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Abstract

Non-homogeneous post-processing is often used to improve the predictive performance
of probabilistic ensemble forecasts. A common quantity to develop, test, and demonstrate
new methods is the near-surface air temperature frequently assumed to follow a Gaussian
response distribution. However, Gaussian regression models with only few covariates are
often not able to account for site-specific local features leading to strongly skewed residu-
als. This residual skewness remains even if many covariates are incorporated. Therefore,
a simple refinement of the classical non-homogeneous Gaussian regression model is pro-
posed to overcome this problem by assuming a skewed response distribution to account
for possible skewness. This study shows a comprehensive analysis of the performance of
non-homogeneous post-processing for 2 m temperature for three different site types com-
paring Gaussian, logistic, and skewed logistic response distributions. Satisfying results for
the skewed logistic distribution are found, especially for sites located in mountainous ar-
eas. Moreover, both alternative model assumptions but in particular the skewed response
distribution, can improve on the classical Gaussian assumption with respect to overall
performance, sharpness, and calibration of the probabilistic predictions.

Keywords: Statistical post-processing; Probabilistic temperature forecast; Skewed distribu-
tion; Distributional regression.

1. Introduction

Probabilistic weather forecasts have become state-of-the-art over the last years (Gneiting and
Katzfuss 2014). As such, they are important to address the chaotic nature of the atmosphere,
and to express the uncertainty of a specific forecast (Lorenz 1963). The expected uncertainty
is typically provided by an ensemble prediction system (EPS, Leith 1974) where multiple fore-
casts are produced by a numerical weather prediction (NWP) model with slightly perturbed
initial conditions, model physics, and parameterizations. However, it was found that these
forecasts often show systematic errors for both the expectation and the uncertainty due to re-
quired simplified physical equations, insufficient resolution, and unresolved processes (Bauer,
Thorpe, and Brunet 2015).

One possibility to correct for these errors are statistical post-processing techniques (Gneiting
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and Katzfuss 2014) such as Gaussian ensemble dressing (GED, Roulston and Smith 2003),
non-homogeneous Gaussian regression (NGR or EMOS, Gneiting, Raftery, Westveld, and
Goldman 2005), Bayesian model averaging (BMA, Raftery, Gneiting, Balabdaoui, and Po-
lakowski 2005), or logistic regression (Wilks 2009; Messner, Mayr, Wilks, and Zeileis 2014).
These methods have been tested extensively for air temperature forecast and other quantities
where NGR (with various extensions) represents one of the most popular approaches.

The two most important properties of probabilistic forecasts are sharpness and calibration
(Gneiting, Balabdaoui, and Raftery 2007). Previous studies show that extensions of the
classical NGR (Schefzik, Thorarinsdottir, and Gneiting 2013; Scheuerer and Büermann 2014;
Möller and Groß 2016; Dabernig, Mayr, Messner, and Zeileis 2017) and other temperature
post-processing methods (Hagedorn, Hamill, and Whitaker 2008; Verkade, Brown, Reggiani,
and Weerts 2013; Feldmann, Scheuerer, and Thorarinsdottir 2015; Wilks 2017) are able to
improve the predictive performance of the classical NGR with respect to specific predictive
performance measures such as sharpness and calibration.

However, in recent publications the presented PIT histograms (Dawid 1984) often do not show
the desired perfectly uniform distribution to confirm calibration (cf., Figure 5c,g in Scheuerer
and Büermann 2014, Figure 4c in Möller and Groß 2016, or Figure 7 in Messner, Mayr, and
Zeileis 2017). More specifically, the histograms indicate skewness in the residual distribution.
Since a marginal Gaussian model without covariates can already exhibit skewness for tem-
perature data (Toth and Szentimrey 1990; Warwick and Curran 1993; Harmel, Richardson,
Hanson, and Johnson 2002), skewness is supposed to vanish if covariates are incorporated.
Nevertheless, the residual distribution is still found skewed even after adjusting by covariates
(Scheuerer and Büermann 2014; Möller and Groß 2016; Messner et al. 2017). Since covariates
are based on output of NWP models, a remaining skewness is likely to originate in small-scale
or local atmospheric processes insufficiently or not at all resolved by the NWP models. One
example are locations in regions where topography is only coarsely resolved in the model.
Then many thermally induced slope and valley wind systems as well as subsidence / lifting
zones (Steinacker 1984; Whiteman 1990; Zängl 2004) will be absent and lead to the residual
skewness of the post-processed temperature distributions.

