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Abstract

Low visibility conditions enforce special procedures that reduce the operational flight
capacity at airports. Accurate and probabilistic forecasts of these capacity-reducing low-
visibility procedure (lvp) states help the air traffic management to optimize flight planning
and regulation. In this paper we investigate nowcasts, medium-range forecasts, and the
predictability limit of the lvp states at Vienna Airport. The forecasts are computed
with boosting trees, which consist of an ensemble of decision trees grown iteratively on
residuals of previous trees. The model predictors are observations at Vienna Airport
and output of a high resolution and an ensemble numerical weather prediction (NWP)
model. Observations have highest impact for nowcasts up to a lead time of two hours.
Afterwards a mix of observations and NWP forecast variables generates the most accurate
predictions. With lead times longer than eight hours NWP output dominates until the
predictability limit is reached at +12 days. For lead times longer than two days ensemble
output generates higher improvement than a single higher resolution. The most important
predictors for lead times up to +18 hours are observations of lvp and dew point depression,
as well as NWP dew point depression. At longer lead times dew point depression and
evaporation from the NWP models are most important.

Keywords: aviation meteorology, statistical forecast, visibility, ceiling, decision tree, boosting.

1. Introduction

Low visibility conditions require special procedures to ensure flight safety at airports. These
procedures slow down the air traffic and result in a reduction of the operational airport
capacity leading to mean economic loss for airports and airlines. In this study we therefore
generate predictions of low visibility at thresholds that directly connect to the capacity-
reducing procedures at Vienna Airport. Accurate nowcasts of these low visibility thresholds
can help to reorganize flight plans and reduce the economic losses. These forecasts, however,
are not only important for flight plan reorganizations. They do also have impact on long-term
flight planning to avoid expensive short-term reorganizations. This paper therefore focuses
on nowcasts with lead times from +1 hour to +18 hours, and on medium-range forecasts up
to +14 days lead time. Additionally we are interested in the predictability limit, which is
achieved when the improvement of the forecasts over the climatology vanishes.
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Generally, low visibility forecasts are generated with two different approaches (Gultepe et al.
2007). The first one is physical modeling and uses relevant physical equations to produce
predictions in a defined model area. The second approach, statistical modeling, computes re-
lations between the forecast variable and possible predictor variables from past data. Predic-
tions are produced by applying the relationships to new data. An advantage of this approach
is low computational cost and the possibility to directly forecast special quantities, such as
visibility classes responsible for capacity reductions.

Statistically-based visibility forecasts were investigated first by Bocchieri and Glahn (1972)
using a multiple linear regression approach to forecast ceiling continuously and at several
thresholds. The predictor variables of their forecasting model were output of a numerical
weather prediction (NWP) model. Based on this model approach Vislocky and Fritsch (1997)
produced forecasts of multiple binary thresholds of ceiling and visibility. By adding obser-
vations to the model predictors they enhanced the performance at short lead times. This
forecasting system was improved by Leyton and Fritsch (2003, 2004) by increasing the den-
sity and frequency of the surface observations. Ghirardelli and Glahn (2010) used multiple
linear regression to generate an operational prediction system for several visibility and ceiling
thresholds for multiple locations and lead times. A comparison of various statistical methods
to forecast the same information as Ghirardelli and Glahn (2010), however in one combined
variable, was conducted by Herman and Schumacher (2016). They compared K-nearest neigh-
bor, gradient boosting, random forest, and support vector machine methods and found that
no specific algorithm performs best overall.

The operationally relevant visibility information for flight management is the low-visibility
procedure (lvp) state, a combination of visibility and ceiling which directly connects to capac-
ity reductions at airports. It was forecasted first by Kneringer et al. (2018) and Dietz et al.
(2018), who used ordered logistic regression and decision tree based models for observation-
based nowcasts up to two hours lead time. Their forecasts are most relevant for short-term
regulations. In order to conduct flight plan reorganizations the air traffic management re-
quires forecasts with lead times up to +18 hours, and even longer forecasts are required for
long-term flight planning.

