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Symmetry Axioms and Perceived Ambiguity”

Peter Klibanofff Sujoy Mukerji Kyoungwon Seo?
June 12, 2017

Abstract

Since at least de Finetti [7], preference symmetry assumptions have played
an important role in models of decision making under uncertainty. In the cur-
rent paper, we explore (1) the relationship between the symmetry assumption of
Klibanoff, Mukerji and Seo (KMS) [21]| and alternative symmetry assumptions
in the literature, and (2) assuming symmetry, the relationship between the set
of relevant measures, shown by KMS [21] to reflect only perceived ambiguity,
and the set of measures (which we will refer to as the Bewley set) developed
by Ghirardato, Maccheroni and Marinacci [14], Nehring [24, 25] and Ghirardato
and Siniscalchi [15, 16]. This Bewley set is the main alternative offered in the
literature as possibly representing perceived ambiguity. Regarding symmetry as-
sumptions, we show that, under relatively mild conditions, a variety of preference
symmetry conditions from the literature (including that in KMS [21]) are equiv-
alent. In KMS [21], we showed that, under symmetry, the Bewley set and the
set of relevant measures are not always the same. Here, we establish a preference
condition, No Half Measures, that is necessary and sufficient for the two to be
same under symmetry. This condition is rather stringent. Only when it is sat-
isfied may the Bewley set be interpreted as reflecting only perceived ambiguity
and not also taste aspects such as ambiguity aversion.

Keywords: Symmetry, beliefs, ambiguity, ambiguity aversion, model uncer-
tainty, Ellsberg

JEL codes: D01, D80, D81, D83

1 Introduction

Recent literature on ambiguity (meaning subjective uncertainty about probabilities
over states) or model uncertainty (see e.g., surveys by Gilboa and Marinacci [17] and
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Marinacci [22]), makes heavy use of models of decision making under uncertainty. In
this literature, a concern relevant to applying these models is how to connect the rep-
resentation of preferences to perceived ambiguity or the models over which you are
uncertain. In a recent contribution, Klibanoff, Mukerji and Seo (henceforth KMS) [21],
we proposed an answer to this question for a broad class of symmetric preferences. In
particular, we defined a notion of relevant measures and showed that these measures
reflect only perceived ambiguity and not ambiguity aversion or risk aversion.

Since at least de Finetti [7], preference symmetry assumptions have played an im-
portant role in models of decision making under uncertainty. In the current paper
we explore (1) the relationship between the symmetry assumption of KMS [21] and
alternative symmetry assumptions in the literature, and (2) assuming symmetry, the
relationship between the set of relevant measures developed by KMS [21] and the set
of measures (which we will refer to as the Bewley set) developed by Ghirardato, Mac-
cheroni and Marinacci [14], Nehring [24, 25] and Ghirardato and Siniscalchi [15, 16].
This latter relationship is of particular interest because this Bewley set is the main alter-
native offered in the literature as possibly representing perceived ambiguity. Regarding
symmetry assumptions, we show that, under relatively mild conditions, a variety of
preference symmetry conditions from the literature (including that in KMS [21]) are
equivalent.

In KMS [21], we showed that, under symmetry, the Bewley set and the set of relevant
measures are not always the same. This is important because, when they differ, the
Bewley set is affected by changes in ambiguity aversion, and thus cannot be interpreted
as reflecting only perceived ambiguity. In the present paper, we establish a preference
condition, No Half Measures, that is necessary and sufficient for the two to be same
for symmetric preferences. In contrast to the mild conditions used for the symmetry
equivalence result, No Half Measures is rather stringent. Yet our results, combined
with those in KMS [21], imply that it is only under these stringent conditions that the
Bewley set may be interpreted as reflecting only perceived ambiguity and not also taste
aspects such as ambiguity aversion.

When incorporating considerations of ambiguity or model uncertainty in finance
models it is natural for the modeler to want to impose constraints on the preferences of
the decision maker(s) in the model so that they reflect some type of calibration of per-
ceived ambiguity to external data. For example, in an asset pricing model, the modeler
may want to impose the restriction that an investor seeks to make her portfolio robust
against only a certain limited set of stochastic processes or probabilitistic forecasts or
different forecasting models (when incorporating model uncertainty) because these pro-
cesses or forecasts pass certain tests of inference on past data. The theory developed
in KMS [21] gives reasons why, if such constraints were to be imposed one should do
so through constraints on the relevant measures. KMS [21] shows where the relevant
measures appear in representation functionals for symmetric versions of a variety of
popular ambiguity models. For instance, in the a-MEU model (see e.g., Ghirardato,
Maccheroni and Marinacci [14]) and the smooth ambiguity model (see e.g., Klibanoff,
Marinacci and Mukerji [20], Nau [23], Seo [26]) and the extended MEU with contraction



model (see e.g., Gajdos et. al. [13]), the set of probabilistic forecast models entertained
by the decision maker should be the set of measures that appear in the functional rep-
resentations. Thus, reassuringly, the theory of relevant measures provides foundations
to the common and intuitive practice in the way these ambiguity models are used.

However, KMS’s theory [21] is predicated on a specification of symmetry. It is
common to invoke some notion of symmetry/exchangeability, at least implicitly, to
underpin statistical inference (e.g., of the kind used to justify restrictions on the set of
forecasting models considered when incorporating model uncertainty). Our results in
Section 3 demonstrate that KMS’s specification of symmetry is not special and in fact
equivalent to notions invoked elsewhere in the literature under conditions that would
be met in most settings.

Our study of the No Half Measures condition, in Section 4, shows that the possibil-
ities of establishing foundations for practices concerning the way contraints on model
uncertainty are incorporated in ambiguity models via theories invoking the Bewley
set are limited. This is particularly true in the case of functional forms which allow
for non-extreme attitudes to ambiguity that may be varied parametrically in the func-
tional representation (such as in the a-MEU model, the extended MEU with contraction
model, and the smooth ambiguity model). For instance, in the a-MEU model, the Be-
wley set can be identified with the set of measures appearing in the model only if « is
0 or 1.

2 Setting and Preferences

In this section, we describe aspects of the formal setting, notation and preferences from
KMS [21] that will be useful here.

Let S be a compact metric space and () = S the state space with generic element
w = (wy, wy, ...). The state space Q2 is also compact metric (Aliprantis and Border |1,
Theorems 2.61 and 3.36]). Denote by >J; the Borel g-algebra on the i-th copy of S,
and by >I the product o-algebra on S*°. An act is a simple Anscombe-Aumann act, a
measurable f : S*° — X having finite range (i.e., f(5%) is finite) where X is the set
of lotteries (i.e., finite support probability measures on an outcome space 7). The set
of acts is denoted by F, and 77 is a binary relation on F x F. As usual, we identify a
constant act (an act yielding the same element of X on all of S) with the element of
X it yields.

Denote by II the set of all finite permutations on {1,2,...} i.e., all one-to-one and
onto functions 7 : {1,2,...} — {1,2,...} such that «(i) = ¢ for all but finitely many
i €{1,2,..}. For m €I, let 7w = (wr(1y, wr(2), -..) and (7f) (w) = [ (7w).

For any topological space Y, A (Y') denotes the set of (countably additive) Borel
probability measures on Y. Unless stated otherwise, a measure is understood as a
countably additive Borel measure. For later use, ba (Y') is the set of finitely additive
bounded real-valued set functions on Y, and bal (Y) the set of non-negative probability
charges in ba (Y). A measure p € A(S%) is called symmetric if the order doesn’t



matter, i.e., p(A) =p(7A) for all 7 € II, where 1A = {7rw : w € A}. Denote by £ the
i.i.d. measure with the marginal £ € A (S). Define [ . fdp € X by (fsoo fdp) (B) =
(fsee f (w) (B) dp (w)). (Since f is simple, this is well-defined.)

