exp

(
H(t; ρ)X∗(t)θ +H(t; ρ) ln v

)
(2)

9Hence our setting differs fundamentally from that of e.g. Drepper and Effraimidis (2015) who
examine the effect of first-time drug use of one sibling on the hazard of drug taking of the remaining
siblings.

10Specifically, their model of individual i’s choice of d = 1 is pi = F (xiβ + ρwi.p), with p =
(p1, · · · , pn)′. Brock and Durlauf (2001) show that this choice probability can be rationalised by a
model of conformity, where utility is specified as a quadratic distance between an individual’s and
the expected choices of her peers.
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with H(s; ρ) = (I − ρW (s))−1 and X∗(s) = (lnλ0(s);X(s)). For notational conve-
nience, we suppress the explicit conditioning on the covariate and the spatial processes
(X(t),W (t)). For (I−ρW (t))−1 to be well-defined, we require that ρ be smaller than
the inverse of the absolute value of the largest eigenvalue of W (t). As W can change
with time, consider the smallest of the upper limits, and define the feasible convex
set for ρ thus defined by ΘW ≡ ∩tΘW (t). The ith element of λ is given by

λi
(
t|·
)

= exp
(
e′i(H(t; ρ)X∗(t)θ +H(t; ρ) ln v)

)
=

[∏
j

v
Hij

j

]
exp

(
β
∑
j

Hijxj

)
[λ0 (t, α)]HiΣ (3)

where ei is a (n × 1) selection vector that has a one in the ith position and zeros
everywhere else, Hij is the (i, j)th element of the matrix H(s; ρ), and HiΣ =

∑
j Hij.

The correlation structure implied by equation (3) makes clear that we no longer
have a MPH model since, depending on the structure of local interactions, unobser-
vables vj 6=i can influence the i’s hazard even though all vj are iid random variables.

3.4 Identification

Identification in MPH models chiefly center on the issue of separating separating
out dynamic sorting from duration dependence. It is well known that under some
assumptions about the distribution of v identification is achieved (e.g. Elbers and
Ridder (1982)). Since our reduced form is no longer a MPH model, we cannot invoke
the classic identification results. However, identification is achievable:

Theorem 1 Assume that unobserved heterogeneity vi is independent and identically
distributed according to G with mean µ. Then the model’s parameters are identified.

Identification is strengthened if not all individuals are neighbours, and the network
structure exhibits symmetry (specifically W1n = Wn1 = 0, and the last and first
row of W are identical), so local interdependencies in the comparison at time t = 0
between individuals 1 and n cancel out; or if there are disconnected neighbourhoods
of different sizes. The simulation study reported below in Section 4.3 provides a
numerical illustration of the identification of the model.

3.4.1 Threats to identification

If individuals purposefully locate into particular neighbourhoods, it is conceivable
that the unobserved heterogeneity terms v are correlated across individuals. While
the proof of theorem 1 has imposed the independence assumption, it also suggests how
we can relax this independence hypothesis, since we have first exploited systematic
within-neighbourhood variation. In particular, we can generalise the empirical model
to allow for systematic variation in unobservable heterogeneity across the discon-
nected neighbourhoods (such as “high” v. “low” mean v neighbourhoods), without
materially affecting the proof. Within a neighbourhood, however, we have to maintain
the independence assumption.
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The threat to identification in our specific empirical context is further lessened
by the following two observations that concern our specific empirical setting of re-
cent Turkish labour immigration to the Netherlands. First, we control for systematic
observable variation in neighbourhood characteristics by including contextual effects
such as the local unemployment rate as regressors. Second, the location choices of
our population of interest are severely constrained: Our population of interest are
recent migrants, who, because of being recent, do not qualify for social transfer and
protection programmes such as social housing. Moreover, at arrival, most Turkish
labour immigrants are poor (see Table 1). In the Netherlands, social housing repre-
sents a large stock of accommodation-for-rent in the poorer neighbourhoods, which is
not available to these immigrants. Hence, poor recent labour immigrants are unlikely
to be able to choose one particular neighbourhood because of the lack of affordable
housing.

4 Estimation

The estimation of and inference for spatially interdependent hazard models requires
new methods: although the statistical model (1) has the structure of a mixed pro-
portional hazard (MPH) model, the reduced form (3) does not. We therefore develop
and study two complementary estimation strategies. First, the reduced form suggests
naturally the application of maximum likelihood techniques, which yields our spatial
mixed proportional hazard (sMPH) estimator. Second, we propose a new spatial li-
near rank estimator (sLRE) that offers an interesting trade-off for applied work: while
this estimator does not require the estimation of the distribution of individual-level
unobvserved heterogeneity, it requires that local social interaction parameter ρ be
sufficiently small. In Section 4.3 we examine the performance of these two estimation
approaches in several Monte Carlos.

4.1 The spatial MPH estimator (sMPH)

Since we have already obtained the individual return hazard in equation (3), it is then
natural to consider estimating the model by maximum likelihood, whilst dealing with
the distribution of unobserved heterogeneity using the classic techniques proposed
in Heckman and Singer (1984). We label the resulting approach the spatial MPH
estimator (sMPH).

Specifically, using (3), the implied reduced form survival function for individual i
is given by

Si
(
t|·
)

= exp
(
−
∫ t

0

λi(s|·) ds
)

(4)

As regards the baseline hazard, we assume here a piecewise constant function, i.e.
λ0(t) =

∑R
r=1 e

αrIr(t) with Ir(t) = I(tr−1 ≤ t < tr) and t0 = 0,tR = ∞, where R
denotes the total number of intervals considered. Any duration dependence can be
approximated arbitrarily closely by increasing the number of intervals. For identi-
fication, we assume that the baseline hazard equals unity in the first interval, i.e.
α1 = 0. We approximating the unobserved heterogeneity distribution, as proposed
by Heckman and Singer (1984), by a discrete distribution, with pk = Pr(v = eVk).
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Thus the likelihood contribution of migrant i conditional on the unobserved hete-
rogeneity v = vk is

Li(v) = λ∆i
i (s|·)Si

(
t|·
)

(5)

where ∆i is the indicator for the event that migrant i’s spell is uncensored. Integrating
out the unobserved heterogeneity we obtain the likelihood function

L =
n∏
i=1

∫
Li(v) dG(v) (6)

where G(v) is the (discrete) distribution of the unobserved heterogeneity terms.
Since we have a standard maximum likelihood framework, the distributional the-

ory and hence statistical inference are standard, and not spelt out further for the sake
of brevity.

4.2 The spatial linear rank estimator (sLRE)

We propose a new estimation framework that does not require the specification of the
(frailty) distribution of unobserved heterogeneity. It extends to our spatial setting a
linear rank estimator (LRE), based on ideas in Tsiatis’ (1990) developed in the context
of a (non-spatial) AFT model and further developed in Bijwaard et al. (2013). The
LRE is the root of a sample moment condition, which is based on the comparison
between the value of a covariate for individual i at a (transformed and uncensored)
duration, and the average value of the covariate for all survivors at this duration. If a
covariate were independent of the hazard, then the mean of the covariate among the
survivors does not change with the survival time and equals the unconditional mean.
Of course, the covariate process at survival time t, xi(t), does affect the hazard λi(t|.).
But the appropriate transformation, yielding independence and hence a theoretical
moment of zero, is the integrated hazard, i.e. the generalised residual (generalised
residuals have also been used in a spatial probit model by Pinkse and Slade (1998)).