The focus of this paper is therefore on determining the skill and most important model
predictors for lvp nowcasts up to a lead time of +18 hours and for medium-range forecasts from
one day up to the predictability limit. For forecast generation we use boosting trees based on
current observations and NWP model output. The forecasts are produced for Vienna Airport
and only between September and March at 6 UTC since both, lvp occurrence probability and
arrival rate are highest during this time (Kneringer et al. 2018; Dietz et al. 2018). The paper
is organized as follows: Sect. 2 describes the data sources, the response, and the predictor
variables used in this study. Afterwards the statistical methods are explained and the results
are analyzed and discussed.

2. Data

Six years of data (November 2011 to November 2017) are available to produce and evaluate
forecasts, which result in 1177 observations when considering the cold season (October to
March) at 6 UTC only. The forecasts are developed for one specific touchdown point at
Vienna Airport and consist of observations at Vienna Airport and NWP model output. All
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observations used are measured close to the examined touchdown point.

The NWP model data used for forecast generation are from the atmospheric high-resolution
model (HRES) and the ensemble prediction system (ENS) of the European Center for Medium-
Range Weather Forecasts (ECMWF). The HRES model provides forecasts with hourly output
until a lead time of +90 hours. Afterwards the output is three hourly resolved until +144
hours and six hourly up to the maximum lead time of +240 hours. This model is initial-
ized daily at 00 and 12 UTC and provides one forecast for each lead time. Additionally the
ECMWF boundary condition program initializes this model daily at 06 and 18 UTC and gen-
erates hourly resolved forecasts up to +90 hours lead time. The horizontal model resolution
is 0.1◦ x 0.1◦ in latitude/longitude direction, which conforms to grid boxes of approximately
9 x 9 km2. During the training period the model was improved several times (changes in the
horizontal and vertical model grid and the data assimilation scheme). A bilinear interpolation
from the four closest grid points to the validation point, however reduces the impact of model
grid changes.

The ENS provides forecasts until +15 days (+360 hours) lead time with three-hourly output
until +144 hours and six hourly output afterwards. Instead of only one forecast with each
output, the ENS provides 50 forecasts (members) at each lead time. Each of the members is
computed with slightly changed initial conditions resulting in a different prediction. Using the
output information of the 50 members separately would make the predictor variable setup of
the statistical models overly large. Thus, only information of the mean and standard deviation
of the 50 members is used for forecast generation (Wilks and Hamill 2007; Hamill et al. 2008).
The ENS is initialized daily at 00 and 12 UTC on a global grid with a 0.2◦ x 0.2◦ spatial
resolution, which conforms to grid boxes of approximately 18 x 18 km2. Similarly as the
HRES the ENS was improved several times during the model training period. The utilization
of a bilinear interpolation again reduces the impact of model grid changes due to the output
quality.

2.1. Forecast variable

The response is the low-visibility procedure (lvp) state, which is an ordered categorical variable
that comes into effect when certain horizontal and/or vertical visibility thresholds are crossed
at airports. The horizontal visibility thresholds are determined by observations of the runway
visual range (rvr), defined as the distance over which the pilot of an aircraft on the centerline
of the runway can see the runway surface markings or the lights delineating the runway
or identifying its center line (International Civil Aviation Organization 2005). The vertical
visibility thresholds are determined by ceiling (cei) observations. Ceiling is the base altitude
of a cloud deck covering at least five octa of the sky.

The number of lvp states and their threshold values vary with the location, size, and technical
equipment of an airport. Vienna Airport has four different lvp states. Tab. 1 states their
thresholds, related capacity reductions and climatological occurrences. Since no restrictions
(lvp0) occur in about 90 % of the cold season (Oct–Mar) and lvp2 is four times more frequent
than the less restrictive state lvp1 and the maximum restrictive state lvp3, forecasts are
challenging.
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Table 1: Definition of the lvp states with their thresholds in runway visual range (rvr) and
ceiling (cei), their climatological occurrence probability, and their maximum operational ca-
pacity utilization for Vienna Airport. The climatological occurrence probability is computed
during the cold seasons (Oct. – Mar.) from November 2011 to November 2017 at 06 UTC.

