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Abstract

Non-stationary income processes are standard in quantitative life-cycle models,
prompted by the observation that within-cohort income inequality increases with
age. This paper generalizes Tauchen (1986) and Rouwenhorst’s (1995) discretiza-
tion methods to non-stationary AR(1) processes. We evaluate the performance of
both methods in the context of a canonical finite-horizon, income-fluctuation prob-
lem with a non-stationary income process. We find that the generalized Rouwen-

horst’s method performs extremely well even with a relatively small number of
states.
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1 Introduction

In quantitative macroeconomic studies it is often necessary to approximate continuous
stochastic processes using discrete state-space representations; e.g. Markov chains. Differ-
ent methods are available to perform such approximations.! The properties of alternative
discretization methods to approximate covariance-stationary AR(1) processes in the con-
text of stationary infinite horizon problems have been studied in some detail by Kopecky
and Suen (2010). They find that: (a) the choice of discretization method may have a sig-
nificant impact on the model simulated moments; (b) the performance of Rouwenhorst’s
(1995) method is more robust, particularly for highly persistent processes.

While a covariance-stationary income process is convenient, it is not consistent with
the fact, first highlighted by Deaton and Paxson (1994), that within-cohort income in-
equality increases with the age of a cohort. For this reason, most quantitative life-cycle
analyses of consumption and income dynamics assume a non-stationary labor income
process whose variance increases with age.? As a result, the difficulty of accurately ap-
proximating the income process with a small number of discrete states increases with
age.

We show how to extend both Tauchen (1986) and Rouwenhorst’s (1995) methods
to discretize non-stationary AR(1) processes and compare their respective performance
within the context of a life-cycle, income-fluctuation problem. Both extensions keep the
number of states in each time period constant, but they allow the state vector and tran-
sition matrix to change over time. In both cases, some property of the original stationary
counterpart are preserved: Tauchen’s method matches the transition probabilities im-
plied by the normality assumption, while Rouwenhorst’s method matches the conditional
and unconditional first and second moments of the original process.

We evaluate the performance of both methods in the context of a finite-horizon
income-fluctuation problem with a unit-root income process with normal innovations.?
We find that Rouwenhorst’s method performs extremely well even with a relatively small
number of grid-points.

Our paper is related to several studies (see, among others, those listed in footnote
1). However, to the best of our knowledge, it is the first one to formally study the ap-
proximation of non-stationary AR(1) processes. Papers studying quantitative life-cycle
problems with non-stationary stochastic processes have typically approximated those pro-
cesses using a variety of intuitively appealing approaches. Storesletten et al. (2004) use
a binomial tree, Huggett (1996) uses a variant of Tauchen discretization with a different
conditional distribution at the initial age, Kaplan (2012) uses an age-varying, equally-

!The seminal contributions are Tauchen (1986), Tauchen and Hussey (1991) and Rouwenhorst (1995).
Adda and Cooper (2003), Flodén (2008) and Kopecky and Suen (2010) introduce improvements for sta-
tionary, univariate, AR(1) processes. Markov-chain approximations for stationary, vector autoregressive
processes have been proposed by Galindev and Lkhagvasuren (2010), Terry and Knotek (2011) and
Gospodinov and Lkhagvasuren (2014). Farmer and Toda (2016) propose a method that can be applied
to stationary, non-linear, multivariate processes.

2Non-stationarity in the income process can take the form of distributional assumptions on the initial
conditions as in Huggett (1996), a unit root component as in Storesletten, Telmer and Yaron (2004), or
heteroskedasticity of the innovations as in Kaplan (2012).

3 As we discuss in the main text, the advantage of using such a process for our benchmark is that the
associated optimization problem can be solved using extremely accurate numerical techniques.



spaced grid with range and transition probabilities chosen to match some moments of the
original continuous process. In most cases these methods are only partially documented,
hence we know very little about their performance. Our work is meant to provide a more
systematic treatment of this approximation problem.

The remainder of this paper is structured as follows. Section 2 discusses how to extend
Tauchen (1986) and Rouwenhorst’s (1995) methods to non-stationary AR(1) processes.
Section 3 compares the accuracy of the two methods. Section 4 concludes.

