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Abstract

We consider changes in the degree of persistence of a process when the degree
of persistence is characterized as the order of integration of a strongly dependent
process. To avoid the risk of incorrectly specifing the data generating process we
employ local Whittle estimates which uses only frequencies local to zero. The
limit distribution of the test statistic under the null is not standard but it is well
known in the literature. A Monte Carlo study shows that this inference procedure
performs well in finite samples.
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1 Introduction

We consider changes in the degree of persistence of a time series. In our case we char-
acterize the degree of persistence as the order of integration 0 of a strongly dependent
process. Changes in the order of integration have been documented, sometimes heuristi-
cally, in a number of macroeconomic variables, such as output (De Long and Summers,
1988), the budget deficit (Hakkio and Rush, 1991), inflation (Halunga, Osborn, and
Sensier, 2009; Kumar and Okimoto, 2007; Hassler and Meller, 2014), financial markets
bubbles (Sollis, 2006), among many others. Interest in the characterization of the degree
of persistence and in its potential instability is particularly strong in the evaluation of
macroeconomic policies such as inflation targeting because ceteris paribus a reduction of
the order indicates a tighter control of the variable of interest (provided that the process
is mean reverting, at least after the change). By the same argument, periods associated
to 0 = 1 indicate lack of control.

In some of the applied work it is assumed that ¢ is limited to integer numbers only
(typically, 0 = 0 or 6 = 1). Tests to detect changes between these two states were
developed by Kim (2000), Kim, Belaire-Franch and Badilli-Amador (2002), Busetti and
Taylor (2004), Harvey, Leybourne and Taylor (2006), Leybourne, Taylor and Kim (2007)
among others. In all these cases, the test statistics are based on ratios of partial sums and
it is possible to detect a change in the order of integration because the limit distributions
are well behaved under the null.

However, the assumption of integer 0 seems particularly restrictive in the context of
testing for a change in persistence because it leaves no alternative between fast reversion
to the mean (6 = 0) and no reversion at all (6 = 1). Important variations in the long
term dynamics may be represented with relatively fractional changes in 0. This approach
was advocated by Beran and Terrin (1996) who recommended testing for a change in
this parameter in the context of a fully parametric model, and discussed by Horvath and
Shao (1999). This is appealing because of good asymptotic properties of the maximum
likelihood estimators but the requirement that the user specifies the correct model for

the data generating process may be inconvenient, especially when a large number of



parameters has to be considered, as the uncertainty about the model may adversely
reflect on the result of the procedure.

The case for semiparametric estimation of ¢ is even more compelling in case the pro-
cess is subject to a break. The uncertainty about the possibility of a break should make
the researcher even less confident when formulating a fully parametric model because
the model selection procedure must be designed to deliver the correct model even under
the alternative hypothesis that a break has indeed taken place.

A modified approach to testing for a change in persistence has been followed by Sib-
bertsen and Kruse (2009) who simulated appropriate critical values for the test statistic
in Leybourne et at. (2007). Their critical values depend on . A non-parametric
approach was adopted by Lavancier, Leipus, Philippe and Surgailis (2013) who also
proposed a modification of the test statistic in Kim (2000) and related statistics. Semi-
parametric detection of a break is considered in Shimotsu (2006), where however the
potential breakpoint is fixed in advance. Our choice is closer to the latter in the sense
of being semiparametric. Like in the parametric test in Horvath and Shao (1999), we
estimate 0 before and after a potential break point, and compute a Wald type statistic
for the difference between the two estimators. Since the potential break-point is in fact
unknown we derive the limit distribution of the supremum of the Wald type statistic.
However, unlike in Horvéth and Shao (1999), we estimate 0 by local Whittle estimator,
so our procedure does not require us to specify a complete parametric model and it is
therefore robust to that type of misspecification. We find that under the null the limit
distribution is well known and does not depend on 9.

The structure of the paper is as follows. In Section 2 we present the relevant asymp-
totic theory and in Section 3 we analyse the small sample properties with a Monte Carlo
exercise. We present an application in Section 4 and we conclude in Section 5. The

proofs of the theorems are to be found in the Appendix.



2 Testing for a change in the order of integration

To establish notation we first introduce the model for the case of a stationary process.
Our model is similar to the model of Robinson (1995). For a stationary process z;
with covariance v, = F [(x; — Fxo) (v145 — F (x0))] and spectral density f (A) such that
v, = J7_f (X)) e?*d) we consider a process as integrated of order ¢, denoted z; € I (9),
if there is 0 < 1/2 and G € (0, c0) such that

FO) ~GA % as A—0F (1)

where notation a ~ b is used to indicate that the ratio a/b tends to 1. In model (1)
the order of integration ¢ is usually the parameter of interest and G' depends on all the
other parameters of the spectral density.

For example, if 2, is ARFIMA(p,d,q), ® (L) A%z, = © (L) &, for &, independent and
identically distributed with E (g;) = 0, E (¢2) = 02, then 27G = & (1) ' ©(1)o? In
comparison with such full parametric specification, the model in (1) is usually considered
semiparametric.

We now introduce the local Whittle estimator and discuss how to use it to test for
a change in 0 when the process is subject to a break in the order of integration. For
a generic time series x; observed at times ¢t = 1, ..., T, define the Fourier transform
w((A) = \/% S xe ™ and the periodogram I(\) = |w(A)[>. The local Whittle

estimator is computed by minimizing with respect to d the loss function

R(d) =In (% i A?dI(Aj)> — Qd% iln()\j), (2)

where A; = %, for integers j = 1, ..., m, are Fourier frequencies and m is a user-chosen
parameter. This loss function is discussed by Robinson (1995).

For a stationary process x;, parameter ¢ in (1) does not depend on time. In practice,
the persistence of a process may be subject to change over time. We consider a situation
where the persistence measure 0 can change at a certain point in time. We assume that

there exists a break fraction 7* with 0 < 7% < 1 such that for ¢t < |7*T'|, x; is drawn



from an I () process, and for ¢t > |7*T|, x; is a realization of an [ (d3) process with
01 # 0. That is, at different points in time the series x; is observed from two possibly
different processes, xy; which is I (61) and xo; which is I (05), with x; = ;4 if t < |7%T]
and x; = xo if t > |7*T]. If 07 = d9, it is possible that z1; and zo are generated
the same process. We wish to test the hypothesis of stability of the persistence. Our

hypotheses of interest are therefore

Hy @ 6y =0y,
HA . 517&52.

In order to test whether the parameter 0 remained stable over the sample period, we

estimate 0 on two subsamples and compare the two estimators. For a time series sample

x observed at times t = 1, ..., T, and an interval [o, 7] C [0, 1], we define the Fourier
transform and the periodogram of series 0,...,0, 26741, -, Z|r7)41,0,...,0 as
| 7T
—iAt 2
Weor ( Ti€ and Ior (A) = |wer (A

t=|oT|+1

and the related local Whittle loss function as

R(d;o,7) =1In (ﬂll iAZdIM ) — 2d— Zln (3)

7=1

We select 7 in (0, 1) and estimate parameter 0 on for intervals [0, 7] and [r, 1]. Let

) = min  R(d;0 4
! (T) arg d6[71/12,1/2] ( ’ ’7—)’ ( )
5. = min R(d;7,1 5
2 (7—) arg d6[71/12,1/2] ( 3T )7 ( )

S0 0, (1) and 5y (7) are the estimators computed using only the first or the second part
of the sample for a given 7. Given the estimators 0; (1) and ds (1) of & on the two

subsamples, we can base a test statistic for the test of stability of 0 on the normalized



difference of the two estimators. We define the test statistic as

F(r) = Var(1—1)m (?5} (7) — 3 (7)) . (6)

For any given 7 € (0,1), it can be showed that under regularity conditions, as 7' — oo,

test statistic tA(T) converges in distribution to a standard normal,
F(r) —a N (0,1). (7)

As the potential location [77'] of the break is usually unknown, we consider # () for all

7 in a closed subset [7;, 7] of (0, 1). Following Andrews (1993) we introduce

2= sup 1 (1)°. (8)

T€[T1,7R]C(0,1)

We establish weak convergence of tA(T) to a tight limit. This convergence together with
the continuous mapping theorem then gives us the distribution of the 12 test statistic
under the null hypothesis.