lvp state rvr cei occurrence capacity

0 89.7% 100%
1 < 1200 m or < 90 m 1.7% 75%
2 < 600 m or < 60 m 7.1% 60%
3 < 350 m 1.5% 40%

2.2. Predictor variables

The model predictors consist of observations and output of NWP simulations. The obser-
vations used are the predictors Kneringer et al. (2018) found to have the highest impact on
nowcasts (see Tab. 2, top). The horizontal visibilities vis and rvr, which are both used as
predictors differ in the inclusion of background luminance and runway light quality, as well
as the truncation at 2000 m for rvr (Federal Aviation Administration 2006). Ceiling (cei)
is post-processed from ceilometer outputs (Dietz et al. 2018). The lvp state is computed by
thresholds of cei and rvr as described in Sect. 2.1. Dew point depression (dpd) and temper-
ature difference between 2 m and 5 cm agl. (dts) are computed from temperature sensors
in close distance. The climatological information used as predictor is the solar zenith angle
(sza) in order to capture the annual cycle.

The NWP model outputs used as predictors (Tab. 2, bottom) are selected based on physical
mechanisms of fog and cloud formulation and the results of Herman and Schumacher (2016).
Each variable is internally derived by the ECMWF from the physical model equations using
various physical and statistical relationships. Additionally dew point depression (dpdmodel)
and temperature difference between 2 m and surface (dtsmodel) are computed from the NWP
model output 2 m temperature, dew point, and surface temperature.

3. Statistical framework

The forecasts in this paper are generated with boosting trees, which Dietz et al. (2018) showed
to have comparable performance with ordered logistic regression and better performance than
single decision trees, bagging trees, and random forests in case of lvp state nowcasts. In
combination with decision trees boosting is a flexible method to model additive and nonlinear
data features. In the following we describe the characteristics and properties of the boosting
trees, the validation criterion, and the reference forecasts used to determine the model benefits.

3.1. Boosting trees

To forecast the lvp state we require a model that is able to deal with ordered response
variables. Convenient models for such purposes are decision trees, which are intuitive and
easy to build, descriptively, and able to model interactions between multiple predictors. Single
decision trees, however, have a high variance and in many cases a weak forecast performance
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Table 2: Observations, climatological information (top), and NWP model output (bottom)
used as predictors for the statistical models. The particular predictors from the ENS consist
of the mean and standard deviation of all members.

Variable Unit Description

lvp [0,1,2,3] low-visibility procedure state
rvr [m] runway visual range
vis [m] visibility
cei [m] ceiling
dpd [◦C] dew point depression 2 m agl.
dts [◦C] temperature difference 2 m to 5 cm agl.
sza [◦] solar zenith angle

bld [Jm−2] boundary layer dissipation
e [m.w.e.]a evaporation
cdir [Jm−2] clear sky direct solar radiation
dtsmodel [◦C] temperature difference to surface
dpdmodel [◦C] dew point depression
blh [m] boundary layer height
lcc [0 – 1] low cloud cover
shf [Jm−2] sensible heat flux
tp [m] total precipitation

a meter of water equivalent

compared to highly developed statistical models. To overcome this weakness, an ensemble of
decision trees can be grown and merged into one model (James et al. 2014).

A well-known and powerful approach to build multiple trees and merge them together is
boosting, which establishes new decision trees iteratively on information of previous ones. In
the first step of a boosting tree algorithm a single decision tree is developed, from which the
residual information is computed and a new tree is fitted to it. Afterwards the new tree is
merged to the previous one, however with a shrinkage parameter to grow the model slowly and
avoid overfitting. In the next step the residual information of the merged model is computed
and a new tree is again fitted to it and merged with the shrinkage parameter to the actual
model. The process of recomputing the residuals of the model, fitting a tree to it and merging
the new tree to the previous ones is repeated until a stopping criterion is reached (e.g., the
number of maximum iterations is reached, the forecast accuracy cannot be improved anymore,
etc.).

