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Abstract

The class of preferences over opportunity sets (“menus”) rationalizable
by underlying preferences over the alternatives is characterized for the
general case in which the dataset is unrestricted. In particular, both
the universal set of alternatives and the domain of menus over which
preferences are asserted by the decision maker are arbitrary. The key
“Cover Dominance” axiom states that any menu strictly preferred to a
collection of menus must be strictly preferred to any menu covered by
the collection. The method of characterization relies upon transitivity
of menu preferences, but completeness can be relaxed.

J.E.L. classification codes: D01, D11.

Keywords: general domains, opportunity sets, revealed preference,
transitivity.

1 Introduction

1.1 The rationalizability question

This paper studies the question of when observed preferences over opportu-
nity sets (“menus”) can be rationalized by underlying preferences over the al-
ternatives they contain (“meals”). In the simplest environment, with finitely
many options and a weak preference asserted by the decision maker between
each pair of subsets of the universal menu, conditions for rationalizability
were given by Kreps [11, pp. 565–566] as a benchmark for his axiomatiza-
tion of “preference for flexibility.” Yet despite a large subsequent literature
that incorporates into menu preferences various other tastes and influences
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on behavior, the rationalizability question remains unanswered in the general
case.1

We shall generalize the environment in Kreps [11] along both dimensions
mentioned in the previous paragraph. Firstly, any nonempty universal set of
alternatives will be permitted, whether finite or (countably or uncountably)
infinite. This will allow our framework to accommodate the many economic
contexts in which finiteness is not a natural assumption, such as choice among
consumption bundles, production plans, lotteries, asset allocations, and so
on.2 Secondly, the domain of menus over which preferences are asserted will
be permitted to be any nonempty subset of the set of conceivable choice prob-
lems. This will make our findings applicable to arbitrary datasets, including
those that arise from observational data or laboratory experiments; or from
structured settings where all menus are, for example, budget or production
sets.

At the heart of the rationalizability question is the necessity of translating
meal preferences into menu preferences and vice versa. On the one hand, any
meal-preference relation induces a menu-preference relation via a simple rule
(see Definition 1; cf. [11, p. 565]): One menu is weakly preferred to another
if each meal on the second menu is weakly inferior to some meal on the first
menu. This relationship—which formalizes the concept of a rationalization—
expresses the intuition that a menu is as good as the best meal it contains.

Moving in the opposite direction is trivial in full-domain environments,
where meal preferences coincide with the observed preferences over singleton
menus. But in our general framework singleton menus need not be included in
the domain, and therefore a more reliable notion of revealed meal preference
is required. We propose the following conception (see Definition 3), which
in a sense reverses the rule in the previous paragraph: One meal is weakly

1Barbera et al. [2] survey the menu-preference literature circa 2004. (Models of temp-
tation, in particular, are surveyed by Lipman and Pesendorfer [12].) Among the numerous
more recent papers are those of Ahn and Sarver [1], Dekel et al. [6], Epstein et al. [7],
Olszewski [14], and Stovall [19]. As mentioned by Dekel et al. [6, p. 938], “[a] menu can
be interpreted either literally or as an action which affects subsequent opportunities.”

2Note that we deliberately avoid [9, p. 1406] “modeling the set of alternatives as lotteries
and utilizing the resulting linear structure by imposing the von Neumann-Morgenstern
axioms”; a practice pioneered by Dekel et al. [5] and Gul and Pesendorfer [9] and adopted
in much of the ensuing menu-preference literature. (Some exceptions include Ergin [8], Gul
and Pesendorfer [10], and Nehring [13].) While it has the advantage of facilitating precise
identification of model components, such as the subjective state space in [5], the lottery
formulation can be viewed as a purely technical device to the extent that objective risk is
not essential to the phenomenon of interest (e.g., temptation). Moreover, this formulation
requires more of the decision maker, who must rank menus of lotteries over outcomes
rather than simply menus of outcomes.

2



X

A

-X �

-X �

-⇒ �
B1

B2

D

Figure 1: The Cover Dominance axiom. The menus A,B1, B2, D ⊂ X are in
the domain of the menu-preference relation %, with D ⊂ B1 ∪B2. If A � B1

and A � B2, then Cover Dominance requires that A � D.

preferred to another if each menu containing the first meal is weakly superior
to some menu containing the second meal. This revealed relation captures
the intuition that a meal is as bad as the worst menu containing it, and will
be used to replicate the observed menu preferences in proving our results.