So far, most studies assume a Gaussian response distribution for their temperature post-
processing methods (Gneiting et al. 2005; Hagedorn et al. 2008; Verkade et al. 2013; Scheuerer
and Büermann 2014; Möller and Groß 2016; Gebetsberger, Messner, Mayr, and Zeileis 2017;
Dabernig et al. 2017). As the Gaussian distribution is symmetric it is not able to account for
possible skewness by itself. Hence, this article proposes an extension of the non-homogeneous
Gaussian regression framework (Gneiting et al. 2005) using a skewed rather than a symmet-
ric response distribution in order to obtain sharp and calibrated probabilistic temperature
forecasts. To examine the need of the asymmetry, probabilistic temperature forecasts are
presented for a set of stations with different characteristics including sites in the European
Alps and in topographically plain areas across Central Europe.

2. Methods and data

This section briefly describes the regression framework, the distributions used, data, the
statistical models employed, and the verification methodology.
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Figure 1: Density function of the skewed logistic distribution, illustrating the 3rd moment (ν,
skewness) depending on the chosen shape parameter ζ.

2.1. Non-homogeneous regression framework

The non-homogeneous Gaussian regression framework as proposed by Gneiting et al. (2005)
is a special case of a distributional regression model (Klein, Kneib, Lang, and Sohn 2015) and
can be expressed in its general form as:

y ∼ D
(
h1(θ1) = η1, . . . , hK(θK) = ηK). (1)

A response variable y is assumed to follow some distribution D with distribution parameters
θk, k = 1, . . . ,K. Each parameter is linked to an additive predictor ηk using a monotone link
function hk. In this article we use the identity-link hk(ηk) = ηk for the location parameters
and a log-link for scale and shape parameters to ensure positivity. Each linear predictor can
be expressed by a set of additive predictors of the form:

ηk = ηk(x, βk) = f1k(x1, β1k) + · · ·+ fPk(xP , βPk) (2)

including various (possibly non-linear) functions fpk, p = 1, . . . , P . Hereby, xp defines a
matrix of covariates used, and βpk is the vector of regression coefficients to be estimated.

2.2. Response distributions

This study compares three different distributions for temperature post-processing: (i) the
frequently-used Gaussian distribution, (ii) the symmetric logistic distribution, and (iii) the
generalized logistic distribution type I. The logistic distribution is used to assess the impact of
having slightly heavier tails (Gebetsberger et al. 2017). The generalized logistic distribution
type I is particularly of interest as it allows to account for possible skewness in the data. For
simplicity, it will further be referred as skewed logistic distribution.

The skewed logistic distribution has the cumulative distribution function (CDF):

CDF (x) =
1

(1 + exp(−x−µ
σ ))ζ

(3)



4 Probabilistic temperature forecasting

with location parameter µ, scale parameter σ, and shape parameter ζ. The first derivation of
Equation 3 leads to the probability density function (PDF):

PDF (x) =
ζ · exp(−x−µ

σ )

σ · (1 + exp(−x−µ
σ ))2ζ

. (4)

The additional shape parameter ζ is responsible for the skewness. Figure 1 sketches the
PDF for three different shape parameter values ζ and corresponding skewness ν. ζ has to
be positive definite, where values below 1 create negative skewness (heavier left tail, ν < 0),
while values above 1 produce positive skewness (heavier right tail, ν > 0). For ζ ≡ 1 the
skewed logistic distribution describes the symmetric logistic distribution.

As an example, values for ζ = {0.50, 1, 3.82} produce a skewness of ν = {−0.85, 0, 0.85} as
illustrated in Figure 1. Details regarding skewness calculation can be found in Appendix A.