2 Discrete approximations of AR(1) processes

Consider an AR(1) process of the following form,

id
Ye = peY—1 + 1, €~ N(0,04) (1)

with initial condition y,, where yy can be deterministic or a random draw from some
distribution. Let o; denote the unconditional standard deviation of y;. It follows from
equation (1) that
2_ 2 2 2 9
Op = P01+ 0y (2)
In general the above process is not covariance-stationary. Sufficient conditions for
stationarity are that the process in equation (1) is restricted to

iid
Yt = PYt—1 T &, |p| <1, g~ N(O,UE) (3)

with constant persistence p, constant innovation variance o, and 1y, randomly drawn from
the asymptotic distribution of y;; namely, N(0,0) where o = o0./1/1 — p2. We call this
case the stationary case in what follows, to distinguish it from the general, unrestricted
process? in equation (1).

The aim of these notes is to show how to adapt both Tauchen (1986) and Rouwen-
horst’s (1995) methods to discretize a non-stationary AR(1) of the general form in equa-
tion (1).

2.1 Tauchen’s (1986) method

2.1.1 Stationary case

Tauchen (1986) proposes the following method to discretize a stationary AR(1) pro-
cess. Construct a Markov chain with a time-independent, uniformly-spaced state space
YN ={y',...,y"} with

gV =—y' = Qo (4)

where € is a positive constant.® If ® denotes the cumulative distribution function for the
standard normal distribution and h = 2Qo /(N — 1) the step size between grid points,

4Note that the general process does not restrict p; to lie inside the unit circle.
STauchen (1986) sets 2 = 3. Kopecky and Suen (2010) calibrate it so that the standard deviation of
the Markov chain coincides with that of the original AR(1) process.



the elements of the transition matrix 1TV satisfy

O (zjj—pﬂ“rh/?) ifj =1,

Oe

7Tij = ¢ (_gj—pgji—h/2> lf] = N7

Oe

) (ﬂj—f’?i"rh/?) — P (M) otherwise.

Oe O¢

Basically, the method constructs the transition probabilities 7;; to equal the probability
(truncated at the extremes) that y, falls in the interval (7 — h/2, 4’ + h/2) conditionally
on Yi—1 — y'.

2.1.2 Non-stationary case

Our non-stationary extension of Tauchen (1986) constructs a state space YN = {y}, ..., 4"}
with constant size N, but time-varying grid-points with

U =5 = Qo (5)
and step size hy = 2Q0, /(N — 1). The associated transition probabilities are

P (—g{‘pﬂ*l*hf/ ) it =1,

Oet

m = Q@ (M) it j = N,

Oet

G — ot 4hy/2 7 —pyi_ —he /2 .
@(M _ P (BZPUaTh2Y i erwise.,

Oet Oet

The main difference between our extension and its stationary counterpart is that the
range of the equidistant state space in equation (5) is time varying and, as a result, so
are the transition probabilities.

2.2 Rouwenhorst’s (1995) method

The Rouwenhorst method is best understood as determining the parameters of a two-
state Markov chain, with equally-spaced state space, in such a way that the conditional
first and second moments of the Markov chain coincide with the same moments of the
original AR(1) process.®

2.2.1 Stationary case

In the case of the stationary AR(1) process in equation (3), the state space for the two-

state Markov chain is > = —¢' and the transition matrix is written as
. ol 1 — 11 ;
= g2 g2 . (6)

6In general, a Markov chain of order K is characterized by K? parameters (K states plus (K? — K)
linearly-independent transition probabilities) and can be uniquely identified by K? linearly-independent
moment conditions. The Rouwenhorst method is, therefore, a special case of a general moment-matching
procedure.



The moment condition for the expectation conditional on y;_; = 72 is

E(ylyimr = 9°) = —(1 = 72)5° + 729 = pi?, (7)

where the left hand side is the conditional expectation of the Markov chain and the right
hand side its counterpart for the AR(1) process for y;_; evaluated at the grid point 2.
It follows that

22 _ 1—;—p s (8)

where the second equality follows from imposing the same condition for y;_; = ' = —¢2.
The moment condition for the variance conditional on 1y,_; — 32 is’
_ _ o2 _ N2

Var(yelye—r = 5°) = (1= 7%) (=5° — py*)" + 7% (¥° — py*)” = o2, (9)

which, after replacing for 722 from equation (8), implies
7 =o. (10)

Having determined 112, the method scales to an arbitrary number of grid points N in
the following way.® The state space Y~ = {y',... 4"} is equally-spaced with

7V = -yt =ovN — 1. (11)

For N > 3, the transition matrix satisfies the recursion

mv-tr o 0 IIv-t 0 o o 0
nm=x { 0’ 0 }‘F(l_ﬂ) { 0 0’ }"‘W { 0 IIV-1 }"‘(1_7) { mv-1 o } ) (12)

where 7 = 7! = 722 and 0 is an (N — 1) column vector of zeros.

