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Abstract

Non-homogeneous regression models are widely used to statistically post-process nu-
merical ensemble weather prediction models. Such regression models are capable of fore-
casting full probability distributions and correct for ensemble errors in the mean and
variance. To estimate the corresponding regression coefficients, minimization of the con-
tinuous ranked probability score (CRPS) has widely been used in meteorological post-
processing studies and has often been found to yield more calibrated forecasts compared
to maximum likelihood estimation. From a theoretical perspective, both estimators are
consistent and should lead to similar results, provided the correct distribution assumption
about empirical data. Differences between the estimated values indicate a wrong specifi-
cation of the regression model. This study compares the two estimators for probabilistic
temperature forecasting with non-homogeneous regression, where results show discrep-
ancies for the classical Gaussian assumption. The heavy-tailed logistic and Student-t
distributions can improve forecast performance in terms of sharpness and calibration, and
lead to only minor differences between the estimators employed. Finally, a simulation
study confirms the importance of appropriate distribution assumptions and shows that
for a correctly specified model the maximum likelihood estimator is slightly more efficient
than the CRPS estimator.

Keywords: ensemble post-processing, maximum likelihood, CRPS minimization, probabilistic
forecasting, distributional regression models.

1. Introduction

Non-homogeneous regression is a popular regression-based technique to statistically correct
an ensemble of numerical weather prediction models (NWP, Leith 1974). Such corrections
are often necessary since current NWP models cannot consider all error sources (Lorenz 1963;
Hamill and Colucci 1998; Mullen and Buizza 2002; Bauer, Thorpe, and Brunet 2015) so that
the raw forecasts are often biased and uncalibrated.
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In statistical post-processing, various approaches have been developed to correct such en-
sembles (Roulston and Smith 2003; Raftery, Gneiting, Balabdaoui, and Polakowski 2005;
Gneiting, Raftery, Westveld, and Goldman 2005; Wilks 2009) but none of them has appeared
as a best single post-processing strategy (Wilks and Hamill 2007). However, non-homogenous
Gaussian regression (NGR) is one of the most widely used techniques (Gneiting et al. 2005)
and addresses ensemble errors in terms of regression coefficients, which are estimated on past
ensemble forecasts and the corresponding observations. NGR has also been extended from
temperature to other meteorological quantities by assuming appropriate forecast distribu-
tions (Gneiting et al. 2005; Thorarinsdottir and Gneiting 2010; Messner, Mayr, Wilks, and
Zeileis 2014a; Messner, Mayr, Zeileis, and Wilks 2014b; Scheuerer 2014; Hemri, Haiden, and
Pappenberger 2016).

In the field of statistics, regression coefficients and distribution parameters have traditionally
mostly been estimated with maximum likelihood estimation (Aldrich 1997; Stigler 2007). Al-
though the maximum likelihood estimator has certain optimal properties (Huber 1967; Casella
and Berger 2002; Winkelmann and Boes 2006, details in Sec. 22.3) Gneiting et al. (2005) es-
tablished NGR parameter estimation by minimizing the continuous ranked probability score
(CRPS, Hersbach 2000). Post-processing studies for meteorological applications have used
this estimation approach frequently since then (Raftery et al. 2005; Vrugt, Clark, Diks, Duan,
and Robinson 2006; Hagedorn, Hamill, and Whitaker 2008; Scheuerer 2014; Scheuerer and
Büermann 2014; Mohammadi, Rahmani, and Azadi 2015; Feldmann, Scheuerer, and Tho-
rarinsdottir 2015; Scheuerer and Hamill 2015; Scheuerer and Möller 2015; Taillardat, Mestre,
Zamo, and Naveau 2016; Möller and Groß 2016) and often found it to yield sharper and better
calibrated probabilistic forecasts than with maximum likelihood estimation.

Likelihood maximization is equivalent to minimizing the log-score (LS), which is more sensitive
to outliers than the CRPS (Selten 1998; Grimit, Gneiting, Berrocal, and Johnson 2006).
Because of this higher sensitivity to outliers Gneiting et al. (2005) found LS minimization to
lead to overdispersive forecasts.