Our analysis proceeds under the following assumptions.

Assumption 1 The processes x1; and x9; have linear representation
T — B (w0) = D272 qwjer—j, (=12,
where 37 af; < oo and, forp=1,...,8,
E(}|Fio1) =wp <00 a.s., t=0,%1,...,

w1 =0 and wy = o
Let F; be the o-algebras of events generated by ¢, s < t.

Assumption 2 In a neighbourhood (0,¢) of the origin, A (N) = 3722 age™ are dif-



ferentiable for £ = 1,2 and

d [Ac (W)
aAg()\)_O< 3 ) as A — 0+ .

Assumption 3 For some [ € (0,2], the spectral densities fi and fo satisfy

) ~ G (1+0(N)  asA— 0+,

f2(N) ~ GN2(1+0(N))  asA— 0+,
where G € (0,00) and 01,02 € [A1,A0) C[-1/2,1/2].
Assumption 4 As n — oo,

1 m'*28 (logm)®
m n

— 0.

Let B (7) be a standard Brownian motion process on [0, 1] and let ”=" denote weak

convergence in the Skorohod topology. We obtain the following theorem.
Theorem 1 Under Assumptions 1—4 and under the null hypothesis, for [t;,74] C (0, 1),

2y gy BEO=mBO)

(9)
TE[T1,Th] 4T (1 _T)

as'T — oo.

Proof of Theorem 1 is provided in Section 6.2 of the appendix.

(B(r)-7B(1))*

The limit process sup,¢ir, -] 17

is the supremum over [7;, 75, of the square of
a standardized tied down Bessel process. The distribution of the test statistic is identical
to the distribution obtained by Andrews (1993) who also discusses what happens when
(71, 7n] = [0,1]. Andrews (1993) provides tables of various quantiles for the distribution.
The upper 5% quantile is 8.85 when [r;,7,] = [0.15,0.85] and 9.31 when [r;,7)] =
0.1,0.9].

We can test Hy : 07 = 09 against Hy : 01 # 09 at « size by computing the 12 statistic

and comparing its value with the upper a% quantile. A value of the 12 statistic in excess



of the critical value leads to a rejection of Hj.
The following theorem shows that the test is consistent. With increasing sample size,

the power of the test approaches 1 in probability.

Theorem 2 Under Assumptions 1-4 and under the alternative hypothesis, for [, 5] C

(0,1),

oo

as T — oo.
Proofs of Theorem 2 can be found in Section 6.3 of the appendix.

Remark 1. Assumptions 1-4 are based on the assumptions of Robinson (1995) who
uses them to establish consistency and limit normality of the local Whittle estimator.
The most notable difference is that in our case finite moments up to the eight order
are needed instead of Robinson’s fourth moments. This is because of the additional

requirement of establishing tightness in the context of our problem of interest.

Remark 2. The statistic 2 is related to the test statistic of Horvath and Shao (1999),

where however ¢ is estimated within a fully parametric model.

Remark 3. If the location of the breakpoint is known in advance it seems natural to test
for a break using the statistic 12 (7*) using critical values from the x? distribution. When
the potential breakpoint is not known then the statistic ¢* (1) for a user chosen point may
be considered. This is similar to the test advocated by Shimotsu (2006) who suggests to
divide [;,7,] in equally spaced intervals. However, testing using the statistic #2 (7) may
result in low power when compared to testing using the 12 statistic. To understand why,
consider the case 6; > 02 and 7 < 7*. Then observations z1, ..., x|, are obtained from
a I (01) process whereas a part of observations z . 11,..., 27 comes from a I (91) and a
part from a [ (d) process. Therefore the periodogram of series 0, ..., 0, T g t1s e OT
has features similar to those of the periodogram of a signal plus noise process with signal
I (61) and noise I (d3). Dalla, Giraitis and Hidalgo (2006) have shown that in this case

05 (1) —, 61. In their Theorem 3, these authors discuss the conditions under which the



estimator 05 (7) of 6; may be subject to a lower order bias: this would at least warrant

some power to a test using the #2 (1) statistic.

3 A Monte Carlo exercise

The results of Section 2 are asymptotic. We therefore examine performance of the
proposed test procedure in finite samples. In the first exercise, summarized in Table
1, we study the size of the test under a range of data generating processes (DGP) and
bandwidths.

We consider model

(1 — gbL) A(;:Ut = &,

where ¢, is independently normally distributed with E (g;) = 0 and F (¢7) = 1. We
consider three cases. First, ¢ = 0, 6 = 0, so that x; is an iid process. Second, ¢ = 0,
0 = 0.4, so x; is a fractional noise. Third, ¢ = 0.5, § = 0, so that x; is an AR(1)
process. We simulate the fractional noise process using the Cholesky decomposition of
the covariance matrix. The empirical size of the tests is measured by how often the test
statistic exceeds the 5% critical value.

We use T' = 128, 256, 512, 1024 and consider four settings for m, m = [T°?], |T%%],
| 7% ] and |T%9]. In cases in which m exceeds T'//2—1, we set m = T'/2—1. For example,
when T = 128 then m = |128%| = 78 and we set m = 63. For each case, we run 10000
G

repetitions and we record three results: how often the test statistic ¢“ exceeds the critical

value of 8.85 for [r;,74] = [0.15,0.85], how often the test statistic 2 (1/2) exceeds the
critical value 3.84 and how often the Wald statistic W </5\> =4m </5\ — 5)2 exceeds the
critical value of 3.84. Notice that the Wald statistic W </5\> is computed using the whole
sample to estimate 9.

We study performance of the various bandwidths. Assumption 4 requires that
m/T%® — 0 so m = |[T%™]is the largest bandwidth consistent with this assumption
among the ones we considered. MSE-optimal bandwidths for the estimator $ are of the

type m = |aT*®] where a depends on the curvature of the spectrum of A%z, see for

example Henry (2001).



Two sources of lower order bias can affect 5. The first one is due to the curvature of
the spectrum of A%z, so that, for example, if ¢ > 0 then the estimator is subject to a
positive bias which for given m is stronger the larger is ¢. The second source of bias is
due to the approximation of |1 — e’M‘% by A% in the loss function. For given ¢ and ¢,
both biases become stronger the larger m is for a given 7.

The variance can be also underestimated due to the fact that m is finite. Although
— > v? — 1 as m — oo, with T' = 128, for example, = > i V= 0.5if m = |T%°]
and - 37" 1% &~ 0.8 if m = [T%?] (recall the requirement that m < T/2 — 1). Thus
the variance is more severely underestimated the smaller the bandwidth is.

The three models we consider illustrate the potential distortions discussed above. In
the iid case no bias should occur and the best estimate of ¢ in the MSE sense should be
obtained for the largest bandwidth. Regarding the other two models, in the AR(1) case
the estimate is subject to a bias due to the curvature of the spectrum of x; whereas in
the fractional noise case the estimate is subject to an error due to the approximation
of [1— e*M‘% by A®. The bandwidths m = |T°%] and m = |T°%] have emerged
as popular among practitioners. In particular, Abadir, Distaso and Giraitis (2007)
have found that the latter bandwidth gives a good MSE performance in a range of
situations. Our choice of bandwidths is based partly on the choice already considered
in the literature. It should however be noted that our problem is different. We are not
interested in minimum MSE estimation of o but rather in correct size when testing the
null hypothesis of no break using the > and #2 (1) tests.

We first comment briefly on the size of the Wald test since the Wald test statistic
has been widely used in applied work. For the iid model, the limit x? distribution seems
acceptable for all the bandwidths. Therefore the iid data generating process case seems
to be a benchmark for the most favorable situation. It is worth noting that the 5%
nominal level is best approximated for larger bandwidths, perhaps because % Z;’;l 1/?
is closer to 1 for larger values of m. For the fractional noise, the x? limit is also fairly
appropriate except for the extreme case of m = |T%%]. This case is not covered by
Robinson’s theory because 5 is severely biased due to the approximation of ‘1 — e’M‘Zé

by A%. Note that the x? approximation seems to work better with bandwidth |76 |
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rather than |7%™|. Finally, for the DGP is the AR(1) model, when 0 is subject to a
lower order bias that is stronger the larger is the bandwidth, m = |T%5| seems the only
safe solution though we still see some size distortion even in large samples.