Fix x,,x* € X such that z* > x,. For any event A € >, 14 denotes the act giving
x* on A and x, otherwise. Informally, this is a bet on A. More generally, for z,y € X,
x Ay denotes the act giving x on A and y otherwise. A finite cylinder event A € I is
any event of the form {w : w; € A; for i = 1,...,n} for A; € 3; and some finite n.

Endow A (S), A (A (S)) and A (S*°) with the relative weak* topology. To see what
this is, consider, for example, A (S). The relative weak™® topology on A(S) is the
collection of sets V N A (S) for weak™ open V' C ba (S), where the weak™ topology on
ba(S) is the weakest topology for which all functions ¢ — [ td¢ are continuous for all
bounded measurable 1) on S. Also note that a net ¢, € ba (S) converges to ¢ € ba (S)
under the weak* topology if and only if [ ¢df, — [d¢ for all bounded measurable ¢
on S. For a set D C A(S), denote the closure of D in the relative weak* topology by
D.

The support of a probability measure m € A (A (S)), denoted suppm, is a relative
weak™ closed set such that m ((suppm)®) = 0 and if L Nsuppm # @ for relative weak™*
open L, m (L Nsuppm) > 0. (See e.g., Aliprantis and Border [1, p.441].)

Let W, (w) € A (S) denote the empirical frequency operator W, (w) (A) = £ 37" | I (wy € A)
for each event A in S. Define the limiting frequency operator W by ¥ (w)(A) =
lim, ¥, (w) (A) if the limit exists and 0 otherwise. Also, to map given limiting frequen-
cies or sets of limiting frequencies to events in S°°, we consider the natural inverses
U1 () ={w:V(w)=¢}and ! (L) ={w: ¥(w) € L} for £ € A(S) and L C A(S).

The following axioms are used in describing assumptions on preferences 7~ at various
points in this paper. For remarks and interpretation of these axioms see KMS [21].

Axiom 1 (C-complete Preorder). = is reflexive, transitive and the restriction of 7 to
X 18 complete.

Axiom 2 (Monotonicity). If f (w) 7= g (w) for allw € S=, f = g.

Axiom 3 (Risk Independence). For all x,z',2" € X and a € (0,1), x 75 2’ if and only
ifar+(1—a)2” Zax' + (1 —a)2”.

Axiom 4 (Non-triviality). There exist x,y € X such that x > y.

The key axiom is Event Symmetry which implies that the ordinates of S* are viewed
as interchangeable.

Axiom 5 (Event Symmetry). For all finite cylinder events A € 3 and finite permuta-
tions m € 11,

alga+ (1 —a)h ~alza+ (1 —a)h for all a € [0,1] and all acts h € F. (2.1)

We now state three forms of continuity that are used in the paper.
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Axiom 6 (Mixture Continuity). For all f,g,h € F, the sets {A € [0,1] : Af +
(1=XNgzh}and{A€[0,1] :hZZ Af+ (1 —A) g} are closed in [0,1].

To describe our second and third continuity axioms, it is notationally convenient
to introduce the following binary relation 7—* (see e.g., Ghirardato, Maccheroni and
Marinacci [14]) derived from 7Z:

frrgifaf+(1—a)hzag+ (1 —a)hforall a € [0,1] and h € F. (2.2)
A weakening of Mixture Continuity of =~ that is sufficient for some of our results is

Axiom 7 (Mixture Continuity of =*). For all f,g,h € F, the sets {\ € [0,1] : Af +
(I1=XNgz*h} and {A€[0,1] : hZZ* A\f + (1 — A) g} are closed in [0, 1].

Finally, borrowed from Ghirardato, Maccheroni and Marinacci [14], we have the
following adaptation of Arrow’s [3] monotone continuity:

Axiom 8 (Monotone Continuity of =*). For all x,2',2" € X, if A, \ 0 and 2’ = 2",
then &' 7% v A, 2" for some n.

Definition 2.1. 7 satisfies Weak Continuous Symmetry if it satisfies all of the above
axioms except possibly Mixture Continuity.

When we say that 7~ is Weak Continuous Symmetric, we mean that it satisfies Weak
Continuous Symmetry.

3 Relating Event Symmetry to the literature

A key axiom in our approach is Event Symmetry. We now show that this condition re-
lates quite closely to a variety of other conditions from the literature, including strength-
enings of de Finetti [7]’s Exchangeability, of Hewitt and Savage [19])’s Symmetry, of Seo
[26]’s Dominance and of Klibanoff, Marinacci and Mukerji [20]’s Consistency. One of
those conditions (condition (viii) below) requires some additional definitions which we
state next.

Definition 3.1. For f € F, f¥ is the (not necessarily simple) act uniquely defined as

follows:
Y () = { Jgoo FAE® if ¢ =W (w) e A(S)
' Oyt {w: ¥ (w) is not defined} -

Note this definition associates with each act f an act f¥ that, for each event
{w: ¥ (w) = ¢} corresponding to the limiting frequencies generated by ¢, yields the
lottery generated by f under the assumption that the i.i.d. process ¢ governs the
realization of the state.

Since f¥ need not be simple, but is an element of the space F of all bounded and
measurable functions from €2 to X, it is necessary to consider extending - to F. In
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particular, we consider extensions continuous in the following sense: % on F satisfies
Norm Continuity if f%g whenever fk%gk forall k =1,2,... and f; and gy norm-converge
to f and g respectively.

We now show that, under mild conditions, Event Symmetry is in fact equivalent to
a variety of other conditions appearing in the literature. A first contribution, then, is
to show that despite the seeming variety of preference formalizations of symmetry in
the ambiguity literature, reassuringly their differences will not matter in most settings.
Secondly, this also shows that results from KMS [21] derived assuming Event Symmetry
are robust in the sense that they would continue to hold under alternative symmetry
formulations.

Theorem 3.1. The following conditions are equivalent under the assumption that - is
reflexive, transitive and satisfies Mixture Continuity:

(i) for every f € F and w €11, f ~ %f + %ﬂ'f,

(ii) for every f € F, m €l and a € [0,1], f ~arnf+ (1 —a) f,

(ii) for every f € F and m € 1, f ~ 15" 7 f,

(iv) for every f € F, m €1l and a; € [0,1] with > o, =1, f ~>" oy f, and

(v) for every f € F and w € 11, f ~* x f.

Moreover, the above are equivalent to each of the following under the assumption that
> satisfies C-complete Preorder, Mixture Continuity, Monotonicity, Risk Independence,
Non-triviality and Monotone Continuity of 7-*:

(vi) Event Symmetry,

(vii) for every f,g € F, if [ fdp = [ gdp for all symmetric p € A (S™), then [ = g.

Finally, if, in addition, there ezists an extension of 7~ to F that is reflexive, transitive
and satisfies Norm Continuity, then the following is equivalent to all of the above:

(viii) for f,.g € F, f = g if and only if f¥=g", if = is any such extension.

All of these conditions are strengthenings of Hewitt and Savage [19]’s symmetry:
given p € A(S®), p(A) = p(rA) for all finite cylinder events A € 3. In terms
of preference, this translates into 14 ~ 1,4 for all such events and all permutations
7 € II.' Event Symmetry strengthens this by requiring the indifference to be preserved
under mixture with any common third act. Under reflexivity, transitivity and Mixture
Continuity of 7, conditions (i)-(v) each imply Event Symmetry.

Condition (ii) is closely related to Epstein and Seo [10]’s Strong Exchangeability,
the first behavioral axiom in the literature that captures the idea that the agent views
all experiments as identical, i.e., i.i.d. (See Epstein and Seo [10] for a behavioral in-
terpretation of condition (ii). A similar interpretation applies to (i), (iii) and (iv).)
Their axiom states that condition (ii) holds when f depends only on a finite number
of experiments. However, under their regularity axiom, their Strong Exchangeability
extends to every act f and hence is equivalent to condition (ii).