Figure 1 (left graphic, “Gaussian”) illustrates this overdispersion exemplarily for 2m air tem-
perature forecasts, where NGR is employed at an Alpine site for +24h forecasts (see Sec. 33.1
for data). Ideally, for perfect calibration the Probability Integral Transform (PIT) should
be distributed uniformly. However, both estimation approaches, LS and CRPS minimiza-
tion, show a hump in the center bins indicating overdispersive forecasts. Although the CRPS
approach indicates a better calibration, further peaks are found at 0.05 and 0.95, which cor-
respond to the tails of the Gaussian forecast distribution.

The differences between CRPS and LS minimization and the W-shape of the CRPS model
indicate a mis-specification of the NGR in terms of its distributional tail. The right plot in
Figure 1 shows the PIT histograms of a non-homogeneous regression model with a heavier-tail
Student-t instead of a Gaussian forecast distribution. Both estimation approaches show only
small differences and much better calibration. This agrees with theoretical considerations
that, given an appropriate distribution, LS and CRPS estimator are consistent and estimate
very similar regression coefficients (Winkelmann and Boes 2006; Yuen and Stoev 2014).

In this article we set out to define when and why results from LS and CRPS minimization
will differ. This is performed in terms of temperature forecasting in central Europe and with
simulated data using the NGR as the benchmark approach. Further adjustments of this
benchmark include the use of heavy-tailed logistic and Student-t probability distributions. In
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Figure 1: PIT histogram for temperature forecasts at an Alpine site at lead time +24h,
shown for the Gaussian (left) and Student-t (right) models, estimated with LS (solid) or
CRPS (dashed) minimization. The gray area illustrates the 95% consistency interval around
perfect calibration, which should be 1. Binning is based on 5% intervals.

particular, the Student-t distribution allows for flexible adjustment of the distribution tails.

Section 2 provides an overview of the distributions employed and the methods for estimation
and evaluation of the statistical models. Sections 3 and 4 present and discuss results for
probabilistic temperature post-processing and synthetic simulations, respectively. Finally,
Section 5 gives a conclusion.

2. Methods

This section briefly describes the distributions, along with the corresponding statistical models
which are set up for the real case and simulation studies, and explains the estimation meth-
ods and desired estimator properties. Additionally, the comparison setup and verification
measures are described.

2.1. Distributions used and density functions

In this article we employ three probability distributions with differences particularly on their
tails (Figure 2, left). In the following we overview their key characteristics by their density
functions.

The classical NGR approach is based on the Gaussian distribution N (µ, σ) with the location
parameter µ and the scale parameter σ. Its density function fN (Eq. 1) is symmetrical around
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Figure 2: Probability density functions for a Gaussian (solid), logistic (dotted) and Student-t
distribution (dashed) with µ = 0, σ = 1 for Gaussian and logistic distributions, and the degree
of freedom ν = 2 for the Student-t distribution (left figure). Right figure illustrates scaled
density values with respect to the Student-t distribution to highlight the tails.

µ (Figure 2, left), and is evaluated at the observed value y with

fN (y;µ, σ) =
1√

2πσ2
e−

1
2( y−µσ )

2

(1)

Similarly, but with a somewhat heavier tail, we use the logistic distribution L(µ, σ) with its
density function fL :

fL(y;µ, σ) =
e−

y−µ
σ

σ
(

1 + e−
y−µ
σ

)2 (2)

Note, that the standard deviation of L is not equal to the scale parameter σ, as it is the case
for N , rather than σ times π/

√
3 ≈ 1.8.

In addition to N and L, we make use of the shifted scaled Student-t (Student-t in the follow-
ing) distribution S(µ, σ, ν) (Student 1908), which, additionally to the location µ and scale σ
parameters has a third parameter ν, the so-called degree of freedom:

fS(y;µ, σ, ν) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

)
(

1 +

(y−µ
σ

)2

ν

)− ν+1
2

(3)

Herein, Γ denotes the gamma function. The degree of freedom ν controls the tails of the
Student-t distribution with heavier tails for smaller ν values. In the limit of ν → ∞ the
Student-t distribution approaches the Gaussian distribution. Its standard deviation is given
by σν/(ν − 2).