The boosting algorithm used in this study is the component-wise gradient boosting algorithm
of Bühlmann and Hothorn (2007), which computes residual information from the the negative
gradient vector of the loss-function of the actual model. In case of ordinal response variables,
such as lvp, the log-likelihood of the proportional odds model of Agresti (2003) is specified
as loss-function (Schmid et al. 2011). The decision trees used in this boosting algorithm are
established with the unbiased recursive partitioning algorithm of Hothorn et al. (2006).

For computation we used the R package mboost which implements the described algorithm
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(Hothorn et al. 2017a). The number of trees for each model is determined by the minimized
out-of-sample error. Therefore the model score is computed for each iteration up to a max-
imum number of 5000 iterations. The particular model for the iteration with the minimum
score is then selected. The number of iterations differ for the various cross-validated training
samples and for different lead times. The decision trees used in the boosting algorithm are
implemented in the R package party (Hothorn et al. 2017b).

3.2. Model verification

The performance of probabilistic forecasts of ordered response variables such as lvp can be
assessed by the ranked probability score (RPS; Epstein 1969; Murphy 1971; Wilks 2011). For
its computation the squared differences between the cumulative probabilities of the forecast
and observation are calculated for each category and summarized afterwards.

RPS =
1

I − 1

I∑
s=1

[ s∑
i=1

yi − oi

]2
,

with the forecast probabilities yi and observations oi for each category i = 1, . . . , I. A perfect
forecast results in an RPS of 0, the worst possible forecast in an RPS of 1. For model
comparison, the ranked probability scores of each forecast observation pair in the test sample
are averaged.

The model RPS is computed out-of-sample by a season-wise cross-validation approach with
error bootstrapping. The data set is divided into six blocks, each of which contains data from
one cold season. Afterwards, the models are fitted on five blocks and tested on the remaining
one until each block is used once for model testing.

Bootstrapping is used to assess model uncertainty. We generate 1000 data samples, each with
randomly drawn forecast-observation pairs of the original sample with replacement. The
size of each sample is identical to the overall number of forecast-observation pairs. After
bootstrapping the mean RPS is computed for each sample. The distribution of the mean
ranked probability scores describes the model uncertainty.

3.3. Variable importance measurement

Permutation tests are used to determine the predictors with the highest impact on the fore-
casts. Such tests compute and compare the forecast performance of the original test sample
and of multiple modified versions of it. In the beginning of the test the out-of-sample perfor-
mance of the original test sample is computed. After predictions on the original sample one
predictor variable of the original sample is permuted randomly and new predictions, again
with the same model, are generated from this modified sample. Since the new predictions are
generated with random information of one predictor they have a loss in forecast performance.
The stronger the loss in forecast performance the higher is the impact of the permuted pre-
dictor. The procedure of permuting the values of one predictor variable and computing the
performance of this modified sample is repeated for each predictor.

Moreover, to extract meaningful information of the most important predictors the permuta-
tion test is conducted on each cross-validated test sample. Afterwards the results from the
different test samples are averaged to show the mean impact of each predictor on the forecast.
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3.4. Reference models

The benefit of the forecasts of the statistical models can be assessed by different reference
models. A widely used reference for short lead times is the persistence model (Kneringer
et al. 2018). The persistence forecast is deterministic and assumes that the lvp state does not
change between forecast initialization and validation.

For long lead times climatology becomes competitive and is thus used as reference. Climatol-
ogy always predicts the distribution of the response in the training sample.

The third reference is direct output of the ECMWF NWP model. The ECMWF contains vis
in its output from May 2015 on and cei since November 2016. Thus, the predicted lvp state
can be computed directly from the NWP model output after November 2016. For the HRES
model only deterministic lvp state forecasts can be computed because the model consists of one
member only. The ENS model, however, consists of 50 members and therefore probabilistic
forecasts can be derived by merging the predictions of all 50 members. Comparisons with
direct NWP output can be conducted for one cold season.

4. Results

4.1. Nowcasts (+1h to +18h)

This section is about lvp state forecasts with lead times from +1 to +18 hours. The predictors
for the statistical models are observations and output of the ECMWF HRES model – both
separately and combined. The performance of each model is compared amongst others and
to the references persistence and climatology. Moreover the predictors with highest impact
on the forecasts are examined and analyzed on their effects.