We now comment on the performance of our statistics #2 and # (7). In terms of size,
tests based on these two statistics perform best for the largest bandwidths, m = |T%7|
or m = |T°%]. This is a reversal of the conclusions for the estimator 5 of the degree of
persistence where the smallest bandwidths are the best choice. This may seem surprising
in view of the size distortions for W </5\> However, since this size distortion is mostly
generated by the bias in the estimation of 9, it is possible that the bias affecting 5 (1)
and 0, (7) is similar, especially when 7 divides [0, 1] approximately in half, and that this
bias mostly cancels when we take the difference /5\1 (1) — /5\2 (7). Simulation carried out
by Shimotsu (2006) and his discussion of the results seem to support this conjecture.

Tests 2 and 2 (7) have similar size properties. Lack of knowledge of the location
of the potential break fraction does not have an adverse effect on size. Both tests are
also subject to size distortion, in particular when 6 = 0. In some cases the better size
performance when & = 0.4 may be due to the fact that the estimation interval for o (1)
and 0 () is restricted to [—0.49,0.49], a choice that may limit the range of 01 (7)— 05 (7).
Overall the size distortion is usually smaller than the distortion observed for widely used
w </6\> In our opinion this potential size distortion is something that must be kept in
mind but is not a reason to avoid using these tests.

In the second part of the Monte Carlo exercise we deal with detecting a break in o
and study the power of the test. The results of the power simulations are reported in
Table 2. The tests are based on tA(T)2 and 72, the null hypothesis of stability of ¢ being
rejected if the test statistic exceeds the appropriate critical value with nominal size set
at 5%. We use the same sample sizes and bandwidths as in the size exercise and we
carry out 1000 repetitions for each experiment.

We consider three models, Model A with §; = 0.4, 6, = 0 and 7" = 1/2, Model B
with 0; = 0.2, 5 = 0 and 7" = 1/2, and Model C with §; = 0.4, 62 = 0 and 7" = 2/3.

11



Table 1: Empirical size in the case of no breaks

iid AR(1) ARFIMA(0,0.4,0)

T 27 W(S) 2 F(r) W(S) 27 W(S)

128 0.048 0.114 0.191 0.049 0.121 0.214 0.025 0.041 0.119
256 0.076 0.117 0.159 0.077 0.125 0.163 0.056 0.038  0.098
512 0.091 0.115 0.129 0.089 0.118 0.127 0.067 0.034 0.079
1024 0.104 0.097 0.116 0.101 0.099 0.113 0.062 0.031  0.068

128 0.081 0.105 0.135 0.109 0.104 0.507 0.063 0.032 0.088
256 0.104 0.097 0.111 0.119 0.107 0.414 0.053 0.030 0.071
512 0.115 0.081 0.089 0.121 0.087 0.321 0.052 0.032 0.055
1024 0.105 0.071  0.079 0.106 0.078 0.234 0.041 0.035 0.047

128 0.093 0.081 0.101 0.089 0.067 0.987 0.051 0.035 0.099
256 0.094 0.078 0.083 0.099 0.094 0.998 0.040 0.035 0.075
012 0.084 0.064 0.071 0.109 0.092 1.000 0.042 0.040 0.084
1024 0.074 0.061  0.060 0.106 0.085 1.000 0.038 0.045 0.071

128 0.092 0.076  0.090 0.074 0.054 0.999 0.050 0.043 0.145
256 0.083 0.067 0.072 0.079 0.075  1.000 0.043 0.047 0.181
512 0.065 0.061 0.063 0.090 0.091 1.000 0.041 0.052 0.260
1024 0.057 0.055 0.055 0.106 0.093 1.000 0.048 0.055 0.419

79

report the empirical size of the test with statistic > = SUD;¢[0.15,0.85] ()
7)*” report the empirical size of the test with statistic ¢ (7)?, 7 = 1/2.

’ </6\> ” report the empirical size of the test with the Wald statistic.



Table 2: Empirical power in the case of one break

5,=04,06,=0,7=1/2 06,=02,0,=0,7=1/2 06,=04,0,=0, 7 =2/3

2 r/2)? t(1/3)7 ? o r/2)? t(1/3)° 2 t/2)?* t(1/3)°
0.171  0.271 0.077 0.081 0.158 0.110 0.144  0.085 0.053
0.318  0.401 0.100 0.145 0.213 0.137 0.311  0.121 0.071
0.455 0.543 0.111 0.194 0.214 0.141 0.427  0.120 0.069
0.600 0.679 0.113 0.268  0.268 0.147 0.551  0.140 0.053
0.373  0.520 0.146 0.147  0.211 0.132 0.367 0.124 0.058
0.590 0.728 0.202 0.233  0.279 0.178 0.534 0.192 0.086
0.801  0.880 0.212 0.293 0.348 0.169 0.750  0.172 0.073
0.938 0.970 0.245 0.386  0.484 0.223 0.906 0.216 0.080
0.626  0.800 0.242 0.202  0.267 0.159 0.570  0.246 0.091
0.868  0.947 0.430 0.328 0.423 0.240 0.808 0.351 0.171
0.982  0.995 0.566 0.476  0.625 0.290 0.958 0.456 0.216
0.997 1.000 0.719 0.735 0.848 0.459 1.000  0.593 0.335
0.733 0.859 0.350 0.222 0.314 0.174 0.655 0.331 0.141
0.945 0.982 0.639 0.402 0.544 0.293 0.918 0.538 0.305
1.000  1.000 0.829 0.655 0.813 0.447 1.000 0.714 0.464
1.000 1.000 0.974 0.939 0.981 0.709 1.000 0.912 0.705

79

report the empirical power of the test with statistic > = SUD;¢(0.15,0.85] ()
1/2)*” report the empirical power of the test with statistic  (7)* with 7 = 1/2.
1/3)*” report the empirical power of the test with statistic  (7)* with 7 = 1/3.



By comparing Models A and B we examine the effect of altering the dimension of
the break, while a comparison of Models A and C allows us to concentrate on the effect
of altering the location of the break. In all cases we assume that both before and after
the break, the process is a fractional Gaussian noise, with different order of integration
in the two subsamples.

In all tests, for a given sample size and bandwidth rule we observe that the power is
higher the larger is the break and the closer it is to the middle of the sample. We also
observe that for a given bandwidth rule and model the power increases with the sample
size and that for a given sample size and model the power increases with the bandwidth.

Finally, we compare the power of the tests using the statistics 12 and tA(T)Q. We find
that if the potential breakpoint is chosen correctly in the # (7)?, so that 7 (7*)* is used,
then #(7*)* has more power than 2. Otherwise the power of the 7 (7)* may be quite
limited, especially when 7* = 2/3. An interesting finding is that when 7* = 2/3 then the
test based on 7 (1/2)* has more power than the test based on ¢ (1/3)* and thus the larger

error in choosing 7 compared to 7 is penalized with a more relevant loss of power.

4 Empirical application: From the Bundesbank to
the ECB

We use our semiparametric test for persistence stability to analyse the inflation rate in
Germany for the period 1997-2017. Interest in this inflation persistence is motivated
by the fact that stabilizing inflation is a key monetary policy target. This is sometimes
recognized explicitly in a formal inflation target, for example in Germany (until 1999)
and the Euro area (after 1999), or in the United Kingdom, Canada, New Zealand, and
other countries. Even in cases in which a formal inflation targeting commitment may
be missing, such as for the US, inflation stabilization is still relevant. In practice it
is of course impossible to maintain inflation constantly on the target but it is at least
important that deviations from the targets are not too extreme and not too strongly

persistent because such deviations would signal long term imbalances.
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The order of integration provides an intuitive and simple measure of persistence that
can be given an easy economic interpretation. A low level persistence can be associated
with tighter inflation control. Conversely, a large degree of the persistence index signals
a situation in which the central bank does not or cannot control inflation. A test for a
break, and possibly a comparative study of the estimators before and after the break,
would also reveal if a structural change, either in the management of monetary policy,
or in the structure of the economy, or both, has taken place. There is therefore a wide
range of empirical work dedicated to the estimation of the order of integration and
testing for a change in this order. In studies on US data, Kumar and Okimoto (2007),
Sibbertsen and Kruse (2009) and Martins and Rodrigues (2012) have all found that
inflation persistence declined since 1982. On the other hand, Hassler and Meller (2014)
have found that inflation persistence has increased since 1973, a second break in 1980 not
being significant. With integer orders only, Halunga, Osborn and Sensier (2009) have
concluded that inflation persistence increased in the early 1970s and returned under
control in the early 1980s.