To this end, consider the transformation model of the random duration variate T
given by

Ui = hi(T, θ, ρ) =

∫ T

0

exp
(
e′iH(s; ρ)X∗(s)θ

)
ds (7)

=

∫ T

0

λi(s|.)ds/ψids

which is the integrated hazard except for the function of the unobservable hetero-
geneity terms, where ψi is the ith element of exp(H(t; ρ) ln v)). Ui is also known as
a generalised residual. For the population parameter vector (θ0, ρ0) the transforma-
tion model is denoted by Ui,0 ≡ hi,0(T ) with hi,0(T ) ≡ hi(T, θ0, ρ0), as is ψi,0 and
H0(s) ≡ H(s; ρ0). Conditional on v and the covariate and the spatial processes, the

integrated hazard
∫ T

0
λi(s|.)ds has a unit exponential distribution. It follows that Ui,0

is a positive random variable that is independent of the covariate and the spatial pro-
cesses and the baseline hazard (this is shown formally in appendix equation (A11)).
This independence is the basis of the fundamental moment condition which the linear
rank estimator exploits.
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In order to accommodate the possibility that some spells are right censored at some
predetermined date C (in our case the end of our observation window), assuming that
censoring is uninformative, define the observation indicator ∆(t) = I(T > t)I(t < C).

Consider then the random sample of size n of (Ti,∆i, xi(Ti)). The transforma-
tion model transforms the durations for some θ to (Ui(θ),∆i, xi(Ui(θ))). Rank the
transformed durations, and let U(i)(θ) denote the i’s order statistic. The moment
condition compares the expected value of the covariates to the expected value for the
survivors across all transformed survival times. This population moment condition
is zero for the population parameters θ0 given the above independence result. The
sample analogue is

Sn(θ) =
n∑
i=1

νi∆i

[
xi
(
U(i)

)
− x̃
(
U(i)

)]
(8)

where

x̃
(
U(i)

)
=

∑n
j=i I

(
U(j) ≥ U(i)

)
xj
(
U(i)

)∑n
j=i I

(
U(j) ≥ U(i)

) (9)

is the sample mean of the covariates for survivors at the transformed survival time,
and νi is a weighting function. Using the theory of counting processes (with intensity
given by the hazard of Ui,0), we show in the Appendix Lemma 6 the following result:

Lemma 1 The counting measure NUi,0(u) does not depend on the covariate and the
spatial processes, hence E(Sn(θ0, ρ0)) = 0.

Rather than defining the linear rank estimator as the root of the sample analogue,
we define it to be the minimiser of the associated quadratic form,

(θ̂, ρ̂) = argmin
θ∈Θ,ρ∈ΘW

Sn(θ, ρ)′Sn(θ, ρ), (10)

since the sample moment condition Sn(θ, ρ) is a step function.
The estimating function is, in general, not monotone in the parameters, but mo-

notonicity ensues using Gehan weights νi =
∑n

j=i I
(
U(j) ≥ U(i)

)
(Fygenson and Ri-

tov (1994)).

4.2.1 Distributional theory and statistical inference

The sample moment condition Sn(θ, ρ) is a step function, so Sn is not differentiable
everywhere, and the distributional theory for (θ̂, ρ̂) cannot be based on the usual
asymptotic analysis which uses a first order expansion. However, applying the ar-
guments in Tsiatis (1990), we can consider an asymptotically equivalent function
S̃n(θ, ρ) that is linear in (θ, ρ) in the neighbourhood of (θ0, ρ0). In the Appendix, we
show using the theory of counting processes the following results:

Theorem 2 (θ̂, ρ̂) is consistent, and is distributed asymptotically as a normal vari-
ate.11

11The variance is obtained by the delta method. The theoretical gradient matrix depends on
the distribution of U0 (see appendix), which we approximate, as in Bijwaard (2009), by Hermite
polynomials using the exponential distribution as a weighting function. Chung et al. (2013) survey
alternative approaches.
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4.2.2 An approximation for large spatial interaction matrices

The size of the spatial interaction matrix W (t) renders the minimisation of the cri-
terion function in (10) computationally challenging. We overcome this challenge
by following the approach of Klier and McMillen (2008), and consider an approx-
imation of the moment condition about ρ = 0 and θ0 = θ̂1 where θ̂1 is the so-
lution to the minimisation problem in (10) in the absence of spatial interactions,
θ̂1 = argminθ∈Θ Sn(θ, 0)′Sn(θ, 0).

The resulting linear approximation of the spatial rank-functions is

S(θ0, ρ0) ≈ S(θ̂1, 0) +G(θ̂1, 0)×
(
θ̂1 − θ
0− ρ

)
(11)

where G(θ, ρ) = (∂S/∂θ, ∂S/∂ρ), which is stated explicitly in the appendix (equation
(A23)). Setting this linear approximation to zero and solving yields the one-step
procedure for the joint estimation of the parameters of the hazard θ, and the spatial
dependence ρ, (

θ̂
ρ̂

)
=

(
θ̂1

0

)
+
(
G′G

)−1
G′S(θ̂1, 0) (12)

To summarise, we propose a two-stage estimation strategy: In the first stage,
obtain θ̂1 from the minimisation of (10) ignoring spatial interactions, using X∗ as
instruments. S(θ0, ρ0) is based on the instruments (X∗,WX∗). We update the first-
stage estimates using the one-step estimator in (12).

4.3 Simulation evidence

We present performance evidence for our two new spatial estimators.
The Monte Carlo design seeks to replicate several key features of the data used

in the empirical application. In particular, in order to generate a realistic pattern
of local interactions, the interaction matrix W used in the simulation is the same as
in our Dutch data. We also impose a high incidence of censoring, namely of 40%
and 70%. Our chosen specification is parsimonious. We assume that individuals are
possessed of a time-invariant covariate x that is a random draw from the uniform
distribution. Unobserved heterogeneity is modelled as a two-point mass distribution
with selection probability .2. The baseline hazard is piecewise constant, with jumps
at months 36 and 60. In particular, the covariate coefficient is β = −1, and the
coefficients in the baseline hazard function are α0 = (.2, .8)′. The Monte Carlos are
repeated 100 times.

Table 2 presents the results for ρ ≤ .4 and both 40% and 70% censoring , while
Table 3 focuses on higher values of ρ and a high incidence of censoring for brevity.
As a benchmark, we also report the results for a standard MPH specification that
wrongly ignores the local interactions leading to the interdependence of the hazards.
We juxtapose these MPH results, and our two spatial estimators labelled sMPH and
sLRE. In order to illustrate the quantitative effect of local social interactions on the
outcome of interest, Figure 3 depicts the implied estimates of the return probabilities
for one case (ρ = .3 and 40% censoring). It is evident that such interaction conside-
rably increase the return probabilities at all durations. The figure also illustrates the
considerable spatial bias of the usual MPH approach.
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Figure 3: Quantifying the effect of social interactions: ρ = .3
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The results illustrate that the usual MPH estimator suffers from spatial distorti-
ons, and these increase in ρ. For instance, consider the case of a censoring incidence
of 40%. Although for small spatial interactions (ρ = .1) the estimate of the covariate
coefficient β = −1 is very good, the distortions become sizeable as ρ increases. For
ρ = .4, the mean estimate of β is -.823. The estimated coefficients for the baseline
hazard function also progressively worsen.

