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1 Introduction

It is well established that teachers are the most important in-school factor in

determining student outcomes (Rockoff, 2004; Rivkin et al., 2005). Thus, the fact

that there is huge variation in teacher quality (Hanushek and Rivkin, 2010), is a

perennial problem for education policy-makers. One obvious course of action would

be to hire better teachers; however, many studies have concluded that teacher

effectiveness is very difficult to predict from teacher characteristics (Aaronson et al.,

2007; Kane et al., 2008) reducing the viability of this solution. An alternative

would be to simply dismiss poorly performing teachers (Hanushek and Rivkin,

2010; Chetty et al., 2014), but this too is a challenge given the administrative

burden required, difficulties with replacements and lack of good information on

teacher effectiveness available to school principals (Jacob et al., 2016; Rothstein,

2015).

Consequently, a potentially powerful strategy for policy-makers concerned with

improving educational outcomes would be to improve the quality of the stock of

existing teachers either through incentives or teacher training programs. Research

in this area has tended to focus on the former, with a number of studies evaluating

the use of performance related pay as a means to improve teacher productivity

(Lavy, 2009; Goodman and Turner, 2010; Springer et al., 2011; Muralidharan and

Sundararaman, 2011; Neal, 2011). However, these studies have had mixed results,

calling into question the effectiveness of performance related pay as a magic bullet

to improve educational outcomes in developed countries. An alternative means

of improving teacher performance on-the-job, and the subject of this paper, is

through teacher training programs. Most recently, Taylor and Tyler (2012) find

positive evidence on the effectiveness of one particular type of teacher development

-teacher feedback. However, in summary there exists little robust quantitative

research demonstrating that teacher training programs can have lasting impacts

on student test scores.1

This study estimates the causal effect of teacher peer-to-peer mentoring on

student outcomes under RCT conditions, randomised at the school level. In the

program studied here, fourth and fifth grade teachers work in small groups of three

to plan lessons that address shared teaching and learning goals. They then observe

1We provide a detailed review of the literature at the end of this section.
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each other’s lessons, provide feedback, and refine future lesson plans. Each year

each teacher is observed three times by her two peers. This process is repeated

throughout a two year period for a total of eighteen lesson observations. To ensure

structured feedback and implemention, all participating teachers received five full

training days held by educational experts on teaching mentoring.

There are a number of reasons why we may expect peer-to-peer mentoring to

be an effective form of teacher training. Unlike many other professions, teachers

do not interact with their peers in the classroom. Thus, classroom observations

offer an opportunity for teachers to see, and be seen in action. Feedback on their

observed performance could thus provide teachers with new detailed information

on their performance in the classroom. Given that teachers have been shown to

be motivated agents (Dixit, 2002), this could result in improved planning and

preparation and subsequently better performance (Steinberg and Sartain, 2015).

It could encourage teachers to self-reflect and attempt to acquire work-related skills

as a result of their peers influence (Jackson and Bruegmann, 2009), and could lead

to discussion with other teachers resulting in improvements in teaching practice

across the school as a whole (Taylor and Tyler, 2012).

Perhaps unsurprisingly then, many schools carry out peer observation programs

informally, albeit with little instruction or consistency (Weisberg et al., 2009), mak-

ing them difficult to evaluate empirically. Moreover, testing the impact of teacher

observation, and teacher training in general, on pupil outcomes is an empirical

challenge due to non-random selection of teachers (and students) into training.

Our trial is large-scale, with 543 teachers teaching a total of 13,000 students, over

two cohorts in all subjects, across 181 primary schools in England. Despite having

strict experimental conditions, our experiment is conducted within schools, in a

manner which could easily be replicated or taken to scale. Thus, we capture the

impact of teacher observation and feedback in a ‘real-world’ setting.

Our outcomes of interest come from national, compulsory, high stakes, ex-

ternally marked academic tests intended to measure student learning throughout

primary school. The tests are conducted at the end of primary school in sixth

grade, when the pupil is aged 10/11, one year after the intervention. As such,

our study does not suffer from any biases associated with tests implemented by

the school or teachers or trainers themselves. A further benefit of using national

tests is that we can exploit administrative data linked to the pupil’s outcomes at
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both the treatment schools and the control schools. As a result, we did not need

to contact the control schools again or do any testing in these schools, after they

were informed that they were not selected to receive the treatment. Thus, our

setting allows us to provide new and highly compelling evidence on the impact of

teacher observation and feedback on pupil outcomes.

In summary, we find no evidence that teacher peer observation and feedback

increases pupil performance compared to business as usual in the classroom. Be-

cause of our unique setting, we can control for previous test scores at the student

level, and exploit the panel nature of the administrative data to estimate a RCT-

difference-in-differences analysis. We can reject positive effects on student test

scores of about ten percent of a standard deviation across all subjects, and effect

sizes larger than five percent of a standard deviation in reading and writing tests.

This study is directly related to the literature on teacher training and student

outcomes, which mainly uses quasi-experimental methods to estimate causal ef-

fects, for example Jacob and Lefgren (2008), Harris and Sass (2011), and Angrist

and Lavy (2001) with only the latter finding a positive effect. Experimental evalu-

ations of training programs have also failed to find any impact (Garet et al., 2010,

2011). However, none of these studies examine teacher peer-to-peer observation as

a form of teacher development.

One quasi-experimental study by Taylor and Tyler (2012), directly examines

effects of teacher observation on student performance and does find a significant

positive impact. In this setting, teachers in Cincinnati Public Schools participated

in a year-long classroom observation program known as the Teacher Evaluation

System (TES).2 This program involved three unannounced observations by exter-

nal experts, and one by the school principal, and involved the provision of formal

written feedback and grades to the observed teachers. Identification is based on

near-random timing of the implentation of the year long program at a school. The

study finds that the students of teachers who have been evaluated improve their

maths scores by 11 percent of a standard deviation in the year after the subjective

evaluation, and about 16 percent of a standard deviation two years later, compared

2Papay et al. (2018) currently have an ongoing teacher observation RCT in the field with
an end date of 2020. A pilot study by Steinberg and Sartain (2015) evaluates the Chicago
Excellence in Teaching Project (EIP) in which teachers are observed by their principal during a
lesson, followed by a feedback session as well as more formal ratings, finds no significant effect.
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to students of non-evaluated teachers.

Apart from the RCT conditions, there are a number of important additional

differences which differentiate our study from the Cincinnati study and may explain

the differing results, and offer mechanisms through which the Cincinnati study gen-

erates a positive finding. First, and most notably, our program does not involve

teacher incentives; a key tenet of the program is to facilitate free and open discus-

sion, intended to improve the teachers’ future performance. Therefore no formal

scoring or further consequences are associated with the observations. Conversely,

Cincinnati teachers are formally scored, with the results carrying explicit conse-

quences, including impact on promotions and tenure, and potential non-renewal of

the teacher’s contract. Second, for reasons of scalability, our peer-to-peer obser-

vation and feedback program relies solely on existing teachers within the school,

while external teachers were responsible for observing and evaluating teachers in

the Cincinnati trial. It may well be the case that peers provide less useful feedback

compared to external experts. Moreover, the presence of experts in the Cincinnati

trial may have created a more formal atmosphere in the classroom, particularly

since lessons were also filmed. Finally, while the Cincinnati study is reliant upon

quasi-random timing of schools implementing the TES for identification, our study

was designed as an RCT, with random assignment of schools to the program along

with with a pre-registered statistical analysis plan.