IEpstein and Seo [11] assume f ~ « f for all permutations = and acts f. They show that there is a
modeling trade-off between this symmetry axiom, a type of dynamic consistency and ambiguity.



Epstein and Seo [10], under MEU, characterize two models of preferences where the
decision maker is indifferent to permutations — one that restricts to identical experi-
ments (no ambiguity on idiosyncratic factors) and permits ambiguity about parameters,
and the other that allows ambiguity on idiosyncratic factors but rules out ambiguity
about parameters. Only the former of the two models satisfies (ii). Epstein and Seo [12]
go further and characterize a single model within MEU that reflects ambiguity on both
at the same time. The unifying framework permits a behavioral distinction between
idiosyncratic factors and parameters as two sources of ambiguity.

Condition (i) is a special case of condition (ii) when a = 1. Since Epstein and Seo
[10] consider MEU models, they could restrict to the case a = 3. The above theorem
shows that o = % is sufficient to capture the same idea in general as long as reflexivity,
transitivity and Mixture Continuity of 2~ hold.

De Castro and Al-Najjar ([5], [2]) use condition (iii) and its generalization to collec-
tions of transformations I" other than the finite permutations II. They provide condi-
tions on I" under which complete, transitive, monotonic, continuous and risk indepen-
dent preferences satisfying (iii) with respect to I' are such that each act is indifferent
to an associated act based on limiting frequencies (where the notion of limiting fre-
quencies uses the given I') where the associated act is constructed much like f¥ above
with I'-ergodic measures replacing the i.i.d. measures as parameters. They also prove
a representation theorem for a utility function similar to (4.2) using an expected utility
assumption on parameter-based acts added to the conditions on preferences and on I’
mentioned in the previous sentence.

Condition (iv) strengthens condition (iii).

Condition (v) is stronger than Event Symmetry in that f is not necessarily a binary
act.

Condition (vii) is analogous to Seo [26]’s Dominance and Cerreia-Vioglio et. al.[6]’s
Consistency, and condition (viii) to Klibanoff, Marinacci and Mukerji [20]’s Consistency.
Seo’s Dominance is stated with lotteries over acts, objects that are not available in the
domain of this paper, and condition (vii) restricts p € A (S%°) to be symmetric while p
is unrestricted in Seo’s Dominance. Thus, the difference between the two is that Seo’s
Dominance requires f to induce a better lottery than g under all processes, not just
symmetric ones. The reason for the additional restriction here is to reflect the fact
that the experiments are symmetric. We want to include as reflecting dominance, for
example, the following case:

f(w) =2"Hiz, and g (w) = (%x* + %l“*) Hyx,

where H; = {w € S® :w; = H} and S = {H,T}. The act f is a bet that the first coin
comes up heads, and the act g is a bet that the second coin comes up heads but with a
less valuable reward for winning. Under symmetry of the experiments, it is intuitively
clear that f is better than g. Condition (vii) indeed implies that f 2~ ¢, while Seo’s
Dominance would not — for example, when p = drgrrr., [ gdp = [ fdp.
Cerreia-Vioglio et. al. [6]’s Consistency is similar to condition (vii), but instead of
considering transformations (e.g. permutations) and/or all symmetric measures, they
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assume a family of objectively rational probability measures on a general state space
and require [ fdp 7 [ gdp for all measures p in that family. Taking the family to be all
symmetric measures makes Cerreia-Vioglio et. al.’s Consistency exactly condition (vii).
With their Consistency they provide representation theorems for Bewley preference,
Choquet expected utility, variational preferences, uncertainty averse preferences and,
as was mentioned earlier, the smooth ambiguity model. Also, they prove that the
generalization of condition (v) to other collections of transformations I' together with
some (mild) axioms imply their Consistency when the family of objectively rational
measures is the [-invariant measures.

The content of condition (viii) is that given the “knowledge” that everything is
driven by some (as yet unknown) i.i.d. process, it seems reasonable that when evaluating
an act, the individual would ultimately care only about the induced mapping from
the space of i.i.d. processes to the lotteries generated under each process. Klibanoft,
Marinacci and Mukerji [20]’s Consistency assumption says that when evaluating an act,
an individual cares only about the induced mapping from probability measures on the
state space to lotteries. Their assumption was stated in terms of acts and “second
order acts” (maps from probability measures on the state space to outcomes). The
latter objects do not appear as such in the present paper, but their role is played by the
subset of acts measurable with respect to limiting frequency events, the acts f¥ € F.
The identification (in terms of preference) of f with f¥ stated in condition (viii) is
analogous to the identification of f with an “associated second order act” in Klibanoff,
Marinacci and Mukerji [20]’s Consistency with the qualification that f¥ only induces
the same mapping from probability measures to lotteries as f for i.i.d. probability
measures. Thus, condition (viii) strengthens Klibanoff, Marinacci and Mukerji [20]’s
Consistency to incorporate the known symmetry of the ordinates in the same way that
condition (vii) strengthened Seo [26]’s Dominance. Theorem 3.1 says that, under our
other axioms, each of these strengthenings is equivalent to Event Symmetry. One can
view the equivalence of condition (iii) and condition (viii) as following from the i.i.d.
case of the sufficient statistic result in Al-Najjar and de Castro [2].

4 When do Relevant measures and the Bewley set
agree?

We begin by recalling definitions of these sets and some key results from KMS [21] that
we build upon.

KMS [21] defined what it means for a marginal £ € A (S) to be a relevant measure.
For notational convenience, let O, be the collection of open subsets of A (S) that
contains ¢. That is, for £ € A (S), O, = {L C A(S): L is open, ¢ € L}.

Definition 4.1. A measure ¢ € A (S) is relevant (according to preferences 27) if, for any
L € Oy, there are f,g € F such that f = g and [ fd¢> = [ gd¢> for all £ € A (S)\L.



In words, ¢ is relevant if it satisfies the following property: For each open set con-
taining ¢, there are acts that are not indifferent despite generating identical induced
distributions over outcomes when any measure outside this set governs the indepen-
dent realization of each ordinate S. From KMS [21], we know that the set of relevant
measures, R, is closed and that, a measure is not relevant if and only if the limiting
frequency event generated by some open neighborhood of that measure is null according
to the preferences. Thus, behavior is as if relevant measures were the possible resolu-
tions of ambiguity. In this sense, the relevant measures reflect perceived ambiguity.
Furthermore KMS [21, Theorem 3.4] showed that, under mild conditions, the set of
relevant measures reflects only perceived ambiguity. Notably, the set is not affected by
increases or decreases in ambiguity aversion.

The Bewley set, C, is defined using a Bewley-style (Bewley [4]) representation of the
induced relation 7Z* (defined by (2.2)). For Weak Continuous Symmetric preferences
violating Anscombe-Aumann Independence, 7~* is incomplete relative to 7~. In the
context of Weak Continuous Symmetric preferences, KMS [21, Theorem 4.5] provided
a Bewley-style (Bewley [4]) representation result for 7=*, identifying both the Bewley
set C and the set of relevant measures K. It is of interest to note that this result is a
generalization of de Finetti’s theorem. We restate it here, and will make use of it in
proving several of the results of this section:

Theorem 4.1. = is Weak Continuous Symmetric if and only if 77 is transitive and

~Y

there ezist a non-empty compact conver set M C A (A (S)) and a non-constant vNM
utility function u such that

f =" g if and only if /u(f) dp > /u(g) dp for all p € C, (4.1)

where C' = { [ £*dm (¢) : m € M}. Furthermore R =J,,.,,suppm and M is unique.