Our new spatial maximum likelihood estimator (sMPH) captures very well the
local social interaction parameter even when ρ is high. For instance, for a population
value of ρ = .4, the mean estimate is .401 for 40% censoring and .39 for 70% cen-
soring. Throughout, ρ is fairly precisely estimated. The same conclusion applies to
the estimate of the covariate coefficient β. Even when ρ = .7, the mean estimate is
-.973 with a standard deviation of .051. For larger values of ρ the estimates of the
coefficients of the baseline hazard exhibit some distortions. Throughout, as censoring
increases from 40% to 70%, the performance is only marginally affected. One effect
of the loss of information caused by the increase in censoring is increased variability
of the estimates.

Our new spatial linear rank estimator (sLRE) is only valid for sufficiently low
values of ρ, and the experiments confirm this numerically. For a population value of
ρ = .4 the mean estimate of ρ is .51 and 40% censoring, for higher population values
the distortions increase. For the range ρ ≤ .4 the estimates of ρ are unbiased. Ho-
wever, compared to the sMPH estimates they exhibits substantially more variability
(which, of course, is to be expected). This variability also increases as the incidence
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of censoring increases. These observations also apply to the estimates of β. sLRE and
sMPH perform similarly in terms of the estimates of the baseline hazard coefficients.

We conclude that for sufficiently low values of the interaction parameter ρ the
sLRE approach offers a complementary estimator to the sMPH. One the one hand,
the sLRE is dominated by the sMPH in all experiments. On the other, its principal
attraction is that, by design, the distribution of unobserved heterogeneity does not
need to be considered explicitly. In situations in which both sMPH and sLRE are
applicable, we therefore suggest that both estimators should be considered.
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Table 3: Simulation evidence II (ρ > .4 and 70% censoring)

ρ = .5 ρ = .6 ρ = .7
MPH sMPH MPH sMPH MPH sMPH

(1) (2) (3) (4) (5) (6)

ρ̂ 0.484 0.577 0.672
(0.015) (0.016) (0.015)

β̂ −0.918 −0.975 −0.890 −0.971 −0.841 −0.973
(0.076) (0.060) (0.079) (0.059) (0.077) (0.051)

α̂2 0.064 0.059 0.033 0.037 −0.043 0.007
(0.147) (0.075) (0.134) (0.066) (0.131) (0.051)

α̂3 0.829 0.458 0.830 0.384 0.922 0.360
(0.218) (0.105) (0.205) (0.091) (0.194) (0.068)

5 Empirical analysis: Estimates and counterfac-

tual experiments

We turn to the estimation of our model of locally interdependent return hazards.
We consider a parsimonious specification in terms of individual effects. Included in
the estimation as contextual effects are not only the neighbourhood averages of these
characteristics (WX), but also additional neighbourhood descriptors (the local rate of
unemployment and the average income level). Further included are global covariates
such as the unemployment rate at the national level in the quarter of arrival, and
time effects in terms of year of entry (which control for global push and pull factors).
The baseline hazard is piecewise constant, with permitted jumps at month 12, 36,
and 60.

In Table 4 we report the coefficient estimates of the usual MPH, and our sMPH
and sLRE approaches. The MPH estimates are of course biased, and reported here
in order to establish a benchmark, as it is of interest to quantify how distorted in
practice the usual MPH approach that ignores local interactions is. In order to better
interpret the overall effects, we complement the table with Figure 4, where we plot the
ultimate object of interest, namely the predicted return probability 1−S(t), where S
denotes the survivor function (given generically by equation (4)) and covariates are
set to their mean values.

Our sMPH approach yields an estimate of the local interaction parameter ρ that
is fairly high, ρ̂ = .75, but below unity. This magnitude implies that the alternative
sLRE-based estimate is likely to be distorted. The table confirms this, the estimate
being .35. Despite this (expected) discrepancy, we interpret the positive and statis-
tically significant estimate as providing complementary evidence on the role of local
interactions: the effect is positive, so returns are accelerated by interactions, and
sizeable.

The estimated magnitude of the local interaction parameter also implies that the
usual MPH estimator will be significantly distorted. The table confirms this, as
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many of the estimated covariate coefficients differ substantially in magnitude. Figure
4 quantifies these discrepancies in terms of the predicted return probabilities. The
MPH prediction (solid line) is substantially below the sMPH based prediction (dotted
line). For instance, in months 60 (which corresponds to a new interval in the baseline
hazard), the latter is more than three times larger than the former.

Turning to the estimates of the individual-level coefficients, they have the expected
signs: more settled migrants (married, with children, females) and more economically
successful migrants are less likely to exit. The usual MPH approach, however, sub-
stantially over-estimates the role of these individual characteristics. The sLRE-based
estimates lie about halfway between the MPH and sMPH estimates. The sMPH-
based estimates of the coefficients of the baseline hazard function are monotonically
increasing, so there is positive duration dependence: exit proabilities increase as t
moves across time intervals.

How large is the social multiplier generated by local interactions ? We quantify it
by using the sMPH-based estimates, and generate a return prediction after imposing
that ρ be zero. This counterfactual prediction is depicted in Figure 4 by the dashed
line. Compared to the factual prediction given by the dotted line, it is evident that
for durations less than 60 months, the differences, while present, are fairly small. For
higher durations, however, these become substantial, as the sizeable increase in the
return probabilities in the counterfactual prediction (driven by the baseline hazard)
is amplified by large positive local interactions.12

We conclude that social local interactions are substantial, and imply a social
multiplier that becomes substantial at higher durations.

12For very high durations (e.g. after 80 months) the differences between predicted return proba-
bilities for the mean individual based on the biased MPH and the unbiased sMPH estimates appear
very large. However, in order to place the predictions and their differences into the empirical context
recall that we have an observation window of 9 years, only 13.8% of spells are longer than 5 years,
and the incidence of censoring in the data is 80% so that many exits are not observed. Of the
observed (uncensored) exits, 50.5% are below 2 years. Hence, this discrepancy in the predictions at
very high durations is consistent with the presence of large local interactions.
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Table 4: Results

MPH sMPH sLRE
ρ 0.750∗∗ 0.351+

(0.013) 0.179
income at entry >1000 −1.424∗∗ −0.496∗∗ −1.105∗∗

(0.066) (0.049) (0.078)
Female −0.448∗∗ −0.158+ −0.269∗∗

(0.074) (0.067) (0.087)
married −1.221∗∗ −0.247∗∗ −0.797∗∗

(0.067) (0.054) (0.087)
divorced −0.275+ 0.188+ −0.059

(0.108) (0.089) (0.133)
number of children −0.339∗∗ −0.165∗∗ −0.247∗∗

(0.020) (0.020) (0.029)
U (national) 0.267∗∗ 0.034 0.057

(0.035) (0.030) (0.051)
U (local) at entry −0.413∗∗ −0.123 −0.487∗∗

(0.114) (0.098) (0.162)
baseline hazard:
α2 (1-3 yr) 0.468∗∗ 0.333∗∗ −0.014

(0.086) (0.042) (0.139)
α3 (3-5 yr) 0.544∗∗ 0.633∗∗ −0.163

(0.107) (0.064) (0.212)
α4 (> 5 yr) 0.963∗∗ 1.140∗∗ −0.029

(0.140) (0.099) (0.238)

All regressions include year-of-entry fixed effects, and neighbour-
hood averages measured by Wx. U denotes unemployment.
+p < 0.05,∗∗ p < 0.01
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Figure 4: The effect of local interactions on the return probability for the average
Turkish labour immigrant
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Notes. Depicted are the predicted return probabilities, where covariates are set at their
mean in the population. Coefficients as per Table 4. Solid line: MPH-based (spatially
biased) prediction, dotted line: sMPH-based prediction, dashed line: sMPH-based coun-
terfactual prediction after imposing ρ = 0.
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5.1 Counterfactual scenarios: The scope for the social mul-
tiplier

In order to further explore and quantify how return probabilities, our outcome of inte-
rest, are amplified by local social interactions and the resulting social multipliers, we
consider several counterfactual scenarios that capture different pull and push factors
and immigrant profiles. Some of these scenarios could be though of as being under
some policy control (e.g. immigrant targeting based on characteristics) while others
relate to events largely outside the control of policy makers. Throughout we take the
social interaction matrix W as given, and vary the immigrant profiles.