Figure 2 compares the probability density functions of the different distributions where the
scaled functions (right) highlight the different tail behaviors. The logistic distribution has
clearly heavier tails than the Gaussian distribution and with ν = 2, the Student-t distribution
can accommodate even heavier tails.
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2.2. Regression models

As the basis regression model, we apply the non-homogeneous Gaussian regression approach
(NGR) of Gneiting et al. (2005). The parameters of the assumed distributions are expressed
by linear predictors. Each predictor contains covariates, which are typically provided by the
NWP ensemble. This leads to regression models of the following form (Equations 4–6), where
the parameters µi, σi are used for the Gaussian and logistic assumptions, and µi, σi, νi for our
representation of the Student-t distribution (Eq. 3).

µi = β0 + β1 · ensi (4)

log(σi) = γ0 + γ1 · log(SDens,i) (5)

log(νi) = δ0 (6)

The subscript i labels one observation. Commonly, the ensemble mean value ensi is used
as covariate for the location parameter µi (Eq. 4), and the ensemble standard deviation
SDens,i for the scale parameter σi (Eq. 5). The degree of freedom of the Student-t model is
simply modeled by a constant intercept δ0 and not dependent on any covariable. Note that
the coefficients for σi and νi are estimated on the logarithmic scale in order to ensure the
positivity of σi, νi.

The framework described by Equations 4, 5, and 6 is used in real data and simulation studies.
For the real data studies, sine and cosine of the day of the year (DOYi) are additionally
included in the predictor of the location parameter µi, to better represent seasonal variation
of temperature:

µi = β0 + β1 · ensi + β2 · sin(DOYi) + β3 · cos(DOYi) (7)

Clearly, the framework of Equations 4–6 can be extended by including additional covariates
and also non-linear terms (e.g., as in Stauffer, Mayr, Messner, Umlauf, and Zeileis 2017). Also,
other probability distributions such as the generalized extreme value distribution (Scheuerer
2014) could be used in this framework. As a generalization, the defined models can be viewed
as the distributional regression framework of Klein, Kneib, Lang, and Sohn (2015).

2.3. Estimation methods

Estimation by the use of CRPS and LS belong to the class of M-estimation (White 1994),
where “M” stands for maximization or minimization. The idea is to find the set of parameters
θ̂ so that a function q (LS or CRPS in our case) is minimized:

θ̂ = argmin
θ∈Θ

N∑

i=1

q(yi; θ) (8)

More generally, Θ = Rp defines the parameter space with p being the number of regression
coefficients, yi an observed value, and N the number of observations in a training data set. In
our specific regression framework, θ̂ includes all the estimated regression coefficients (β, γ, δ)
as defined in Eq. 4–6. Estimators such as LS or CRPS should address the two properties of
consistency and asymptotic normality:

θ̂
p→ θ0 as N →∞ (9)

√
N(θ̂ − θ0)

d→ N (0, I(θ0)−1) (10)
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Consistency derives from the law of large numbers (LLN), and normality from the central
limit theory (CLT). An estimator is consistent if it approaches the true parameter θ0 in
probability as the sample size N increases to infinity (Eq. 9). This means that the probability
of |θ̂− θ0| to be larger than a certain value ε becomes zero. Furthermore, the difference θ̂− θ0

approaches a Gaussian distribution N (Eq. 10) with the variance I(θ)−1. I(θ) defines the
Fisher information matrix and its inverse the smallest possible variance achievable for any
consistent estimator (Winkelmann and Boes 2006).

Both properties can be mathematically proven for both estimators under certain regularity
conditions (Winkelmann and Boes 2006; Yuen and Stoev 2014). Under strong conditions, the
LS estimator is also the most efficient among all consistent estimators. Hence, by assuming a
correct specification of the regression model, both estimators are supposed to be consistent in
finding the “true” parameters, whereas the LS estimator should additionally be more efficient.

The main difference between the scoring rules CRPS and LS is the penalization of individual
observations, which is compared in the following. The LS (Eq. 11) is simply the negative log-
likelihood, which is averaged over N events, where each event i is evaluated by the negative
logarithmic density value log f .

LS =
1

N

N∑

i=1

− log f(yi;µi, σi, νi) (11)

This score defines a local score as one single forecast distribution is evaluated only at the
observed value yi with a logarithmic penalty.

In contrast, the continuous ranked probability score for one single event defines a squared
error measure, which takes the full forecast distribution into account:

CRPS =
1

N

N∑

i=1

∞∫

−∞

(Fi(x;µi, σi, νi)−Hi(x− yi)2dx (12)

For each observation yi, Fi denotes the forecasted cumulative distribution function and Hi(x−
yi) the Heaviside function, which is 0 if x < yi and 1 otherwise. Integration over all differences
between Fi and Hi in x evaluates the full forecast distribution. Similar to the LS, the CRPS
itself defines the average over N events (Eq. 12).