The findings of our study are important. This paper provides the first exper-

imental evaluation of a teacher observation program that is purely designed for

teacher development, rather than also including incentives. Our results show that

teacher observation and feedback cannot solve the policy maker’s problem of huge

variation in teacher effectiveness.

The remainder of the paper proceeds as follows: Section 2 provides further

details about the intervention. In Section 3 we describe the data used in the

analysis, with the RCT design described in section 4. Results are presented in

section 5, with a discussion of potential reasons for differences with the existing

literature in section 6. Conclusions follow in section 7.
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2 The peer-to-peer observation and feedback in-

tervention

2.1 Details of intervention

Teacher peer-to-peer observation and feedback is a type of professional develop-

ment program with a long history of use in Japan and is increasingly used in the

US and worldwide.3 In this particular program teachers work in small groups to

plan lessons that address shared teaching and learning goals.

Specifcally teachers within a schoool form a group of three (known as a learning

tripod), with one of the three selected as the expert teacher’. Schools are free to

choose which teachers are involved in the intervention, and who would be the

expert teacher (though all schools chose teachers with some subject expertise in

English or maths as the expert), with the restriction that two of the teachers

should be teaching year groups 4 and 5.4 Training consisted of five full training

days for teachers participating in the program. This was conducted by experts in

the program and included information on the ethos, protocols and practice. Four of

the five training days occurred during the first year. The fifth training day, at the

beginning of the second year, was focused on optimising feedback and sustaining

the program through its second year. Thus, while the program lasted for two years

-and potentially changed teacher practice and student learning for much longer-,

the treatment intervention was heavily concentrated in the first year.

The trial was pre-registered with the American Economic Association’s registry

for RCTs and a detailed statistical analysis plan was approved before we had

access to the administrative student outcomes data.5 The program was delivered

3For example Lesson Study Alliance helps US teachers , mainly based in Chicago, use Les-
son Study, a peer-to-peer observation and feedback program. See http://www.lsalliance.org/;
(Fernandez et al., 2003) study a USJapan lesson study collaboration; Perry and Lewis (2009)
describe the use of Lesson Study in a medium-sized California K-8 school district.

4Some of the smallest schools had mixed-age classes, and so one teacher may have taught
both Year 4 and Year 5. Given the tripod design, if a school had only one class per year group
or less they would have to choose a teacher from another year, which was seen as unproblematic
from the developer’s perspective since the approach does not propose to develop teaching skills
specific to a particular year group. We placed no restriction on what other year group was chosen.
Because the randomization and analysis is at the school level we are not concerned about schools
being able to choose the teachers.

5The AEA trial registration number is 1779, for details see: http://www.

socialscienceregistry.org/trials/1779. The statistical pre-analysis plan can be ac-
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independently of this impact evaluation by a team at Edge Hill University with

support from external consultants.6

The implementation of the program in schools starts with an initial group

meeting where the three teachers plan the order in which they are to be observed

and which lessons will be observed. The first teacher then teachers her three

research lessons’ observed by the other two teachers. During these classes, the

observing teachers do not interact with students or the teacher but remained solely

in their observing role. After each class the group meets to discuss the lesson and

plan the next in terms of content, structure and delivery. Over the course of the

academic year there were three cycles of the program with each teacher taking the

turn of being observed.

The lack of formal scoring highlights that the program’s intention is to provide

a space for non-judgemental discussion in the school day, rather than a formal

program incorporating consequences or incentives.

As mentioned previously, control schools did not receive the treatment at any

stage, nor did they receive any information about the treatment or training mate-

rials. Thus it is assumed that business as usual conditions applied in these schools.

As discussed, it is plausible that this structured cycle of teacher peer-to-peer

observation and feedback would have a positive impact on pupils’ educational

outcomes. Through the program’s cycle, teachers learn new information about

their performance from the feedback of the observers, the subsequent conversations

taking place between the three teachers, as well as through their own self-reflection.

This new information should help them to develop new skills and improve their

effectiveness, in particular because teacher training in the UK has very few on-

the-job elements. Similar to teachers elsewhere, English teachers receive very little

on-the-job feedback or structured opportunities for on-the-job learning once they

completed their original qualification.

Since teacher improvement through observation could affect pupil performance

in many areas, we estimate the impact of the program on all tested subjects at

the end of primary school. These are maths, reading, Spelling Punctuation and

Grammar (SPAG) and science. Our pre-specified main outcome of interest is the

cessed here: https://educationendowmentfoundation.org.uk/public/files/Projects/

Evaluation_Protocols/Round_4-Lesson_study_SAP.pdf
6See https://everychildcounts.edgehill.ac.uk/special-projects/lesson-study/ for more details.

6



students mean performance in reading and maths.

2.2 Timing of intervention

The teacher observation program took place in state primary schools in England7

during the 2013/14-2015/16 academic years. Figure 1 shows the affected cohorts

given the timing of the intervention in calendar years and the target in terms

of academic years. In this paper, we analyse effects on age-11 outcomes for two

cohorts, which were affected by one (cohort 1) or two years (cohort 2) of this

intervention, both measured one year after the end of the intervention, and almost

two (cohort 1) or three years (cohort 2) after its start.

[Figure 1 goes here]

3 Setting and data

3.1 Administrative student census data

Our analysis relies on linked-in administrative data that are available for all stu-

dents in state-education in England from the National Pupil Database (NPD)

throughout this time period. In England, pupils attend primary school from age

4/5 to 10/11, taking them from Reception through to Year 6. Pupils take national

compulsory tests in Year 2 at age 6/7 (known as Key Stage 1 (KS1)) and at the

end of primary school in Year 6 at age 10/11, known as Key Stage 2 (KS2). From

now on we refer to these tests as age-7 and age-11 tests, see Figure 1.

The administrative age-7 tests serve as the baseline measure of student achieve-

ment. Each student is assessed in math and reading by their teacher and are as-

signed an achievement level, which takes values between three and 27. Since these

national tests are available for all students, we use the mean reading and maths

achievement level as measure for initial student ability.

The age 11 tests examine the students ability in four different areas, maths,

reading, Spelling Punctuation and Grammar (SPAG) and science. The first three

793 percent of pupils attend state primary schools in England (DfE, 2015)
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of these are externally marked on a 100 point scale, which we percentalise at the

national subject-cohort level to ensure comparability across subjects and years.

This is important given the national age-11 assessment changed between the first

and second cohorts. The exception to this is Science, which is assesed by the

teacher and is only reported in 13 coarse levels which makes it inappropriate to be

percentalised. Moreover, there is no science outcome for the second cohort as it

was not recorded in 2015/16.

Our use of the administrative test score data has four key advantages. First,

this data is available for all students and schools with no attrition from the data in

the treatment or control groups. Second, we have a comparable measure of student

achievment prior to the intervention. Third, this Key-Stage information is available

for previous cohorts of students, allowing us to test for balance in outcomes for

prior cohorts and control for school level value added in difference-in-differences

specifications. Finally, no additional testing was required to assess the impact of

this program, thus the tests are not tailored to the intervention. Indeed, it has

been shown that performance in these national age-11 exams is a strong predictor

of later outcomes, including wages (DfE, 2013). This means we can estimate effects

of the program on an outcome measure which has known benefits.