Germany has received comparatively less attention, featuring occasionally in wider
studies for a range of countries such as in a study by Martins and Rodrigues (2012). A
dedicated study of the case of Germany seems of particular interest because of the history
of its central bank’s monetary policy. The Bundesbank was committed to the monetary
policy target of price stability which was formally implemented with an intermediate
target in form of monetary aggregate. However, the Bundesbank also announced an
inflation projection for the medium term which was set as 2% since 1986 (with a band
1.5% - 2% in 1997-1998). Although the Bundesbank was formally committed to a
monetary target, Bernanke and Mihov (1996) showed that ”the Bundesbank is much
better described as an inflation targeter that as a money targeter”. The same inflation
target for monetary policy was officially adopted by the European Central Bank (ECB)
for the Euro area, although with the slightly different statement of "below but close to
2%7.

Broadly speaking, therefore, the ECB targeted the same inflation rate as the Bundes-

bank did and indeed there is evidence that inflation has been on average on target during
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the ECB mandate, see for example Hualde and Tacone (2017). However as the ECB is a
different institution from the Bundesbank and as its mandate is for the euro area, rather
than for Germany only, it is important to check if the change in the monetary authority
resulted in an increase or decrease of persistence. This experiment is particularly inter-
esting because it is sometimes difficult to identify if a change in inflation persistence is
due to a change in the structure of the economy, rather than on the attitude of the cen-
tral bank. However, the introduction of the euro provides us with a natural experiment
to compare the attitude of the ECB against the Bundesbank. Of course, the fact that
the euro was introduced in January 1999 also provides us with an additional piece of
information and we could also test for a break with known breakpoint. This would be
advantageous because if the choice of a breakpoint is correct the test has more power.
However, as the sample spans several other periods of interest, including the effects of
the German reunification and the financial crisis, testing over the whole sample offers a
wider picture of the inflation dynamics.

In our empirical analysis, we use CPI data from Datastream, series code BDCON-
PRCF. The monthly time series spans the period from January 1986 to April 2017.
We obtain inflation as In (cpi;) — In (cpis_1) and then compute the test statistics 2 for
trimming region [r;,7,] = [0.15,0.85], and 7 (7)* with 7 set so that |77'| corresponds
to January 1999. Setting the bandwidth m = |T°7] = 108 , we computed 2 = 5.43
and tA(T)2 = 5.26, the whole sample estimate for the order of integration being 5 = 0.02.
With bandwidth m = |T°%% | = 47 we compute 2 = 1.36 and ¢ (7)* = 0.79 and 5 =0.08
(for January 1999 we estimate /5\1 = 0.09, /5\2 = —0.04). As the frequency of the obser-
vations is monthly, it is possible that the estimators of § (and of d; and d5) are subject

. . . o _ 2w _ 2mm __ 27w
to a lower order bias. With period 5F = 12 we have A = 75 = 0.52 and =%+ = 17 so

T 2 _ 376
27 12 12

=170, 1(7)* = 0.33, 0 = 0.33 (6; = 0.35, 65 = 0.24 for January 1999), and with
m = 27 we obtain £ = 2.17, £ (7)? = 1.30, 0 = 0.39 (3, = 0.48, 05 = 0.26). We find again

m = = 31.333. Thus, we repeat the exercise with m = 29 and compute

that the persistence across the two samples is slightly higher during the Bundesbank
tenure than afterwards but not significantly so. Except for the test %\(7')2 with largest

bandwidth, no test leads to the rejection of the null hypothesis. Overall we interpret
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these results as evidence that inflation persistence for Germany did not increase with
the change of the monetary authority and that at most it declined in the second part
of the sample. On balance we conclude that the German inflation was not subject to

major instability over these years.

5 Conclusions

We study the local Whittle estimator of the memory parameter in the presence of a
structural break in the stochastic component. We find that when the location of the
break is unknown the consistency of the test based on 1 (1) — 0 (T) may rest on a
lower order bias only and a test based on sup, (5\1 (1) — 5y (7')), T € [r, 7] C (0,1),
seems advisable. A Monte Carlo exercise supports this conjecture. We also find that in
some circumstances the size of the test may be incorrect but that this effect is mitigated
as the sample gets larger and if larger bandwidths are used. We apply the test to
study the persistence of inflation in Germany over the period 1986-2014. We find that
the persistence did not change and that we can conclude that the transition from the

Bundesbank to the Eurosystem did not deteriorate the measure of the inflation control.

6 Appendix

In this Appendix we present the technical results together with their proofs and auxiliary
lemmas.

6.1 Consistency of estimators of ¢

Proposition 1 Under Assumptions 1—4 and under the null hypothesis with 6; = 09 = 9,

sup /5\1(7')—5 20 asT — oo,
To<7<1
sup /5\2(7')—5‘&0 asT — oo,
0<7<T)
so that R R
sup |01 (7) — 6 (7')‘ 20 as T — oo.
TeSTETh
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_ _ wor (X)) L] At _
Let A; = A(N), ury = T Ur, —sz ST et Upr; = urj — Uy and
Vor,j = Ur,j = Voj-

Lemma 1 Under Assumptions 1/, for any integers 1 < js < m with 1 < s < p where
p=2,...,6 and 8, and for o and T such that [0, 7| C [0,7*] or [o,T] C [7%,1], there is
a finite constant C' such that

[NIS]

=

cum (uam-l — Vgrjrs - - s Uorj, — Uam-p> <C(r=0)2(j1Jp) (10)

Proof of Lemma 1. When p = 8, using formulas (2.6.3) and (2.10.3) of Brillinger
(1981), the cumulant on the left of (10) can be written as

R LG ) G ) (65

(4580 (3 -1) () (453

Al—wy — ... —w
< (Al ) _1)p,, (w1 4 Ajy) Dor (w2 + Ajy) Dor (ws + Ajs)
A ()‘js)
X Dor (ws + Ajy) Dor (w5 + Ajs) Dor (we + Ajg) Dor (wr 4 Ajy)
X Dy (—wl — ... =Wyt )‘js) dwi . .. dUJ7,
where kg = cum (g, . .., &) is the eighth cumulant of £, and
L
Doy (M) = > €™
t=|oT] +1

It follows from the Schwarz inequality and periodicity that this is bounded by

LR
where 14 )
P,.;= /7T T ((;L;)) — 1| Kor (w—Aj)dw
e D, ()P
Kor (A) = Koprr (X)) = (;r—T

Noting that Kyr 1 (A\) = MK(H =7 |— o] (A), We write

g = LT

—T

2

Aw
( ) KOLLTTJ*LO'TJ (w— )\j)dw (11)

A(N)

—1
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The kernel Koy +7)— o7 has the property
C
Ko1,|77)-lor] (A) < Wa O<A<m, T2=>1

by Lemma 1 of Lazarovd (2005). Using the arguments in the proof of Lemma 3 of
Robinson (1995), the integral in (11) can be seen to be O (1) uniformly over integers
1 < j <[T/2]. Therefore

Py <C(r—0)j " (12)

uniformly over integers 1 < j < [T'/2] and bound (10) holds for p = 8. A similar
approach yields proof of bound (10) forp=2,...,6. =

Lemma 2 Under Assumptions 1-4, for 1 < 7 < m, and for o and 7 such that 7 — o >
1/T and [o,7] C [0,7*] or [o,7] C [7*,1], there is a finite constant C' such that

(a) Eugrj —voryl” < C(r—0a)'j ",
(b) Elvsy® < C(r—o0)'.
Proof of Lemma 2. (a) Using formula (2.8) of McCullagh (1987), we have that for
random variables Yi,...,Y,,
E(Y;-Y,) =) []eum(Y;:i€B), (13)

7w Bem

where 7 runs through the list of all partitions of {1,...,r} and B runs through the list
of all blocks of the partition 7. Since E (ugrj — Vor,;) = 0, part (a) is implied by Lemma
1.