In experiment (a, labelled “higher incomes”), we consider a situation in which
only higher skilled immigrants enter the host country (measured here by having in-
comes above e 1000 p.m. in their first job after entry). In scenario (b, labelled “all
female”) only female Turkish labour immigrants enter the host country . Recall that
both females and higher earners have lower return hazards. In experiment (c, labelled
“Unemployment”) we increase the Dutch national rate of unemployment in the quar-
ter of arrival to 8% . In experiment (d, labelled “Entry in 2006”), we assume that
immigrants arrive in a wave in 2006. The last two experiments capture push factors
of events in the host and source country, while the first two experiments consider the
effect on outcomes when the immigrant profile has counterfactually changed. The ob-
jective of these experiments is to explore how the magnitude of the social multipliers
depend on the scenario and the duration of stay.

We proceed as in Figure 4, by focussing on the predicted return probabilities.
For the sake of completeness, we also report the spatially biased usual MPH-based
estimate, in order to quantify the extent of the spatial biases of the usual approach.
Throughout, these distortions are substantial for all durations and all scenarios.

The main focus of our analysis is the quantification of the social multiplier. For
each counterfactual scenario, we thus compare the sMPH-based prediction with ρ =
.75 (dotted lines) and ρ = 0 (dashed lines). In all settings, the social multiplier is
substantial for high durations (in excess of 60 months). Whether the multiplier is
also present for short duration depends on the scenario: there is no immediate effect
in scenario (a) while it is substantial in scenario (d); scenarios (b) and (c) present
some intermediate cases. We conclude that the different scenarios serve to illustrate
how strongly local social interactions affect staying durations: social multipliers are
substantial.

6 Conclusion

Individuals are distributed across neighbourhoods, cluster, interact locally, and indi-
vidual specific outcomes might influence and be influenced by the outcomes of one’s
peers. Focussing on outcomes that are durations, we have studied an econometric
model of locally interdependent hazards in terms of identification, estimation, and
inference. Our particular empirical application of this general framework is set in the
context of recent Turkish labour immigration to The Netherlands, and we have stu-
died, specifically, the impact of local social interactions on the duration of stay and the
resulting social multipliers. Using administrative data for this entire (sub)population,
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Figure 5: Social multiplier effects on return probabilities in counterfactual scenarios
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(a) Higher Incomes
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(b) All females
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(c) Unemployment
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(d) Entry in 2006

Notes. For given counterfactual scenario (described in main text), lines as per Figure 4.

we find strong evidence that the propensity of ones “peers” (i.e. co-ethnics in the
same immigration cohort residing in the same or close-by neighbourhood) to return
increases ones own return hazard, which, in turn, accelerates the return of ones peers.
Our quantifications have revealed that the resulting social multipliers are substantial.
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A Technical Appendix: Proofs and Derivations

A.1 Proof of Theorem 1

Assume that individual characteristics xi are time invariant, and scalar. To simplify
notation, these will be suppressed in the conditioning statements. Let HiΣ =

∑
j Hij.

The reduced form model is

λi(t|v) = exp (Hi.X
∗θ +Hi. log v)

=

[∏
j

v
Hij

j

]
exp

(
β
∑
j

Hijxj

)
[λ0 (t, α)]HiΣ

The survival function of individual i is, conditional on the vector v,

F Ti (t|v) = exp

(
−
∫ t

0

λi(s|v)ds

)
= exp

(
−

[∏
j

v
Hij

j

]
exp

(
β
∑
j

Hijxj

)
z0 (t)

)

with z0 (t) =
∫ t

0
[λ0 (s, α)]HiΣ ds. Integrating out the unobservable heterogeneity yields

F Ti (t) =

∫
vn

· · ·
∫
v1

exp

(
−z0 (t) exp

(
β
∑
j

Hijxj

)∏
j

v
Hij

j

)
dG (v1) · · · dG (vn)

Consider the first individual, and the first integration with respect to v1. Let L
denote the Laplace transform of G (and the subscript on v has been suppressed since
vs are identically distributed). We have H (ρ) = I + ρW +O(ρ2), which implies that
HiΣ =

∑
j Hij = 1 + ρ + O(ρ2), and H11 = 1 + O(ρ2). The survival function for the

first individual is thus

F T1 (t) =

∫
v2

· · ·
∫
vN

L

(
z0 (t) exp

(
β
∑
j

H1jxj

)∏
j 6=1

v
H1j

j

)
dG (v2) · · · dG (vN) (A1)

We can then follow ideas first explored in Elbers and Ridder (1982). Differentiating
the survival function with respect to time yields

−fT1 (t) =

∫
v2

· · ·
∫
vN

L′
(
z0 (t) exp

(
β
∑
j

H1jxj

)∏
j 6=1

v
H1j

j

)
exp

(
β
∑
j

H1jxj

)
× [λ0 (t, α0)]H1Σ

∏
j 6=1

v
H1j

j dG (v2) · · · dG (vN)

and letting t ↓ 0 yields, since z0(t)→ 0,

lim
t↓0
−fT1 (t) = E (v) exp

(
β
∑
j

H1jxj

)∏
j 6=1

µ1j lim
t↓0

[λ0 (t, α0)]HiΣ (A2)
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with nuisance parameters µ1j =
∫
vH1jdG(v). Symmetric expressions obtain for the

other individuals. The idea here is to avoid the problem of dynamic sorting (and
the systematic change of v in the stock of survivors) by considering the situation at
the beginning, i.e. t ↓ 0. We also seek to eliminate the distributional effect of G by
comparisons between individuals.

Let’s consider different structures of social interactions. Note that W is not ne-
cessarily symmetric, since not all individuals might be neighbours. In particular, in a
tridiagonal structure, the first and last rows of W will have a different structure, i.e.
W12 = 1 = Wn(n−1). Throughout we will assume that the covariates exhibit sufficient
variation (xi 6= xj 6=i).

A.1.1 A neighbourhood of two individuals

We have

W =

(
0 1
1 0

)
so µ12 = µ21. We then have

lim
t↓0

fT1 (t)

fT2 (t)
=

exp (β[H11x1 +H12x2])

exp (β[H22x2 +H12x1])
= exp (β(1−H12)(x1 − x2))

where H12 = ρ+O(ρ2). This implies that β and ρ are jointly identified, but we cannot
separate them out yet. This will be done below. Before, we consider how a larger
neighbourhood adds identifying information.