3.2 Recruitment

The target population for this study are state primary schools in England with

above average Free School Meal eligibility (FSM) (which stood at 19 percent at

the time of randomisation in 2013 (DfE, 2016)), and two or fewer classes per cohort.

The project developers were asked to recruit such primary schools in three

regions in England in which they had capacity to deliver the program. The regions

were the South West, East Midlands and North West. Each region contains a

number of Local Authorities (LAs) that are responsible for the running of schools

in that area.8 In order to recruit schools the developers first had to obtain the

approval of the relevant LAs. In the end, we recruited schools from 18 LAs (see

Appendix 1 for the complete list). The aim of the recruitment was to eventually

8These are considerably larger than school districts in America with 152 currently operating
in England. Unlike American school districts they have no power to raise finances to pay for
school facilities; funding for education is provided to LAs from the central government who then
allocate it across schools.
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have 160 schools participate in the study. This total was determined by baseline

power calculations (see Appendix Figure A.1).

Ultimately, 182 schools agreed to participate in the trial by sending back signed

expression of interests. One of these schools was ineligible, as it would not have a

cohort of students taking the age-11 tests during the evaluation period (it was a new

school and only had younger year groups) and therefore was excluded. This left 181

schools that were to be randomized into treatment or control status as described

in the randomization section below. All of these schools signed an agreement to

grant us access to their NPD data prior to randomization. After randomization,

the 89 schools selected for treatment additionally signed a Memorandum of Un-

derstanding which stated the responsibilities of the schools, practitioners, and the

evaluation team.9 These schools chose teachers who were to be involved in the

program as long as they were teaching in academic years 4 and 5. The recruitment

phase led to 6,436 participating students in the first cohort and 6,298 in the second

cohort, for which we have administrative age-11 outcomes available.10

3.3 Representativeness

Figure 2 shows the geographical position of the schools in our sample, the red

crosses denote schools of the treatment group and the blue crosses of the control

group. We can see the schools come from three regions with the exception of one

school in the south east of England. Table 1 shows how the schools within our sam-

ple compare with all schools nationwide and within the participating authorities,

using information from students who completed their age-11 tests in 2011, three

years prior to the intervention. In line with the recruitment strategy, pupils in

our sample are slightly more likely to have Free School Meals (FSM) (22 percent)

than pupils nationally (18 percent) or within their LA (19 percent). The students

are more likely to possess a statement of Special Educational Needs (16 percent)

than pupils nationally (14 percent) or locally (14 percent). As may be expected

the average attainment at age-7 in these schools is lower than schools nationally

9In order to motivate schools to participate in this teacher development program we had
to ensure that they did not perceive this intervention as useful for teacher assessment. One
implication of this is that we could not collect and merge-in teacher-level information.

10There are 362 students (5 percent) for which the full set of demographics and attainment
data was not available. This was approximately evenly split between treatment (172) and control
groups (190).
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(11 percent of a standard deviation). For the outcomes, age-11 tests, the students

perform slightly worse in English (8 percent of a standard deviation), but achieve

comparably to schools nationally or locally in maths (3 percent of a standard

deviation lower). The proportion female and the cohort size are similar among

our sample and schools locally and nationally. Taken as a whole, the schools in

our sample contain slightly more disadvantaged students than an average school,

and have a better value added in maths, but they are not distinctly different and

therefore we have confidence in the external validity of the trial.

[Figure 2 goes here] [Table 1 goes here]

3.4 Randomization and compliance

We performed a pairwise stratified randomization of schools by LA with the aim

of balancing the randomization at LA level (i.e. the pairing of schools for ran-

domization was conducted within each LA). This was to ensure there were equal

numbers of treated and control schools within each region and that they would be

balanced in terms of unobservable local characteristics.

In order to pair similar schools within LAs we computed an index score using

principal component analysis based on school level characteristics. These char-

acteristics were taken from before the intervention in 2011, and consisted of the

average maths and reading levels of students in their age-11 tests and the share

of students eligible for FSM. Panel A of Table 2 shows the mean values of these

variables and the index score of the sample, and the treatment and control groups.

Given the power calculations the evaluation had funding to implement the

program in 80 schools and therefore the developers we asked to recruit at least

160 schools. Ultimately 182 expressed interest, of which 181 were eligible. There

were not the funds to commit to funding the program in half of these schools,

therefore treatment status was initally only allocated to schools for which we could

construct an index score (8 schools had no age-11 test scores in 2011) and schools

that did not operate as part of pair-franchise (6 schools). This left 167 schools

of which 83 schools were assigned to treatment and 84 were assigned to control.11

11The randomization procedure is explained in more detail in Murphy et al. (2017)
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When the 83 selected schools were informed that they would be treated, 16 no

longer wished to take part, leaving 67 treatment schools.12 The 14 previously

excluded schools were then randomized into treatment and control groups. Pairs

were randomly generated within reason for initial exclusion. For schools in pair-

franchises, they were randomised as a pair, so that both schools were allocated to

the same treatment status (two were assigned to treatment and four to control).

Ultimately this resulted in 92 schools being allocated to control status and 89

allocated to treatment status, of which 73 initally participated in the program.

Figure 3 presents the consort diagram, which traces the sample from recruitment,

ramdomization to participation in the trial. During the course of the two year

program five schools dropped out during the first year and four during the second

year.13 Meaning that 64 schools of the 89 schools assigned to treatment actually

went through the full two-year intervention.

We examine dropouts in Appendix Tables A.1 and find evidence that dropouts

were significantly different than the remaining sample for some characteristics,

although no consistent picture emerges comparing the signficant characteristics

from the first and second cohorts. We present summary statistics for all allocated

schools, all schools that did not drop out, and for all dropout schools. Columns

four and five report the raw differences and diffences conditional on the pair fixed

effecuts used for the randomisation, for the first (Panel A) and second (Panel B)

cohorts. For the first cohort schools that dropped out are larger and have students

with slightly higher average age-7 attainment. However, for the second cohort these

characteristics show no differences, with only the share of males being different.

In addition to schools being assigned to treatment and not being treated, stu-

dents could also be assigned to treatment (by being enrolled in a treated school)

but not treated. Individual-level treatment can differ from school-level treatment

for two reasons. First, because they are in a class that is lead by a non-observed

teacher. This occurs when there are two classes per cohort; the program only

involves three teachers and therefore one class over the two cohorts would be left

untreated. The NPD data does not allow us to determine how many teachers are

12Of the 16 schools not accepting treatment, 8 provided no reason, 5 reported staffing issues,
one school change of school priorities, one due to school inspection, and one stating that that
they only had 2 percent FSM and so should not be included

13Three of these schools this was due to teacher turnover, two due to having a new headteacher,
two provided no reason, and two due to having to prioitise OfSted inspections
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in a school year, but there is indicative evidence that this is the case - the pro-

portion of a cohort being treated only falls below 50 percent in treated schools

that participated in the study when the cohort size was above 34. Secondly, some

students joined the school during the final year of primary school, meaning they

take the age-11 tests with the treated cohort, but were not exposed to a program

teacher since the treatment would have occurred before they joined. Therefore,

the students within a year group that receive treatment might be non-random.