The main difference between Rouwenhorst and Tauchen’s methods is that in the for-
mer the transition probabilities do not embody the normality assumption about the dis-
tribution of the shocks. Rather, Rouwenhorst matches exactly, by construction, the first
and second conditional and, by the law of iterated expectations, unconditional moments
of the continuous process independently from the shock distribution.

2.2.2 Non-stationary case

As for Tauchen, our non-stationary extension of Rouwenhorst (1995) constructs an equally-
spaced, symmetric, state space Y~ = {y},..., 4"} with constant size N but time varying
grid points and transition matrix 1. If N = 2, it follows that y? = —¢} and the
counterpart of the first-moment condition (7) becomes

E(lye-r = 9i0) = =(1 = 7205 + 720 = piila,

with unique solution

1 T 1 oy
22 t—1 t—1 _ 11
T = 5 <1+pty—t2> = 5 <1+pt oy > =Ty, (13)

"Symmetry implies that the second conditional-variance condition is linearly dependent with equation
(9) and, therefore, satisfied.
8We refer the reader to Rouwenhorst (1995) and Kopecky and Suen (2010) for a rigorous derivation.




where the second equality follows from the counterpart of the second moment condition
(9) which implies

Y =~y = o (14)
The third equality in equation (13) follows from the expression for the conditional first
moment for y;—1 = 1.

As in the non-stationary version of Tauchen, the points of the state space are a
function of the time-dependent unconditional variance of y;. Comparing equations (8)
and (13) reveals that, relative to the stationary case, the probability of transiting from
y? | to y? depends on the rate of growth of the unconditional variance of y;.

Equation (13) implies that the condition for the Markov chain to be well defined, and
have no absorbing states, namely 0 < 7}! = 722 < 1, is equivalent to

2
t—

50
t 2
Oy

pi—t < 1. (15)
It follows from equation (2) that this condition always holds. Therefore Rouwenhorst’s
approximation can be applied to any process of the type defined in equation (1).°
As in the stationary case, the approach scales to an N-dimensional, evenly-spaced
state space Y,V by setting
N =—y'=0VN -1 (16)

and IIY to satisfy the recursion (12) with the transition matrices and the probability

7 = w1t = 722 indexed by t.

3 Evaluation

This section assesses the performance of the two discretization methods above in solving
a finite-horizon, income-fluctuation problem with a non-stationary labor income process.
Consider the following optimization problem in recursive form!°

Vi(zt,9¢) = maxlog(cr) + BB Visr (2641, Yo (17)

st ze=(14+r)a_1+ y

Ay = Z¢ — C

ii.d.
Yir1 = Y€, logep ~ N(Oaaf)a
a; > 0, a; given.

Individuals start life at age 1, with initial wealth ay = 0 and yq = 1, and live until age
40. Each model period is a year. In the computation we set the discount rate 8 to 0.96
and the interest rate r to .04 which are standard values. We set the variance of the labor
income process 02 = .0161, as in Storesletten et al. (2004). The parameterization implies

9This is also trivially true for Tauchen’s method.

10The lower bound of zero for the choice of next period’s assets is without loss of generality. It is
always possible to rewrite the problem so that the lower bound on, the appropriately translated, asset
space is zero.



an aggregate wealth-income ratio of about 0.6, in line with the baseline calibration in
Carroll (2009) for a similar model with no retirement and deterministic lifetime.

Since the above problem does not have a closed-form solution, we evaluate the accu-
racy of the two discretization methods by comparing simulated moments under the two
methods to those generated by a very accurate benchmark solution.

The advantage of problem (17) is that, as first shown in Carroll (2004), the com-
bination of unit-root (in logs) income process and CRRA felicity function implies that
the problem can be normalized using (permanent) labor income y;, thereby reducing the
effective state space to the single variable z, = z/y;.''. It follows that, under the as-
sumptions that income innovations are log-normally distributed, one can approximate
the expectation in equation (17) using Gaussian-Hermite quadrature.

This allows one to solve the model using a very accurate procedure—the endogenous
gridpoint method—for the optimization step'? and Gaussian-Hermite quadrature to ap-
proximate the expectation in (17). In particular, we compute the policy functions using
an exponential grid G, with 1,000 points for the normalized state variable Z and 100
quadrature nodes for the shock loge;. Given the well-known properties of quadrature,'3
the model solution using the endogenous gridpoint method and quadrature is extremely
accurate.