2.3. Data and statistical models

Data

Results are presented for forecasts at 27 different sites in Central Europe (Figure 2) for
forecasts +12 h to +96 h at 6-hourly intervals. The sites were selected to investigate the
influence of different topographical environments. Therefore, the stations are clustered into
three distinct groups representing Alpine sites located in inner-Alpine regions (12), foreland
sites in the peripheral area close to the Alps (6), and plain sites in topographically flat areas
(9).

Temperature observations are provided by automatic weather stations (10 minute mean val-
ues). As input, 2 m temperature forecasts of the 50 + 1 member EPS of the European Centre
for Medium-Range Weather Forecasts (ECMWF) are used. For this study only EPS fore-
casts initialized at 0000 UTC are considered. The data set covers the time period January 1,
2012 through December 31, 2016 resulting in five years of data which yields a sample size of
approximately 1800 for each individual station and forecast lead time.

In this article, detailed case studies will be shown for Innsbruck, Austria (Alpine site), and
Hamburg, Germany (plain site; cf., Figure 2), which differ particularly in their topographical
environments. While the Alpine site is located in a narrow Alpine valley surrounded by high
mountainous exceeding 2500 m of altitude, the plain site is characterized by its vicinity to the
sea (100 km) and only few hills with an altitude below 160 m. Due to the necessary simpli-
fications the NWP model topography is missing large parts of the topographical structures,
especially for the Alpine site (Figures 1 and 3 in Stauffer, Umlauf, Messner, Mayr, and Zeileis
(2017)).

Statistical models

Similar to previous works (cf., Scheuerer and Büermann 2014; Feldmann et al. 2015; Möller
and Groß 2016; Dabernig et al. 2017) we only utilize the ensemble mean (ens) and ensemble
standard deviation (SDens) of the 2 m temperature forecasts from the ECMWF EPS in this
study. In the following model specification, the ensemble mean is used for the linear predictor
of the location parameter µ while the ensemble standard deviation is used for the linear
predictor of the corresponding scale parameter σ.
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Figure 2: Study area and selected stations in Germany (GER), Switzerland (CH), Italy (IT),
and Austria (AUT). The markers indicate stations classified as Alpine (triangle), foreland
(star), and plain (square). Large symbols represent stations which are discussed in detail in
this article: Innsbruck, Austria (large triangle), and Hamburg, Germany (large square).

While the Gaussian and the logistic distribution have only two parameters (µ and σ), the
skewed logistic distribution has an additional shape parameter ζ. To be able to capture
possible skewness over the season, a smooth cyclic spline f depending on the day of the year
(DOY) is used in the linear predictor for the shape parameter. The model specification for
the study presented can be summarized as follows:

y ∼ D(µ, σ, ζ), (5)

µ = β0 + β1 · ens, (6)

log(σ) = γ0 + γ1 · log(SDens), (7)

log(ζ) = f(DOY ), (8)

Name / Distribution µ log(σ) log(ζ)

Gaussian ens SDens —
Logistic ens SDens —
Skewed logistic ens SDens f(DOY)

Table 1: Covariates used in the linear predictors of the distributional parameters µ, σ,
and ζ for all response distributions. ens; SDens : ensemble mean and standard deviations of
ensemble 2 m temperature, respectively; f(DOY): smooth cyclic seasonal effect.
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for which the additional parameter ζ is solely used for models using the skewed logistic
response distribution. Table 1 shows a comprehensive overview all models and the covariates
used in the corresponding linear predictors.

2.4. Verification methodology

Different scores are used to assess the predictive performance of the models tested. The
overall performance is evaluated by the logarithmic score (LS; Wilks 2011) and the continuous
ranked probability score (CRPS; Hersbach 2000). Of particular interest for this study is the
performance of the post-processing models in terms of sharpness and calibration (Gneiting
et al. 2007).

The sharpness of the probabilistic forecasts is verified using the average prediction interval
width (PIW). Results for three different intervals are shown in this article: 50%, 80%, and
95%. As an example: the 80% PIW describes the range between the 10%-percentile and the
90%-percentile of the probabilistic forecast. The smaller the PIW, the sharper the forecast.

