
Simon, Thorsten; Fabsic, Peter; Mayr, Georg J.; Umlauf, Nikolaus; Zeileis, Achim

Working Paper

Probabilistic forecasting of thunderstorms in the Eastern
Alps

Working Papers in Economics and Statistics, No. 2017-25

Provided in Cooperation with:
Institute of Public Finance, University of Innsbruck

Suggested Citation: Simon, Thorsten; Fabsic, Peter; Mayr, Georg J.; Umlauf, Nikolaus; Zeileis,
Achim (2017) : Probabilistic forecasting of thunderstorms in the Eastern Alps, Working Papers in
Economics and Statistics, No. 2017-25, University of Innsbruck, Research Platform Empirical and
Experimental Economics (eeecon), Innsbruck

This Version is available at:
https://hdl.handle.net/10419/184974

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/184974
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Probabilistic Forecasting of Thunderstorms inthe Eastern Alps
Thorsten Simon, Peter Fabsic, Georg J. Mayr,Nikolaus Umlauf, Achim Zeileis

Working Papers in Economics and Statistics
2017-25

University of Innsbruckhttp://uibk.ac.at/eeecon/



University of InnsbruckWorking Papers in Economics and Statistics
The series is jointly edited and published by

- Department of Banking and Finance
- Department of Economics
- Department of Public Finance
- Department of Statistics

Contact address of the editor:research platform “Empirical and Experimental Economics”University of InnsbruckUniversitaetsstrasse 15A-6020 InnsbruckAustriaTel: + 43 512 507 71022Fax: + 43 512 507 2970E-mail: eeecon@uibk.ac.at
The most recent version of all working papers can be downloaded athttp://uibk.ac.at/eeecon/wopec/
For a list of recent papers see the backpages of this paper.



Probabilistic Forecasting of Thunderstorms in the

Eastern Alps

Thorsten Simon
University of Innsbruck

Peter Fabsic
University of Innsbruck

Georg J. Mayr
University of Innsbruck

Nikolaus Umlauf
University of Innsbruck

Achim Zeileis
University of Innsbruck

Abstract

A probabilistic forecasting method to predict thunderstorms in the European Eastern
Alps is developed. A statistical model links lightning occurrence from the ground-based
ALDIS detection network to a large set of direct and derived variables from a numer-
ical weather prediction (NWP) system. The NWP system is the high resolution run
(HRES) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The
statistical model is a generalized additive model (GAM) framework, which is estimated
by Markov chain Monte Carlo (MCMC) simulation. Gradient boosting with stability se-
lection serves as a tool for selecting a stable set of potentially nonlinear terms. Three
grids from 64×64 km2 to 16×16 km2 and 5 forecasts horizons from 5 to 1 day ahead
are investigated to predict thunderstorms during afternoons (1200 UTC to 1800 UTC).
Frequently selected covariates for the nonlinear terms are variants of convective precip-
itation, convective potential available energy, relative humidity and temperature in the
mid layers of the troposphere, among others. All models, even for a lead time of five
days, outperform a forecast based on climatology in an out-of-sample comparison. An
example case illustrates that coarse spatial patterns are already successfully forecast five
days ahead.

Keywords: lightning detection data, statistical post-processing, generalized additive models,
gradient boosting, stability selection, MCMC.

1. Introduction

Predicting thunderstorms in complex terrain is a challenging task since one of the main
tools, numerical weather prediction (NWP) systems, cannot fully resolve convective processes
nor circulations and exchange processes over complex topography. Thus NWP output is
statistically post-processed to enhance its value for thunderstorm forecasts. Logistic regression
is often employed for predicting whether thunderstorms will occur (Schmeits et al. 2008;
Gijben et al. 2017).

However, two difficulties are present: Firstly, the response variable (probability of thun-
derstorms) might nonlinearly depend on individual covariates from the NWP. Secondly, an
abundance of potential covariates provided by NWP systems could be included in the statis-
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tical model. Thus a statistical framework capable of handling nonlinear relationships between
the response and covariates and objectively selecting the important covariables is needed.