Model performance

The performance of the boosting trees with different predictor setups is given in Fig. 1 for the
lead times +1 hour to +18 hours. The statistical models based on observations outperform
the persistence reference model already at the shortest lead time. During nowcasts up to +2
hours lead time the difference between observation-based models and persistence is smallest
and increases with longer lead times. A longer distance between forecast initialization and
validation leads to a higher probability of changing lvp states and therefore to a worsen of
the persistence. Similarly the relations of current observations and future lvp decrease with
longer lead times and the observation-based models converge to climatology, however much
slower than persistence.

The boosting trees based on the HRES output also outperform climatology up to +18 hours
lead time. Their performance is constant for the lead times +1 hour to +6 hours because
of identical HRES information. In this investigation we assume that NWP model output is
available immediately after model initialization. The HRES model is initialized daily at 00, 06,
12, and 18 UTC. The closest output available for the 06 UTC forecast with a lead time of +1
hour is from the 00 UTC initialization with a lead time of +6 hours. This information is used
for the lead times +1 to +6 hours. The same applies for the lead times +7 to +12 hours and
+13 to +18 hours (with outputs from the 18 and 12 UTC model initialization, respectively).
Similarly to the observation-based models, the performance of HRES-based ones decreases
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with longer lead times. The decreasing process, however, is much slower. Persistence performs
better than HRES-based models only up to +2 hours lead time. Between the lead times +3
and +7 hours the performance of the HRES-based models caught up the observation-based
ones. Observation-based models therefore perform on average better until a lead time of +5
hours (Fig. 1b).

The best performing models are the ones with the combined predictor setup. With nowcasts
up to +2 hours lead time they perform almost identically to observation-based models. During
the lead times +3 to +7 hours they perform better than both other models. Primarily they
perform similarly to observation-based models and converge slowly to the performance of the
HRES-based models.
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Figure 1: Forecast performance of boosting tree models based on observations (OBS), NWP
model output of the deterministic HRES ECMWF model (HRES), and the combined predictor
variable setup (OBS+HRES). The forecast validation time is always 6 UTC. Models with a
lead time of +1h (+2h, ...) are initialized at 5 UTC (4 UTC, ...). The dots show the mean
performance of the particular model. Lower RPS indicates a better forecast performance. (a)
Mean performance of the statistical models and the references climatology and persistence.
(b) Forecast performance of the statistical models with their uncertainty (25–75 percentile
range).

Impact of predictors

The predictors with highest impact on the forecast are analyzed using the variable permutation
test (Sect. 3.3) applied to the boosting trees with the combined predictor setup. Figure 2
shows the predictors with highest impact on forecasts for the lead times +1, +6, and +12
hours.

Forecasts with the lead time +1 hour mainly rely on observations. This relation can also be
seen in the analysis of the forecast performance in Fig. 1b, where models with the mixed vari-
able setup perform nearly identically to observation-based models. The lvp state at forecast
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initialization has the highest impact amongst all predictors. If this value would be random
the lvp performance worsens in average 124%. Observed dew point depression (dpd), runway
visual range (rvr), and visibility (vis) have also impact while the solar zenith angle (sza)
contributes little information. These findings agree with the results of Kneringer et al. (2018)
and Dietz et al. (2018).

The impact of observations decreases strongly for nowcasts with lead times from +3 to +7
hours. Dew point depression from the NWP model (dpdmodel) and observations of lvp have
the highest impact at +6 hourly forecasts. Further variables, albeit with smaller impact are
observations of dew point depression and visibility, and evaporation (e) from the NWP model
output.