1.2 Axioms for rationalizability

In the finite, full-domain environment, Kreps [11] characterizes the class of
menu preferences rationalizable by complete and transitive meal preferences.
The first of his two axioms, which we label Menu Order, states simply that
the observed menu preferences are themselves complete and transitive. This
is a straightforward consequence of the ordering properties imposed on the
rationalizing meal-preference relation, and the argument does not depend on
finiteness or the full-domain assumption (see Corollary 1). Hence we inherit
Menu Order from Kreps as a necessary condition.

The second axiom used in [11, p. 566], which we label Kreps Consistency,
states that the more preferred of any two menus is indifferent to their union.
This condition is clearly unsuitable for our framework, in which the domain
of the menu-preference relation need not be closed under union. We therefore
replace Kreps Consistency with a new and somewhat stronger axiom, Cover
Dominance, which is appropriate for the general case.3

To understand the content of Cover Dominance, consider the situation in

3To be precise, Cover Dominance is logically stronger than Kreps Consistency in the
presence of Menu Order (see Figure 3 below).
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Figure 1. Here % is the weak menu-preference relation (with associated strict
relation � and indifference relation ∼), X is the universal set of alternatives,
and the menus A,B1, B2, D ⊂ X are in the domain of %. If both A � B1

and A � B2 and if % is rationalizable by meal preferences, then each meal in
B1 ∪B2 should be strictly inferior to a meal in A. If also D ⊂ B1 ∪B2, then
each meal in D (the “covered” menu) should likewise be strictly inferior to a
meal in A. This leads us to anticipate that A � D, which is the conclusion
mandated by Cover Dominance.4

Our main result (Theorem 1) thus characterizes rationalizability by means
of the Menu Order and Cover Dominance conditions. In proving sufficiency of
this axiom system, we also establish two of its implications that are of interest
in their own right. One condition, Implicit Optima, states that each menu
contains an alternative whose presence on any other menu guarantees that
the second menu is no worse than the first. In terms of the rationalization,
this means that even on infinite menus there can be found a greatest option
with respect to the meal-preference relation. The second implied condition,
Weak Cover Dominance, replaces strict with weak preference in both the
hypotheses and the conclusion of Cover Dominance. This alternate version
of the cover dominance property plays a role in the proof of sufficiency, as
well as in linking our axiom system to that of Kreps [11].

1.3 Preferences over budget sets: An example

For a concrete illustration of our framework and characterization result, let
X = <2

+ and imagine a consumer with endowment 〈1, 1〉 who may face a
variety of different relative prices. Imagine further that the consumer asserts
preferences over the four price vectors 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, and 〈1, 4〉; with
respective budget sets B1, B1/2, B2, and B1/4. This situation is depicted in
Figure 2, where the points x1, x2, x3, . . . , x7 represent arbitrary consumption
bundles in different regions of X.

Suppose first that B1/2 � B2 � B1 � B1/4. Since B1/2 ⊂ B1 ∪ B1/4 and
both B2 � B1 and B2 � B1/4, Cover Dominance requires that B2 � B1/2.
But this contradicts the observed preference B1/2 � B2, so Cover Dominance
fails in this case and we can conclude that % is not rationalizable by complete
and transitive meal preferences.

Now suppose instead that B1/4 � B2 � B1 � B1/2. Since B1 ⊂ B2 ∪B1/2

and both B1/4 � B2 and B1/4 � B1/2, Cover Dominance implies B1/4 � B1.
This agrees with the observed preferences, and it is straightforward to verify

4Observe that menu A is never compared directly to B1∪B2, which need not be in the
domain of %. Moreover, note that Cover Dominance allows arbitrary (not only binary)
unions of covering menus.
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Figure 2: An example of preferences over the budget sets B1, B1/2, B2, and
B1/4. The order B1/2 � B2 � B1 � B1/4 violates Cover Dominance and thus
is not rationalizable. In contrast, the order B1/4 � B2 � B1 � B1/2 satisfies
Cover Dominance and thus is rationalizable.

that no other violations of Cover Dominance can be found in the dataset. Of
course Menu Order also holds, and thus % can be rationalized in this case.