Nonlinearities can be captured either by transformations of covariates, e.g., power or log
transformation, or by nonlinear regression models, e.g., a generalized additive model (GAM,
Hastie and Tibshirani 1990; Wood 2017). GAMs can be formulated in Bayesian framework
(Brezger and Lang 2006) which allows to estimate GAMs using Markov chain Monte Carlo
(MCMC) simulations. This approach is in particular attractive for inference of complex
GAMs (Umlauf et al. 2017). GAMs have been used for post-processing NWP output to
capture complex spatio-temporal characteristics of temperature (Dabernig et al. 2017) and
precipitation (Stauffer et al. 2017).

Selection is classically performed by testing all possible subsets of potential covariates (Miller
2002). This procedure becomes computationally intractable for large numbers of covariates
as in our case. Thus non-exhaustive methods such as stepwise selection are more common
(Miller 2002). In recent years also regularization methods have become popular for variable
selection in the field of post-processing NWP output, e.g., the LASSO (Wahl 2015) and
boosting (Messner et al. 2017).

Gradient boosting was first established in the field of machine learning (Freund and Schapire
1995), and generalized later by Bühlmann and Hothorn (2007) for regression models such as
GAMs. A broad overview of algorithms for this technique can be found in Mayr et al. (2012).
However, selecting the right-sized subset of covariables remains challenging (Meinshausen and
Bühlmann 2010), i.e., to avoid selecting some noise variables (Hofner et al. 2015). A solution to
this issue is combining gradient boosting as a method of regularization with stability selection
(Hofner et al. 2015).

The aim of this study is to develop a probabilistic forecasting method for the occurrence
thunderstorms in the Eastern Alps and their surroundings. In order to achieve this objective
we propose a novel combination of the statistical methods introduced above. A GAM serves as
framework to account for potentially nonlinear relationships between response and covariates.
Within this framework an objective variable selection scheme, i.e., gradient boosting with
stability selection, is performed to select a stable subset of the available covariates. In a final
step the GAM comprising the selected terms is estimated using MCMC sampling. This allows
to draw inferential conclusions such as credible intervals of effects, predictions or out-of-sample
scores.

The region we focus on are the Eastern Alps in Europe and their surroundings (Figure 1).
The region is exposed to severe thunderstorms and lightning during summer (Schulz et al.
2005; Simon et al. 2017). Furthermore the Eastern Alps are characterized by a complex
terrain. Elevation within the study domain extends from sea level up to 3798 meter a.m.s.l.
The atmospheric processes leading to the strong convective events and the occurrence of
thunderstorms in this region cover the gamut from small to large scales. Interactions of
orography, solar heating and winds influence the lightning activity (Bertram and Mayr 2004;
Houze 2014). On the other hand, large scale circulations, e.g., the North Atlantic Oscillation,
might influence the lightning patterns in Europe (Piper and Kunz 2017). Studies investigating
the climatological patterns of lightning activity in the region of interest and its surrounding
found maxima along the northern and southern rim of the Alps (Schulz et al. 2005; Feudale
et al. 2013; Wapler 2013).

This manuscript is structured as follows: The region of interest, the lightning detection data
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Figure 1: Topography of the region of interest [m a.m.s.l.]. The white solid lines indicate the
64×64 km2 spatial grid. The circle and the triangle show the location of the Zurich airport
(ZRH) and Vienna airport (VIE), respectively.

and the covariates are presented in Section 2. The statistical methods—GAMs, gradient
boosting with stability selection and MCMC—are introduced in Section 3. In Section 4
the results of the selection scheme are presented in detail for one model and the predictive
performance of the models across different spatial and temporal scales is analyzed. An example
forecast is discussed in Section 5. Finally, the study is summarized and concluded in Section 6.

2. Data

In the following the response variable based on lightning detection data, and the covariates
from the ECMWF high resolution run are introduced. The study covers the times when most
thunderstorms occur (Bertram and Mayr 2004; Schulz et al. 2005; Simon et al. 2017), i.e., the
afternoons (1200–1800 UTC) of the convective season May–August of the years 2010–2015,
during which the horizontal mesh of the ECMWF high resolution run remained unchanged
at 16 km. The region we focus on are the Eastern Alps in Europe and their surroundings
(Fig. 1). The region is horizontally divided into multiples of the ECMWF grid to study
the dependence of the forecast performance on spatial resolution. The three meshes are
64×64 km2, 32×32 km2 and 16×16 km2. The grid with the coarsest spatial resolution—
64×64 km2—is highlighted in Figure 1 by white solid lines.