The differences between LS and CRPS can be found particularly in the tails of an assumed
distribution, as illustrated by the Gaussian example in Figure 3. If a single observation is
located on the distribution tails (above and below +/- 2), then larger differences between the
scores can be found. The LS penalizes events on these tails more strongly than the CRPS.

2.4. Verification

Different verification approaches are needed for the real data and the simulation study. Re-
garding the real data the two estimation approaches are compared in terms of their sharpness
and calibration. Sharpness will be evaluated as the average width of the 90% prediction in-
tervals (PIW), defined as the average range between the 0.05 and 0.95 quantile of the forecast
distributions. This interval can also be used to asses calibration where 90% of the events
should be observed within the 90% prediction intervals (prediction interval coverage, PIC) to
have perfect calibration. Additionally, calibration is investigated with PIT histograms (Gneit-
ing, Balabdaoui, and Raftery 2007), which should be uniformly distributed. This uniformity
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Figure 3: Continuous ranked probability score (CRPS, dashed) and log-score (LS, solid),
evaluated at different (theoretical) observed values for an assumed Gaussian distribution with
µ = 0, σ = 1, with probability density values sketched as gray area.

derives from the statistical forecast consistency (calibration) which occurs if all forecasted
probability bins count the same number of observations. However, due to the large number
of individual PIT’s, differences in those histograms will also be quantified by the reliability
index (RI) which computes absolute differences from uniformity:

RI =

K∑

k=1

∣∣∣∣κk −
1

K

∣∣∣∣ (13)

Herein, κk defines the relative number of observations in each bin k, and K the number of
used bins.

Furthermore, the overall performance measures for temperature forecasts will be shown in
terms of LS and CRPS as defined by Equations 11 and 12.

To ensure independent test data for temperature forecasts, we perform a 10-fold cross-
validation (CV). Therefore the data set is divided into 10 blocks and forecasts for each block
are derived from models trained on the remaining 9 blocks. This leads to independent fore-
casts which are verified with PIW, PIC, RI, LS, CRPS. This approach is repeated for each
lead time and station.

In the simulation study we mainly compare the estimated regression coefficients with their
known true values to investigate how well the different estimation approaches estimate the
true coefficients. Additionally, calibration is assessed by PIT histograms.

3. Probabilistic temperature forecasting

With this real data application it should be investigated if the differences between CRPS and
LS minimization, as shown in the introductory example, imply an inappropriate distribution
assumption for temperature data. This idea is addressed by the use of heavy-tailed distribu-
tions to improve temperature forecasts. For simplicity, statistical models (Gaussian, logistic,
Student-t) where CRPS or LS minimization is employed, will be referred to as CRPS or LS
models, respectively.
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Figure 4: Study area with the sites in Austria (AUT), Italy (IT), Switzerland (CH), and
Germany (GER): the filled circle represents the Alpine site which is used for the case study.
The gray grid illustrates the underlying horizontal grid of the 50 member ECMWF ensemble
forecasts.

3.1. Temperature data

Temperature records are used from 12 locations over Central Europe (Figure 4) for 3-hourly
lead times from +6h to +96h in the time period between 2011–2016.

The corresponding ensemble forecasts of 2m air temperature are based on the 00 UTC initial-
ization from the European Center of Medium Range Weather Forecasts (ECMWF). Overall,
this yields 581076 observation/forecast-pairs to be validated, which include 311 different re-
gression fits for different lead times at different stations.