A.1.2 A neighbourhood of three individuals

Assume that not all individuals are neighbours, so wlog assume W13 = 0 but W23 6= 0.
We have

W =

 0 1 0
0.5 0 0.5
0 1 0


so µ13 = µ31, µ12 = µ32, and µ21 = µ23. We then have, considering individuals 1 and
3,

lim
t↓0

fT1 (t)

fT3 (t)
= exp (β[x1 + (H12 −H32)x2 − x3]) = exp (β(x1 − x3))

which identifies β. Considering individuals 1 and 2

lim
t↓0

fT1 (t)

fT2 (t)
=

µ12

[µ21]2
exp

(
β[(1− ρ/2)x1 + (ρ− 1)x2 − (ρ/2)x3] +O(ρ2)

)
If G is identified, then given the identification of β, the identification of ρ follows.

Note that if all individuals were neighbours, than we could only jointly identify β
and ρ. In particular, W12 = W13 = 1/2, and we would have limt↓0 fT1 (t) /fT3 (t) =
exp (β(1− ρ/2)(x1 − x3) +O(ρ2)), and similarly limt↓0 fT1 (t) /fT2 (t) =
exp (β(1− ρ/2)(x1 − x2) +O(ρ2)). Also note that although there are 3 individuals,
we have only 2 independent ratios since fT2 (t) /fT3 (t) = (fT1 (t) /fT3 (t))/(fT1 (t) /fT2 (t)).
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A.1.3 A neighbourhood of four individuals

Assume that not all individuals are neighbours, and consider the following situation

W =


0 0.5 0.5 0

1/3 0 1/3 1/3
1/3 1/3 0 1/3
0 0.5 0.5 0


As the first and last rows are the same, we have

lim
t↓0

fT1 (t)

fT4 (t)
= exp (β(x1 − x4))

which identifies β.
By contrast, consider the situation where individual 4 is only connected to indi-

vidual 2:

W =


0 0.5 0.5 0

1/3 0 1/3 1/3
0.5 0.5 0 0
0 1 0 0


Note that, compared to the previous structure, the greater isolation of individual 4
does not help identification. Considering individuals 1 and 3 yields

lim
t↓0

fT1 (t)

fT3 (t)
= exp

(
β(1− ρ

2
)(x1 − x3)

)
but considering individuals 3 and 4 say

lim
t↓0

fT3 (t)

fT4 (t)
=
µ31µ32

µ4

exp
(
β
[ρ

2
(x1 − x2) + (x3 − x4)

])
Comparing then across different neighbourhood structures, we find that iden-

tification is strengthened by symmetry properties of W : β is already identified if
interdependencies cancel out which happens when W1n = Wn1 = 0 and the first and
last row are identical. This also happens if the spatial structure W consists of dis-
connected neighbourhoods of different sizes (e.g. combining the 2-person case with
the first three person case).

A.2 Identification of G

Next, we deal with the unknown distribution G. Wlog consider the two-person neig-
hbourhood case. Inverting (A1), we have, say,

z0(t) =

[
exp

(
β
∑
j

H1jxj

)]−1

Ψ(F T1) (A3)

where the RHS does not depend on x since the LHS does not. This enables us to
follow similar steps as in Elbers and Ridder (1982) to yield, for any observationally
equivalent structure (denoted by tildes), an equation of the form

Ψ̃(s) =
C̃

C
Ψ(s) (A4)
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with s = F T1 and t = K(s). Note that for s = 1, t = 0, z0(0) = 0, so Ψ(1) = 0. We
can differentiate (A4) several times under standard regularity conditions

Ψ̃′(s) =
C̃

C
Ψ′(s), Ψ̃′′(s) =

C̃

C
Ψ′′(s), · · · , (A5)

to establish that C̃ = C.
We have Ψ(s) = z0(K(s)) exp

(
β
∑

j H1jxj

)
and the inverse of Ψ is given, of

course, by (A1). Differentiating the latter,

d

dy
Ψ−1(y) =

∫
v

L′(yvH12)vH12dG(v)

This implies, at s = 1 (which implies y = 0),

Ψ′(s)|s=1 =

[∫
L′(0)vH12dG(v)

]−1

=
1

E(v)

[∫
vH12dG(v)

]−1

For the alternative admissible structure (where G̃ has the same mean as G, say
µ = E(v)) we have

Ψ̃′(1) =
1

E(v)

[∫
vH̃12dG̃(v)

]−1

so
C̃

C
=

Ψ̃′(1)

Ψ′(1)
=

∫
vH12dG(v)∫
vH̃12dG̃(v)

(A6)

Considering now Ψ′′(s) should give us another equation for C̃
C

involving the second
moments of v, and equalising with the preceding equality should give us an equation
that can only be satisfied if G̃ = G. We have

Ψ′′(s) = (−1)

[
d

dy
Ψ−1(y)

]−2
d

dy2
Ψ−1(y)|y=Ψ(s)

hence

Ψ′′(1) =
1

E(v)2

[∫
vH12dG(v)

]−2
d

dy

∫
L′(yvH12)vH12dG(v)|y=Ψ(s)

=
1

E(v)2

[∫
vH12dG(v)

]−2

L′′(0)

∫
v2H12dG(v)

=
V ar(v) + E(v)2

E(v)2

[∫
vH12dG(v)

]−2 ∫
v2H12dG(v)

Writing again µ = E(v), we have

C̃

C
=

Ψ̃′′(1)

Ψ′′(1)
=
V ar(ṽ) + µ2

V ar(v) + µ2

[∫
vH̃12dG̃(v)∫
vH12dG(v)

]−2 ∫
v2H̃12dG̃(v)∫
v2H12dG(v)

(A7)
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and equalising with (A6) yields

1 =
V ar(ṽ) + µ2

V ar(v) + µ2

[∫
vH̃12dG̃(v)∫
vH12dG(v)

]−1 ∫
v2H̃12dG̃(v)∫
v2H12dG(v)

which can only hold with equality if G̃ = G and ρ̃ = ρ.
This implies that z0(t) is identified; since we have identified ρ and thus H1,Σ, it

follows that α, the coefficients of the baseline hazard function, are identified.

A.3 Proof of Theorem 2

Theorem 2 is proved via a series of lemmas. The asymptotic distributional theory for
our estimator based on the inverted linear rank test statistic is considerably facilita-
ted by considering the counting process associated with the transformation model:
the Doob-Meyer decomposition relates the innovation to the process to a martingale
difference, and the asymptotic behaviour of partial sums of martingales are well under-
stood (Rebolledo’s martingale central limit theorem, see Andersen and Gill (1982)).
To this end, we consider first the intensity of the counting process, given by the ha-
zard, before turning to the Doob-Meyer decomposition itself. For ease of exposition,
and wlog, we set the weighting function to unity. In the empirical application, we use
Gehan weights.

For notational convenience define θ̄ ≡ (θ′, ρ)′ and θ̄0 ≡ (θ′0, ρ0). Recall the transfor-
mation model for duration T given by equation (7), Ui = hi(T, θ̄), and the transforma-
tion model evaluated at the population parameter vector θ̄0, denoted by Ui,0 ≡ hi,0(T )
with hi,0(T ) ≡ hi(T, θ̄0). We associate with the transformed durations Ui and Ui,0 the
hazards κi(u, θ̄) and κi,0 (u) ≡ κi(u, θ̄0) and the CDFs FU,i and FUi,0

. Ui and Ui,0 are
related by the mapping

Ui = hi
(
h−1
i,0 (Ui,0), θ̄

)
(A8)

where h−1
i denotes the inverse of hi(T, θ̄) with respect to its first argument. Let also

h′i(.) denote the first derivative with respect to the first argument. The following
lemma relates the hazard of U to that of U0.