We simulate the model by generating 2,000,000 individual histories for y, using
Monte Carlo simulation of the continuous AR(1) process and linearly interpolating the
policy functions for points off the discretized state space G,. Since, by construction,
the non-normalized policy function a;(z:,y:) = a¢(Z)y; is linear in labor income, our
benchmark simulation does not require any approximation with respect to labor income.
Therefore, the simulated moments generated by our benchmark method constitute a
highly accurate approximation to the true model moments.

Next, we compute the same set of moments by applying the same optimization method
as in the benchmark but using either Tauchen or Rouwenhorst’s methods to discretize the
labor income process. To be precise, in each case we solve the (non-normalized) decision
problem (17) by replacing the continuous income process with the appropriate Markov
chain with age-dependent grids Y;¥ and transition matrices I} and using a common
exponential grid G, with 1,000 points for z;. We consider three different values for the
income grid size N; namely 5, 10 and 25.

Given the policy functions thus obtained, we compute the model moments using a
Monte Carlo simulation which again generates 2,000,000 income histories. This is done in
two different ways. In the first case, we generate the income histories using the discrete
Markov chain approximation. The simulation involves interpolating the policy functions
linearly only with respect to z. In the second case, as in the benchmark quadrature case,
we generate income histories using the continuous AR(1) process. We then interpolate
linearly over both z and labor income y.

1The Appendix reports the derivation

12See Barillas and Ferndndez-Villaverde (2007) for an assessment of the accuracy of the endogenous
grid method.

13Given n quadrature nodes, Gaussian quadrature approximates exactly the integral of any polynomial
function of degree up to 2n — 1.

H4Tncreasing the number of individuals histories to 20,000,000 does not affect the results in any mean-
ingful way.



The key difference between these two approaches has to do with the sources of the
errors that they introduce. Both cases suffer from approximation errors for the policy
function relative to quadrature due to: (a) the suboptimal approximation of the expecta-
tion in (17); (b) the fact that the policy functions solve the Euler equations exactly only
at a relatively small number of grid points for labor income. Compared to the continuous
AR(1) simulation, the Markov chain simulation introduces an additional approximation
error as the simulated policy functions are step, rather than piecewise-linear, functions

along the income dimension.

Table 1: Ratio of model moments relative to their counterpart in the quadrature bench-
mark: (A) Markov chain simulation and (B) continuous random walk income process

N=5 N =10 N =25
(A) Markov chain simulation
Labor income (y:) Mean 0.9960 0.9939 1.0880 0.9975 0.9952 1.0543 0.9983 0.9969 1.0070
SD 0.9208 0.8798 1.3993 0.9618 0.9085 1.2329 0.9842 0.9490 1.0159
Gini 0.9574 0.9608 1.1255 0.9815 0.9817 1.1069 0.9928 0.9942 1.0169
Consumption (c;) Mean 0.9966 0.9882 1.0755 0.9978 1.0006 1.0546 0.9984 0.9988 1.0093
SD 0.9253 0.8606 1.3517 0.9640 0.9242 1.2140 0.9850 0.9558 1.0213
Gini 0.9630 0.9634 1.1392 0.9851 0.9750 1.1045 0.9949 0.9926 1.0148
Wealth (a) Mean 1.0186 0.7385 0.5370 1.0083 1.2330 1.0706 1.0026 1.0795 1.1079
SD 1.0611 0.7689 1.1376 1.0296 1.6243 0.9059 1.0110 1.2334 1.1987
Gini 1.1088 1.3562 3.0492 1.0521 1.5599 0.6049 1.0198 1.2017 1.0961
Tot. inc. (ra;—1 +v:) Mean 0.9966 0.9882 1.0755 0.9978 1.0006 1.0546 0.9984 0.9988 1.0093
SD 0.9232 0.8656 1.3723 0.9630 0.9190 1.2181 0.9846 0.9536 1.0190
Gini 0.9607 0.9549 1.1071 0.9834 0.9885 1.0966 0.9938 0.9964 1.0174
Top 5% wealth share 1.0367 0.8449 1.6747 1.0217 1.3214 0.7299 1.0090 1.1451 1.0785
(B) Random walk simulation
Labor income (y;) Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Gini 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Consumption (c;) Mean 1.0005 0.9941 0.9886 1.0002 1.0065 1.0807 1.0001 1.0023 1.0025
SD 1.0027 0.9802 0.9694 1.0013 1.0339 0.8926 1.0005 1.0176 1.0094
Gini 0.9994 1.0020 1.0200 0.9998 0.9939 0.5290 0.9999 0.9986 0.9974
Wealth (a) Mean 1.0232 0.7409 0.4950 1.0106 1.2889 1.0018 1.0039 1.1037 1.1111
SD 1.0870 0.7862 0.9270 1.0418 2.2010 0.9888 1.0158 1.6298 1.3198
Gini 1.1116  1.3533 2.8598 1.0527 1.7360 0.9890 1.0201 1.2945 1.1070
Tot. inc. (ra;—1 +v:) Mean 1.0005 0.9941 0.9886 1.0002 1.0065 1.0018 1.0001 1.0023 1.0025
SD 1.0018 0.9861 0.9792 1.0009 1.0203 0.9877 1.0003 1.0104 1.0053
Gini 1.0012 0.9944 0.9832 1.0006 1.0086 0.9942 1.0002 1.0030 1.0004
Top 5% wealth share 1.0670 0.8994 1.5462 1.0338 1.6214 0.7129 1.0130 1.2944 1.1086