(b) We have

|77

1
FE |Uam-|8 — (27TT)4 Z Eeieie0€0€4,€5,Er, 0y

Xei(tfs)/\j ei(T‘*’U)/\jei(tl781)/\j€i(7‘1*’l}1)/\]’

t,s,r,0,t1,81,r1,01=0T] +1

|77

1
(27TT)4 Z | EE4€5€rE0E L E51Er Evy | -

VAN

t,s,r,0,t1,81,r1,01=0T] +1

Using (13) it can be seen that F |v,r;|® is bounded by

% ( Z 'K&g - Z <’%§’%4 + ’%2&%) + Z <f<02"<06 + Kgks + Hi) + Z /<;8> ,

t,s,7,0 t,s,r t,s t

19



where k, = cum (&, ...,&) is the p-th cumulant of ¢, and where the sums run from
|oT] +1 to |7T'] . This is bounded by

(1 — 0)4 ™ (T-— 0)3 T (T - 0)2T2 (tr—0)T 4
C( T4 + T + T + T4 ) <C(r—o0)

since%gT—a. ]
Let
o1 j 1 & k
uj—logj—EZlogk:—log<E>—E;log<a>. (14)
| 7T 1 2
Let Dy (A) = 3212 o) +1e Mand Ky = 57 [ Dy (M)

Lemma 3 For k such that k/T ~ a with0 < a <1 asT — oo, we have
() =D > v (= X) = Zto(l),

(b) szijf(k(xﬁ&) = o(1).

m T m T
2T 2
= S D K= M) - =) v D Ky = )
j=1 {=1 j=1 {=m+1
27T m m
= Y (we—v) Kr(h— A (15)

TN = %(1—1—0(1))

because m ' 31" 15 =1+ 0 (m~'log®m). Kernel K has the following properties:

k2
K.(AN) < — Ae 0,2
s

For |¢| < T/ (2k) the first bound is at least as good as the second bound.
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The second term on the right of (15) is bounded by

T/2 T/2

2 m

j=1l=m—j+1 j=1 \{l=m—j+1

m T/2 T/2
- Gl N
m j=1 \{l=m—j+1 =y 4 m Jj= me j+1 j
Clog®*m
m

because v; = O (logm) and because kernel K is symmetric.
Let ar, = [T/ (2k)]. For sufficiently large T' it is m > a; and the third term on the
right of (15) is bounded in absolute value by

Clog —
Z Z Vi — | Ki (M)
=

+
ag m 2 m-—1 m
Clogm (; Z uj|]%—|— Z Z |yj£—]/j|%>. (16)
+

l=ap+1 j=0+1

By the mean value theorem,
. . ¢ . .
Vj—e—’/jzlog(]—f)—logjz—g J—l=<§<,

so that
14

j—1
Therefore (16) is bounded by

Clogm [ k> &N
ey ar § oy )

Ve —v;| < —— 1<i<m, l+1<j<m.

=1 j=l+ l=ap+1 j=~,+1
Clogm ( ar, m—L 1 m—1 1 m—4 1)
m =1 =1 J l=ap+1 "~ j=1 J
C1 2k C'log®
< e (logm ¢+ log m) <28 m =o0(1)
m = m
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Gathering results, we obtain

Jj=1 ¢=1
(b) We have that
2T = — o Ou
WZZUJUgKk ()\j—i—)\g) —Z Z I/jI/g,ij ()\g)
j=1 ¢=1 j=1l=1+j
which is bounded in absolute value by
m+j 3
Clog m T Clog m 1 log®m
<C
PP PRI S0 g e
Jj=1{=1+j Jj=1

so that indeed 2mm T 1370 3T v Ky (A +A) = o0(1). m
For a triangular array { ;, (a),1 < j < m}::p let p (a) = limy, 00 = o i1 By (@)
For simplicity, we drop the reference to m and a in what follows and erte p; for p; ., (a)

and p for u(a).

Lemma 4 Under Assumptions 1-4,

1 «— Ior
— ; = —Tu =0 €[0,77],
(a) mz;ujmj% T T €07
(b) Ly domd o repa
— — = (T — T Te|T,1],
mjil ’LLJG)\;Q(;Q ’u

(c) 1i Iy (=0 relor]
c — . — (7T =7 T T,
(d) liuﬂ—u_ﬂu:o T e[
m = G T

1 - Wor=* 5 wT*Tj
— , ’ = = () e |, 1],

J= J J

1 = TT*,J _7'* j
(t) 3y ST g e o],

I NIy -0, ~L -0y
P G2)\j G2)\j
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where p; = ;. assumes either of the following values for all j:

AN : 1
" (m) with o= ——. a>-1 (1)
AYEAY : l—a
=1 . . , th y = ——— > —1. 18
,uj og <m> <m> Vj wn W (1+a)3, a ( )

Moreover, for any € > 0, the convergence in parts (a) to (f) holds uniformly over a >
—1+ ¢ in the sense that

1o~ ory \
sup _Z'ujG)\—’;‘sl_T'u =0 T € [0,77]
j=1 J

a>—14+¢ |

in part (a) and similarly in parts (b)-(f).

Proof of Lemma 4. (a) Denote g; = G)\;%l and let

m

—%Z 0”—7',u.

We need to prove that Y (1) = o, (1) for any 7 € [0, 7*] and that the process Y is tight.

2
and write Y (7) as

Denote f; = fi(};), Lor; = = |v,;]° = ‘mzth? g et

1 ¢ gj> [OTJ (IO’TJ >
— > pill=") ==+ = [57
m; j< fi) 9 Z g2 =
i LTTJ |7
+ E /@( gleorg — = | + EE pj— T (19)
j=1

The first moment of the absolute value the first term of (19) is bounded by

[07' J
max Z 1] B
which is o (1) as T'— oo because
95
ma 1= =o(l)
by Assumption 1,
Lor ,
E|I < j=1....m
9j
for T sufficiently large by Assumptions 1, 2 and 4 and by Lemma 3 of Lazarova (2005),
and because for ji; defined in (17) and (18) > ‘,uj‘ < o0.
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By summation by parts, expectation of the absolute value of the second term of (19)
can be bounded by

— Z ‘:U’k Mk+1‘ E

+ [t | E

)

[07-] 27T
z( w2 zgw-)

1 «— 10”
— Z 507-]
m =t O'5

Proceeding as Robinson (1995) did in bounding his expression (3.17)

i A7), p. 1637, and
employing Lemma 3 of Lazarova (2005), we obtain
Io-; 2 1
E 0r,Jj _7;-[507',] < o= Og .]
fj € ]2
SO

< Ckzlog? k.

Xk: [07' J

O_E 507-]
Jj=
)'v

, we have that by the mean value theorem,

PR

When p, = log () (2

m~ v < Cj* 'm " logm

for j < & < j+1 because |v;| = O (logm) and £ < Cj* 1. Similarly, when B = (%)a,
we have ‘,uj — ,ujﬂ‘ < 0j% 'm~4. Therefore the first absolute moment of the second
term of (19) is bounded by

m—1
Cm 1@ log% m Z ks
which is o (1) for a > —1.