To determine if these excluded classes or new students are systematically dif-

ferent to the treated classes Appendix Table A.2 presents the characteristics of

treated and non-treated students within treated schools. Here, we make use of

the fact that all treatment schools that did not drop out provided us with lists of

students that were taught by teachers in the program. Again there are some signif-

icant differences between treated and untreated students, but these differences are

not consistent over cohorts. In the first cohort non-treated students have slightly

lower age-7 test scores, are less likely to receive free school meals and are more

likely to be male. In the second cohort there are no signifcant differences.14

As there are some significant observable (and potentially unobservable) differ-

ences between the those that were ultimately treated and those who were assigned

to treatment (both at the school and student level) and these differences could

be correlated with the size of the effect, our main conclusions will be based on

intention to treat rather than realized participation. We also present Local Aver-

age Treatment Effects (LATEs) results for those schools and students who were

actually treated, instrumenting with the assignment status.

[Figure 3 goes here]

3.5 Implementaton and fidelity

A full process evaluation took place alongside this quantitative study, including

observation of the teacher training, interviews with staff involved in the treatment,

and analysis of data on control schools’ use of peer observation approaches. This

14As is expected untreated students come from schools that are signifcantly larger than treated
students, because these schools will have a two class entry. However, there is no significant
difference in school size when conditioning on pair fixed effects
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qualitative evaluation was based on visits to 10 schools in 2 of the 3 implementation

regions, to interview 19 staff and senior managers involved in the implementation.

Follow up interviews were also conducted by telephone and email with 5 expert

teachers in 5 schools, and information on progress provided by 4 other schools.

Thus, we can report on the implementation of the peer-to-peer observation program

in schools.

Many of the participating teachers reported having had some experience of us-

ing classroom observation in the past, for appraisal or development purposes. How-

ever these experiences were typically shorter (e.g. a 10 minute observation), more

informal and less structured. For example, in describing a previous experience,

one school pointed out that the process as a whole was not sufficiently structured

to identify areas of improvement with sufficient accuracy and detail. Indeed, the

structured nature of the program, particularly the requirement for record-keeping,

was described as new, though teachers also believed it to be important to maintain

rigor.

In general, fidelity was high, and schools were found to be implementing the

peer-to-peer observation program according to the project design. The intensive 5

day training program may have been responsible for this high fidelity and indeed

teachers rated this training highly, referring to it as outstanding’ or high quality’.

Many teachers reported that they felt prepared for the program from the outset

as the training was well structured, interesting and based on evidence. The im-

portance of teachers observing and not intervening was emphasized particularly

strongly during the training, and teachers fully understood the reason for this rule

and reported that they followed it.

The process evaluation concluded that the teachers viewed the program posi-

tively after implementing it. They reported finding certain features of the approach

useful for their own practice, which reflect the potential mechanisms discussed ear-

lier. First, they found it useful to reflect on their teaching and learning practice

and welcomed the opportunity and ’space’ within the timetable to reflect on their

own practice. Second, they welcomed the input from peer observation, particularly

with its emphasis on support, rather than performance management. For example,

one teacher commented that the approach made it possible to convey to an under-

performing teacher what they need to do to improve in a more supportive way.

Teachers in particular reported positively on the experience of sharing practice
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with teacher colleagues, shared planning, and identifying complementary skills.

4 Empirical approach

Prior to conducting the RCT we pre-committed to a set of specficiations and out-

come measures in a Statistical Analysis Plan (SAP)15, which was written three

months before the beginning of the trial. The purpose of the SAP is to minimize

conscious or sub-conscious decisions being made on the basis of results seen. The

SAP contains details of the study design, sample size, randomization, chosen out-

come measures, methodology and analysis plan, subgroup analysis. We now follow

exactly the evaluation strategy that we set out initially and indicate the very few

cases where we deviate.

Our primary analysis is conducted on an intention-to-treat’ (ITT) basis. Specif-

ically, we build up to from a univariate specification, only controlling for school

assignment to treatment Ds, to the following model:

Yips = α + βDs +Xit
′δ + πp + εips (1)

where the dependent variable Yips is the pupil i age-11 test score, in school

pair p from school s. These students took their age-11 tests in the academic years

2014/15 (cohort 1) and 2015/16 (cohort 2). Students from the first cohort are only

taught by teachers trained in the program for one year, whereas students from the

second cohort are taught for two and teachers will be more accustomed to the

system in the second year. To account for these differences the model is estimated

for each cohort separately. β is our main parameter of interest and reflects the

mean difference between those assigned to treatment and control groups. With

successful randomization, a direct comparison of the means should be sufficient

for determining the effect size. To improve the efficiency of the estimations we

include Xis a vector of pupil characteristics. These are the student’s average age-7

test scores (across maths and reading), and indicators for gender, special educa-

tional needs, English as a second language, ethnic minority status and FSM status.

Given the pair-wise randomization structure, here we also include pair-fixed effects.

15This can be found at https://educationendowmentfoundation.org.uk/projects-and-
evaluation/projects/lesson-study/
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Throughout the analysis all standard errors are clustered at the school level.16

As noted previously, some schools that were assigned to treatment dropped

out of the program. We therefore estimate LATEs estimated via two-stage least

squares, where initial treatment allocation is used as an instrument for actual

receipt of the intervention. It thereby corrects’ the ITT estimate, by accounting

for the non-compliance of some schools or students. The actual receipt of the

intervention is defined in two ways. First, at the school cohort level (Ts), where

we define a school to be treated if we received confirmation from the school at the

end of each academic year that they participated. Second, at the student level

(Tis), if we received confirmation from the school that the student was taught by

an observed teacher.

Tis = α + β1Ds +Xi
′δ + πp + εips (2)

Yips = α + β2T̂is +Xi
′δ2 + πp + τips (3)

In an alternate specification, we exploit the panel nature of the administrative

data, which increases our sample size dramatically, and allows us to perform a

difference-in-differences analysis. Here we introduce the subscript t to the depen-

dent variable Yipst and school assignment Dst. In addition to pair fixed effects we

include a set of year effects (µt). The difference-in-differences analysis includes

all years from 2008/9 up to the start of the trial (2012/13) as control years and

the corresponding treatment year only. This means for the first cohort we omit

2013/14 from the analysis and we omit 2014/15 for the analysis of the second

cohort.

Yipst = α + βDst +Xit
′δ + πp + µt + εipst (4)

16For the main results in Table 3 we provide simulated Fisher exact p-values (see also Appendix
Figures A.2 and A.3). Due to the large sample size of this trial, these are very similar.
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5 Results

5.1 Balance at baseline

Before presenting the effects of peer-to-peer observation and feedback on student

outcomes, Table 2 shows summary baseline statistics for the treatment and con-

trol schools, both at the school-level (unweighted) in a pre-treatment year 2011

(Panel A) and at the student level for the treated cohort 1 (Panel B) and cohort 2

(Panel C). The school-level information shown in Panel A shows age-11 outcomes

in maths, english, and the share of free school meal recipients. This is the school-

level information that was available pre-intervention and that we combined into

an Index Score to perform the pairwise matching as described above in section 3.4.