Lemma 2

FUi
(u) = FUi,0

(
hi,0
(
h−1
i

(
u, θ̄
)))

,

κUi
(u, θ̄) = κi,0

(
hi,0
(
h−1
i (u, θ̄)

)) h′i,0(h−1
i (u, θ̄))

h′i(h
−1
i (u, θ̄), θ̄)

(A9)

Proof. We have

FUi,0

(
hi,0
(
h−1
i (u)

))
= Pr{hi,0(T ) ≤ hi,0

(
h−1
i

(
u, θ̄
))

= Pr{T ≤ h−1
i

(
u, θ̄
)
} = FUi

(u) .

The second claim follows by direct computation.
Simplifying (A9) using (7) yields

κUi
(u, θ̄) = exp

(
e′iH0(h−1

i (u, θ̄))X∗(h−1
i (u, θ̄))θ0 − e′iH(h−1

i (u, θ̄); ρ)X∗(h−1
i (u, θ̄))θ

)
· κi,0(hi,0(h−1

i (u, θ̄)). (A10)
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For the population parameters, this simplifies to κUi
(u, θ̄0) = κi,0(u).

We note that κi,0(u) is neither a function of the parameters θ0 nor of the distri-
bution of the covariates, nor of the distribution G of unobserved heterogeneity. In
particular, we have (letting Hi. denote the ith row of H)

κi,0(u) = Ev{exp(Hi.(ρ0) log v)|Ti ≥ h−1
0 (u)}

=

∫
v

exp(Hi.(ρ0) log v) exp(−u× exp(Hi.(ρ0) log v))dGv(v)

×
[∫

v

exp(−u× exp(Hi.(ρ0) log v))dGv(v)

]−1

=

∫
v1

· · ·
∫
vn

∏
j

v
Hij(ρ0)
j exp(−u×

∏
j

v
Hij(ρ0)
j )dG(vn) · · · dG(v1)

×

[∫
v1

· · ·
∫
vn

exp(−u×
∏
j

v
Hij(ρ0)
j )dG(vn) · · · dG(v1)

]−1

(A11)

This follows from noting that

Pr{v ≤ v|Ti ≥ h−1
0 (u)} =

Pr{Ti ≥ h−1
0 (u)|v ≤ v}Pr{v ≤ v}

Pr{Ti ≥ h−1
0 (u)}

and
1− FTi(h−1

0 (u)|x, v) = exp(−u× exp(Hi.(ρ0) log v)).

If spatial interactions are absent, ρ0 = 0, H0 = I and κi,0(u) greatly simplifies to
κi,0(u) =

∫
vdG(v|T ≥ h−1

0 (u)) = −L′v(u)/Lv(u) where Lv(u) denotes the Laplace
transformation of v.

Our study of the estimating function is based on an asymptotically equivalent
representation, which involves a first order expansion of κU . In the neighbourhood of
θ̄0, κU(u, θ̄) is asymptotically linear in θ̄:

Lemma 3 Under the stated assumptions∣∣∣κU(u, θ̄)− κ0(u)− ∂κU
∂θ′

(u, θ̄0)(θ̄ − θ̄0)
∣∣∣ ≤ ||θ̄ − θ̄0||2η(u) (A12)

where η(u) is a vector of integrable functions.

Proof. The assumptions that 0 < |∂2λ(t, α)/∂α∂α′
∣∣ < ∞ for all t ≥ 0 and α in the

parameter space, that x(t) is bounded, imply that the second derivatives of κU(u, θ̄)
with respect to θ̄ are bounded for all u ≤ τ and θ̄ ∈ (Θ × ΘW ). It is then sufficient
that the parameter space be convex.

The derivatives of κU(u; θ, ρ) with respect to θ and ρ evaluated at θ = θ0 are given
in the following lemma where gu

(
θ̄
)

= h−1
i (u, θ̄) for ease of notation:
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Lemma 4

∂κUi
(u, θ̄)

∂θ
= [κi,0(hi,0(h−1

i (u, θ̄))]

× exp
(
H0,i.(gu

(
θ̄
)
)X∗(gu

(
θ̄
)
)θ0 −Hi.(gu

(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)θ
)

×(−1)Hi.(gu
(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)

+ exp
(
H0,i.(gu

(
θ̄
)
)X∗(gu

(
θ̄
)
)θ0 −Hi.(gu

(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)θ
)

×κ′i,0(hi,0(gu
(
θ̄
)
))

× exp
(
H0,i.X

∗(gu
(
θ̄
)
)θ0

)
× exp

(
−Hi. (ρ)X∗(gu

(
θ̄
)
)θ
)

(−1)

∫ T

0

exp
(
Hi. (ρ)X∗(s)θ

)
Hi. (ρ)X∗(s)ds (A13)

∂κUi
(u, θ̄)

∂ρ
= − exp

(
H0,i.(gu

(
θ̄
)
)X∗(gu

(
θ̄
)
)θ0 −Hi.(gu

(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)θ
)

×Hi.WHX∗(gu
(
θ̄
)
θ

×κi,0(hi,0(gu
(
θ̄
)
))

− exp
(
H0,i.(gu

(
θ̄
)
)X∗(gu

(
θ̄
)
)θ0 −H(gu

(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)θ
)

×κ′i,0(hi,0(gu
(
θ̄
)
))

× exp
(
H0,i.X

∗(gu
(
θ̄
)
)θ0

)
× exp

(
−Hi. (ρ)X∗(gu

(
θ̄
)
)θ
)

×
∫ gu(θ̄)

0

exp
(
Hi. (ρ)X∗(s)θ

)
HWHX∗(s)θds (A14)

Proof. The results follow from tedious yet standard computations after noting that
hi(h

−1
i (u; θ, ρ); θ, ρ) = u implies (∂/∂θ)h−1

i (u; θ, ρ) = −(∂hi/∂θ)/(∂hi/∂s) with s =
h−1
i (u; θ, ρ).

Evaluated at ρ = ρ0, and using the change of variables h−1
i,0 (u) = s, (A13) and (A14)

simplify to

∂κUi
(u, θ0, ρ0)

∂θ
= −κi,0(u)

(
e′iH0(h−1

i,0 (u))X∗(h−1
i,0 (u)

)
− κ′i,0(u))

∫ u

0

e′iH0(h−1
i,0 (s))X∗(h−1

i,0 (s))ds (A15)

∂κUi
(u, θ0, ρ0)

∂ρ
= −e′iH0WH0X

∗(h−1
i,0 (s))θ0 × κi,0(u) (A16)

− κ′i,0(u)

∫ u

0

e′iH0(h−1
i,0 (s))W (h−1

i,0 (s))H0(h−1
i,0 (s))X∗(h−1

i,0 (s))θ0ds.