Calibration is visually evaluated using PIT histograms. In addition, the reliability index (RI;
Delle Monache, Hacker, Zhou, Deng, and Stull 2006) and prediction interval coverage (PIC)
are shown. The RI allows to analyze an aggregated measure over a large number of individual
PIT histograms. RIs are defined as

∑I
i=1 |κi −

1
I | where I defines the number of individual

bins in a PIT histogram and κi the observed relative frequency in each bin. In this study we
use a binning of 5%. The RI describes the sum of the absolute deviation from each bin in
a specific PIT histogram from perfect calibration. Thus, perfectly calibrated forecasts would
show an RI of zero. PICs show the calibration for a specific interval. As for PIW, PICs are
shown for the 50%, 80%, and 95% interval together with theoretical PICs of 50%, 80% and
95%. The closer the empirical PIC to the theoretical PIC, the better the calibration.

3. Results and discussion

This section presents a detailed analysis for a typical Alpine site and compares the performance
measures to a topographically plain site followed by a comprehensive analysis of all sites used
for this study.

All results presented are out-of-sample results using 5-fold block-wise cross-validation. For
each model, station, and lead time, five regression models have been estimated on 4 years of
data while one full year (2012, 2013, 2014, 2015, or 2016) is used as test data set.

3.1. Alpine case study

To show the performance of the proposed approach, the analysis for one selected site with
a distinct Alpine character is shown (large triangle, Figure 2). The left column of Figure 3
presents the verification for this Alpine site. Figure 3 (top down) shows LS, CRPS, 80% PIW,
and RI for all forecast lead times. A dominant diurnal cycle for LS, CRPS, and 80% PIW
can be seen for all three models, where smallest (best) scores are obtained during nighttime
(0000/0600 UTC) and largest during daytime (1200/1800 UTC). Overall, only a small decrease
in the forecast performance can be seen with increasing lead time which implies comparable
skills between the first and fourth forecast day.

When comparing the logistic model with the benchmark Gaussian model, the logistic model
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Figure 4: PIT histograms at the Alpine site for the Gaussian (black/dark line) and
skewed logistic (green/bright line) models for the two-day ahead forecasts (left to right:
0600/1200/1800/0000 UTC) corresponding to forecasts +30/+36/+42/+48 hours ahead.
Top down, the PIT histograms are shown for summer only (Jun/Jul/Aug), winter only
(Dec/Jan/Feb), and for the whole year. The gray horizontal bar shows the pointwise 95%
confidence interval around 1 for perfect calibration.

shows small improvements in LS and CRPS, especially during nighttime. A similar picture
can be seen for the sharpness (80% PIW) where strongest improvements can be achieved
during nighttime, but with an overall stronger improvement for all lead times. Furthermore,
the logistic model is able to remove large parts of the diurnal pattern in terms of calibration
showing a smoother RI over time compared to the Gaussian model.

When comparing the skewed logistic model with the two models using a symmetric response
distribution, a considerably large improvement for all lead times can be seen for LS and CRPS,
but also in terms of sharpness (80% PIW) and calibration (RI).

Figure 4 shows PIT histograms for the two-day ahead forecasts. To increase readability,
only the Gaussian and skewed logistic models are shown where biggest improvements can
be seen. PITs are shown for 0600 UTC, 1200 UTC, 1800 UTC, and 0000 UTC to check the
characteristics for different times of the day. Top down PITs for summer season, winter
season, and the full year are shown to highlight seasonal differences in calibration. Forecasts
for day one, three, and four show a very similar picture (not shown).

When focusing on the Gaussian model several features can be identified. During summer (top
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Figure 5: Time series of the empirical skewness ν of the forecasted skewed logistic distribution
for lead time +36 h for the Alpine station (top) and plain site (bottom). Symmetric forecasts
would show a value of 0.

row) a pronounced peak can be seen around 0.5 − 0.8 with varying position over the time
of the day. While approximately centered at midnight (≈ 0.5), this peak is slightly moved
towards higher values for all other times of the day. The convex shape of the Gaussian results
indicate overdispersion, while the asymmetry indicates residual skewness. This is likely caused
by the not yet resolved topography in the NWP. Due to the volume effect (Whiteman 1990;
Steinacker 1984), the heating of the valley atmosphere is stronger than predicted by the EPS,
so that more observations fall into the upper part of the forecasted distribution.