The main contribution of this section is to show that preference condition No Half
Measures, defined below, is equivalent to the set of relevant measures fully determining
the Bewley set, and thus necessary and sufficient for the Bewley set to inherit the
interpretation of reflecting only perceived ambiguity from the set of relevant measures.

First a preliminary definition: Let X% be the o-algebra generated by the sets

Ut (¢) for £ € A(S).
This algebra contains events based on limiting frequencies.

Condition (No Half Measures). For A € X% at least one of the following holds:

(1) Iflge =2z € X, then ax+(1—a)f 7 ala+(1—a«)f for some f € F and «a € (0, 1];

(i) Forall f € Fand a € (0,1], alg+ (1 —a)f ~als+ (1 —a)f.



To understand what this condition says, fix any bet on an event A € ¥ and let z* € X
be the lottery you get if you win and x, the lottery if you lose (with z* > x,). Imagine
agreeing to lose for sure (i.e., having the bet shrunk from A to the empty set) in return
for improvement in the losing lottery (call the new losing lottery w, with x* = w 77 x,).
Notice that this is a trade-off between utility on A and A° — on A, z* is lowered to
w, while on A¢, x, is raised to w. No Half Measures says that either there is always
some mixture within which you do not prefer to make this trade-off (i.e., sometimes the
increase on A° is worth less than any reduction on A), or, for every mixture, you are
willing to agree to substitute a sure loss without any improvement in the losing stakes
(i.e., you require no compensation for the reduced payoff on A). When this is true,
then identifying the measures ¢ that are relevant is the same as identifying the measures
that sometimes have an infinite marginal rate of substitution (i.e., that get assigned full
belief?). Thus, under this condition, classifying measures into those that sometimes get
positive weight and those that do not is the same as classifying measures according to
the range of marginal rates of substitution they sometimes receive. When this condition
fails, the latter classification will make use of variations in ranges of marginal rates of
substitution, not just zero vs. positive. Intuitively, these intermediate marginal rates
of substitution depend not only on perceived ambiguity, but also on taste aspects of
preferences such as ambiguity aversion.

We now show the connection between No Half Measures and the relation between
the Bewley set and the set of relevant measures.

Theorem 4.2. Suppose 7, is Weak Continuous Symmetric. Then 7, satisfies No Half
Measures if and only if C = { [ ¢*dm (¢) : m € A(R)} in (4.1).

Recall that, without No Half Measures, C' = { [ ¢*dm (¢) : m € M} where M C
A(R), so that knowing R need not pin down C. Our theorem shows that the No Half
Measures condition is identifying those cases in which C reflects only the set R of pro-
cesses considered relevant. In this sense, No Half Measures is required for the approach
in Ghirardato, Maccheroni and Marinacci [14], Nehring [24] and Ghirardato and Sinis-
calchi [15, 16] based on C' to agree with the relevant measures and thus be interpretable
as reflecting only perceived ambiguity and not perceived ambiguity intertwined with
ambiguity aversion.

How restrictive is the No Half Measures condition?

One restriction is that No Half Measures implies there is only a finite set of relevant
measures, and so only a finite number of possible resolutions of ambiguity.

Theorem 4.3. If a Weak Continuous Symmetric 7 satisfies No Half Measures then R
18 finite.

What are the further implications of No Half Measures in the context of specific
decision models? We begin with the Maxmin expected utility (MEU) model (Gilboa

2A measure that always gets less than full belief will not be relevant, which motivates the name,
No Half Measures.
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and Schmeidler [18]). For this model, No Half Measures implies the set of measures in
the representation are the i.i.d. products generated by the measures in £. We then
examine the a-MEU model and show there, when R is non-singleton No Half Measures
is only compatible with extreme values of « (« equals 0 or 1). Similarly, we conclude
this subsection with an examination of the smooth ambiguity model — when R is non-
singleton we show No Half Measures places non-trivial restrictions on the function ¢.3

4.1 MEU Model

Theorem 4.4. Suppose there is a non-constant vN-M utility function w, and a non-
empty compact convex set M C A(A(S)) such that, for F = {[¢>dm () :me M},

VI(f) = min/u(f) dp

peF

represents ©~. Then - satisfies No Half Measures if and only if

VI(f)= min/00 w(f)de>

(eR
where R is finite.

The contribution of Theorem 4.4 is that in this symmetric MEU context, No Half
Measures is equivalent to limiting the set of measures to the i.i.d. products generated
by a finite set of relevant measures, K. The proof uses Ghirardato, Maccheroni and
Marinacci [14, Theorem 14] to show that I is the Bewley set, and then applies Theorems
4.1, 4.2 and 4.3 to obtain the result. Note that the supposition in the first sentence of
the theorem could equivalently be replaced by assuming 77 satisfies Weak Continuous
Symmetry and the axioms in Gilboa and Schmeidler [18].

We can apply Theorem 4.4 to the Extended MEU with contraction model to get
the following:

1],

Corollary 4.1. Suppose there is a non-constant vN-M utility function u, a § € |0,
(D),

a finite set D C A(S) and a probability measure ¢ = [ €°dm (¢) for an m € A
such that,

V(f)=F min /U(f)dp+(1—ﬁ)/u(f)dq

pe{t=eD}

= min w(f)d
pe{ﬁﬁ“’ﬂl—ﬁ)queD}/ (/) dp
=. Then 7 satisfies No Half Measures if and only if (B3 = 1 or (q €
{¢*:¢€ D} and (D ={q} or 3 =0))).
3Similarly, though we do not fully investigate it, No Half Measures imposed on the Vector expected

utility model (Siniscalchi [28]) will imply non-trivial restrictions on the adjustment function A and the
adjustment factors {; appearing in that model.

represents .
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To see that this is a strong condition, observe that the restriction (8 = 1 or (¢ €
{¢*:¢€ D} and (D = {q} or § = 0))) is equivalent to MEU without contraction
(8 = 1) or expected utility with an i.i.d. prior, ruling out all intermediate, non-extreme,
cases of ambiguity attitude.

4.2 o-MEU Model

According to KMS [21, footnote 9] (and the example below), the Bewley set, C, gen-
erally will depend on « as well as the set of measures appearing in the representation.
Since No Half Measures ensures (' is fully determined by R, it must eliminate the de-
pendence of C' on . When does this dependence occur? Our next example (see also
Eichberger, Grant and Kelsey [8, Section 4] and Eichberger et. al. [9, section 3.2.2]),
suggests that o € (0,1) creates dependence.

Example 4.1. Let S = {H,T} and denote ¢ € A(S) by the corresponding probability
of H. Consider the - represented by

3 i /u(f)dp+l max }/u(f)dp.

4p€co{§o°,io°} pEco{goo Lee

21, Theorem 4.1] implies that ? = {2,1}. Using the results of Siniscalchi ([27], [29]),
the Bewley set €' is given by C' = co %% + ﬁoo, igoo + 3100} the convex hull of
some strict convex combinations of {300,% } (i.e., convex combinations that are not
themselves i.i.d.) and is a proper subset of co {¢*°: ¢ € R} (and, which proper subset
is determined by « in this case where o« = 1/4.In case a = 0 or 1, R fully determines
C since C' = co{2”, 1™ }In other cases, when v € (0, 1), the Bewley set C' is influenced

by a .

Our next result shows that the troublesome case in the example (i.e., o € (0,1) and
R non-singleton) is exactly what is ruled out by No Half Measures. In this sense, No
Half Measures turns out to be extremely restrictive in the context of a-MEU:

Theorem 4.5. Suppose there is a non-constant vN-M utility function u, an «a € [0, 1]
and o finite set D C A(S) such that

V(f)=a min /u(f)dp+(1—a) max /u(f)dp

pe{{>:teD} pe{l>:£e D}
represents 7. Then No Half Measures is equivalent to (a =0 or o = 1 or D singleton).