Note that, according to the preferences in the previous paragraph, each
of the menus containing x5 (namely, B1 and B2) is strictly superior to some
menu containing x4 (namely, B1/2). Evaluating each meal by the worst menu
containing it, our revealed preference relation therefore considers x5 strictly
superior to x4. Similarly, our relation considers x7 strictly superior to x5; x6

strictly superior to x7; and x1, x2, x3, and x4 indifferent to each other since
they are all members of the lowest-ranked menu (namely, B1/2).

The meal preferences that rationalize a given menu-preference relation
will not in general be unique.5 Indeed, writing a generic consumption bundle
in the present context as z = 〈z1, z2〉, the preferences B1/4 � B2 � B1 � B1/2

can be rationalized by the two distinct meal-preference relations represented
by the utility functions u(z) = 19z1 + 30z2 and v(z) = max{10z1z

3
2 , z

4
1z2}.

Neither coincides with our revealed meal-preference relation, which in this
case has just four indifference classes (corresponding to the four menus in the

5This is a natural consequence of our objective of characterizing rationalizability over
arbitrary domains; as evidenced by the similar non-uniqueness seen in Richter [15], Bossert
et al. [3], Tyson [20], and other contributions that share this goal.
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dataset). Concretely, the alternatives x̃1 = 〈0.2, 1.0〉 and x̃4 = 〈2.0, 0.1〉 are
ranked as indifferent by our revealed relation, while the two utility functions
yield opposing strict preferences computed as u(x̃1) = 33.8 < 41.0 = u(x̃4)
and v(x̃1) = 2.0 > 1.6 = v(x̃4). This example makes clear that deducing the
decision maker’s true meal preferences from arbitrary menu-preference data
will not typically be possible; and doing so is not our purpose in this paper.
We wish, rather, to find concise and transparent conditions that characterize
rationalizability without the help of domain assumptions, and thus allow us
to test this hypothesis under more realistic circumstances.

1.4 Road map

The remainder of the paper is structured as follows. Section 2 describes how
menu preferences are induced by meal preferences and how meal preferences
are revealed by menu preferences, and introduces the Menu Order axiom.
Section 3 proceeds to develop the Cover Dominance axiom and to state and
outline the proof of our main result. Section 4 discusses rationalizability by
incomplete meal preferences, shows how Kreps’s original characterization can
be derived as a corollary of our result, and demonstrates how the theory of
rationalizable menu preferences parallels the theory of rationalizable choice
functions. Proofs are in Appendix A.

2 Meal and menu preferences

2.1 Preliminaries

Let X be a nonempty set of alternatives (also called “options” or “meals”),
write X for the power set of X, and fix both a nonempty domain D ⊂ X\{∅}
of menus and a relation % on D. Our primitives are thus 〈X,D,%〉. Write
Dx = {A ∈ D : x ∈ A} for the set of menus that contain option x.

Given a relation R on X, write G(A,R) = {x ∈ A : ∀y ∈ A xRy} for the
set of R-greatest alternatives on menu A. A relation is a preorder if it is both
reflexive and transitive. For brevity, a complete preorder will be referred to
simply as an order.6

As usual, we write A ∼ B when A % B % A and A � B when A % B 6% A.
Likewise, we write xIy when xRyRx and xPy when both xRy and ¬yRx.

6Recall that a binary relation R on X is reflexive if ∀x ∈ X we have xRx; transitive if
∀x, y, z ∈ X we have xRyRz =⇒ xRz; and complete if ∀x, y ∈ X we have ¬xRy =⇒ yRx.
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2.2 Induced menu preferences

Kreps [11, p. 565] uses preferences over alternatives to define preferences over
menus “in the obvious fashion.”

Definition 1. Given a relation R on X, define a relation %R on D as follows:
For each A,B ∈ D, let A %R B if and only if ∀y ∈ B there exists an x ∈ A
such that xRy.

In words, the induced relation %R weakly prefers menu A to menu B if each
option on B is weakly inferior, according to the meal-preference relation R,
to some option on A. This is consistent with the standard model of choice, in
which the decision maker will eventually select from each menu a preference-
maximal option according to which the menu itself may be valued.

We write A ∼R B when A %R B %R A and A �R B when A %R B 6%R A.
For complete R, Definition 1 can then be expressed as B �R A if and only if
∃y ∈ B such that ∀x ∈ A we have yPx. That is, a strict menu preference for
B over A is induced by R if some option on B is strictly better than every
option on A.