The following case study is based on temperature records at an Alpine site (Fig. 4, filled circle)
where the complex topography causes a challenging forecasting situation. Distinct differences
between the real and NWP topography lead to a cold bias, which can be seen when comparing
observations with corresponding ensemble mean forecasts (Fig. 5, top left). Furthermore, the
ensemble is also underdispersive, which is a common problem of many ensemble systems. This
underdispersion can be assessed in a rank histogram (Anderson 1996; Talagrand, Vautard,
and Strauss 1997; Hamill and Colucci 1998), which is shown for the bias-corrected ECMWF
ensemble forecast for +24h in Fig. 5 (bottom left). Here, too many observations are counted
below the lowest and above the highest member value (lowest and highest rank), indicating
less forecast uncertainty than needed. Ideally the histogram should be uniformly distributed.
These illustrated ensemble forecasts for +24h are the basis for later synthetic simulations,
using the error characteristics for bias and underdisperision. The empirical values of this
dataset have an average ensemble mean value of 0.35 with a standard deviation of 6.91. The
corresponding logarithmic standard deviations have an average of −0.56 with a standard
deviation of 0.43.
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interval (PIW) and coverage of the 90% prediction interval (PIC), evaluated for Gaussian
(left) and Student-t (right) models at the Alpine site from lead times +6h to +96h, estimated
with LS (solid) or CRPS (dashed).

3.2. Alpine site case study

In this subsection we apply the regression framework, as defined in Equations 4–6, for tem-
perature post-processing at the Alpine site (Fig. 4, filled circle), where individual regressions
are performed for each lead time separately.

Figure 6 summarizes RI, PIW, PIC for the Gaussian and Student-t models which are estimated
with both approaches (CRPS or LS minimization). For the Gaussian models (left panel
figures), there is a clear difference between the LS and CRPS model for certain lead times
(e.g., +24h) where calibration in terms of RI (top figure) is better for the CRPS model.
Additionally, the CRPS model obtains sharper predictions for all lead times which is shown
by a smaller average width of the 90% prediction interval (middle panel). Both estimation
approaches are not giving optimum calibration regarding the 90% interval (bottom panel).
The LS model covers too many observations in the 90% interval and the CRPS too few.

The PIT histograms, which are shown in Figure 1 for the +24h example, provide a more
complete picture of the calibration. The 95% consistency interval shown as gray area, are
derived similar to Bröcker and Smith (2007) and show the expected bin-wise sampling vari-
ations. Thus, as long as the PIT lies within this interval the forecasts can be regarded as
calibrated.

Regarding the Gaussian models (Fig. 1, “Gaussian”), the smaller sharpness (larger prediction
intervals) of the LS model produces a hump-shaped PIT (solid), where too many observations
fall in the central bins, and too few in the tails (bins close to zero and one). In contrast, the
CRPS model (dashed) shows a better calibration especially in central bins, but creates larger
peaks on the tails, which results from sharper forecast distributions. Nevertheless, both
approaches do not obtain best possible calibration and differ in the forecasted distribution
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Figure 7: Mean scores and score differences (left to right) for LS-minimized (solid line and dark
gray) and CRPS-minimized (dotted line and light gray) models, evaluated with the CRPS
and LS (top to bottom). References are the Gaussian models for LS or CRPS minimization,
respectively. Each boxplot contains 311 individual regression fits for each lead time and
station separately.

parameters if the Gaussian distribution is assumed.

However, if the Student-t model is applied, both approaches yield almost the same results.
Similar values can be verified for calibration (RI) and sharpness (PIW), as illustrated in
Figure 6 (right panel figures). Regarding the overall calibration in terms of PIT, the example
for +24h yields almost uniform histograms for the Student-t models for both minimization
approaches (Fig. 1, “Student-t”).

3.3. Overall Performance

The previously shown case study for the Alpine site is now extended to other locations in our
study area, again with individual regressions for each lead time. Figure 7 summarizes differ-
ences in LS and CRPS values between each regression model and the Gaussian benchmark
model, where negative values report a better performance than the benchmark model. LS
models refer to the Gaussian LS model and CRPS models to the Gaussian CRPS models, re-
spectively. Absolute differences are chosen rather than relative changes as skill scores cannot
be computed for the LS (Gneiting et al. 2005).
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Figure 7 illustrates a clear difference for all individual regressions if heavy-tailed distribution
models (logistic, Student-t) are applied (right panel figures). In terms of CRPS evaluation
(Fig. 7, top), the logistic models can improve the Gaussian benchmarks in 59% and 76% of
all locations and lead times, when estimated with CRPS and LS, respectively. Even smaller
CRPS values are obtained in 80% and 86% of the Student-t models.

A similar picture is visible for LS evaluation (Fig. 7, bottom). 84% and 82% of the evaluated
logistic models show smaller LS values for CRPS or LS minimization, respectively. Student-t
models obtain smaller LS values than the Gaussian benchmark for 93% (CRPS minimization)
and 97% (LS minimization) of all regressions.