Eichberger et. al. [9, Theorem 2| prove a related result — for any finite state space,
when C' is non-singleton, any 7~ having an a-MEU representation with Bewley set C'
as the set of measures has « equal to 0 or 1. Since S itself, let alone S°°, need not
be finite our result requires different arguments. In fact, Eichberger et. al. [9] provide
an example with an infinite compact metric state space showing that their result may
fail in such settings. In light of this, our theorem shows that Event Symmetry and our
continuity together with the product structure of the state space is sufficient to extend
their finite state space conclusion.

12



4.3 Smooth Ambiguity Model

Theorem 4.6. Suppose there is a non-constant vN-M wutility function w, a strictly
increasing continuously differentiable function ¢ : u(X) — R and a Borel probability
measure pr € A(A(S)) with supp p finite such that

o= [ o [ unie)ano (42)

¢'(t)

rteu(X) ¢ (r) = 400 or

represents 7. Then No Half Measures is equivalent to (sup |

supp i singleton).

©-

Some examples violating the condition sup (J, ;¢ x) ¢:((£)) = 400 include ¢(x) = x or

¢(x) = 2x—cos(z) with u (X) =R, or Ry, and ¢(x) = z+In(1+x) with u (X) =R
or R;. When utility is bounded both above and below (e.g., there is a best and a worst
outcome), it is easy to find examples violating the condition (see Section 4.3 in KMS
[21]). Examples satisfying the condition in the theorerri include, ¢ (u) = — exp (—u/0)
or ¢p(x) =x—exp (—z/0) withu (X) =R and ¢ (x) = ””1_; or ¢(x) =x+ ”‘i’_; for v # 1
with w (X) =R, or R,.

Following the statement of the No Half Measures condition, we explained that this
condition fails when those measures that sometimes get positive weight differ from those
that sometimes get arbitrarily close to full weight (where “weight” is measured, as ex-
plained earlier, by utility trade-offs between the limiting frequency event corresponding
to the measure and its complementary event). By characterizing No Half Measures in
the context of the Extended MEU with contraction, a-MEU and the smooth ambiguity
models, we have seen three concrete illustrations of when the Bewley set, based on
(magnitudes of) these positive weights or marginal rates of substitution, will involve
parameters usually thought of as tastes (e.g., 3, o and ¢) and when it will not. The
cases where it will involve these parameters are extensive: For Extended MEU with
contraction, No Half Measures fails except for MEU with no contraction or expected
utility with an i.i.d. prior. For a-MEU, No Half Measures fails in essentially all the cases
beyond MEU and max-max EU. For the smooth ambiguity model, No Half Measures
fails whenever the variation in the slope of ¢ is bounded and x is non-degenerate.

5 Appendix: Proofs

Denote by B (S) the set of bounded measurable functions on S. Similarly for B (A (5))
and B (5°°). When B is replaced by B, this denotes the restriction to simple measurable
functions. Similarly, when Bj is replaced by BY (resp. BY) this denotes the restriction
to lower (resp. upper) semicontinuous simple functions. For b € B (5%), we write |||
for the sup-norm of b (i.e., sup,, |b(w)]).
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5.1 Proof of Theorem 3.1

i)=v): Let f,h € F and 7 € II. Since r is a finite permutation, 7 is the identity for
some N. Thus, for any g € F,

is well defined everywhere.
Step 1. g ~ ¢*.
By repeatedly applying i),

1o L1 1 N (1
IR T TI ™5\ 9 TR ) ToT 59T Y

22

1 1 !
i—1 § i—1
? ~ ﬁ 9
7 =1

1

for all k.
For any positive integer n, let ¢ (n) be the quotient when we divide n by N, and
r (n) the remainder. (That is, n = ¢ (n)- N +r(n).) Then,

k
1 & g (28 L S
%Zﬂ-l_lg: < >Zwl_lg+%zﬂ-l_l
i=1 i=1 j

-2, ZW

(Here "0, a; is understood to be 0.) Since r (2%) can take at most finite number of

integers, we can find a subsequence 2/(®) of 2* such that there is K = r (2“’”) for all k.
Thus,

g~ arg" + (1 —ay) < Zwl 1,q> for all k,

q(29®™)N e . . .
where ap = —5;57— (Note that 1 — ap = 5555.) Since aj, — 1, Mixture Continuity

2
implies g ~ g*.
Step 2. af +(1—a)h~arnf+(1—a)h.
By Step 1,

af+(l—a)h~(af+(1—a)h)" =af*+(1—a)h"
Similarly,
arf+(1—a)h~a(rf) +(1—a)h* =af + (1 —a)h"

14



By Preorder, this step is proved.

v)=iv): By v),
af+(l—-—a)h~arf+(1—a)h (5.1)

for all @« € [0,1] and h € F. Note that f ~ 7 f when o = 1.
Setting h = f gives,
f~anf+(1—a)fforalac|01]. (5.2)
Moreover, setting h = Sf + (1 — §) 7' f leads to

fola+t(T=a)p) f+(1—-a)(1=p)7'f (by (5.2)
=af+(1=a)(Bf+ 1 =p)f)
~arf+(1—a)(Bf+ A =p)7'f) (by (5.1))
=(1l-a)pf+tarf+(1—-a)(1-p)7f.

Since av and § can be taken arbitrarily, f ~ af + frnf + (1 —a— )7’ f for all o, 8 €
[0,1]. Since f ~x"f for " € 1I,

[~ f~arn"f+ 8r7"f+ (1 —a—pB)7'7"f.
For any 7, m, 73 € I, take 7 = my (71'1)_1, 7 = m (71'1)_1 and 7" = 7;. Then, we get
iv) for n = 3. Repeat the argument to show iv) for any n.

Clearly, iv) implies ii) and iii). Moreover, ii) implies i) and so does iii). Thus, we
have shown that i)-v) are equivalent.

Assume the additional axioms to show equivalence of i)-vii).
v)&vi): Clearly, v) implies vi). By Theorem 4.1, the converse holds.
vi)<vii): vi) implies vii) by Theorem 4.1. The converse holds since

/()\f +(1—=A)h)dp= /()wrf + (1 — A) h) dp for all symmetric p € A (S*).

Assume the existence of an extension % satisfying Preorder and Norm Continuity
to show the equivalence of 1)-viii).
vi)<>viii): The easy direction is viii) implies vi): Note that

A +A=NRY=0rf+1=Nh)"

for all f,h € F and A € [0,1]. Thus, viii) implies Af + (1 — A)h ~ Axf + (1 — A) h for
all f,h € F and A € [0, 1], which implies Event Symmetry.

We now turn to the other direction. Let % be any extension of 7 to F satisfying
Preorder and Norm Continuity. Define %* on F by

fZgitaf+(1—a)hZag+(1—a)hforalla € [0,1] and h € F. (5-3)
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Note that 7, %, ~* and %* on X all agree and can be represented by some non-constant
mixture linear function v on X.