The opposite occurs during winter (middle row). A strong peak in the observed frequency is
shown at the lower tail (< 0.1) for all four lead times, strongest for 1200 UTC. An observed
frequency of 3 (e.g., for the lowest 5% bin for winter time, 1200 UTC) means that observations
falling into this interval are observed three times more often than expected. This is most likely
associated with cold pools often formed within the not yet fully resolved valley during the
cold season. Furthermore, an overall decrease of the frequencies can be seen towards higher
bins.

These two distinct patterns can also be seen in the all-year PITs (bottom row) even if strongly
damped due to the seasonal averaging. Overall, the results indicate that the Gaussian regres-
sion model is not able to capture all necessary characteristics of the data.

In contrast, the skewed logistic model (Figure 4) shows overall better calibration. For all sea-
sons (top down) and all times of the day (left to right) the majority of all observed frequencies
lie within the confidence interval. Only during summer season (top row) the frequencies seem
to be slightly too low for high values (> 0.9).
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Due to its properties the skewed logistic distribution is able to capture the lower-tail charac-
teristics during winter and, at the same time, allows to properly adjust the distribution for
the warm season. Top panel of Figure 5 shows a time series of the empirical skewness for
the skewed logistic models for all +36 h forecasts (1200 UTC) over the whole validation time
period. During the warm season the predictions are positively skewed with values around 0.5.
Contrarily, strong negative skewness with values of −1.0 and below can be seen during the
cold season. The consideration of this seasonally-dependent skewness yields an overall better
performance compared to the Gaussian model.

3.2. Alpine vs. plain site

To see the benefits of a non-symmetric response distribution in a different environment, the
same study is shown for a selected plain site (large square in Figure 2 and right column in
Figure 3).

Similar to the Alpine site, a pronounced diurnal cycle is visible for all models in terms of LS
and CRPS (Figure 3) with better scores for nighttime. In contrast to the Alpine site, a clear
decrease in forecast performance with increasing lead time can be seen. Moreover, almost all
scores (LS, CRPS, PIW) are smaller than at the Alpine site even at the highest lead time.
However, the two heavy-tailed models (logistic and skewed logistic) improve sharpness (80%
PIW) and calibration (RI) even more. Residual skewness is also smaller than at the Alpine
site as Figure 5 shows. Additionally, the change in sign of skewness between warm and cold
season is nearly absent. Skewness is still present, however, the amplitude is way lower than for
the Alpine site and shows values relatively close to 0 (symmetric). Even if the improvements
over the symmetric logistic models are only minor, the additional skewness still yields slightly
better results.

In comparison to the Alpine site, the plain site shows an overall better forecast performance
measures except for RI where both stations show similar scores. This is mainly due to the
overall better performance of the NWP for regions with no or only little topography. In such
situations the overall performance of the NWP is already adequate and the EPS provides
covariates with more information content. Thus, benefit of the statistical post-processing
methods is much smaller compared to sites in complex terrain. In this example the Gaussian
assumption seems to be an appropriate choice and the improvements of the logistic or skewed
logistic distribution is only minor.

3.3. Comparison for all sites

The following section extends the comparison to the entire study area including all 27 sites
for all three groups (Figure 2).

Figure 6 shows averaged scores for LS, CRPS, the mean 80% PIW, and RI for the three
different groups. Each box-whisker contains the mean score for the individual stations and
all 15 lead times. This yields 12 × 15 values for group ‘Alpine’, 6 × 15 for group ‘foreland’,
and 9 × 15 for group ‘plain’. In addition, the numeric values of all medians are provided in
Table 2 alongside with median values for two alternative PIWs (50% and 95%) and the pre-
diction interval coverage (PIC) for the same three intervals. The validation shows increasing
forecast performance with decreasing topographical complexity (top down) independent of
the statistical model.
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Figure 6: Performance measures in terms of LS, CRPS, 80% PIW, and RI (left to right),
clustered for Alpine, foreland, and plain sites (top to bottom). The box-whiskers are based
on average scores for each station and lead time.
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Figure 7: As in Figure 6, but showing values of improvements against the classical Gaussian
model. Note that improvements are reported by positive values. Differences are shown for
LS, whereas skill scores in % are shown for CRPS, the 80% PIW, and RI.