As the forecasting horizon increases from +8 to +18 hours the influence of dew point de-
pression from the NWP model increases, whereas other predictors only have small impact.
Random lvp states at forecast initialization, for example, would decrease the performance
by less than 5% for predictions with +12 hours lead time. The performance of the models
with the combined predictor setup is similar to the performance of the HRES-based models.
The strong influence of NWP model-based dew point depression on the forecast performance
confirms this finding.

lvp 124%

dpd 24%

rvr 

vis 

sza

0 10 20%

impact

dpd model 28%

lvp 25%

dpd 

e 

vis 

0 10 20%

dpdmodel 49%

dpd 

dts 

lvp 

e 

0 10 20%

OBS
HRES

+1 hour lead time +6 hours lead time +12 hours lead time

Figure 2: Predictors of Tab. 2 with highest impact on boosting trees with the combined
predictor setup for lead times of +1, +6, and +12 hours, respectively. The dark yellow color
indicates observation-based predictors, the blue color HRES-based ones. The x-axis (numbers
in the bars) shows the percentage decrease in forecast performance when the true values of
the particular predictor are replaced with random information.

The effect of particular predictors on the forecast probabilities is shown in Fig. 3. To illustrate
the effects of the predictors, they are fixed to certain, preselected values. Afterwards, the value
of one predictor is modified to generate predictions. Shown are the effects of observed and
NWP model dew point depression (dpd, dpdmodel), lvp, and evaporation (e) for the lead times
+6 hours and +12 hours, respectively.

The fixed values were selected for conditions that can drift to both, lvp0 events and capacity
reducing lvp events (Tab. 3). For predictions with +6 hours lead time the fixed values result
in 54% lvp0, 11% lvp1, 32% lvp2, 3% lvp3, for +12 hours lead time in 57% lvp0, 9% lvp1,
30% lvp2, 4% lvp3.

Dew point depression (dpd) which has highest impact on the forecast has a positive effect due
to lvp0 states. Increased dpd forces an increased probability of lvp0. High dpd reflects a dry
atmosphere where fog formation is unlikely but dissipation likely.

Observed lvp has the reverse effect as dew point depression. High lvp states (lvp1/2/3) at
forecast initialization result in a low probability for upcoming lvp0. Conditions with lvp1/2/3
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reflect a moist atmosphere and the main process for drying the atmosphere is solar radiation,
which does not appear during night (forecast validation is always at 06 UTC).

Increasing evaporation from the ground has the same effect as increasing lvp states. Conden-
sation forms small water drops close to ground and reduces visibility.

Table 3: Fixed values for the computation of the effects of particular predictors (cf. Tab. 2)
on the forecast.

Variable Value Variable Value

lvp 0 blh 150 m
rvr 2000 m dpdmodel 0.3 ◦C
vis 2500 m dtsmodel 0.2 ◦C
cei 500 ft cdir 0 Jm−2

dpd 0.5 ◦C e 6·10−6 m.w.e
dts 0.1 ◦C lcc 0.9
sza 150 ◦ shf 1500 Jm−2

bld 3000 Jm−2 tp 0 m
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Figure 3: Effects of observed and NWP model dew point depression (dpd, dpdmodel), lvp, and
evaporation (e) for the lead times +6 hours and +12 hours, respectively. Downward fluxes are
defined positive in the ECMWF and therefore positive evaporation represents condensation.
The red marks at the x-axis show the median and the black marks the 25 and 75 percentiles
distribution of the variable in the data set. The green marks show the fixed values from Tab.
3.
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4.2. Medium-range forecasts and predictability limit

The performance of models with the combined predictor setup converges to HRES-based
models at lead times longer than +8 hours (Fig. 1). Therefore we only use NWP-model-
based predictors for the generation of medium-range forecasts and the investigation of the
predictability limit. The predictors used include deterministic information from the HRES
and the means and standard deviations from the ENS.

Model performance

Figure 4 shows the performance of boosting trees based on outputs of HRES and ENS for
medium-range forecasts with lead times from +0 to +14 days. The predictions consist of
output of the 00 UTC NWP model run and the forecast validation time is again 06 UTC.
Lead times of +0, +1, +2, etc. days correspond to +6, +30, +54, etc. hours. The maximum
output length of the HRES is +240 hours. HRES-based model forecasts can be generated
therefore only up to +9 days lead time. The ENS, on the other hand, allows forecasts up to
+14 days lead time.