Our argument proceeds by steps along the following lines: In steps 1-3, given an

arbitrary h' € F , we construct sequences of simple acts that norm-converge to A’
from above and from below. In steps 4-7, we show that %* is the unique extension of
~* satisfying C-complete Preorder, Norm Continuity, Monotonicity, Independence and
Non-triviality. In step 8, we use the representation of 7~* in Theorem 4.1 to construct
a representation for %*, and use that representation to show vi) implies viii).
Step 1. For any #' € F, and x,y € X with z > y, there is h € F such that %h (w)—i—%y =<
W (w) 4+ 1z and h(w) Z K (w) for all w € Q: Take ..., 2_1,20,21,... € X such that
xo=x, x—1 =y and w(x;) — w(r;—1) = v (x) —u(y). For each w € ), set h (w) = x;
if z;-1 < W' (w) 2 ;. Notice that h € F since h’ is bounded above and below and
w(x) —u(y) > 0. Then A does the job since h (w) 7~ k' (w) by construction and

Ju (h (@) + bu(y) = du

N[ N

Step 2. For any k' € F, there is h, € F such that hy norm-converges to A’ and
hip (w) 2 W (w) for all w € Q: Take 2,2 € X such that w(z) N\ w(z). This is
possible by Mixture Continuity. By Step 1, for each k, since z, > z, there is h, € F
such that Ay, (w) 7z A (w) and 1hy (W) + 12 < IR/ (W) + 2z, for all w € Q. Thus,
SUPyeq |t (i (W) —u (P (w))] < u(2k) —u(2). For any x > y, there exists K such that
for all £ > K, u(z) —u(z) < u(x) — u(y). Thus, hy, norm-converges to h'.

Step 3. For any k' € F, there is h, € F such that hy norm-converges to &' and
h' (w) 72 hy (w) for all w € Q: Slightly change Steps 1 and 2.

Step 4. % satisfies Monotonicity: Take f, g € F such that f (w) %g (w) for allw € Q. By
Steps 2 and 3, there are [, gx € F such that f, g, norm-converge to f, g respectively,
and fi (w) Zf (w) and ¢ (w) gk (w) for all w € Q. Then, fi (w) 22 gr (w) for all w € Q,
and Monotonicity of 77 implies fx 7~ gk, hence fk%gk. Norm Continuity guarantees
S

Step 5. 7~ satisfies C-complete Preorder, Norm Continuity, Monotonicity, Indepen-

dence and Non-triviality: %* inherits C-complete Preorder, Norm Continuity, Mono-
tonicity and Non-triviality from the corresponding properties of % and satisfies Inde-
pendence by (5.3).

Step 6. %* extends ==*: Take f,g € F such that f =" ¢, that is, af + (1 —a)h
ag+ (1—a)h for all a € [0,1] and h € F (and thus af + (1 — o) h=ag + (1 —a)h
for all & € [0,1] and h € F since % is an extension of =). Now fix k' € F. By
Step 2, there is hy, € F norm-converging to A'. Moreover, by the mixture linearity of u,
af+(1 — «) by and ag+(1 — a) hy, norm-converge to o f+(1 — ) A’ and ag+ (1 — ) A
respectively. Since af + (1 — «) hk%ag + (1 —a)hy for all @ € [0,1] and k = 1,2, ...,
Norm Continuity implies of + (1 — a) K'=ag + (1 — o) I’ for all a € [0,1]. Since #’ is
arbitrary, f%*g.
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Step 7. All extensions of ~—* satisfying the axioms in Step 5 are the same: Assume
1,705 on ]—" are two such extensmns It is enough to show that f =7 ¢g for f, g € F
implies f =5 ¢ since the labeling of the extensions is arbitrary. By Steps 2 and 3,
there are fy,gr € F such that f; and gx norm-converge to f and ¢ respectively and
(@) i J (@), 9 () 51 gi () for allw € Q. Thus, fi 27 £ 27 9 Xf g5 Since 7. 5
coincide on F, fi 725 gx. Norm Continuity of 73 implies f 75

Step 8. vi) 1mphes viii): Theorem 4.1, there is M CA(A (S)) such that for all f, g € F,
Jzrgift fu(f)dp> [u(g)dpfor allp € {[¢>°dm () : m € M}. Define an extension

=% of =* to F by
[z qlff/ (f)de/u(g)dpforallpE{/Emdm(ﬁ):meM}.

Then, one can check that 7~} satisfies all the axioms in Step 5. By Step 7, = %*

Therefore, f~ *f¥ and g_*gY for any f, g € F and hence f~f¥ and g<¢¥. Transitivity
of 7~ implies viii).

5.2 Proofs for Section 4

It is sometimes convenient in the proofs to use an alternative formulation of No Half
Measures. The following lemma gives the alternative formulation and shows that it is
equivalent to No Half Measures. We may rely on this lemma without reference to it.

Lemma 5.1. The following are equivalent:
(a) No Half Measures;
(b) For A € ¥, if there exists an x € X such that 1geo = x =% 14, then 14 ~* 1.

Proof of Lemma 5.1

(a)=-(b): Fix A € %¥. Suppose for each x € X with 1g~ = x, there exists f € F
and « € (0,1] such that ax + (1 —a)f 7 ala+ (1 —a)f. Then x Z* 14 and (b) is
vacuously satisfied. Suppose instead that for all f € F and o € (0,1], alg+(1—«)f ~
aly+ (1 —a«)f. Then 14 ~* 15 and (b) is satisfied.

(b)=(a): Fix A € ©.¥. Suppose (b) holds. Can it be that neither of the possibilities
n (a) hold? If neither holds, 14 ~* 1y and for some x € X with 1g~ > z, for all f € F
and o € (0,1], ax+ (1 — )f ~als+(1—a)f. But then, 1geo = 2 7% 14 and 14 =* 1y
contradicting (b).

5.2.1 Proof of Theorem 4.2

Normalize u so that u (z*) = 1 and w (x,) = 0.

(if): We show No Half Measures. Fix any A € %% and assume lgo = x 25* 1.
Then, u (x) > [u(14)dl> = ¢> (A) for all ¢ € R. Note that ¢~ (A) € {0,1} for every
Aex?. Slnce lgeo = 2, 1 > u(x) and thus ¢ (A) =0 for all £ € R. Then, 14 ~* 0.
By Lemma 5.1, No Half Measures holds.

17



(only if): Since 77 satisfies Weak Continuous Symmetry, Theorem 4.1 delivers sets
C, R and M. By definition, C' C {[¢*dm (¢) : m € A(R)}. For the other inclusion,
follow the steps.
Step 1. For ¢ € A(S), if 0; ¢ M, then max,,ep m (L) < 1 for some L € O;. We show
this by contradiction. Suppose that, for every L € O there is m; € M such that
my (L) = 1. We can view O; as a directed set with the inverse inclusion. Then, {m}
is a net and it has a limit point in M because M is compact. The limit point has to
be ¢z, a contradiction.

Step 2. = € C for every = R. To see this, again use proof by contradiction. Suppose
not. Then, é6; ¢ M for some ¢ € R. By Step 1, ¢ = maxyeprm (L) < 1 for some
LeOp Let A=V~ (L) and = ax* 4+ (1 — a) 2. Then, u(x) = a < 1 and, for any
me M,

u(xr) =a>m(L)

= /€°° (A)dm + / > (A)dm (since £ (A) =1 for £ € L, and 0 otherwise)
L A

—/L/oou(lA)dﬁoodm—l—A(S)\L/wu(lA)dﬁmdm—/A<S) /wu(lA)dﬁo"dm(@.

Thus, 1 = x =* 14. By No Half Measures, m ( f J (1) dé>dm (¢) = 0 for every

m € M. But since £ € L and L is open, this 1mphes ¢ ¢ supp m for every m € M and
thus ¢ ¢ R. This is a contradiction.

Step 3. C' 2 {[¢>°dm (¢): m € A(R)}. Denote by c0“* (-) the weak* closed convex
hull in ba (S°°). Observe that

min dp=  inf / dp = inf / dp
peww*({lw:ZER})/w pe{f>:lcR} w pe{flwdm(f mEA(R w

for any bounded measurable 1) on S*°. Since the set of measures in the MEU functional
is unique up to the weak* closed convex hull (Gilboa and Schmeidler [18]),

" ({02 £ € RY) D {/eooczm (€) :m e A(R)} |
By this inclusion, Step 2 and weak™ closedness and convexity of C', we have
C2oc" ({¢*:¢eR})D {/ﬁoodm(@ tm € A(R)}.
This completes the proof.