Panel A confirms that the randomisation generated balance on the school charac-

teristics that were used to generate the pairs for randomisation. Panels B and C

of Table 2 present the balancing on a wider range of student characteristics for the

cohorts used in the analysis cohorts. All cells in columns 4 and 5 show similar stu-

dent characteristics and attainments for treatment and control groups. Therefore,

we conclude that the randomisation based on pairwise randomisation dependent

on school characteristics from previous cohorts generated balanced treatment and

control groups.

[Table 2 goes here]

5.2 Effects on pupil attainment

5.2.1 Cross-sectional results

Table 3 presents unconditional estimates of program assignment on the pre-specified

primary outcome, the combined test score (average maths and reading scores), as

well as secondary outcomes, maths, reading, SPAG, and science. Combined age-11

national test percentile for the first treated cohort is 47.25 and 46.13 for the first

control cohort, though this difference is not statistically significant at conventional

levels. For the second cohort (which was treated for two years) there is also no

significant difference between the treatment and control groups with the respective
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average percentile scores being 45.50 and 45.55. A similar pattern is found for the

secondary outcomes all of which the treatment group is not statistically significant

different from the control group for either cohort. Note that all these differences

are of assigned treatment and control groups and so represent unconditional ITT

effects. Column 5 reports simulated Fisher p-values for these effects which in no

instance are close to rejecting the null hypothesis of a zero effect.

[Table 3 goes here]

5.2.2 Main results

The main results are presented in Table 4, where we continue to report ITT esti-

mates using increasingly relaxed specifications. Column 1 is identical to the raw

cross sectional results shown in column 3 of Table 3, where the coefficients rep-

resent the impact on national percentile rank from the school being assigned to

treatment. Moving through columns 2-4 we subsequently add pair-wise fixed ef-

fects, prior student age-7 test scores, and student demographics. The inclusion

of these additional controls do not result in any significant change in any of the

estimates. This is not surprising given the strong balancing with respect to these

observable characteristics reported above. However, their inclusion does reduce the

size of the clustered standard errors, in particular the inclusion of the pair fixed

effects dramatically increases the precision of our estimates. In column 5 we re-

port standardised effect sizes, rather than impact on national percentile rank. For

our main test score outcome we can reject effect sizes of 8.7 percent of a standard

deviation for cohort 1 and of 11 percent of a standard deviation for cohort 2, based

on two-sided confidence intervals at the 95 percent level of statistical significance.

[Table 4 goes here]

5.2.3 IV analysis

In Table 5 we turn to the LATE estimates to estimate the impact of the program on

those that actually went through with it, as the null results found in the previous

table could be due to schools not participating in the program.
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[Table 5 goes here]

For comparison the first column repeats the estimates from the most relaxed

specification from Table 4, in which we control for student characteristics, prior at-

tainment and pair fixed effects. Column 2 presents estimates from instrumenting

the school-cohort-level treatment with the school-level random assignment. For

both cohorts, the estimated LATEs are larger in magnitude but remain insignifi-

cant. For example, the ITT effect on the combined age-11 test pecentile was 0.27

for cohort 1 and the LATE is now estimated at 0.335. We can gauge the scaling by

noting the size of the first stage coefficient of about 0.8, implying that 80 percent

of schools assigned to the treatment went through with it.

Column 4 presents results from the student-level LATE analysis. Here, we

instrumenting individual level treatment with the school-level random assignment.

Note that the corresponding first stage estimates of the student-level IV are smaller

compared to the school-level IV, now estimated at 0.667 and 0.674 for cohorts 1

and 2. This is precisely because not all students in an assigned treatment cohort

were treated. Taking the ratio of the two first stages we can see that 82 percent of

students in schools that went through with the treatment were taught by a trained

teacher Turning to student test scores, the estimates remain insignificant. The

LATE of our primary outcome measure now stands at 0.405 with a standard error

of 1.482 in column 4 Panel A, for example.

Columns 3 and 5 provide the corresponding standardised estimates. For cohort

1 (Panel A) the standardised ITT effect is 0.011 (from column 5 of Table 4) and

the LATEs are now estimated at 0.013 for school treatment (Table 5 column 3)

and 0.016 for student treatment (Table 5 column 5). For the second cohort, which

would have experienced two years of the treatment, the standardised effects are

approximate doubled in size (at 0.023, 0.029 and 0.035 respectively) but remain

close to zero and indistinguishable from zero at conventional levels of statistical

significance.

To remain in accordance with the SAP we estimate the equivalent table using

the difference-in-differences specification This will be using the variation within

treated schools across time and between treated and untreated schools. These

estimates are presented in Appendix Table A.3 , both the estimates from the ITT

and both sets of instrumented specifications change very little when additionally
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using these pre-treatment cohorts, which is reassuring given the randomised nature

of the experiment. However, we also find that the inclusion of the additional

cohorts does not reduce the standard errors, which in some cases are larger. This

provides an potentially interesting finding that including additional cohorts does

not improve the power of a RCT when the standard errors are clustered at the

time invariant unit of treatment.

5.2.4 Heterogeneity

Again to remain in accordance with the SAP, we finally present sub-group ITT

analysis in Table 6. The five subgroups analysed are students who are eligible

for free school meals (FSME), speak English as additional language (ESL), belong

to an ethnic minority, are low achievers in terms of their age-7 outcomes, or are

male.17

[Table 6 goes here]

Out of the forty interaction terms estimated here, three are statistically signif-

icant at the five percent level (or higher). In cohort 2 only, the overall effect as

well as the effect on maths scores for girls is not statistically significantly different

from zero but boys seem to be negatively affected compared to girls. In contrast,

in cohort 1 the interactions for minority and low age-7 test scores are positive and

statistically significant for the SPAG outcome. Given the inconsistent pattern and

the fact that the analysis presented in columns 3 to 8 of Table 6 is not part of the

pre-registered analysis plan, we conclude that there is little evidence for significant

heterogeneity.

6 Discussion

To what extent do our results differ from Taylor and Tyler (2012), who find that

teacher observation and feedback can lead to improved test scores in Cincinnati?

The Cincinnati study estimates effects on maths test score outcomes only, so in

order to best compare the two studies we should consider test score outcomes in

17Appendix Table A.4 shows corresponding total effect sizes.
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maths only. The Cincinnati study finds positive effects of 11.2 percent of a stan-

dard deviation in the first year after the (short) intervention, and effects of 15.8

percent of a standard deviation two years after the intervention (and even larger

effects later on).18 Applied to our setting, this first estimate can be best compared

to our estimates from Table 4 for maths outcomes for cohort 1, where the interven-

tion started almost two years before students took the test, and the second to our

cohort 2, where students started being treated almost three years after the start

of the intervention (both had one year of being taught by an un-observed teacher

before the examination). For both cohorts, the 95-percent confidence intervals do

not include the point estimates from Taylor and Tyler (2012). We can reject ef-

fects of up to 11.04 (cohort 1) and 12.62 percent of a standard deviation (cohort 2)

respectively, based on a two-sided test of null effects.19 Moreover, the Cincinnati

study presents in the main results table even larger effects of about twenty percent

of a standard deviation for academically weaker students. In contrast, we find sta-

tistically insignificant and similar or even marginally smaller effect sizes for maths

outcomes for students with previously low-age 7 tests in our heterogeneity analysis

in column 4 of Appendix Table A.4. These estimates can reject the effect sizes

found by Taylor and Tyler (2012) at the 99 percent level of statistical significance.