The performance of the statistical models and climatology is shown in Fig. 4a with their
uncertainties. In the nowcasting range with a lead time of +0 days HRES-based statistical
models perform slightly better than ENS-based ones. From +1 day lead time on both models
perform similar and after +2 days lead time the ENS-based models perform better. The
biggest difference in forecast performance occurs for the lead times +4 to +6 days, where
ENS-based models clearly outperform HRES-based ones, which converge much faster to cli-
matology. The predictability limit, where the forecasts of climatology and the statistical
models perform similar in mean RPS, is reached after approximately +12 days lead time.

In order to obtain more information of the benefit of the statistical models we compare them
to the raw output of the NWP models. Raw lvp state is computed from the NWP model
outputs visibility and ceiling. Since ceiling has been only available from November 2016
on, an out-of-sample comparison between the forecasts of the statistical models and the raw
NWP model output is computed between December 2016 and November 2017 (cold season
only). We therefore train the boosting trees with cold season data from December 2011 to
November 2016 and compare their performance with the raw NWP model output for the
remaining period.

Figure 4b shows the mean out-of-sample performance of the statistical models, raw NWP
model output, and climatology only for cold season data between December 2016 to November
2017. This period had a much higher occurrence of lvp1/2/3 than climatologically expected
(Fig. 4a).

HRES-based raw output performs better than climatology only until +1 day. Direct output
from the ENS, however, has a benefit over climatology until +6 days lead time. The statistical
models with input from the ensemble model have a benefit over the raw ENS output up to
+14 days lead time and remain better than climatology up to +12 days. Note that all lvp
cases detected in the individual ensemble members have their origin in low ceiling cases.
The ECMWF visibility does not fall below the lvp threshold range during the test period.
Moreover, raw lvp state forecasts from the ensemble average visibility and ceiling always result
in lvp0. The reason therefore is the exceeding of the lvp thresholds in the variable means for
the complete data set.
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Figure 4: (a) Medium-range forecast performance of the boosting trees based on HRES
(tree(HRES)) and ENS (tree(ENS)) information compared to climatology with its uncer-
tainty for the complete 6 years data (cold season only). The model uncertainty is shown with
the 25 and 75 percentiles (boxes around the mean). (b) Forecast performance of the statis-
tical models and the reference models climatology and raw NWP model output (HRESraw,
ENSraw) only for December 2016 – March 2017 and October – November 2017. The lvp state
from the raw ensemble is computed by the distribution of the lvp states from each member.
Computing the lvp state only from mean visibility and mean ceiling would always result in
lvp0. All lvp cases from the raw model output are due to low ceiling. The numbers in the
upper bounding in Fig. 4b depict the RPS of the raw HRES predictions.

Highest impact inputs

The most important predictors for statistical based medium-range lvp forecasts are again
analyzed with the variable permutation test. Figure 5 shows the predictors with highest
impact for the models based on HRES and ENS for the lead times +2 days and +8 days.
In case of the ENS-based models almost only predictors with mean information do have an
impact on the forecast. Little information is contained in the standard deviation.

Dew point depression (dpd) has highest impact for both models with +2 days lead time. The
performance of HRES-based models decreases on average 20% when observations are replaced
by random values. Additional impact on the forecast originates from the predictors boundary
layer height (blh), sensible heat flux (shf ), evaporation (e), and clear sky direct solar radiation
(cdir).

When the skill of the model forecasts over climatology decreases the number of predictors
with impact on the forecast also decreases. In HRES-based models only two predictors do
have influence on predictions with +8 days lead times. Moreover, the impact of these two
predictors decreases strongly compared to the impacts of the predictors with the +2 days
forecast. The convergence of the statistical models to climatology for longer lead times (+8
days in Fig. 4) indicate a low predictability of the predictors used from the NWP models
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and therefore no stable association between the NWP output and the upcoming lvp state
is found by the models. In ENS-based models, which perform better at long lead times,
more predictors have influence on the forecasts and the impact of these predictors is generally
higher.
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Figure 5: Predictors of Tab. 2 (bottom) with highest impact for medium-range forecasts with
+2 days and +8 days lead time. The x-axis shows the percentage decreasing in performance
when replacing the true observation of a particular predictor with random information. (a)
HRES-based models (b) ENS-based models.