Model LS CRPS RI PI 50% PI 80% PI 95%
PIW PIC PIW PIC PIW PIC

Alpine
Gaussian 2.39 1.48 0.15 3.5 52.9 6.7 81.3 10.2 94.2
Logistic 2.39 1.48 0.13 3.2 49.6 6.5 79.8 10.8 94.8
Skewed logistic 2.28 1.33 0.11 3.0 48.8 5.0 79.7 9.9 94.9

Foreland
Gaussian 2.06 1.07 0.16 2.6 52.3 4.9 82.2 7.5 94.7
Logistic 2.07 1.07 0.14 2.4 48.8 4.7 80.1 7.9 95.2
Skewed logistic 2.04 1.05 0.13 2.3 47.7 4.6 79.3 7.6 95.0

Plain
Gaussian 1.86 0.87 0.12 2.0 52.9 4.1 82.1 6.2 95.0
Logistic 1.85 0.88 0.12 1.9 49.0 3.9 80.2 6.5 95.6
Skewed logistic 1.85 0.87 0.12 1.9 48.9 3.9 80.2 6.0 95.4

Table 2: Median of (left to right) the logarithmic score (LS), continuous ranked probability
score (CRPS), reliability index (RI), and three prediction intervals (PI) reporting width (PIW)
and prediction interval coverage (PIC) for Alpine, foreland, and plain sites (top to bottom),
evaluated for each model type (Gaussian, logistic, skewed logistic).
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Figure 7 shows the improvements from using non-Gaussian distributions, relative to the Gaus-
sian reference model. Positive values indicate that the alternative model show a profit over
the Gaussian one. The models using a logistic or skewed logistic distribution are able to
outperform the Gaussian model in all scores. The results from the models using the sym-
metric logistic distribution show only minor improvements in terms of LS and CRPS but can
significantly reduce the 80% PIW by 3.6− 4.8% (median). Smaller improvements can also be
seen in the RI (cf. Section 3.1 and 3.2).

On the other hand, even stronger improvements can be found for the skewed logistic models.
In median, the skewed logistic models outperform the Gaussian models in all scores and
have the highest skill, except for RI at the plain sites where the logistic models performed
best. Improvements are particularly large at the Alpine sites where improvements of about
8% for CRPS (median) up to 23% for certain stations and lead times can be achieved. The
calibration (RI) is also improved by about 30% in median, although for some stations and lead
times RI values become worse than for the Gaussian model. A similar picture with an overall
smaller magnitude is shown for the foreland and plain sites with a median CRPS skill score
of 1.4%/0.9% and a median 80% PIW skill score of 7.4%/4.8%. Most of the improvements
can be attributed to the increased sharpness (PIW), which also yields overall smaller LS and
CRPS.

4. Summary and conclusion

Non-homogeneous regression is a widely used statistical method for post-processing numer-
ical ensemble forecast. It was originally developed to improve probabilistic air temperature
forecasts and assumes a Gaussian response distribution.

However, several studies have shown that marginal temperature distributions can be skewed or
non-symmetric, respectively (Warwick and Curran 1993; Harmel et al. 2002). This marginal
skewness can result from topographically induced effects such as cold pools during winter or a
strong valley bottom heating within narrow valleys during hot summer days. Thus, skewness
is much stronger for locations surrounded by complex terrain than for sites in plain regions.

Moreover, skewness is supposed to decrease if additional covariates are included in the Gaus-
sian model (see e.g., Feldmann et al. 2015; Möller and Groß 2016; Messner et al. 2017).
However, the calibration of the results presented in these articles indicate that residual skew-
ness remains, even by including more variables than only the ensemble temperature covariate.
Thus, the skewness might need to be included using an appropriate response distribution.

In this study, the skewed logistic distribution was used and compared to the (symmetric)
logistic and Gaussian distributions for probabilistic post-processing of 2 m air temperature at
27 sites in Central Europe for stations in three different environments: Alpine, foreland close
to the Alps, and sites located in plain regions. The skewed logistic distribution furthermore
allows to directly handle possible skewness in the data, if needed.