Our finding that teacher peer observation carried out in this structured manner

does not lead to improved pupil performance thus highlights a clear difference

between our results and the most well-known study of teacher observation and its

impact on pupil achievement. There are three potential reasons why this may be

the case.

First, and most notably, Cincinnati teachers were formally scored, with the

results carrying explicit consequences, including impact on promotions and tenure,

and potential non-renewal of the teacher’s contract. Our trial did not involve such

consequences and was designed purely to improve teacher performance through

discussion and feedback.

Secondly, the Cincinnati study involved filming of observed classes and being

observed by non-peer experts. This may have had an unintended effect of encour-

aging students to behave differently when being filmed and observed (e.g. they

18see Table 5 of Taylor and Tyler (2012)
19This is using the estimates for maths outcomes shown in Table 4 column 5 and the 95 percent

level of statistical significance.
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may have been better behaved), which may have led to improved test scores. It

may have also resulted in more accuracy in the observation process in Cincinnati

with teachers able to refresh their memory of what they observed after the fact.

Moreover having an external expert there to provide feedback may have resulted

in the delivery of more informative, accurate and frank feedback to teachers.

Thirdly, and finally, our program took place under experimental conditions.

Our study therefore overcomes issues typical of quasi-experimental studies. For

example, in our study, there is no difference in the characteristics of treated versus

untreated teachers; in the Cincinnati setup, younger teachers were evaluated first,

which could result in upward bias of the results if younger teachers have higher

growth in value-added than older teachers20

We believe these key differences between the studies suggest that teacher peer-

to-peer observation may be not be effective unless coupled with incentives and

external evaluators. As such, besides providing convincing evidence on the effi-

cacy of teacher observation programs, this paper also brings new evidence on the

potential mechanisms through which the Cincinnati study may have generated a

positive result.

While we can reject the effect sizes of the Cincinnati Study, smaller positive

effect sizes cannot be rejected. Chetty et al. (2014) estimate that replacing the bot-

tom 5% of teachers in terms of value added with an average teacher would increase

the present value of students’ lifetime income by about $250,000 per classroom.

How do our estimates compare to teacher effectiveness at the bottom end? We

reject the effect sizes of one-standard deviation better teachers in terms of value-

added presented in Hanushek and Rivkin (2010). Therefore, teacher peer-to-peer

observation and feedback studied here is unfit to close the gap between ineffective

and effective teachers, or indeed between ineffective and average teachers. Thus,

while the evidence presented in this trial does not rule out that this type of teacher

observation and feeback may have small positive effects on student performance,

it clearly cannot solve the policy-maker’s problem of huge variation in teacher

effectiveness.

20There is also evidence that the teachers in the Cincinnati sample were somehow able to affect
the timing of their observation; when using scheduled rather than actual interview date the effect
sizes are halved. Such manipulation is not possible in our setup. Our setup also minimizes the
possibility of attrition (as the compulsory test scores are collected centrally).
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7 Conclusions

The unpredictability of teacher productivity has led to growing efforts to measure

it in the classroom. Teacher peer observation is an obvious means of doing so and

many schools adopt such practices, either as a means to identify good teachers, or

to improve their existing labor force. By implementing a large-scale randomized

control trial across primary schools in England, we attempt to provide robust ev-

idence on the efficacy of teacher peer observation as a teacher development tool.

Our results - that we find no positive impact of teacher observation on pupil perfor-

mance in reading, maths, science or grammar, across any subgroup - are in contrast

to the limited body of research in this area, which has pointed to a positive role

for teacher peer observation on pupil outcomes.

Our study had high fidelity and its large-scale nature means we are able to rule

out effect sizes larger than 8.7 percent of a standard deviation in national age-11

test scores for our first cohort, and larger than 11 percent of a standard deviation

for our second cohort.

However, our study does have a number of limitations which should be noted.

First, our outcome measures age-11 scores in reading and maths are obtained

a year after the end of implementation of the intervention (and almost two and

three years after its start) and therefore represent a medium-term outcome. This

may have reduced the possibility of finding an effect, though, as noted above, it

is precisely where one would hope to find it. However, we cannot say what the

impact might have been directly after the implementation, or indeed in the long-

term, for example as there could have been incremental changes to teacher practice.

Additionally, our outcome measures are purely academic and we therefore cannot

say whether peer-to-peer observation and feedback may have had an impact on

non-cognitive pupil outcomes such as well-being or emotional development, though

the program was never intended to affect such outcomes.

A final caveat concerns our finding that many schools already implement some

form of peer-to-peer feedback, albeit in a less structured and comprehensive way

and with lesser intensity than in this intervention. Our research cannot quantify

what the impact of the two-year peer-to-peer observation and feedback intervention

would be compared to schools who do not carry out any individual activities, rather

it is a comparison to business as usual. Similarly, we cannot conclude that any of
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the component parts have no impact, given that schools in the control group may

also perform many of them in less structured ways.

Our results are likely generalisable since they are based on a large sample

of primary schools. The use of teacher observation and feedback is widespread

and gaining traction and there are many commonalities in approaches used across

schools in the UK and internationally. We believe that the results of this research

are highly relevant for schools carrying out these activities. Moreover, as described

above, our results indicate that teacher observation and feedback is not effective

in the absence of teacher incentives and non-peer feedback and cannot be used to

significantly reduce differences in teacher effectiveness.
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Tables and figures

Figure 1: Timeline of intervention

Notes: Red square shows treatment period and cohorts.
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Figure 2: Treatment and control schools
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Table 1: National and local representativeness of sample

(1) (2) (3) (4) (5)

Variable National Local Sample (1)-(2) (2)-(3)

Age-7 Test 15.709 15.643 15.269 -0.445 -0.412

[3.917] [3.897] [3.787] (0.117) (0.123)

Age-11 Maths Level 3.047 3.036 3.015 -0.033 -0.024

[0.986] [0.990] [0.944] (0.030) (0.033)

Age-11 English Level 2.988 2.970 2.909 -0.079 -0.067

[0.974] [0.981] [0.953] (0.032) (0.034)

Share Free School Meals 0.181 0.192 0.223 0.042 0.034

[0.385] [0.394] [0.416] (0.012) (0.013)

Share Female 0.489 0.492 0.499 0.010 0.008

[0.500] [0.500] [0.500] (0.006) (0.006)

Share Special Edu. Needs 0.137 0.142 0.160 0.023 0.020

[0.344] [0.349] [0.367] (0.008) (0.008)

School Size 51.349 45.757 48.712 -2.667 3.254

[29.472] [26.838] [23.438] (2.444) (2.626)

Students in 2011/age-11 cohort 554,768 69,346 6,372

Notes: This table shows baseline characteristics for a pre-treatment cohort sitting the

age-11 tests in maths and english in 2011. Note that for this cohort age-11 test scores

were only avaialable to us in levels at the time of the randomsation so that these are not

percentalised. Column 1 includes all students of that cohort, column 2 only students

in the same Local Authority and column 3 students of the schools that were part of the

trial. Standard deviations of variables shown in square parenthesis. Standard errors

clustered at the school level shown in round parenthesis.
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Table 2: Randomisation tests: pre-period, cohort 1 and cohort 2

(1) (2) (3) (4) (5)
Sample Control Treated (2)-(3) (2)-(3)