Thunderstorms based on lightning detection data

Thunderstorms are set to have occurred in a grid cell when at least one lightning stroke
was registered by the ground-based ALDIS lightning detection network (Schulz et al. 2005)
between 1200 and 1800 UTC.

The resulting sample sizes of the data sets for the three resolutions 64×64 km2, 32×32 km2

and 16×16 km2 are 51660, 221400 and 885600 with the unconditional probability of lightning
activity of 30.3%, 19.7% and 12.5%, respectively.



4 Probabilistic Forecasting of Thunderstorms in the Eastern Alps

Covariates from the ECMWF high resolution run

The covariates for predicting the occurrence of lightning activity are derived from the high res-
olution run (HRES) from the European Centre for Medium-Range Weather Forecasts (ECMWF)
initialized at 0000 UTC. The horizontal mesh of 16×16 km2 remained unchanged during the
study period 2010–2015. A list of variables selected for this study is given in Table 1.

Table 1: An overview of the base covariates from the ECMWF-HRES forecast. Covariates
derived from this base set are discussed in the data section.

Abbreviation Description

sqrt.cp Square root of convective precipitation.
sqrt.cape Square root of convective available potential energy.
t500, t700, t2m Temperature at 500 hPa, 700 hPa, and 2 meters.
d2m Dew point temperature at 2 meters.
r700 Relative humidity at 700 hPa.
w500, w700 Pressure vertical velocity at 500 hPa and 700 hPa.
ws700 Wind speed at 700 hPa.
wdir700 Wind direction at 700 hPa.
mls Proxy for mid-layer stability: mls ∝ t500− t700.
tcc Total cloud cover.
slhf Surface latent heat flux.
ssr Surface net solar radiation.
str Surface net thermal radiation.
e Evaporation.

The variables are prepared for the lead times 12h/15h/18h (day 1), 36h/39h/42h (day 2),
60h/63h/66h (day 3), 84h/87h/90h (day 4) and 108h/111h/114h (day 5), which are used to
build the base for five different models with respect to each resolution.

Additional covariates are derived from the variables in Table 1. The mean, maximum and
minimum of the values at 1200 UTC, 1500 UTC and 1800 UTC of a specific variable are
denoted by the name of the variable and the suffix .mean, .max and .min, respectively.
Differences between different times are marked by suffices with four digits, e.g., t700_1812 is
the temperature difference at 700 hPa between 1800 and 1200 UTC. The first and the last two
digits of the suffix correspond to different times. Finally, anomalies computed by subtracting
the mean values are marked by suffices with two digits, e.g., t700_12 for the temperature
anomaly at 700 hPa at 1200 UTC. This procedure leads to a total of 126 potential covariates
derived from the NWP model.

3. Methods

In this section the framework of generalized additive models (GAMs), which allows for mod-
eling potentially nonlinear smooth functions of the covariates, is described. Furthermore, we
give an explanation how variable selection is performed using gradient boosting with stability
selection, and how inference of the finally selected model is made by Markov chain Monte
Carlo (MCMC) sampling.
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Generalized additive models

The statistical framework to model lightning activity falls in the class of generalized additive
models (GAM). A comprehensive introduction to GAMs is given by Wood (2017).

The dichotomous variable of observing lightning or no lightning activity in a grid cell follows
a Bernoulli distribution with the parameter π which is the probability of observing lightning
activity. The logit function links π to an additive predictor η,

logit(π) = η = β0 + ftime(doy) + fspace(lon, lat) + f3(x3) + · · ·+ fp(xp). (1)

The intercept in the additive predictor is β0, fj are potentially nonlinear functions mod-
eled here by P-splines (Wood 2017), and the covariates xj are derived from the ECMWF-
HRES (Table 1).