The two logistic distributions better perform for one-day up to four-day ahead forecasts for the
majority of all stations and lead times. Improvements from using the skewed logistic distribu-
tion are largest for Alpine sites for the two most important probabilistic properties ‘sharpness’
and ‘calibration’. The amount of improvement decreases with decreasing complexity of the
topography.

When PIT histograms are used to check for calibration, they have to be checked for different
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seasons, lead times, and hours of day. Averaging over the whole year or multiple times of the
day may mask shortcomings especially in complex terrain and the distinct patterns as shown
in the results might easily get overseen.

In conclusion, the Gaussian assumption for probabilistic temperature post-processing may be
appropriate for regions where the ensemble provides sufficient information about the marginal
distribution of the response. However, if the covariates used in the regression model miss some
features, residual skewness is often found in the results. An alternative response distribution,
such as the proposed skewed logistic distribution, allows to directly address unresolved skew-
ness and is able to (strongly) increase the predictive performance of the probabilistic forecasts.

5. codeavailability

The results of this study have been achieved using the R package bamlss (Umlauf, Klein,
and Zeileis 2018), where a new family for the generalized logistic type I distribution has
been implemented and is now available on R-forge using the distributional properties from
the R package glogis (Zeileis and Windberger 2014). Model estimation is performed using
a gradient boosting approach with a 10-fold cross-validation to find the optimal stopping
iteration for the boosting based on RMSE.
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A. Skewness of the skewed logistic distribution

The 3rd moment (skewness, ν) is a function of the shape parameter ζ:

ν(ζ) =
Ψ′′(ζ)−Ψ′′(1)

(Ψ′(ζ) + Ψ′(1))
3
2

(9)

where Ψ′ and Ψ′′ denote the first and second derivative of the polygamma function Ψ(x)
(Abramowitz and Stegun 1965, Section 6.4.1, page 260) defined as:

Ψ(x) =
Γ′(x)

Γ(x)
. (10)

Herein, Γ(x) denotes the Gamma function (Abramowitz and Stegun 1965, Section 6.1.1, page
255) and Γ′(x) its first derivative. The Gamma function is defined as:

Γ(x) =

∫ ∞
0

tx−1 exp(−t)dt (11)
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Scheuerer M, Büermann L (2014). “Spatially adaptive post-processing of ensemble forecasts
for temperature.” Journal of the Royal Statistical Society: Series C (Applied Statistics),
63, 405–422. doi:10.1111/rssc.12040.

Stauffer R, Umlauf N, Messner JW, Mayr GJ, Zeileis A (2017). “Ensemble postprocessing of
daily precipitation sums over complex terrain using censored high-resolution standardized
anomalies.” Monthly Weather Review, 145(3), 955–969. doi:10.1175/MWR-D-16-0260.1.

Steinacker R (1984). “Area height distribution of a valley and its relation to the valley wind.”
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Skewed logistic distribution for statistical temperature post-processing in mountainous
areas

Abstract
Non-homogeneous post-processing is often used to improve the predictive performance
of probabilistic ensemble forecasts. A common quantity to develop, test, and demon-
strate new methods is the near-surface air temperature frequently assumed to follow a
Gaussian response distribution. However, Gaussian regression models with only few co-
variates are often not able to account for site-specific local features leading to strongly
skewed residuals. This residual skewness remains even if many covariates are incorpo-
rated. Therefore, a simple refinement of the classical non-homogeneous Gaussian re-
gression model is proposed to overcome this problem by assuming a skewed response
distribution to account for possible skewness. This study shows a comprehensive analysis
of the performance of non-homogeneous post-processing for 2m temperature for three
different site types comparing Gaussian, logistic, and skewed logistic response distribu-
tions. Satisfying results for the skewed logistic distribution are found, especially for sites
located inmountainous areas. Moreover, both alternativemodel assumptions but in par-
ticular the skewed response distribution, can improve on the classical Gaussian assump-
tion with respect to overall performance, sharpness, and calibration of the probabilistic
predictions.
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