Panel A: School-level 2011
Age-11 Maths Level 3.012 3.018 3.007 -0.011 -0.016

[0.328] [0.313] [0.344] (0.051) (0.026)
Age-11 English Level 2.91 2.917 2.902 -0.015 -0.015

[0.363] [0.350] [0.378] (0.056) (0.03)
Share Free School Meals 0.244 0.24 0.248 0.008 0.005

[0.168] [0.172] [0.164] (0.026) (0.018)
Index Score -0.018 0.016 -0.052 -0.067 -0.071

[1.433] [1.375] [1.497] (0.223) (0.077)
Panel B: Cohort 1
Age-7 Test 15.540 15.614 15.469 0.145 0.166

[3.566] [3.539] [3.591] (0.221) (0.114)
Free School Meals 0.236 0.237 0.236 0.001 0.012

[0.425] [0.425] [0.425] (0.025) (0.014)
Special Edu. Needs 0.138 0.139 0.136 0.003 0.008

[0.345] [0.346] [0.343] (0.013) (0.010)
Gender: Male 0.503 0.502 0.505 -0.003 -0.001

[0.500] [0.500] [0.500] (0.013) (0.011)
Minority 0.218 0.240 0.196 0.044 0.037

[0.413] [0.427] [0.397] (0.054) (0.024)
ESL 0.179 0.210 0.148 0.062 0.054

[0.383] [0.408] [0.355] (0.050) (0.022)
School Size 47.681 46.896 48.434 -1.538 -0.293

[25.941] [24.641] [27.113] (5.879) (2.450)
Panel C: Cohort 2
Age-7 Test 15.935 15.823 16.050 -0.227 -0.150

[3.444] [3.455] [3.430] (0.216) (0.127)
Free School Meal 0.233 0.240 0.227 0.013 0.014

[0.423] [0.427] [0.419] (0.025) (0.014)
Special Edu. Need 0.134 0.126 0.141 -0.015 -0.010

[0.340] [0.332] [0.348] (0.016) (0.011)
Gender: Male 0.507 0.504 0.510 -0.006 -0.007

[0.500] [0.500] [0.500] (0.012) (0.009)
Minority 0.220 0.243 0.196 0.047 0.038

[0.414] [0.429] [0.397] (0.054) (0.024)
ESL 0.183 0.217 0.149 0.068 0.049

[0.387] [0.412] [0.356] (0.050) (0.023)
School Size 50.236 47.422 53.099 -5.678 -2.262

[31.747] [23.257] [38.302] (8.677) (3.789)

Pair FX X

Notes: Panel A is for sampled schools in pre-period. Panels B and C show balancing
at the student level for cohorts 1 and 2. Number of obs. for sample in panels A/B/C:
167/6,436/6,298. Standard deviations of variables shown in square parenthesis in
columns 1-3. Standard errors clustered at the school level shown in round parenthesis
in columns 4-5. 31



Table 3: Cross-sectional results

(1) (2) (3) (4) (5)

Treatment Control Difference Standardised Fisher p-value

Panel A: Cohort 1

Test Score 47.25 46.13 1.12 0.044

(0.46) (0.44) (1.734) (0.068) 0.376

Maths 48.13 46.26 1.87 0.066

(0.51) (0.49) (1.87) (0.067) 0.384

Reading 46.38 46.00 0.376 0.014

(0.49)) (0.48) (1.72) (0.062) 0.860

SPAG 48.15 47.17 0.98 0.035

(0.48) (0.48) (1.73) (0.063) 0.625

Science 4.26 4.27 -0.01 -0.014

(0.11) (0.11) (0.04) (0.058) 0.875

Panel B: Cohort 2

Test Score 45.50 45.55 -0.05 -0.00

(0.45) (0.46) (1.66) (0.07) 0.982

Maths 46.87 46.53 0.34 0.012

(0.49) (0.51) (1.81) (0.07) 0.892

Reading 44.13 44.58 -0.45 -0.016

(0.49) (0.50) (1.72) (0.06) 0.856

SPAG 45.35 45.35 -1.31 -0.047

(0.49) (0.51) (1.73) (0.06) 0.566

Notes: This tables shows results of unconditional cross-sectional comparisions, separately for

cohorts 1 and 2 (Specification 1 in main text), separately for cohorts 1 (Panel A) and cohort

2 (Panel B). Test Score refers to combined reading and maths tests at age 11. Science scores

were only recorded for cohort 1. Number of observations: cohort 1 (cohort 2) 6,436 (6,298).

Standard errors in parenthesis in column 3 are clustered at school level. Column 5 shows

Fisher exact p-values for null effects, based on 10,000 simulations (see Appendix Figures A.2

and A.3.)
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Table 4: Main results

(1) (2) (3) (4) (5)

Panel A: Cohort 1

Test Score 1.122 1.301 0.444 0.270 0.011

(1.734) (1.089) (0.990) (0.990) (0.039)

Maths 1.867 2.064 1.186 0.897 0.032

(1.872) (1.240) (1.128) (1.130) (0.040)

Reading 0.376 0.538 -0.299 -0.357 -0.013

(1.718) (1.054) (0.981) (0.962) (0.035)

SPAG 0.979 1.229 0.335 -0.237 -0.009

(1.732) (1.222) (1.155) (1.115) (0.040)

Science -0.010 -0.018 -0.038 -0.040 -0.063

(0.039) (0.027) (0.025) (0.025) (0.039)

Panel A: Cohort 2

Test Score -0.053 -0.004 0.767 0.597 0.023

(1.660) (1.226) (1.145) (1.132) (0.045)

Maths 0.341 0.493 1.291 1.003 0.035

(1.805) (1.413) (1.328) (1.299) (0.046)

Reading -0.448 -0.502 0.244 0.192 0.007

(1.719) (1.162) (1.095) (1.099) (0.040)

SPAG -1.305 -0.925 -0.076 -0.585 -0.021

(1.732) (1.133) (1.141) (1.105) (0.039)

Pair FX X X X X

Age-7 test score X X X

Demographics X X

Standardised X

Notes: This tables shows results of the intervention at age-11 on average

english and maths test scores [Test Score (age-11)], maths test scores,

reading test scores, scores for spelling, punctuation and grammar [SPAG]

and Science, separately for cohort 1 [Panel A] and cohort 2 [Panel B].

Moving from left the right, additional variables are added as controls as

indicated at the bottom of the table. Column (1) shows estimates of

specification (1) in the text. Science scores were only recorded for cohort

1. Number of observations: cohort 1 (cohort 2) 6,436 (6,298). Standard

errors clustered at the school level in parenthesis.
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Table 5: IV analysis

(1) (2) (3) (4) (5)

ITT School LATE Student LATE

Panel A: Cohort 1

Test Score 0.270 0.335 0.013 0.405 0.016

(0.989) (1.226) (0.048) (1.482) (0.058)

Maths 0.897 1.114 0.040 1.345 0.048

(1.130) (1.396) (0.050) (1.698) (0.060)

Reading -0.357 -0.444 -0.016 -0.536 -0.019

(0.962) (1.203) (0.044) (1.449) (0.053)

SPAG -0.237 -0.294 -0.011 -0.355 -0.013

(1.115) (1.388) (0.050) (1.673) (0.061)

Science -0.040 -0.050 -0.078 -0.061 -0.094

(0.025) (0.031) (0.048) (0.038) (0.059)

First Stage 0.805 0.667

(0.033) (0.032)

Panel B: Cohort 2

Test Score 0.597 0.747 0.029 0.886 0.035

(1.132) (1.406) (0.055) (1.679) (0.066)

Maths 1.003 1.253 0.044 1.487 0.052

(1.299) (1.608) (0.057) (1.928) (0.068)

Reading 0.192 0.240 0.009 0.285 0.010

(1.099) (1.372) (0.049) (1.630) (0.059)

SPAG -0.585 -0.731 -0.026 -0.868 -0.031

(1.105) (1.386) (0.049) (1.641) (0.058)

First Stage 0.800 0.674

(0.035) (0.033)

Standardised X X

Notes: Column (1) is the ITT effect and indentical to column (4) of Ta-

ble 4: Pair-FX, Age-7 test scores and student demographics are included

as controls. Columns (2) and (3) show results when random assignment

to the treatment is used as instrument for actual school-level takeup.