Two further additive terms account for seasonal and spatial variations: ftime depends on the
day of the year (doy) and fspace on longitude (lon) and latitude (lat). Thus the total number
of potential terms of the GAM is p = 128.

The first three components of Eq. 1—intercept, temporal and spatial effect—are employed to
build a baseline model that describes the climatological probability of lightning,

logit(πbaseline) = β0 + ftime(doy) + fspace(lon, lat). (2)

The response variable follows a Bernoulli distribution with the associated log-likelihood func-
tion,

`(π) = y · log(π) + (1− y) · log(1− π), (3)

for an individual observation y ∈ {0, 1}.
To ensure regularization of the functions fj and to prevent overfitting, in the frequentist
approach so called penalty terms are added to the objective log-likelihood function such that
the smoothness of each function is controlled by additional smoothness parameters which
need to be estimated, e.g., by additionally minimizing the AIC or by restricted maximum
likelihood (REML, Wood 2017). In boosting, the smoothness parameters are utilized to
initialize each function fj with the same degrees of freedom to ensure an equal comparison
for the selection of base-learners in each boosting iteration (Bühlmann and Hothorn 2007).
The Bayesian analogue of the frequentist penalty terms are shrinkage priors that are assigned
to the corresponding regression coefficients of each function fj . These priors are commonly
based on multivariate normal priors (Umlauf et al. 2017). Hence, the regression coefficients
and the smoothness parameters can be estimated simultaneously using MCMC sampling.

In this study we propose a novel combination of methods in order to obtain a final GAM.
First, gradient boosting with stability selection serves for selecting a stable subset of terms.
Second, the selected model is estimated using MCMC sampling which allows drawing infer-
ential conclusions about the selected terms.

Gradient boosting with stability selection

The selection of informative nonlinear functions fj is performed by gradient boosting (Mayr
et al. 2012) combined with stability selection (Meinshausen and Bühlmann 2010).

Gradient boosting is an iterative gradient descent algorithm, where the term which fits best
to the gradient of the log-likelihood is slightly updated in each iteration. The iteration steps
are:
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1. Initially all terms (or base-learners) are set equal to zero, i.e., fj(xj) = 0.

2. In each iteration k, the negative gradient of the log-likelihood −∂`/∂ηk is evaluated for
every observation, leading to a vector of gradients.

3. For each term fj(xj), low-degree-of-freedom splines are fitted to the gradient vector
using penalized least squares estimation.

4. The coefficients of the best fitting term—with respect to the residual sum of squares—
are updated by a proportion ν, here ν = 0.1, leading to an updated predictor,

ηk+1 = ηk + ν · fj(xj). (4)

5. Steps (2–4) are repeated for a predefined number of iterations kmax or until a predefined
number of terms q has been selected.

If gradient boosting is applied as stand-alone method the number of iterations kmax—and
thus the degree of regularization—can be determined by means of information criteria or
cross-validation. Here the main purpose of gradient boosting is selecting important terms fj .
It is desirable to avoid the selection of numerous non-informative terms. Stability selection is
a convenient resampling method for controlling the number of selected non-informative terms
by gradient boosting (Meinshausen and Bühlmann 2010; Hofner et al. 2015).

Rather than applying this boosting approach to all n observations, stability selection is based
on drawing a subsample of size n/2 from the training data, running the boosting algorithm
until q base learners are selected. This procedure is repeated many times. Afterwards the
relative selection frequencies per base learner are computed. Eventually the base-learners for
which the relative selection frequency exceeds a certain threshold are included in the final
model (cf. algorithm in Hofner et al. 2015).

Markov chain Monte Carlo sampling

The final model is of a complex form as it contains several smooth effects. For such a complex
model determining confidence intervals based on asymptotic assumptions might fail. Due to
the vast increase of computational power Markov chain Monte Carlo (MCMC) simulations
offer an attractive toolbox to provide valid credible intervals.