The mean scores over all the individual LS and CRPS emphasize the benefit of the heavy-
tailed models where score values are smallest. Not surprisingly, CRPS models perform better
in CRPS evaluation and LS models in LS evaluation (Fig. 7, left panel figures).

On average CRPS and LS, the Student-t models perform best. However results also imply
that the logistic models already improve the benchmark. Hence, there are situations where
the logistic models might be good enough and where the tail-flexibility of the Student-t model
is not necessary.

An example of the good calibration of logistic models is shown in Figure 8, which consists
of predictions for all stations at lead time +18h. Similarly to the Alpine site as shown in
Fig. 1, the Gaussian models illustrate an overdispersive W-shape over all locations. The
PIT histogram of the CRPS model is more pronounced on the tails (dashed), and the PIT
histogram for the LS model is more pronounced in the middle (solid). Contrary, the heavy
tail of the logistic distribution leads to an almost perfect and similar calibration for both
approaches (middle). Additionally, the heavy tail created by the Student-t models seems to
be too heavy for this particular lead time where too few events occur on the tails (right).
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The Student-t models can clearly improve calibration compared to the Gaussian models, but
the tails are not captured appropriately. Possibly, the assumption of a constant ν in Eq. 6 is
too simple, and a seasonal variation of ν as in Eq. 7 might be more reasonable.

4. Simulation study

In the following simulation study, “ensemble” and ”observation” data with similar error char-
acteristics as those at the Alpine site are generated. These data are generated such that
the true distribution parameters and regression coefficients are known and can directly be
compared with estimated values. Furthermore they are used to evaluate which minimization
approach is more efficient and to confirm findings from the real data application.

4.1. Simulated dataset

First, series of N = 5000 simulated ensemble mean values (ensi, Eq. 14) and logarithmic
standard deviations (log(SDens,i), Eq. 15) were simulated from a Gaussian distribution N

ensi = N (0.35, 6.91) (14)

log(SDens,i) = N (−0.56, 0.43) (15)

with the distribution parameters taken from the empirical means and standard deviations of
the ECMWF ensemble at the Alpine site (Sec. 33.1). Observations are simulated from logistic
distributions, which we found in the previous subsection to describe temperature data quite
well. The location (µtruei ) and scale (σtruei ) parameters of these distributions are modeled as
functions of the simulated ensemble statistics ensi and SDens,i

µtruei = βtrue0 + βtrue1 · ensi (16)

log(σtruei ) = γtrue0 + γtrue1 · log(SDens,i) (17)

where (βtrue0 , βtrue1 ) = (6.5, 1) and (γtrue0 , γtrue1 ) = (0.9, 1.3) are chosen such that the simulated
forecasts exhibit a cold bias and underdispersion similar to the real data (Fig. 5).

Thus, a data set of length 5000 is available with forecasts and corresponding observations
that have similar properties as the real data used in Section 33.1. However, different to the
real data the true coefficients βtrue0 , βtrue1 , γtrue0 , γtrue1 are known and can directly be compared
to estimated coefficients β0, β1, γ0, γ1 from non-homogeneous regression models of the form of
Equations 4-5.

In the following, we fit models with Gaussian and logistic distribution assumptions and repeat
the simulations 1000 times to account for sampling effects.

4.2. Simulation results

Figure 9 (left) compares the two estimation approaches for the Gaussian models. By repeating
the simulation 1000 times, both approaches estimate the true coefficients for the location
submodel (β) on median. However, differences occur in the scale submodel (γ). Although
the slope coefficient γ1 expresses the true value on median, clear differences can be found for
the intercept γ0. Both approaches do not calculate the true coefficient of 0.9 and estimate
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Figure 9: The estimated regression coefficients (β0, β1, γ0, γ1) for the Gaussian models (left)
and logistic models (right), estimated with LS (dark gray) or CRPS (light gray) minimization,
respectively. Boxplots are based on the bootstrap procedure of repeating the simulation 1000
times and illustrate the interquartile range (0.25-0.75) in boxes, whiskers for +/- 1.5 times
interquartile range, and outliers in solid circles.

a larger value. This is mainly the consequence of the scaling by approximately 1.8 since the
standard deviation of the logistic distribution is e.g., 1.8 · 0.9 = 1.62.