5. Discussion and conclusion

Predictions of lvp (low-visibility procedure) states have been developed for flight planning with
different horizons using boosting trees. The lvp state, which is the relevant variable for flight
regularization due to low visibility at airports, is categorical and consists of multiple thresholds
of horizontal and vertical visibility. Former studies predict the horizontal and vertical visibility
separately, which then can be combined by the air traffic management (e.g. Vislocky and
Fritsch 1997; Ghirardelli and Glahn 2010, etc.). This approach, however, makes accurate
probabilistic forecasts of the lvp state impossible because of the interdependence of both
visibility variables. Direct forecasts of the lvp states, on the other hand, allow probabilistic
predictions of the information relevant for aviation. The lvp state predictions in this study
focus on time scales for short-term regulation, flight plan reorganization, and long-term flight
planning.

Short-term regulations are defined with predictions up to the next two hours, which are most
important for the flight controllers. These forecasts are the most accurate ones and are mainly
driven by latest observations of lvp, dew point depression, and visibility.

For reorganizations of flight plans the air traffic management can use the predictions with lead
times from +3 to +18 hours. Within this range the impact of observations decreases and NWP
model output becomes more important. Highly resolved deterministic NWP output leads to
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slightly better performance than ensemble information. For forecasts with lead times of +6
hours the NWP model output dew point depression and the observation lvp do have equal
impact. Hence observations and NWP output have to be included in the statistical models
to generate most accurate predictions. The most important predictors are observations of
lvp, horizontal visibility, dew point depression, air temperature difference between 2 m and
surface, and the NWP model outputs dew point depression and evaporation.

Long-term flight planning requires medium-range forecasts with lead times longer than one
day. During this time range the statistical models with postprocessed ensemble information
perform most accurately. The NWP outputs with highest benefit for the predictions are dew
point depression, evaporation, sensible heat flux, and boundary layer height. The predictabil-
ity limit of lvp is approximately 12 days, where the benefit of the statistical forecasts over
climatology vanishes.

The ECMWF NWP models also provide information of visibility and ceiling. Both variables
can be used to predict lvp directly. However, these variables are not included in the statistical
models because their data archive is too short. Comparisons between direct lvp state forecasts
from the NWP models and the statistical models were made for one cold season and just
showed a small difference in the performance between +1 and +5 days lead time. Therefore
the statistical models always perform somewhat better. The lvp state climatology of the
comparison period, however, differs strongly to the climatology of the model training period,
which suggests a too short comparison period for valuable statements. Nevertheless, for future
investigations of the lvp state NWP model output of ceiling and visibility should be included
in the statistical models to improve the forecast performance. Of both variables, however,
information of each particular member should be taken into account instead of mean ensemble
information since mean visibility and/or ceiling always leads to lvp-free conditions.

In summary we saw that statistically-based probabilistic lvp forecasts do have a benefit over
all reference models until a lead time of approximately +12 days. These predictions can be
used to improve flight planning at all required forecast horizons.
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Low visibility forecasts for different flight planning horizons using tree-based boosting
models

Abstract
Low visibility conditions enforce special procedures that reduce the operational flight
capacity at airports. Accurate and probabilistic forecasts of these capacity-reducing low-
visibility procedure (lvp) states help the air trafficmanagement to optimize flight planning
and regulation. In this paper we investigate nowcasts, medium-range forecasts, and the
predictability limit of the lvp states at Vienna Airport. The forecasts are computed with
boosting trees, which consist of an ensemble of decision trees grown iteratively on residu-
als of previous trees. Themodel predictors are observations at Vienna Airport and output
of a high resolution and an ensemble numerical weather prediction (NWP) model. Ob-
servations have highest impact for nowcasts up to a lead time of two hours. Afterwards a
mix of observations and NWP forecast variables generates themost accurate predictions.
With lead times longer than eight hours NWP output dominates until the predictability
limit is reached at +12 days. For lead times longer than two days ensemble output gener-
ates higher improvement than a single higher resolution. The most important predictors
for lead times up to +18 hours are observations of lvp and dew point depression, as well
as NWP dew point depression. At longer lead times dew point depression and evapora-
tion from the NWP models are most important.
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