5.2.2 Proof of Theorem 4.3

Suppose R is not finite. Then, we can take distinct ¢, € R for each n. Let A, =
Uksn ¥ (). Then, A, N\, 0. To try to verify Monotone Continuity of Z*, take
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three constant acts x > «' = z”. Let p, = €°. Then, p,(4,) = 1 and u(2') <
Pn (Ap)u(x) + (1 —p, (A ))u( ”) By Theorem 4.2, p,, € C' and Theorem 4.1 implies

that it is not possible that ' =* x A, x” for any n. This contradicts Monotone Continuity
of ="

5.2.3 Proof of Theorem 4.4

Fix the representation V.

(if) If 7 is represented by mingeg [o.. u(f)d¢> then the fact that 2 satisfies No Half
Measures follows from one direction of Theorem 4.5.

(only if) By Ghirardato, Maccheroni and Marinacci [14, Theorem 14], the Bew-
ley set, C, associated with 7~ is F. By Theorem 4.1, = satisfies Weak Continu-
ous Symmetry. Suppose No Half Measures. Then, by Theorems 4.2 and 4.3, C' =
{[€dm (¢):m e A(R)} and R is finite. Thus,

VWﬂ—wmg/uunm— min /n(ﬂ@9 mm/;uqmﬁi

= pe{ [ =dm(0):meA(R) } teR

5.2.4 Proof of Theorem 4.5

We first show (o =0 or @« = 1 or D singleton) implies No Half Measures. Recall that
No Half Measures concerns only events A € Y. If D singleton, then lge = 2 = 14
implies ¢*°(A) = 0 for the £ € D, in which case 14 ~* 1y is obvious. To see the other
cases, observe that 1ge > x if and only if u(x) < 1 and = 7Z* 14 if and only if

(@) + (1= A) {a min /u(h)dp+(1—a) max /u(h)dp} (5.4)

pe{l>:£eD} pe{l>:£eD}

>a min (Ap(A)+ (1—X) /u (h)dp) + (1 —a) max (Ap(A)+ (1= A) /u (h) dp)

pe{l>:leD} pe{l>:leD}

for all A € [0,1] and all acts h. Furthermore, 14 ~* 1 if and only if

a min _ (Ap(A)+ (1= 2A) /u(h) dp)

pef{l>:leD}
F0) _max Ow(A) (1= 3) ) dp) 55)
g P /u (Wydp) + (1 =) max  ((1=2) /u (h) dp)

for all A € [0,1] and all acts h. In fact, 14 ~* 1y if and only if p(4) = 0 for all
p € {¢>*: ¢ e D}. To see this last statement, note that the “if” direction is immediate,
the “only if” direction follows for a # 1 by setting A = 1 in (5.5), and if & = 1, it
follows by setting A = % and h = 14c in (5.5). Therefore, in the presence of the other

requirements in the theorem, No Half Measures is equivalent to the statement: For all
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A e ¥ p(A) =1 for some p € {¢*°: ¢ € D} implies there does not exist an x € X
such that u(x) < 1 and (5.4) satisfied. Now consider the case a = 0 and let h = 14.
Then the right-hand side of (5.4) becomes 1 and therefore greater than any u(x) < 1
violating (5.4). Finally consider & = 1 and let A = § and h = 14 in (5.4). Simplifying
yields

1 2
3u(x) + 3 pe{glolz?eD}(l p(4)
> _min (zp(4) +5(1-p(4)))
T pe{t*weD} 3 3
which simplifies to u(z) > 1, thus showing No Half Measures holds.

We next show the other direction — that No Half Measures implies (&« =0 or o =1
or D singleton). To see this, we assume D non-singleton and « € (0, 1) and show that
No Half Measures is violated.

No Half Measures violated is equivalent, by the arguments above, to, for some

A e p(A) =1 for some p € {¢*: ¢ € D} while (5.4) is satisfied for some u(z) < 1.
To this end, consider A = W=1(¢) for some p = (@) € {¢>*:¢ e D}. Observe that
p(A)=1,p(A) =0forall pe {¢°:¢c D}\{p} and {¢~: ¢ € D} \{p} is non-empty
(since D non-singleton). For this event A, we will show that (5.4) is satisfied for
u(x) = mn#[al_a] Note that o € (0, 1) implies max[a, 1 — a] < u(x) < 1. Rewriting
(5.4) using this A and u(z), we want to show

amin{)ﬁr(l—)\)/u(h)dﬁ min (1—)\)/u(h)dp}

" pe{e=:teD}\{p}

pe{t>:te DI\{p}

+(1—a)max{A+(1—A)/u(h)dp, max (1—)\)/u(h)dp} (5.6)

1 4+ max[a, 1 — af

<\ 5 —|—(1—)\){a min /u(h)dp—i—(l—a) max /u(h)dp}

pe{l>:leD} pe{l>:£e D}

holds for all acts h and all A € [0,1]. If A =0, (5.6) holds with equality. If A =1, (5.6)
simplifies to 1 — a < Hm#[a’l_a], which is true. For the remainder of the argument we
assume A € (0,1). We proceed by considering three mutually exclusive and exhaustive
cases: (1) p ¢ argminyegeorepy [ (h)dp, (2) p € arg min,e g.epy [ u (h) dp and 25+
Minye rooepy [ u (R) dp < maxpeqerepy [ (h)dpand (3) p € arg min,eorepy [ w(h) dp
and 25 + minye oyepy [ w (k) dp > max,eqe.epy [ (h)dp. For each case we show
(5.6) holds.

Case (1): If p ¢ arg minye(rooepy [ u (k) dp, then p(A) and [u (h)dp have a common
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minimizer located in {¢*° : ¢ € D} \{p} and

amin{)ﬁr(l—)\)/u(h)dﬁ min (1—)\)/u(h)dp}

" pe{e=:teDY\{p}

+(1—a)max{A+(1—A)/u(h)dp, max (1—)\)/u(h)dp}

pe{t>:te DI\{p}

—a(l— )\)pe{gloiz?eD}/u(h) dp+(1—a) max <)\p(A) (1= N /u(h) dp>

pe{fe>:te D}

§)\(1—a)+(1—)\){a min /u(h)dp—l—(l—a) max /u(h)dp}

pe{f>LeD} pe{l>:leD}
1 4+ max[a, 1 — af

<A ; —|—(1—)\){a min /u(h)dp+(1—a) max /u(h)dp}.

pe{t>:£eD} pe{l>:leD}

Case (2): If p € argminyemoyepy fu(h)dp and 25 + minyeeoepy fu(h)dp <
maxX,ep<0ep} | () dp, then, noting that

w(h)dp = max w (h)dp,
pelt=iieD) (h)dp pE{f"":feD}\{ﬁ}/ () dp

we have

amin{)\—k(l—)\)/u(h)dﬁ, min (1—)\)/u(h)dp}

pe{t=:teDI\{p}

+(1—a)max{A+(1—A)/u(h)dp, max (1—)\)/u(h)dp}

pe{t>:te DI\{p}

—amin{ﬂ(l—m/u(mdﬁ, min (1—)\)/u(h)dp}

pe{t=:te DI\{p}

+(1—-a)(1—A) max /u(h)dp

pe{f>:teD}

pe{f:teD}

<Aa+(1-)) {a/u(h)dﬁ—i—(l—a) max /u(h)dp}

1 4+ max[a, 1 — af

<A 5 —|—(1—)\){a min /u(h)dp+(1—a) max /u(h)dp}.