Note: Parameter values: 8= 0.96, r = 0.04, o2 = 0.0161.
For columns T+, Q = 1.6919 when N =5, Q = 2.0513 when N = 10 and © = 2.5996 when N = 25.



3.1 Results

We evaluate the accuracy of Tauchen and Rouwenhorst’s discretization methods by com-
paring simulated moments obtained under the benchmark quadrature approach to those
obtained under either of the two discretization methods. The moments are: (i) the un-
conditional mean; (ii) the unconditional standard deviation; and (iii) the Gini coefficient.
Each set of moments is reported for the distributions of labor income, consumption,
wealth and total income. Given the increasing interest in wealth concentration, at the
bottom of each panel we also report the share of aggregate wealth held by the households
in the top 5% of the wealth distribution.

Panel (A) and (B) in Table 1 report the ratio of the moments obtained from simulating
the income process using Rouwenhorst and Tauchen’s discretization methods to those
computed for the Gaussian Hermite benchmark solution. In the table a value of one
indicates that the approximation entails no error, relative to the benchmark solution.
As shown in Flodén (2008) and Kopecky and Suen (2010), Tauchen’s method is very
sensitive to the choice of €. Tauchen (1986) originally sets 2 = 3, while Kopecky and
Suen (2010) calibrate 2 to match the variance of log income. The counterpart of the
latter strategy for a non-stationary income process is not obvious. Hence we choose 2 to
match the variance of log income over the whole population, and we report results both
for this parametrization (columns Tgq+) and for the case in which = 3 (columns Tq_3).

Case 1: Markov chain simulation. Panel (A) shows results for the case in which
the discretized income process is used both to compute the expectation in the decision
problem and to simulate the model. In this case the Rouwenhorst method and the
Tauchen method with “optimal” choice of ) perform quite similarly in approximating
the labor income moments and the first moment of the consumption distribution. As
expected the Tauchen method with €2 = 3 performs much worse. The Rouwenhorst
method, though, is more accurate with respect to the standard deviation of consumption,
and substantially more so with respect to the wealth distribution. In the latter case, the
Rouwenhorst approximation has a maximum error (for any of the moments) of at most
11 per cent for N = 5 and of only 2 per cent for N = 25. In contrast, the Tauchen
approximation is off by anywhere between 1/4 and 2 times relative to the benchmark
quadrature method. The approximation is particularly poor, even with a large number of
points, for both the top 5% share and the variance of wealth. Moreover, it is apparent that
the approximation error does not necessarily shrink as the number of grid points increases.
Intuitively, when comparing the range of the income grid for the Tauchen (equation (5))
and Rouwenhorst (equation (11)) methods, the range of the income grid increases faster
with N for the latter method. This implies that, in the case of Tauchen, a larger number
of simulated observations get piled onto the bounds relative to the benchmark method,
reducing accuracy. This problem appears to be quite important when approximating the
standard deviation of wealth holdings. This conjecture is confirmed by the fact that the
Tauchen method with €2 = 3, hence with a larger labor income range, performs better
than the one with the “optimal choice” of € in this respect.

Case 2: Random walk simulation. Panel (B) in Table 1 reports the approximation
errors obtained through Monte Carlo simulation using the continuous income process.
By construction, there is no approximation error for the income process in this case.