To be able to apply this technique to a GAM, the posterior distribution has to be formulated
(Brezger and Lang 2006). MCMC samples of the posterior distribution can be efficiently
generated by approximating a full-conditional distribution using a second order Taylor series
expansion of the log-posterior centered at the last state (Gamerman 1997; Fahrmeir et al.
2013; Umlauf et al. 2017). Moreover, in most situations the structure of the sampling scheme
reduces to an iteratively weighted least squares (IWLS) updating step for which highly efficient
algorithms are available (Lang et al. 2014).

The ECMWF based models, selected by gradient boosting with stability selection, and the
climatological baseline models are estimated by MCMC sampling. 1000 independent realiza-
tions of the regression coefficients are drawn from the Markov chains, which enables inference
of the effects, predictions and out-of-sample scores.
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Figure 2: Results of the stability selection procedure for the model for day 1 and 64×64 km2

resolution. The variable names on the y axis indicate that the associated nonlinear effect was
selected. The vertical dotted line highlights the threshold of 90% for the final model.

4. Results

In this section the selection procedure is illustrated along one example case for one particular
spatial resolution and lead time. Afterwards the predictive performance across the different
resolutions and forecasts horizons is analyzed.

The selection procedure and the estimation of the final models is performed on data of four
years (2010–2013), leaving data of two years (2014–2015) for evaluating the predictive per-
formance of the final models.

Model selection

In total 18 models are fitted, i.e., five models with ECMWF covariates and one baseline
model containing the climatological probability for each of the three spatial resolutions. The
variable selection based on boosting and stability selection is performed for the 15 models
with ECMWF covariates.

The results of the stability selection for the model referring to the resolution 64×64 km2 and
the forecast horizon of one day are visualized in Figure 2. The boosting algorithm was run
on 100 distinct random subsamples of size n/2 from the training data until q = 12 terms were
selected. The bars in Figure 2 indicate the relative frequency for a term fj(xj) being selected
in the 100 boosting runs.

For example the term ft700 1812 was selected in each of the 100 runs. On the other side of
the scale fssr was selected only once. However, all 111 terms that are not listed on the y-axis
have not been selected at all. Neither the seasonal term ftime nor the spatial term fspace were
selected, which indicates that all variability over the considered time of the year and domain
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can already be explained by the resulting effects from the ECMWF covariates.

All terms for which the relative frequency exceeds the threshold 90% (dotted line) enter the
final model. Thus in this case the final model contains nine additive terms. For the given
number of potential predictors p = 128 and the tuning parameters of the stability selection
q = 12 and a threshold of 90%, this procedure ensures that the expected number of falsely
included terms (non-informative effects) is less than 1 (cf. Eq. 6 in Hofner et al. 2015).

In order to provide inference for the effects of the final model a MCMC sampling is performed.
Figure 3 shows the resulting effects for the model with the resolution 64×64 km2 and the
forecast horizon of one day. The effects are ordered according to their effect size, which is
here defined as the absolute difference of the maximum and minimum value of the effect.

Mean relative humidity at 700 hPa (r700.mean) is the most influential covariate (Figure 3a).
The absolute difference between the maximum and minimum value of the effect is 4.13 on the
logit scale. Between the lower bound and 80% fr700.mean increases, which means that higher
values of relative humidity in the ECMWF correspond to higher probabilities in the prediction
of thunderstorms or lightning activity. However, at 80% the effect reaches a maximum and
decreases slightly for higher values.

Other important effects are associated with the differences of temperature at 700 hPa between
1800 UTC and 1200 UTC (t700_1812), the square root of convective precipitation (sqrt.cp)
and the proxy for mean layer stability (mls.mean, cf. Table 1). ft700 1812 and fmls.mean de-
crease both nonlinearly. The effect of the square root of the diagnostic variable convective
precipitation is monotonic increasing.

The effect of surface net thermal radiation (Figure 3e) reveals a very interesting shape. It first
increases from −0.17 to 0.89 at a value of −1.78 106 Jm−2, and decreases afterwards to −1.31
on the logit scale. However, on occasions with high absolute values of longwave heat fluxes
(left hand side of the x-scale) the overall model would predict very small probabilities. This
is due to a compensation effect between the additive terms. High absolute values of longwave
heat fluxes coincide with low values of relative humidity at 700 hPa, for which fr700.mean is
very small. In other words, if surface net thermal radiation would be employed as a single
predictor, the increase on the left side of the scale would be more pronounced.