pe{t>:leD} pe{l>:leD}

Case (3): If p € arg minye g.epy [ u (h) dp and 225+minye ppepy [ u (h) dp > maxyegeoseny [ (h)

then

amin{)\—k(l—)\)/u(h)dﬁ min (1—)\)/u(h)dp}

" pe{ee:te DY\{p}

+(1—a)max{x+(1—A)/u(h)dp, max (1—)\)/u(h)dp}

pe{t=:teDI\{p}

=a(l=A) pe{zoor:rz}é%}\{ﬁ}/u (h)dp+ (1~ a) (A = /u . dﬁ)
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pe{t>:te DI\{p}

+  min /u(h)dp— min /u(h)dp>

pe{€>:leD} pe{l>:£eD}

+(1—a)< min /u(h)dp

pe{t=:4eD}

—AM1—a)+(1—\) %( min /u(h)dp

+ max u(h)dp— max u(h)dp)}

pe{l>:£eD} pe{l>:leD}
=A1—a)

1—X i h)d 1— h)d
(1= {%e{gﬁﬁzm / w(h)ydp+(1—o) max / u(h) 4

+(1—)\){(a—1)< max [ w(h)dp— min /u(h)dp>

pe{l>:£eD} pef{€>:eD}

| h)dp — i h) d
val iy fu@dp= v [uma)]

§)\(1—a)+(1—)\){a min /u(h)dp—i—(l—a) max /u(h)dp}

pe{l>:£eD} pe{l>:£eD}

+(1—)\)(2a—1)< max [ w(h)dp— min /u(h)dp>

pe{l>:£eD} pe{t>:leD}
B Al—i—max[oz,l —qf
B 2
1— A i h)dp+ (1— h)d
= {%e{gﬁﬁzm Jumar o) e ) 4
1 1—
+)\<1—a— +maxga, O‘])

+(1—)\)(2a—1)< max [ w(h)dp— min /u(h)dp).

pe{€>:leD} pe{l>:leD}

To complete Case (3), we must show that the last two terms in the final expression
above have a non-positive sum. Observe that the hypothesis of Case (3) implies

0§< max [ u(h)dp— min /u(h)dp><1T)\)\.

pe{{>:LeD} pe{l>:leD}
Since (maxyegeeveny [ (h)dp — minyegeorepy [ (h)dp) enters linearly, the sum of

the last two terms is bounded above by the maximum of the sum when substituting 0
for <maXpe{[oo:[eD} Ju(h)dp — minpegroopepy [ u(h) dp) and the sum when substituting
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ﬁ. Carrying out these substitutions and simplifying yields

A<1_a_1+maxga,1—a]>

+(1—)\)(2a—1)< max [ w(h)dp— min /u(h)dp)

pe{{>:teD} pe{l>:£eD}
< max | A 1_0[_1+max[a,1—oz] a a_l—i—max[oz,l—oz]
2 2
_ <max[a, 12— al — 1> o

5.2.5 Proof of Theorem 4.6

Normalize u(z*) = 1 and u(x,) = 0.

(if): Suppose sup Ur,teu(X)%?) = 400. No Half Measures says that for A € X%, if
there exists an x € X such that lge > x 2=* 14, then 14 ~* 15. We prove this by
showing that, for A € X%, 14 ~* 1y implies there does not exist an # € X such that
lgoo = 2 72" 14. Suppose 14 =* 1. In terms of the representation, using the definition

of 7—*, this nonindifference may be written as follows:

/M) ¢ (MOO A+ 1= /Oo u(h)d€°°> dpu (€) # /M) ¢ ((1 Y /oo u(h)dﬁ“) e (0)

for some A € [0,1] and act h. From the facts that ¢ is strictly increasing and ¢ (A) €

{0,1}, this is equivalent to the requirement that p(B) > 0 for theset B = {¢ € A(S) : £~ (A) = 1}.
Now we show that 1ge = x 77* 1, is impossible. Observe that 1g~ > & means simply

u(z) < 1. Similarly,  22* 1, if and only if

/M) ¢ <M($> +1=2) /Oo u(h)d€°°> dpu () > /M) 0 <A€°° (A)+(1 - /Oo u(h)deoo> dye (0)

(5.7)
for all A € [0,1] and all acts h. Notice that when A = 0, (5.7) is automatically satisfied
with equality. Therefore a necessary condition for x 7Z* 14 to hold is that when both
sides of (5.7) are differentiated with respect to A and evaluated at A = 0 the derivative
on the left-hand side is weakly larger than that on the right-hand side. Doing this
differentiation and evaluating at A = 0 yields

/A<s> <u($) - /oo u(h)CMOO) ¢ (/w “(h)d€°°> dp ()
- /A<S) <€OO - /oo u(h)d€m> ¢ </oo “(h)d€°°> du(6),

which simplifies to

() /A o7 ( / ) u(h)d€°°> du (0) > /A Rl ( / ) u(h)d€°°> du(0). (5.8)

23



Consider acts h that are bets on A (or A°) such that w(h) = asb for a,b € u(X). Such
acts exist for any a,b € u(X). For such an A, (5.8) simplifies to

u(w) [ (@) p(B) +¢" (0) (1 = p(B))] = ¢' (a) u (B) . (5.9)
Since p(B) > 0 and sup Ur,teu(X)%tr)) = 400, we can choose a and b to make % as

large as desired, leading the right-hand side of (5.9) to be as close as desired to 1 and
violating the inequality (since u(x) < 1). This completes the “if” direction of the proof.
(only if): We now show the converse under the assumption that supp g is non-
singleton (if supp p is a singleton, then properties of ¢ beyond the fact that it is strictly
increasing cannot affect preferences). By the proof of KMS [21, Theorem 4.3] and
the fact that suppp is finite, 77 satisfies Symmetry, Mixture Continuity of 2* and
Monotone Continuity of 2—*. Suppose No Half Measures holds. By Theorem 4.2, C' =
J=dm (€) :m e A(R)}. By KMS [21, Theorem 4.3], R = supp p. Therefore C' =
gf °dm (¢) : m € A(supp u)} Fix any ¢; € supppu. Note that ¢3° € C and is an
extreme point of C. By the characterization of C' from Proposition 17 of Ghirardato and
Siniscalchi [15], simplified using the i.i.d. structure and the continuous differentiability

of ¢,

([ S (Jedt=) e=du(e) .
C’co({ T ([ edi=) dp (6) .EEA(S),@EmtBMZ,u(X))}),

where int By, (3, u (X)) is the interior of the set of all >-measurable functions a : S* —
R for which there exist a,f € wu(X) satisfying o > a(w) > g for all w € 5%
(i.e., informally, the interior of the set of bounded utility-acts). Since ¢° € C' and
is an extreme point of ', it must be that there exists a sequence of measures in
{f}ﬁd,(/f(;izjlz;jg)@ e A(S),ecint By (3, u (X))} converging to ¢°. If L C A(S)
is an open set containing ¢1, x(L) > 0. Since supp p is non-singleton, there exist open
sets containing ¢; such that (L) < 1. Let L be such a set and consider the event

A = U~Y(L). Suppose sup U teu(x) i:((f,)) = K < +00. Then

J & ([ ede) e=(A)dp(f) .
Sup{ f¢/ <fed€OO> du(ﬁ) : gEA(S),GEIHtBb(E,U(X))}
[; ¢ ([ede>) du(¢)

o { Jo @ ([ edt=) dp(€) + [acop i @ (f edl>=) dp(£)
<1=14£7(A)

:EEA(S),eeintBb(E,u(X))}

<
T K+1

J & ([ ede>=)e= (A)du(e) . )
[ ([ ede=)du(®) e A(S),ecint By (3, u(X)) } can con
¢'(t)

verge to ¢7°, a contradiction. Thus, sup Ur,teu(X) ) = 1% completing the proof.

so that no sequence in {
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