An important consequence of Definition 1 is that the induced relation %R

inherits a number of ordering properties from R.

Proposition 1. A. If R is reflexive then %R is reflexive. B. If R is complete
then %R is complete. C. If R is transitive then %R is transitive.

Finally, we can use induced menu preferences to formalize our concept of
rationalizability.

Definition 2. A rationalization of % is a relation R on X such that %=%R.

If the unobserved meal-preference relation is complete and transitive, then it
follows from Proposition 1 that the induced menu-preference relation exhibits
the same properties. This yields a necessary condition for rationalizability
by an order in the general case.

Condition 1 (Menu Order). The relation % is an order.

Corollary 1. If % is rationalized by an order, then Menu Order holds.

Example 1. Let X = wxyz and D = {z, wx, wz, xy, xz, yz, xyz}.7 Then the
meal-preference order wPxIyPz induces the menu-preference order wx ∼R

wz �R xy ∼R xz ∼R yz ∼R xyz �R z. For instance, we have that wz %R xy
since wRx and wRy, while xy 6%R wz since ¬xRw and ¬yRw.

7Note the multiplicative notation for enumerated sets, which we use when convenient.
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2.3 Revealed meal preferences

In order to achieve the desired characterization, we will also need to be able
to translate the decision maker’s tastes from the menu-preference relation %
to a revealed meal-preference relation. This is accomplished by the following
construction.

Definition 3. Define a relation R̂ on X as follows: For each x, y ∈ X, let
xR̂y if and only if ∀A ∈ Dx there exists a B ∈ Dy such that A % B.

Here the revealed relation R̂ weakly prefers option x to option y if each menu
containing x is no worse, according to the primitive relation %, than some
menu containing y.

We write xÎy when xR̂yR̂x and xP̂y when both xR̂y and ¬yR̂x. For
complete %, Definition 3 can then be expressed as yP̂x if and only if ∃A ∈ Dx

such that ∀B ∈ Dy we have B � A. That is, a strict meal preference for
y over x is revealed by % if some menu containing x is strictly worse than
every menu containing y.

The latter paraphrasing of Definition 3 conveys the rationale behind the
revealed meal-preference relation R̂: If even the worst menu B containing y
is strictly preferred to some menu A containing x, this suggests that y itself is
strictly better than everything in A, and in particular strictly better than x.
The expression xR̂y records the absence of this situation, where the evidence
from % indicates instead that x is at least as good as y.

Our next result is the meal-preference analog of Proposition 1, establish-
ing that R̂ inherits the same ordering properties from %.

Proposition 2. A. If % is reflexive then R̂ is reflexive. B. If % is complete
then R̂ is complete. C. If % is transitive then R̂ is transitive.

Corollary 2. Menu Order implies that R̂ is an order.

Example 2. For the domain defined in Example 1, we have Dw = {wx,wz},
Dx = {wx, xy, xz, xyz}, Dy = {xy, yz, xyz}, and Dz = {z, wz, xz, yz, xyz}.
The menu-preference order wx ∼ wz � xy ∼ xz ∼ yz ∼ xyz � z (identical
to the induced preferences in Example 1) reveals the original meal-preference
order wP̂xÎyP̂z. For instance, we have that wR̂x since wx % xy and wz % xy,
while ¬xR̂w since xy 6% wx and xy 6% wz.
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3 Main result

3.1 Characterization of rationalizability

We know from Corollary 2 that Menu Order is sufficient for R̂ to be complete
and transitive. Hence what is needed is a further condition that together with
Menu Order will guarantee that this relation rationalizes the observed %.

To construct the required axiom, we shall use the concept of a covering
set of menus.

Definition 4. The set B ⊂ D is said to cover A ∈ D if A ⊂
⋃
B :=

⋃
B∈BB.

Our condition then states that any menu strictly preferred to the elements
of a cover must be strictly preferred to the target of the cover.

Condition 2 (Cover Dominance). Let A,D ∈ D and let B ⊂ D cover D. If
for each B ∈ B we have A � B, then A � D.

Here the intuition is that B collectively should be no worse than D, so Cover
Dominance has the flavor of a transitivity condition. Note, however, that⋃

B may or may not be in D, so we cannot argue simply that A �
⋃

B % D
and hence A � D.