Using summation by parts, the third term of (19) can be bounded by

1 m—1 k 1 =T [T . LTTJ
EZ‘Mk—Mk—H‘ Z TU2ZZ€€€M P T
k=1 j=1 € t=1 s=1
m |7T] |7T]
|lu’m| z(t S)Aj LTTJ
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By Assumption 3,

2

k 77| |77
1 i(t—s LTTJ
B2 | g 2 2z = 7
j=1 t=1 s=1

LS B R R s

= U_;* o ﬁzzzzx ()02 i) (t20))
€ t=1 s=1 j=1 ¢=1
o k Kk

= O(KT™) +hor “; (\KLTTJ (A = A"+ [ Kprr) (A + M) ),

where the second term is O (k) using arguments as in Lemma 3. The first term of (20)
is therefore

k=1
m—1
— Op ( —a— llogm Z 1/2 + kal/Z))
k=1
m—1 m—1
= O, (m“ 1712 logm Z E* +m “ tlogm Z k:“l/2>
k=1 k=1
Oy (T71/2 logm +m Y?log m)
= 0,(1).

In a similar way, the second term of (20) is

(O (mT ) +0 (7)) =0, 1).

Finally, the last term of (19) is o (1) by the definition of . Gathering results and using
the Markov inequality, we can see that Y (7) = o, (1) for any 7 € [0,7%].
To prove tightness of process Y, we write Y (7) as

Yi(r) =Y () + Y2 (7) — pr,

where

Ior s
Yl (7—) = _Z fj ( or.J ;[507',3')7
j=1

27T 1
YZ (7—) = Z:U’jfj[.EOTj
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with I.or; as defined above equation (19). Denoting
T = i fi/9j,

we obtain for 0 < o < 7 < 7* that

2T —
Yl(T)—Yl(U):Ezﬂj(aljJr---Jrasaj)
j=1

where
a1; = |u0'7',j - qu-,j|2 ) Qg5 = (um‘,j - UUT,J') @UTJ" asj = dzj’
Qg = (uO'T,j - /UO'T,j) (aa,j - @U,j) ’ 55 = (um—’j N UUT’j) Vo
Qg; = Vor,j (aa,j - @a,j) ’ ar; = (uﬂj - UTJ) (am"j o @UT’j) !
asgj = (U/T,j - Ur,j) Uorj agj = Urj (am-’j - @UT’j)

and where u- j, Ur j, Ugr; and vy, ; were defined at the beginning of this section. It is
4 4
m m
sltS Y
— ﬂ' ,al . — ﬂ' ,ag .
m 4 71 m 2 749;
— =

ey
> 3

ElVy(1)=Yi(a)* < +...+CE

7Tk p| | B g @l |

N

C
o || (B jarj|* B lak|* E lar]" E |a,) )

m
7,k L,p=1
7,k L,p=1

where the last inequality follows from the Schwarz inequality. When r = 9,

MBS

_ _ 8 _
E |a9j|4 = E|vrj (lgrj — Um-,j)|4 < (E U7 5° E tigrj — Vor] )
By Lemma 2, the last displayed expression is O ((7’ — 0)2 j’z). It can be shown in a
similar way that for 1 < r < 8, E|a,;|* is also O ((r - 0)2]”2). Therefore
4
ElY, (1) =Yi(0)|" < C (1 —0) (— > =i 5) :
Since - i1 ‘,uj‘ < o0 and maxlgjgmg—; = O (1) by Assumption 1, we have
L~y fis il
- | 22972 < max =+ — | < C.

It follows that process Y; (7) is tight.
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Regarding process Ys, we note that

2 _ _
Leorj — Leoo,j = [Vor j|” + Vor jUs.j + Vo, jV0r 5

and obtain bound

4

E|Y,(r) =Yz (0)|* < CE |~ +20E

ZW |UUTJ|

m

=3 Myt

- ™ ’UUT, 'UO', j

m 4 J J J
J=1

The first term on the right is

C m
2
i Z ﬂ-jﬂ-kﬂ-ﬁﬂ-pE|UUT,jUUT,kUUT,£UUT,p|
J,k,l,p=1
C < 8 8 8 8\1
oo Z |7 TRy | (E Vor i EVor el EVors|” E Vory )
J,k,l,p=1

< C(%ZWHEWM,HS)%) <C(r—o) (%ZWH) :

J=1 J=1

VAN

The second term on the right is

C
1 E ﬂ_jﬂ_kﬂ_Kﬂ-pEUO’T,jUa,jUO'T,kva,kvaﬂ',éva,évaﬂ',pva,p
3>k, L,p=1

C m
S @ Z |7Tj7Tk7Tg7Tp|

Jsk,€,p=1

1
% (B vy " B 70l E|Oorl” E vokl” E [arsl® B0l E [or|* E [voyl°)*

- 4
< C(r—0)0? (l Z |7rj|>
m =

Now
E;W = —Z\ ] j<1rgfz>;jgj§;\uj\
— oY |wl-oq).
j=1

so Y3 (7) is indeed tight. It follows that process Y is tight and that part (a) holds. The
proof of parts (b), (c¢) and (d) is similar.

Examining the proofs, it can be seen that the convergence holds uniformly over
a>—1+e.
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Wor* j o Wrkr g _ 1 m =
() Let worj = —p =i, Urery = —p=iy and Z (1) = 50 3010, pyjiors jlirerj. We have
J J

Ugre jUrerg = (Uorsj = Vorsj) (lrerj — Urer) 4 (tore j — Vore j) Urer
FVor+,j (Urerj = Urorj) + Vors jUror -
By Lemma 3 of Lazarova (2005),

1 .
1) |Uo‘7’,j - /UO"T,j|2 =0 <£>
J

for 0 <o <7 < 1. Further, for 0 <o <7 <1,

0? 77| — |oT|
e

Using the Schwarz inequality, we obtain

1
_ log2 j
E |u07*,ju7*7,j| =0 ( ; )

j2

and

E

m 1, m
<< >l lojg.;;j < Cm Hlogzmy [y 2.
J=1 =

1 m

—_ o Upr, ’aﬂ'*ﬂ', j

mz J J 1= m 4
j=1 = 7j=1

We again employ the summation by parts. We have

m m—1 k
1 _ 1
E E Z HjUor= jUrsr g < E ‘,Uzk - ,U/k_H‘ E ZUO’T*JU’T*’TJ
J=1 k=1 j=1
| E| = ) tore jlrer,
j=1
which is bounded by
1 m—1
1 1 1 1
— Z ‘,uk — lpoi| K2 log? k4 Cm ™ 'm?2 logz m.
m
k=1
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Since ‘,uk — :“k+1‘ < Ck* Im~%logm, the first term is bounded by

C m—1 m—1
— Z m k* 'log mk? log% k= Cm ! log% m Z k2
m
k=1 k=1
Cm™3 log% m a > —%,
= Cm’%loggm a= —%,
Cm~"llogzm a< -1,

which is o (1) if @ > —1. In total,

E =o0(1)

m
1 _
m E HUor jlrer,g
=1

and the pointwise convergence of m* Z;’Ll jUor jlrer,j in probability to zero is estab-
lished.
To prove that process Z is tight, write

1 m
Z(T)—Z(O')_Ezuj(alj—i-agj—i-agj—i—a@) T*SUSTSL
j=1
where
arj = (Uor+j — Vor+j) (Uorj — Vorj) s Q25 = (Uorsj — Vor+j) Vorjs
a3; = Uor* j (aO'T,j - Q_]m’,j) ) Q45 = Vor+ jVor,j-
We have
1 ! I « )
4
E|Z (1)~ Z(0)|* < CE Ezujalj +-++CE EZ%%
j=1 j=1
The first term is equal to
R _
ooy Z 1 Pty a0 g @Gy
7,k L, p=1
where L
|Eay;a1,a1001,] < (E |a1j|4E |a1k|4E |a1£|4E |a1p|4> '
By Lemma 2,

E|a1j|i < (T*)Z(
Elag;|” < (%) (

it Blayl < () (r—a) i

T—0) 4
T — U)Qj*2 E|a4j|4 < (7'*)2 (1 — 0)2.
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Therefore
E|Z(r) = Z(o)* < C (1 —0)? ( Zm)

and the process Z (7) is tight.
Part (f) can be proved in a similar way. m

Proof of Proposition 1. To prove that sup,¢,, ‘/5\1 (1) — 5‘ 2 0 under the null, it
is sufficient to prove that for any ¢ > 0 there exists 77 > 0 such that