The effect of d2m.mean is monotonic increasing and spans a range of 2.08. The effects of
w500.min, sqrt.cape.mean and t2m_1512 are all less than unity on the logit scale.

This procedure—variable selection by combining gradient boosting and stability selection,
and fitting the final model by MCMC sampling—was performed for all 15 models that build
on ECMWF-HRES output. The effects presented for the example above are representative.
All of these nine effects—except d2m.mean and w500.mean—were selected in a majority of
models. In addition the effects of the mean of total cloud cover and the mean of CAPE were
selected in more than 50% of the models.

The selection results can be summarized as follows. Increasing the resolution also increases
the number of selected terms. For models with a longer forecast horizon, the number of
selected terms decreases slightly. The median effect size decreases for increasing resolution as
well as for increasing forecast horizons.

Predictive performance

The predictive performance was evaluated on the data from 2014 and 2015 by means of
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Figure 3: Effects and 95% credible intervals of the model for day 1 and 64×64 km2 resolution
estimated via MCMC sampling. The effects are displayed on the logit scale. The number
in the bottom right corner of each panel indicates the absolute range of the effect. The x
axes are cropped at the 1% and 99% quantile of the respective covariate to enhance graphical
representation.
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(a), 32×32 km2 (b) and 16×16 km2 (c) resolution. AUC stands for the area under curve.
(d) Brier skill score for all models with the baseline climatology as reference. The 95% intervals
are derived from MCMC samples.

receiver operating characteristics (ROC) and Brier skill score (BSS). All scores show that the
models based on ECMWF covariates are superior to the baseline models, i.e., climatologies.

Figure 4a–c shows the ROC diagram (Robin et al. 2011) for the models with the spatial
resolutions 64×64 km2 (a), 32×32 km2 (b) and 16×16 km2 (c). The diagram illustrates how
well the predictions discriminate between lightning and no lightning. The curves for day 1
show that the probabilistic forecasts can be transformed to a binary prediction with a true
positive rate greater than 80% and a false positive rate of less than 20%.

The area under curve (AUC) summarizes the receiver operating characteristics (Robin et al.
2011). The ECMWF based models are superior to the baseline models. The results for the
different resolutions are comparable.

The BSS for all models is displayed in Figure 4d. The BSS is highest (0.42) for the coarsest
resolution (64×64 km2) and the shortest forecast horizon (1 day), and smallest (0.11) for the
finest resolution (16×16 km2) and longest forecast horizon (5 days). 95% intervals of the BSS
were obtained using the MCMC samples.

All forecasts are well calibrated. The skill for all resolutions decreases from short to long
forecast horizons, which is due to the decrease in sharpness of the forecasts, which will be
discussed further in Section 5.

Finally, the spatial distribution of BSS for the model with the finest resolution and the longest
forecast horizon, i.e., 16×16 km2 and 5 days, is discussed (Figure 5), which is the model with
the lowest overall skill (Figure 4d). MCMC samples were used to test at 5% level if BSS values
are positive. Positive values mean that predictions from the post-processing are superior to
the climatology. This is given around the Alps and in the northeastern part of the domain.
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Figure 5: Spatial predictive performance: The Brier skill score for the model with 16×16 km2

resolution and a forecast horizon of 5 days. All BSS greater than 0.015 (shown in blueish
color) are significantly positive at the 5% level. Tests are based on MCMC samples.

If the BSS in a grid is not significantly positive the limit of predictability is reached. This is
the case for regions further north of the Alps.

5. Discussion

One representative example (22 July 2015) is presented in order to highlight the information
that can be gained from the introduced models.

The top left panel of Figure 6 shows the verifying observation for 22 July 2015, on the
resolution 16×16 km2, where ones (zeros) indicate cells in which lightning was (not) observed.
The top mid panel shows the climatological probability for lightning activity in the cells for
the same day compiled by the baseline model.