Furthermore, this difference is caused by the response data which are sampled from a logistic
distribution that has a heavier tail than the Gaussian distribution. In order to account for
those “extreme” events, both approaches have to estimate a larger intercept and make the
“forecast uncertainty” large enough. Furthermore, the LS model produces a larger intercept
than the CRPS model, which is caused by the larger penalty of extremes by the logarithm.

However, if the same simulation is performed with logistic models (Figure 9, right), then both
approaches estimate the true “errors” (coefficients) on median. By looking on the variance or
range of the estimated coefficients, respectively, it can be seen that the LS model is slightly
more efficient than the CRPS model. More specifically, the LS model reports a smaller
interquartile range than the CRPS model. This finding also agrees with Yuen and Stoev
(2014), where CRPS shows a smaller efficiency than LS estimation.

Finally, Figure 10 shows PIT histograms of the different models for different lengths of the
simulated data sets. As expected and similar to the real data case study, the Gaussian “fore-
casts” humps at central PIT values show the lack of calibration (top left). Although this
hump is less visible for the CPRS model than for the LS model, the peaks on the tails for the
CRPS model are more pronounced. In contrast, the difference between the estimation ap-
proaches becomes smaller if the correct (and known) logistic response distribution is assumed
(Figure 10, top right).

As expected from estimation theory, the differences vanish with increasing sample size for the
correct distribution assumption, and show a well defined W-shape for the wrong assumption
(Figure 10, middle and bottom).
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5. Conclusion

Non-homogeneous regression is a commonly used post-processing strategy to statistically cor-
rect NWP ensemble forecasts. This approach predicts full parametric forecast distributions
for the weather quantities of interest. In order to estimate distribution parameters or re-
gression coefficients, scoring rules have to be optimized. Log-score (LS) minimization has a
long tradition in statistical modeling, whereas CRPS minimization has become popular in
meteorological studies. Although both approaches should theoretically obtain similar results,
differences are often found in practical studies.

In this article we set out to explain potential differences and use these findings to improve
probabilistic temperature forecasts. A comparison of both estimation approaches is performed
on air temperature data from 12 stations in Central Europe and in a simulation study.

In principle, LS and CRPS minimization differently penalize ’extreme’ events or events which
deviate larger from the mean forecast, respectively. Consequently, the assumed forecast dis-
tribution plays a crucial rule to obtain a good forecast performance regarding sharp and
calibrated predictions.

Generally, it turns out that evaluation of CRPS shows better values if CRPS minimization is
performed, and evaluation of LS shows better values if LS minimization is employed. How-
ever, synthetic simulations and the case studies show that CRPS models can lead to sharper
predictions than LS models. This particularly occurs if a wrong distribution with too light
tails is assumed. Unfortunately, the increased sharpness of CRPS minimization is obtained
at the expenses of a decreased calibration.

CRPS minimization apparently improves calibration, but only when looking at particular
prediction intervals. Overall calibration in terms of PIT histograms illustrates that both
approaches cannot calibrate appropriately if the wrong distribution is applied, which qualifies
the better sharpness of CRPS minimization. Therefore, we cannot conclude that one approach
should be applied over the other. In this context, more appropriate distribution assumptions
have to be made if PIT-calibration highlights problems on the tails, and if differences between
the approaches occur.

To account for a potentially heavier tail, this study introduces and compares the logistic and
Student-t distribution against the classical Gaussian assumption for air temperature. The
Gaussian and logistic assumption is found appropriate for air temperature at certain stations
and lead times. However, the larger flexibility of the Student-t distribution to adjust the
tail, could clearly improve sharpness with respect to calibration in the overall analysis. This
derives from the distribution parameter, which accounts for a possible heavier tail if needed.

If the distributional assumption accounts for the tails, then both approaches lead to very
similar results. In this case, the synthetic study highlights that the LS approach is more
efficient in estimating the true regression coefficients.
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A. Computational Details

The estimation of regression coefficients is performed in R (R Core Team 2017) using the
crch package (Messner, Mayr, and Zeileis 2016), which is able to perform minimization of
the CRPS or LS. Closed expressions of the CRPS for the Gaussian, logistic, and Student-t
distribution are based on the scoringRules package (Jordan, Krüger, and Lerch 2017).
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