P | inf inf (R(d,Io;) — R(6,10;)) >C | — 1 as T — oo, (21)
TelTe1] de[-1,1] 1d—d]>n
where
R(d, Iy) = lo Z[ FAY _Q_dilog J
» 10T g 07,5 m m - )
Define
1> 2(d—5)
0(d, Iyr) = —
DG ()

and write

R(d, Iy:) — R(0,1y;) = logl (d, Io;) —logt (6, Ip;) —2(d—6) — Zlog ( >

By Lemma 4, for any € > 0,

Therefore uniformly in 7 € [r,1] and d € [6 — 1 + £,1], |[d— 6| > 1, as T — o0,

R(d, Io;) — R (5, Ior)

= log <m> — log (7) —2(d—5)%Zlog (%) + 0, (1)
= —log(1+2(d—5))—|—2(d—5)+0p(1)ch—i-op(l) (22)

where ¢ > 0, because m ™' 377" log (j/m) = —1 +0(1) and because log (1 +x) < x for
all || > 0.
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On the other hand, uniformly in 7 € [74,1] and d € [—%, o — % + %}, as T — oo,
R(d, Iy;) — R (9, Ior)

1
> log! (5— 5+ 2,107> —log €5, Tps) + 2 (d — &) + 0, (1)

= log (ﬁ) —log (1) +0,(1) +2(d—9)+0(1)
= —loge+2(d—9)+o0,(1) > —loge—1+40,(1) > c+o0,(1) (23)

when ¢ is small. Bounds (22) and (23) imply that condition (21) is satisfied.

d
by (1)—9¢ ‘ L5 0 is similar. Finally,

The proof that sup;cjo

sup |81 (1) — 3, (7)‘ — sup [, (1) =5+ —0,(7)
TE[T17h] TE[T17h]
< sup |0 (7')—5‘ + sup |0y (7')—6‘ —, 0.
TE[T17h] TE[T1,7h]

6.2 Asymptotic distribution of test statistic under the null
Proposition 2 Under Assumptions 1—4 and under the null with 6; = 0y =9,

1(1) =9 +B(7)
N_< (T)—5> — ( ﬁ(B(l)—B(T))>

on T € [Ty, Th|, so that

and
(B(r) — 7B (1))*
7(1—7) ’

amr (1—7) (3, ()~ 5, (7))2 —

Lemma 5 Under Assumptions 1-4 and under the null with 0, = 65 = 0,

< 1 S OTj
(a) 01(1) = 6=~ le EZ (1+0, (1)),
where o, (1) is uniform over T € [14,1],
~ 1 1 & I,
b ) —0=— — 2 (1 1
(b) 2 (7) ng(T)m;VJ)\jza( +0p())7
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where o, (1) is uniform over T € [0, 7).

Proof of Lemma 5. (a) The proof is an extension of the proof of bound (11) in
Theorem 1 of Dalla et al. (2006). Write

OR (d,Io,) T (d, o)
od  V(d, o)

where

[0 2(d—9)
T(daIOT) = _Z ;—\ 2% <_> Uj7

1S I (A) (50
V(d,Iy) = EZ e (E ’
J

j=1

where v; is defined in (14). By the mean value theorem,

/5\1 (1) —0= o (5((9;) JOT) (T (8\1 (1) ,[07> — T (6, ]07)> )

where 0, (7) is an intermediate point between ¢ and 51 (7). Since I (supTe[ml] 51 (1) — 5‘ > 5) =

0, (1) for any € > 0 by Proposition 1, we have

/5\1(7')—5—</5\1(7')—5>H<sup 51 —6‘<5> (14 0,(1)).

TE[Ty,1]

Let 0 < e < min {% — 0, % + 6}. When sup,¢(;, 1)

5 (1) — 5‘ < g, Lemma 4 implies that

~ G =7\ Lor (V) Gt
V<51(7')a[07>2—z<—> G)\;% :>1+25>0 forall 7p <7< 1.

m 4 m
7j=1
We also have sup, ¢, 1] 51 — 5‘ —1/2,1/2), therefore 2% (61 (1), [OT> =0, T (5\1 (1) ,[07> =
0 and
- -1
~ oT (5 (7) ,107)
(r(m) =) 1| sup [3:(r)- 5‘ <e|l=- T, 0y). (24)
TE[Te,1] ad
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From Lemma 4 with x; = log (£) (£)*v; and from Proposition 1 it follows that
H; gl Gy v

or (3,()  Inr) 4@21 ( )( )W” VI o

I —26
od &y
because 2 51 — 5‘ <2 51 — 5‘ Therefore (24) is equal to
. T (0, Iy,
(4G (14 0, () T (0. 0or) = 00 (140, )

and part (a) is established.
Part (b) is proved similarly. =

Lemma 6 Under Assumptions 1-4,

(a) Z »—Z (Lorj —7) = B(r) 7€l0,1],

ﬂ\

m

1 or
(b) —— U’_w677*7 »@57*17» == 0 T E [0,7—*] ,
i 22 e s
1 & 27
(C) I Vi3 Weor* jWer=rj = 0 T E [7'*7 1] .
i 2T

Proof of Lemma 6. (a) Let

1 ZUJ< 507-] 7'>.

J:1

3

We have

| 7T t—1 | 7T

EEtEECts Ezt
s=

where

cs = Qm*%Tfll/U?Zchos(s)\j),
j=1

1
v, = lny—E;lnk,

z1=0and z = ¢ Zi;ll £4Ci_s for t > 2.
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The second moment of Y (7) is

[7T] ¢t—1
EY ()| = o> Y
t=2 s=1
1 m.om 7T 7T
= mT? Zzyﬂ/ezz z(t A= Ak) 4 ilt=5)(N +/\k)>
Jj=1 (=1 t=1 s=1

p=
SN v (Kiry (A = M) + Kiry (A + )
j=1 =1

where D ;7 (A) = Zthf e™ and K.r| (A) = (27T)" ‘DLTT )\)‘2. By Lemma 3,
E|Y (1)]* — 7 for 7 € [0,1]. The central limit theorem follows as in Robinson (1995).
This shows pointwise convergence.

We next prove tightness of process Y. First, we prove two results about the weights
¢s. We can provide an alternative bound for (4.20) in Robinson (1995) because

A< Cm'T? Z v Z cos® (s\;) < CT*m

using 7", v 2 < Om because > = m + o(m). Moreover, notice that

j=1 J

1 1%1 2 12 (k/m) = 1+0<lnm>

=Inm— — nk=-—— m) = )
mkil mk:l m

where the last equality is from Abadir, Distaso and Giraitis (2007), page 1368, so |v,,| <
C. Then, we can also bound ¢, as

m—1 J m
lcs] = [2m 12T} (Vj41 —vj) Z cos (sAy) +2m Y20 2T 'y, Z cos (sA;)

j=1 k=1 j=1
m—1 i m

< Cm V271 (In(j+1) —=Inj) Y cos(sh)| +Cm 2Ty " cos (s);)
j=1 k=1 j=1
m—1 i

< Cm Y271 gk Z cos (s\g)| + Cm Y2171
j=1 k=1
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where j,, € (j,j +1). Note that the second term is bounded by Cm /2571, As for the

first term,
(%)12? y (ZJ  cos (;?)) s Si(27s) = O (1)

where Si(x) = [ S2tdt is the sine integral. This means that it also holds that

m— J
21 37 50 cos (a0 = 0 (m 7).
j=1 k=1
Therefore
¢ < Cmin (T *m,m 's7?). (25)
We now look at
\7T)
Y(r)=Y()= Y =
t=1+|0T]
and in particular at
| 7T | 7T | 7T | 7T

EY(r)-Y (U))4 = Z Z Z Z E (21,21, 215 21,) - (26)

t1=14|0T] to=14|0T] t3=1+|0T] ta=1+|0T|
If t1 7é to 7é t3 7é ty, consider ¢; > max (tz, ts, t4) first. Then,
E (21,20, 2024 | Tt 1) = 2120520, B (2, | Fiy—1) = 0

and
E (zt1ztzztszt4) =FE (E (zt1ztzztszt4|ﬂ1fl)) =0,

so the expectation in (26) is 0 in this case. The other cases (t; > max (t1,t3,t4) and
other cases) may be treated in the same way.
Next, consider t; = ty # t3 # t4, so that (26) is

| 7T | 7T | 7T

oYY E(F )

t1=14|0T] t3=1+|0T] ta=1+|0T|

Again consider t; > t3 > t4 first. Then we have

E (zflztgzM) = F (E (ztzlztszt4|ft1,1)) =F (ztzl) E (z4521,)
= E(3}) E(E (252,1F,-1)) = E (2]) E (20,E (24, F1,-1)) = 0
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and cases t; > ty > t3 can be treated in the same way. On the other hand, if, for
example, t3 > t; > 14, then

E (ztzlztszM) =F (E (ztzlztszt4|ft3,1)) =F (ztzlzt4E (zt3|‘7:t3,1)) = 0.