The baseline model reveals areas at the northern and southern rim of the Alps in which
lightning activity is relatively likely with climatological probabilities ranging up to 26.5% on
the southern rim. The lowest values around 10% can be found in the northern part of the
domain. This pattern is in line with earlier studies (Feudale et al. 2013; Wapler 2013). The
mean of the climatological probabilities for this day is 16.2%.

The bottom panels of Figure 6 illustrates how the predictions made by the GAMs with
ECMWF predictors evolve from longer forecast horizons to shorter forecasts horizons. The
bottom right panel shows the forecast with the model based on the ECMWF-HRES data with
the lead times 108h, 111h and 114h, i.e., 5 days before 22 July. The mean of the predicted
probabilities is 28.9%, and thus clearly above the climatological value. However, probabilities
spread homogeneously over the domain with mid 50% of the values lying between 19.0% and
38.7%.

The spatial pattern of the forecast from 3 days before the event (bottom mid panel Figure 6)
is already visible. There is a region with low values in the northwest of the domain, which
can be distinguished from the rest of the domain with higher values.

The forecast made for the lead times 12h to 18h (bottom left panel) reveals sharp edges
between the regions with high and low probabilities. The lower quarter of the predicted
probabilities ranges from 0% to 1.6%, and the upper quarter from 59.3% to 83.7%. Thus the



12 Probabilistic Forecasting of Thunderstorms in the Eastern Alps

46°N

47°N

48°N

49°N

10°E 12°E 14°E 16°E

Forecast.Day1

10°E 12°E 14°E 16°E

Forecast.Day3

10°E 12°E 14°E 16°E

Forecast.Day5

46°N

47°N

48°N

49°N

Observation Baseline

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Spatial example: Top panel: Observed lightning activity for the afternoon (1200–
1800 UTC) on 22 July 2015 and baseline climatology for the probability of thunderstorms
for the same time interval. Bottom panel: Probabilistic forecasts for thunderstorms compiled
1, 3 and 5 days before 22 July 2015.

forecast provides a sharp information about the spatial pattern of the forthcoming weather
event. In comparison with the verifying observation (top panel 6) the spatial pattern is well
reproduced by the prediction.

For the same case (22 July 2015) the temporal evolution of predicted probabilities is high-
lighted for two sample locations, i.e., the grid cells associated with the airports of Zurich
(ZRH) and Vienna (VIE). Figure 7 shows the probabilities for thunderstorms dependent on
the forecast horizon.

Five days before the event probabilities of 36.1% and 32.8% were predicted for ZRH and
VIE, respectively. These values are clearly greater than the corresponding climatological
probabilities, 15.8% and 12.5%. When coming closer to the date of interest the probabilities for
ZRH increase and for VIE decrease. For a forecast horizon of 3 days the predicted probability
at VIE drops below the climatological one. For day 1 the predicted probability for VIE can
not be distinguished from zero. The value for ZRH on the shortest forecast horizon is 75.6%.
On 22 July 2015, lightning was observed in the grid cell containing ZRH, but not in VIE.

6. Conclusions

This study explores generalized additive models (GAM) and gradient boosting with stability
selection as a tool for predicting thunderstorms by making use of numerical weather prediction
(NWP) output. The Eastern Alps in Europe serve as study region. Observations of lightning
strokes provide a proxy for the occurrence of thunderstorms. GAMs capture the potential
nonlinear relationship between the covariates and the response while boosting with stability
selection offers an objective way to select a stable subset of covariates and to control the
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Figure 7: Temporal example for the grids in which the airports near Zurich (ZRH) and Vienna
(VIE) are located (Figure 1). The predicted probabilities are connected with solid (ZRH) and
dashed (VIE) lines, respectively. 95% intervals are based on MCMC samples. Climatologies
are added in light colors.

number of falsely selected terms.

The resulting predictions are skillful to the longest evaluated forecast horizon of 5 days and
the finest spatial resolution of 16×16 km2.

Computational details

The statistical modeling has been carried out using the software environment R (R Core Team
2017). The add-on package bamlss (Umlauf et al. 2017) offers a flexible toolbox for complex
regression models such as GAMs. It allows to perform gradient boosting via the model fitting
engine function boost(), and to simulate MCMC samples of the posterior distribution with
the engine function GMCMC().
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