Next, we turn to the associated counting processes. For the duration variate T
denote by {N(t)|t ≥ 0} the stochastic process describing the number of exits from
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the state of interest in the interval [0, t] as time proceeds. Of course, there is at most
one exit. For the transformed duration U , we have

NUi(u, θ̄) = N
(
h−1
i (u, θ̄)

)
,

and for the population parameters we have NUi,0(u) ≡ NUi(u, θ̄0)). It remains to
account for censoring of the duration variate. Let y(t) = I(t ≤ T )I(t ≤ C) denote
the observation indicator, where C denotes a non-informative right censoring time.
Let Ȳ (t) = [ȳi(t)]i=1,..,n denote the history of the observation indicators. We then
have

Lemma 5

Pr
(
dNU,i(u, θ̄) = 1

∣∣XUi
(u, θ̄), Y

Ui
(u, θ̄),W

Ui
(u, θ̄)

)
= yU(u, θ̄)κUi

(
u; θ̄)

)
du (A17)

with κUi
given by (A9). The associated Doob-Meyer decomposition is

dNUi(u, θ̄) = yUi (u, θ̄)κUi

(
u; θ̄
)
du+ dMUi(u, θ̄) (A18)

where MUi denotes a martingale.

For the population parameters we define MUi,0(u) ≡ MUi(u, θ̄0) and NUi,0(u) ≡
NUi(u, θ̄0). Using this representation (A18), the estimation function can be written
as

Sn(θ̄) =
n∑
i=1

∆i

[
xi
(
U(i)

)
− x̃
(
U(i)

)]
=

n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

)
dNUi(u, θ̄). (A19)

The transformed durations are observed up to time τ <∞. Evaluating the estimation
function (A19) at the population parameters, we have

Sn(θ̄0) =
n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

)
dMUi,0(u) (A20)

+
n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

)
yU0
i (u)κUi

(
u; θ̄0

)
du

Lemma 6 The counting measure NUi,0(u) does not depend on the covariate and the
spatial processes, hence E(Sn(θ̄0)) = 0.

Proof. By definition, we have Pr{dN(t) = 1} = yi(t)λ̃i(t|θ̄0)dt. λ̃i is the expectation
of λi with respect to v, which equals, using (7), exp

(
e′iH(t; ρ0)X∗(t)θ0

)
Ev(ψi|T ≥ t).

This probability equals Pr{dNUi(u, θ̄) = 1} with du = h′(t, θ̄)dt, so the intensity of
the transformed counting process can be written as

exp
(
e′i[H(u; ρ0)X∗(u)θ0 −H(u; ρ)X∗(u)θ]

)
Ev(ψi|U ≥ u)
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Hence, evaluated at the population parameters, we have

Pr{dNUi(u, θ̄0) = 1} = y
Ui,0

i Ev(ψi|U ≥ u)

which does not depend on the X∗ and H.
Since E(SN(θ̄0)) = 0, it follows that the second term in (A20) is zero, so

Sn(θ̄0) =
n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

)
dMUi,0(u). (A21)

Using again the representation (A18) for Sn(θ̄), we obtain the following linearisation

S̃n(θ̄) = Sn(θ̄0) +G(θ̄0)× (θ̄ − θ̄0) (A22)

with

G(θ0, ρ0) ≡ (∂S/∂θ, ∂S/∂ρ)|θ̄=θ̄0

=
n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

) ∂
∂θ̄
κUi

(u, θ̄)|θ̄=θ̄0
κUi

(u, θ0)
dNUi(u, θ̄) (A23)

where (∂/∂θ̄)κUi
(u, θ̄) is given in Lemma 4 above. The argument in Tsiatis (1990)

demonstrates that S̃n(θ̄) is asymptotically equivalent to Sn(θ̄) in the neighbourhood
of θ̄0, and this asymptotic equivalence then implies that the estimator is consistent:

Lemma 7 Under the stated assumptions for all c > 0

sup

|θ̄−θ̄0|≤cn
−

1
2

n−
1
2

∣∣∣Sn(θ̄)− S̃n(θ̄)
∣∣∣ p→ 0 (A24)

Finally, we observe that our estimator is the root of S̃n(θ̄). Hence solving (A22)
for (θ̄− θ̄0), and invoking the asymptotic normality of Sn(θ̄0) implied by (A21), yields
the result stated in Theorem 2: the estimator is asymptotically normally distributed.
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B Data Appendix

B.1 Administrative panel data on the population of recent
immigrants to The Netherlands

All legal immigration by non-Dutch citizens to the Netherlands is registered in the
Central Register Foreigners (Centraal Register Vreemdelingen, CRV), using informa-
tion from the Immigration Police (Vreemdelingen Politie) and the Immigration and
Naturalisation Service (Immigratie en Naturalisatie Dienst, IND). It is mandatory for
every immigrant to notify the local population register immediately after the arrival
in the Netherlands if he intends to stay for at least two thirds of the forthcoming six
months. Natives as well as immigrants are required to register with their municipa-
lity. Our data comprise the entire population of immigrants who entered during our
observation window of 1999-2007.

The immigration register is linked by Statistics Netherlands to the Municipal Re-
gister of Population (Gemeentelijke Basisadministratie, GBA) and to their Social
Statistical Database (SSD). The GBA contains basic demographic characteristics of
the migrants, such as age, gender, marital status and country of origin. From the
SSD we have information (on a monthly basis) on the labour market position, in-
come, industry sector, housing and household situation. Since we consider only new
entrants to the Netherlands, most immigrants are not eligible for social benefits such
as unemployment insurance payments, since these are conditional on sufficiently long
employment or residence durations. Migration and employment durations of specific
lengths (e.g. 3 or 5 years) trigger statutory changes in employment and residence rig-
hts. However, our earlier work in Bijwaard, Schluter and Wahba (2014) has verified
that these do not affect average migration hazards.

In addition to the date of entry and exit, the administration also records the
migration motive of the individual. The motive is coded according to the visa status
of the immigrant; if not, the immigrant reports the motive upon registration in the
population register. Statistics Netherlands distinguishes between the several motives:
labour migrants, family migrants (this category include both family unification as well
as immigration of foreign born spouses, i.e. family formation), student immigrants,
asylum seekers (and refugees), and immigrants for other reasons. Bijwaard (2010)
shows that these different immigrant groups differ systematically in terms of return
behaviour, labour market attachment, and demographic characteristics. We therefore
consider only labour migrants, being the group which economists usually are interested
in the most. Labour migrants represent about 26% of all non-Dutch immigrants
in the age group 18-64. It is possible that the labour migration motive is either
miscoded or misreported. Since all Turkish labour migrants require an employment-
dependent work visa to immigrate, they should be formally employed not too long
after entry. Thus, in order to limit the possibilities of misclassification error of the
labour migration motive, we require that immigrants be employed in the Netherlands
within three months of their entry.

This selection by immigration motive yields an administrative population of recent
labour immigrants of 94,270 individuals. This size of our population data permits us
to consider specific groups. Such stratification also controls for important differences
in language ability, as these could influence assimilation and are thus important for
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the studies focussing on return. For instance, the (mean) language deficits of Turks
and Moroccans in the Netherlands are well known. As in Adda et al. (2015) in
the context of Germany, we consider in the main text the largest ethnic group of
labour immigrants, namely Turks (about 8000 individuals). In the next subsection,
we document their spatial clustering as well as their spatial segregation from other
principal immigrant groups.