Again, other cases can be treated in the same way.
Next, consider t; = ty # t3 = t4, so that (26) is

| 7T | 7T |77 | 77|
>, 2 BEA)= ) B(E) Y EB(d) (27)
t1=14+|0T] t3=1+|0T| t1=1+|0T| t3=1+|0T|

again using the law of iterated expectations. Then, note that

t—1 t—1 -1 t-1
E <2t2> =F (5? Z Z 5510t515520t52> =F (5?) Z Z E (e5,€sy) Ct5,Ct sy

s1=1s2=1 s1=1s2=1

using the law of iterated expectations. The last double sum is equal to

t-1 2 t-1 t-1 s-1
E (ngcts> = EZ (5sct s + QEZZ €sCt—sErCt— r
s=1

s=1 s=1 r=1
t—1 t—1 s—1

= E E (s cts—|—2 E E (eser) ct—sCiy
s=1 s=1 r=1

t

~1 -1
= E(e) i =E () ch
=1 s=1

where we used E (g5¢,) = 0 for r # s. Using bound (25), we get

T |T/m] T T

2 2 2 T, _ -1
ch< ch—i— Z CSSCET m+ Z (T/m) " =0(T"") (28)
s=1 s=1 s=1+|T/m] s=14+T/m

and
|77 1
E Z E (%) SCT(T—U)T<C(T—O’)
t1:1+LO'TJ

so we can bound the expression (27) by C (1 — o). Cases of type t, = ty = t3 # t4 also
have expectations 0 using the law of iterated expectations.
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Finally, for the cases with t; =ty = t3 = t4 the fourth moment in (26) is

|77 | LT t—1 4
Z E (zf) = Z E (est Zescts>
t=1+|0T| t=1+|0T] s=1

|7T| t—1 t—1 t—1 t—1
4
= E FE &y E E E E €51Ct—51€55Ct—55E53Ct—53E 54 Ct—s4

t=1+|0T| s1=1 s2=1s3=184=1
il t—1 4
= Z E (5?) E (Z 5scts> .
t=1+|oT| s=1

Consider
t—1 t—1 t—1 t-1
E E E E E €51Ct—51€52Ct—52E53Ct—55€54Ct—s54 | - (29)
s1=1s2=1s3=1s4=1

Proceeding as before, expression (29) vanishes if s; # sy # $3 # 54, if $1 = 59 # 53 # 54
(and similar cases) and if s; = s9 = s3 # s4 (and similar cases).
On the other hand, when s; = s5 # $3 = 54, (29) is equal to

t—1 t—1
Z E <€§1> Ct2*51 Z E (853)2 Ct27537

s1=1 s3=1
so (26) is bounded by
|77 ] t-1 2 1\2 1
4 2 _
Z E (£}) (ZE(ascts) ) <CT(r—o) X (T) —C(T—O’)Xf.
t=1+|0T| s=1

Finally, cases having s; = so = s3 = s4 yield that (29) is equal to

LrT) t—1
Z FE (5?) Z FE (5‘51) cffs
t=1+|0T| s=1

and note that, proceeding as in Robinson (1995) for his expression (4.22), using bounds
(25), we obtain

t—1 T/m T

4 4 4
E ¢, < E cg + E C,
s=1 s=1 5:1+T/m

VAN

T m2 mA\3 [ 1 m 1
el N i S V<l 0
C(m) <T4> +C(7) <m2> SUm =
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and conclude that (26) is bounded by

1

—_C(T—U)%SC(T—O’).

CT (r—o0) % T2

The proof for the other two parts follow in the same way. =

Lemma 7 Under Assumptions 1-4,

(a)

Y| @0 | (B -Be) | relnr,

— B (7) TE [T",Th].
7j=1 Wor* 5 w'r*'r,j 0
G3x; 0 GaA°

Proof of Lemma 7. (a) By Lemma 6, it is sufficient to prove that for 7 € [r, 7%,

1 - [07-’ i 2T
G (i) =0 @
] J
1
m

j=1 £

_ S I 2

Jj=1 (G)\J oz

1 m wq-,r*j w’T*lj 277- .
- V. 2 " — — Werrr i Wer*] i — 0. 29
m; : (G%Aj‘SG%Ajé g2 e L (32)

Proceeding as in the proof of (4.8) of Robinson (1995) while employing Lemma 3 of
Lazarova (2005) and referring to (12), we obtain that

k
Iy, ) , o
Z ( g\ j25 2[607’,]') = Op <k§ lOg§ k+ k/ﬁ-&-le,é’ + ]{JET71>
g

j=1 €

uniformly over 7 € [7y,7*] and 1 < k < m. Using summation by parts, we get
1 & I 2T 1 m_1 k I
- 07,5 0r,j
‘ mzyj (G)\}zé _;[EOTJ)‘ < ﬁ;hjk_ylﬁ_ﬂ 2; (G)\ 26 0.2[607-]>‘
- [O’TJ

+|Vm|

)
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The first term is

m—1

1 1 2 _ 11
TZEOP (5103 k4 k1T 4 3T 4)

k=1

and the second term is

=0, (1)

m? logmO,, (m% log§ m+mPHTF 4 m%T’%&> =0, (1).

[OTJ p
- [507- — 0
7 2 (- o)

Next we prove tightness of the process on the left hand side of (30). Write

Therefore

for 7 € [1,7*].

[07- i 2T

1 & - 1 & A Tor.;
- Vs ? __[E’T' — - ]/_j 7.J —
i ) = Gt (5

Let
1
Y = —
0 =
1
Y- = —
0 = U

2T
_2[507,j>
j:1 gj O-E
1 © fi ) o
+— vi| = — I.or (33)
" (] 2T
V’_j<07j_ [07")7
2; jgj fj 2 -

From the proof of Lemma 4 we can see that

EY:i(r) = Yi(0)]
It is
& fi 1
m 22|yj|_ﬂj : =
=1 !
<
Therefore
EY:i(r) -

m 4
tectr-af (Y Lyt
—~ g

_1
2

ZI jlgj -
Z|yj|< ) <C.
1<j<mgj

ml»—t

Yi(o)]' < C(r—o)

39



and Y; (7) is tight. Further, proceeding as in the proof of Lemma 4 we obtain

ElY;(r) =Yz (o)]' < C (7 — o)’ (m% > lvil g

j=1
Now
lvi| < logm
and 5
fi _ 1‘ <c <i>
9j T
by Assumption 1, therefore
mo2 Z v fi ‘ < Cm 2T ®logm Zjﬁ < Cm imP T P logm
— 9gj —
J=1 Jj=1

mB+s
= O( TP logm) =o0(1)

by Assumption 1, so Y5 (7) is tight and (30) holds. The proofs of (31) and of (32) use
similar arguments.
Part (b) is proved in a similar way. m

Proof of Proposition 2. The proposition follows from Lemma 5 and Lemma 7. m
Proof of Theorem 1. The theorem follows from Proposition 2 and from the contin-
uous mapping theorem. m

6.3 Power of test

Lemma 8 Under Assumptions 1-4 and under the null hypothesis with 01 # 6do, as
T — o0, R
51 (T*) ﬁ>51 and 52 (T*) &52,

so that

-~

61 (T*) — /6\2 (T*) & 61 — 62.

Proof of Lemma 8. The lemma can be proved using the same strategy as in the
proof of Lemma 4. [ |

Proof of Theorem 2. The theorem follows from Lemma 8. =
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