Columns (4) and (5) repeat this exercise but using student-level informa-

tion about take-up. Number of observations: cohort 1 (cohort 2) 6,436

(6,298). Standard errors clustered at the school level in parenthesis.
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Appendix

Appendix 1: Participating Local Authorities

341 Liverpool
342 St Helens
343 Sefton
344 Wirral
352 Manchester
353 Oldham
354 Rochdale
356 Stockport
357 Tameside
821 Luton
823 Central Bedfordshire
867 Bracknell Forest
873 Cambridgeshire
874 Peterborough, City of
878 Devon
879 Plymouth, City of
888 Lancashire
896 Cheshire West and Chester
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Tables and Figures

Table A.1: Analysis of School-Level Dropout

(1) (2) (3) (4) (5)

Sample Dropout Stayer (2)-(3) (2)-(3)

Panel A: Cohort 1

Age-7 Test 15.540 15.455 15.553 -0.098 0.560

[3.566] [3.372] [3.596] (0.309) (0.238)

Share Free School Meals 0.236 0.261 0.233 0.029 -0.002

[0.425] [0.439] [0.423] (0.031) (0.030)

Gender: Male 0.503 0.514 0.502 0.013 0.019

[0.500] [0.500] [0.500] (0.017) (0.026)

Share Special Edu. Needs 0.138 0.141 0.137 0.004 0.004

[0.345] [0.349] [0.344] (0.022) (0.018)

School Size 47.681 51.619 47.059 4.560 10.951

[25.941] [22.032] [26.453] (6.325) (4.371)

Panel B: Cohort 2

Age-7 Test 15.935 15.612 15.988 -0.376 0.039

[3.444] [3.384] [3.451] (0.292) (0.292)

Share Free School Meals 0.233 0.247 0.231 0.016 0.023

[0.423] [0.432] [0.422] (0.028) (0.028)

Gender: Male 0.507 0.480 0.511 -0.031 -0.057

[0.500] [0.500] [0.500] (0.020) (0.024)

Share Special Edu. Needs 0.134 0.132 0.134 -0.002 0.024

[0.340] [0.338] [0.341] (0.023) (0.023)

School Size 50.236 50.759 50.151 0.608 9.332

[31.747] [21.904] [33.073] (7.375) (4.782)

Pair FX X

Notes: Obs. in Panel A/B: 6,436/6,298. Standard deviations of variables shown

in square parenthesis in columns 1-3. Standard errors clustered at the school

level shown in round parenthesis in columns 4-5.
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Table A.2: Analysis of Individual-Level Dropout in Treated Schools

(1) (2) (3) (4) (5)

Treated School Treated Students Untreated Students (2)-(3) (2)-(3)

Panel A: Cohort 1

Age-7 Test 15.614 15.584 15.668 -0.083 -0.351

[3.539] [3.544] [3.532] (0.282) (0.247)

Share Free School Meals 0.237 0.221 0.268 -0.047 -0.049

[0.425] [0.415] [0.443] (0.027) (0.029)

Gender: Male 0.502 0.505 0.496 0.009 0.085

[0.500] [0.500] [0.500] (0.017) (0.035)

Share Special Edu. Needs 0.139 0.130 0.157 -0.027 -0.034

[0.346] [0.336] [0.364] (0.019) (0.026)

School Size 46.896 43.329 53.508 -10.179 0.002

[24.641] [23.041] [26.112] (4.793) (0.002)

Panel B: Cohort 2

Age-7 Test 15.823 15.870 15.728 0.142 0.362

[3.455] [3.385] [3.593] (0.288) (0.429)

Share Free School Meals 0.240 0.235 0.250 -0.015 -0.035

[0.427] [0.424] [0.433] (0.030) (0.032)

Gender: Male 0.504 0.513 0.486 0.027 -0.021

[0.500] [0.500] [0.500] (0.019) (0.025)

Share Special Edu. Needs 0.126 0.127 0.125 0.002 0.007

[0.332] [0.333] [0.330] (0.022) (0.036)

School Size 47.422 43.863 54.618 -10.755 0.000

[23.257] [20.308] [26.903] (5.586) (0.000)

Pair FX X

Notes: Obs. in Panel A/B: 3,153/3,176 of all students in schools that participated in the study. Standard

deviations of variables shown in square parenthesis in columns 1-3. Standard errors clustered at the school

level shown in round parenthesis in columns 4-5.
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Table A.3: IV-diff-in-diff analysis

(1) (2) (3) (4) (5)

ITT School LATE Student LATE

Panel A: Cohort 1

Test Score 0.444 0.564 0.022 0.677 0.027

(1.059) (1.340) (0.053) (1.612) (0.064)

Maths 1.204 1.531 0.055 1.838 0.066

(1.225) (1.547) (0.055) (1.873) (0.067)

Reading -0.317 -0.404 -0.015 -0.484 -0.018

(1.040) (1.328) (0.049) (1.593) (0.058)

SPAG -0.174 -0.221 -0.008 -0.265 -0.010

(1.193) (1.519) (0.057) (1.821) (0.068)

Science -0.008 -0.046 -0.072 -0.055 -0.086

(0.021) (0.036) (0.056) (0.043) (0.067)

First Stage 0.786 0.655

(0.042) (0.038)

Panel B: Cohort 2

Test Score 0.774 0.976 0.039 1.153 0.046

(1.176) (1.473) (0.058) (1.751) (0.069)

Maths 1.322 1.666 0.059 1.968 0.070

(1.392) (1.743) (0.062) (2.078) (0.074)

Reading 0.227 0.286 0.010 0.338 0.012

(1.121) (1.410) (0.051) (1.668) (0.061)

SPAG -0.788 -0.993 -0.037 -1.173 -0.044

(1.448) (1.448) (0.054) (1.707) (0.064)

First Stage 0.794 0.672

(0.042) (0.038)

Standardised X X

Notes: This tables shows difference-in-difference estiamtes for specifica-

tion 4 in column (1) and combined DID-IV estimates at the school and

student level. For both cohorts, included are all years from 2008/9 up

to the start of the trial in 2012/13 as control years. Pair-FX, Age-7 test

scores and student demographics are always included as controls. Stan-

dard errors clustered at the school level in parenthesis.
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Figure A.1: Power calculations, pre-trial

Notes: Blue line indicates power with effect size of 0.2 s.d., red line effect size of 0.1 s.d.
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