B.2 The spatial dimension: Neighbourhoods

The neighbourhood is often argued to be the spatial unit at which local social in-
teractions take place. A further special feature of our data is that we know the
neighbourhood the immigrant lives in, defined by Statistics Netherlands as an area
of approximately 2,000 households. The Netherlands is thus partitioned into about
14,000 neighbourhoods.

In order to document the spatial clustering and segregation along ethnic lines
among the principal immigration groups, and Turks in particular, we use publicly
available population data produced by Statistics Netherlands for all immigrants (re-
cent and established, labour and non-labour immigrants) for the year 2007. The size
of this data permits a reliable description of the spatial settlement patterns. In order
to establish some benchmarks, we contrast Turkish immigrants with immigrants from
the next three largest groups, i.e. immigrants from Moroccans, and immigrants from
the former Caribbean colonies of Surinam and the Dutch Antilles. The four groups
represent about 11% of the total population of the Netherlands.

We start by documenting the spatial clustering in the four largest cities, then
consider the distinct neighbourhoods in these four largest cities (the number of neig-
hbourhoods by city are 92 in Amsterdam, 78 in Rotterdam, 107 in the Hague and 96
in Utrecht). As about only 12.8% of the total population of the Netherlands resides
in these four cities, we then turn to all 14,000 neighbourhoods.

B.2.1 Concentration, isolation, and dissimilarity in the four largest cities

Table B.1: Ethnic concentration in the four largest cities

Tur Mor Sur Ant Tur Mor Sur Ant
By City By Ethnic Group

Amsterdam 5.2 9.0 9.2 1.6 9.3 18.5 22.3 10.0
Rotterdam 7.8 6.4 8.9 3.3 11.1 10.3 16.4 16.6
The Hague 7.0 5.3 9.5 2.3 7.6 6.8 14.0 8.9

Utrecht 4.4 8.8 2.6 0.9 3.0 6.8 2.2 2.0

Notes. Immigrant groups: Tur(ks), Mor(occans), Sur(inamese),
Ant(illians). Panel A: Indices are by cities, so Turkish concentration
in Amsterdam is the share of the Amsterdam population that is Tur-
kish. Panel B: The Turkish concentration in Amsterdam is the share of
the Turkish population that lives in Amsterdam. Data for 2007.

The extent of clustering of immigrants along ethnic lines is illustrated in Table
B.1 in the year 2007 by city. The four largest cities are home to a large share of the
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immigrant population. For instance, 9% of the Amsterdam population are Moroccans,
5% are Turks, and nearly 25% of the population of Amsterdam is from the four
principal immigrant groups. Panel B of Table B.1 considers the four largest cities in
terms of the total immigrant populations. The proportion of Turks living in the these
four cities equals 31%, the Antillians’ share is 38%, the Moroccan share is 42%, and
the Suriname share is 55%. Hence the spatial analysis needs to extend beyond these
four principal cities.

Table B.2: The four largest cities

Tur Mor Sur Ant Tur Mor Sur Ant
Dissimilarity Isolation

Amsterdam .446 .429 .344 .308 .106 .172 .181 .031
Rotterdam .417 .386 .217 .276 .160 .110 .109 .048
The Hague .523 .504 .348 .291 .183 .133 .147 .036

Utrecht .441 .482 .248 .202 .096 .219 .034 .012

Notes. Immigrant groups: Tur(ks), Mor(occans), Sur(inamese),
Ant(illians). Indices are by cities, so Turkish concentration in Amster-
dam is the share of the Amsterdam population that is Turkish. Data for
2007.

Next, we consider these four cities at the level of the neighbourhood and investi-
gate the extent to which immigrants of a particular ethnic group, such as Turks, (we
label them “minority”, minn in neighbourhood n) differ from natives and other immi-
grants in this neighbourhood (label this complement to the minority the “majority”,
majn). Summing over all neighbourhoods in a city yields the subpopulation totals
mintotal and majtotal. Two standard descriptors are the following indices of dissimila-
rity and isolation (see e.g. Cutler et al. (1999)). The dissimilarity for neighbourhood
n is often measured by comparing same-group population shares, and summing over
neighbourhoods yields the dissimilarity index 0.5

∑
n |minn/mintotal−majn/majtotal|.

This dissimilarity index is a measure of imbalance and quantifies the extent to which
group g immigrants are unevenly distributed across neighbourhoods. The magnitu-
des of the estimates reported in Table B.2 confirm that the four principal immigrant
groups are unequally distributed across the cities’ neighbourhoods. For each immi-
grant group, the dissimilarity index is similar across the four cities. Comparing the
immigrant groups, dissimilarity for Turks and Moroccans is substantial larger than
for Surinamese and Antilleans.

We also consider the measure of isolation or exposure given by
∑

n(minn/mintotal×
minn/(minn+majn)) which weights the own-group population share of the neighbour-
hood (or concentration) by the its population share in that neighbourhood. Except
for Antilleans, Table B.2 suggests that isolation is fairly high by European standards.
Moreover, Turks are the most isolated in The Hague, Moroccans in Utrecht, Suri-
namese in Amsterdam, and Antilleans in Rotterdam. Overall, we conclude that the
extent of clustering and segregation among the four principal immigrant groups in
the four largest cities is substantial.
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B.3 All neighbourhoods: Clustering and segregation

Turning to all neighbourhoods, Figure B.1 depicts the Lorenz curve for spatial con-
centration. It is evident that most migrants live in a relatively small number of
neighbourhood, and this extent of clustering is much larger than for all other im-
migrants. The Lorenz curve reveals the extent of spatial concentration, but cannot
reveal the geographic distribution. This is done in Figure B.2 where we map, for
different ethnic groups, the 100 most concentrated neighbourhoods. The map shows
the extent of segregation as there is little overlap across ethnic lines between the
neighbourhoods.

Figure B.1: Lorenz curves of spatial concentration
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The links between these neighbourhoods, and thus the scope for social interacti-
ons, can be examined using standard tools from social network analysis. To this
end, consider the adjacency matrix of the 100 most concentrated neighbourhoods for
ethnic group g, Wg = [wg,ij]i,j=1,..,100, where the binary wg,ij equals zero unless neig-
hbourhoods i and j are within, say, 5km distance of each other and one otherwise.
To examine the connectedness or centrality of a neighbourhood, Bonacich (1987) has
proposed the measure B(β) = (I100 − βWg)

−1Wg1100 =
∑∞

k=0 β
kW k+1

g 1100 where I100

is the identity matrix and 1100 is a vector of ones. B(β) = [b(β)i]i=1,..,100 equals the
weighted sum of direct and indirect links between neighbourhoods. Setting the sub-
jective weight β = 1/33 (to satisfy the parameter’s eigenvalue constraint across all
ethnic groups, see discussion of equation (2) above), the Bonacich measure reveals for
Moroccans some neighbourhoods in Amsterdam to be most central (max(B) = 2.05),
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Figure B.2: The 100 most concentrated neighbourhoods by ethnic group.
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Notes: Panel A: “o” depicts Turkish, and “+” depicts Moroccan neighbourhoods; Panel B: “o”

depicts Surinamese, and “+” depicts Antillian neighbourhoods

whereas for Turks the most central neighbourhoods are in Schilderswijk (inside The
Hague, max(B) = 1.66). For Surinamese the maximum is attained in different neig-
hbourhoods of the Hague (max(B) = 1.71), and for Antillians the most central neig-
hbourhoods are in Rotterdam (max(B) = 1.94).
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