As expected, the accuracy of both the Tauchen and Rouwenhorst methods generally
improves relative to results for the Markov chain simulation. In fact, the accuracy of the
Rouwenhorst method is extremely high even when N = 5.

Concerning the wealth moments, the performance of the Rouwenhorst method is
similar to that obtained for the Markov chain simulation. The performance of the Tauchen
method is, if anything, worse suggesting that, given the narrower income grid relative
to Rouwenhorst, extrapolation along the income dimension increases the overall error
relative to the Markov chain simulation. In fact, for IV larger than 5 the Tauchen method
with Q = 3, hence with a larger labor income range, performs better than the one with
“optimal choice” of €.

In sum, the Rouwenhorst method exhibits considerable accuracy even when using a
small number of grid points, and its performance is substantially more robust across all
moments considered and for all numbers of grid points.

4 Conclusion

Approximating non-stationary processes is commonplace in quantitative studies of life-
cycle behavior and inequality. In such studies it is important to reliably model the
evolution over age of the cross-sectional distribution of consumption, income and wealth.
Large approximation errors may result in misleading inference. The problem appears to
be especially severe when approximating the distribution of wealth.

In this paper we provide the first systematic examination of the performance of alter-
native methods to approximate non-stationary (time-dependent) income processes within
a life-cycle setting. We begin by explicitly deriving new generalizations of the Tauchen
and Rouwenhorst’s approximation methods to the case of non-stationary processes, like
the ones commonly employed in life-cycle economies. We then compare the relative per-
formance of these approximation methods. For each method, we numerically solve a
finite-lifetime, income-fluctuation problem, and compute a set of moments for the im-
plied cross-sectional distributions of income, consumption and wealth. Next, we gauge
the relative performance of the two methods by comparing these moments to the ones
obtained from a quasi-exact solution of the same problem.

The results of this comparison are quite clear and suggest that, in a life-cycle setting,
Tauchen’s method is generally much less precise than Roewenhorst’s. This discrepancy
is most severe when considering the distribution of wealth. Perhaps more worrying is the
fact that adding grid points to the income approximation does not seem to monotonically
and significantly improve the performance of Tauchen’s method. In contrast, increasing
the number of grid points does improve the accuracy of the Roewenhorst approximation.
However, we find that the latter method offers a very reliable approximation even with
just 5 grid points.
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Appendix

Normalized problem with unit-root labor income.

In the case in which the (log) income process has a unit root and the felicity function
has the CRRA form u(c) = ¢!77/(1 — =), it is well known from Carroll (2004) that it is
possible to normalize problem (17) by (permanent) labor income y;, thereby reducing the
effective state space to z.

To see this, replace for ¢; = z — a; in (17) and consider the problem in the second-
to-last period

Vor_1(zp-1,yr—1) = maxu(zr_1 — ar—1) + BEr_ju(zr) (18)

ar—1

If one defines the state variables z; = z;/y; and @; = a;/y;, equation (18) can be rewritten
as

VT—I(ZT—L yT—l) = [naXU(yT—l(ﬁT—l — dT—1)) + 5ET—1U(yT5T)
ar—1

— yjlﬂ__ﬂ{ {max U(ﬁT_l — dT—l) + BET_lelT_ﬂ’u(éT)} (19)
ar—1
Note that by definition
R Qp— Qs
L=0+r)—41=14r"+1, (20)
Yt—1€¢ €t

which implies that the curly bracket in (19) is equal to Vi_i(27_1) where the latter
satisfies the Bellman equation

VT—I(gT—l) = max U(ﬁT_l - dT—l) + ﬁET_1€;_’YVT(/§T) (21)
ar—1
with V%(QT)ZZ’U(ZT»
Equations (19) and (21) imply that Vy_y (27_1,yr-1) = o}V (37_1). The same logic
implies that this holds also for any ¢t < T — 1.
Therefore the Bellman equation for the problem in normalized form satisfies

Vi(2) = maxu(2 — &) + By Vi1 (1), (22)
at
for all ¢. It follows from (20) and the envelope condition that the associated Euler equation
is
u'(ér) = BRE [ {11/ (Crr1)] (23)
The advantage of the normalized problem (21) is that one can solve for the saving function
a¢(2;) which is independent of the income realization y; and use a;(z¢,y:) = ai(2)y; to
recover the policy function for a;.
Under the assumption that ¢ isi.i.d. and log-normally distributed the expectation in
equation (21) can be computed using Gaussian Hermite quadrature.
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