To show necessity of our new axiom, we shall need the set of R-greatest
elements of each menu to be nonempty. Implicitly, this is of course the set of
eventual choices from the menu, and hence the additional structure required
amounts to an assumption of nonempty-valued choice.

Proposition 3. If % is rationalized by an order R with G(·,R) nonempty,
then Cover Dominance holds.

Our main result combines the assumptions on meal preference and the
conditions on menu preference across Corollary 1 and Proposition 3.

Theorem 1. The relation % is rationalized by an order R with G(·,R) non-
empty if and only if Menu Order and Cover Dominance hold.

Example 3. The menu preferences in Example 2 are rationalized by an order
and hence satisfy both Menu Order and Cover Dominance. For instance, we
have xz ⊂ xyz = xy ∪ yz, wz � xy, and wz � yz, so Cover Dominance
requires that wz � xz (which is in fact the case). In contrast, the preferences
wx ∼ wz ∼ xz � xy ∼ yz ∼ xyz � z fail Cover Dominance and so cannot
be rationalized by an order.8

8To see this, note that for any order rationalization R we have that wx � xy =⇒ wPx
and wz � z =⇒ wPz. But this would imply that wx � xz (which is in fact not the case).
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3.2 Sufficiency of axioms

To achieve our characterization, it remains to show that the axioms in Theo-
rem 1 are sufficient for R̂ to rationalize % and generate a nonempty G(·, R̂).
The former property means both that all observed preferences are faithfully
reproduced by R̂, written %⊂%R̂; and that all preferences induced by R̂ are
genuine, written %R̂⊂%.9

We shall verify the required properties of R̂ with the help of two auxiliary
conditions implied by our axiom system. The first asserts the existence within
each menu of an “implicit optimum” whose appearance on any other menu
ensures weak menu-superiority.10

Condition 3 (Implicit Optima). For each A ∈ D there exists an x ∈ A such
that ∀B ∈ Dx we have B % A.

Proposition 4. A. If % is complete, then Cover Dominance implies Implicit
Optima. B. Menu Order and Implicit Optima imply Cover Dominance.

This condition yields the desired nonemptiness property of R̂.

Proposition 5. Implicit Optima implies that G(·, R̂) is nonempty.

Conveniently, it can also be used to prove the faithful-reproduction property.

Proposition 6. If % is transitive, then Implicit Optima implies that %⊂%R̂.

Example 4. Recall the menu-preference order % defined in Example 3, for
which Cover Dominance fails. Here alternative w is an implicit optimum for
the menus wx and wz, alternative x for the menus xy and xyz, alternative
y for the menu yz, and alternative z for the menu z. The menu xz contains
no implicit optimum, since x ∈ xy ≺ xz and z ∈ yz ≺ xz.

Our second auxiliary condition is a weak-preference counterpart of Cover
Dominance, and has a similar intuition in terms of the cover B supplying a
bridge between menu A and the (now weakly) inferior menu D.

9This is different from the statement that R̂ coincides with the decision maker’s true but
unobserved meal-preference relation R. Even when %R̂=%=%R and we have successfully

replicated the agent’s menu preferences, we cannot be certain that either R ⊂ R̂ or R̂ ⊂ R.
Indeed, the failure of these inclusions in general is made clear by the example of preferences
over budget sets in Section 1.3.

10This condition strengthens the Desire for Commitment axiom used in Dekel et al.’s [6,
p. 946] study of “temptation-driven preferences.” In the full-domain environment, Desire
for Commitment requires that for each A ∈ D there exists an x ∈ A such that {x} % A.
Here alternative x can be interpreted as an implicit optimum for menu A, but since Dekel
et al. allow for temptation they do not require B % A for menus B ∈ Dx other than the
singleton {x}.
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Condition 4 (Weak Cover Dominance). Let A,D ∈ D and let B ⊂ D cover
D. If for each B ∈ B we have A % B, then A % D.

Proposition 7. If % is transitive, then Implicit Optima implies Weak Cover
Dominance.

This condition can be used to prove the genuineness property of R̂.

Proposition 8. Weak Cover Dominance implies that %R̂⊂%.

Note that Weak Cover Dominance is not in general strong enough to yield
Implicit Optima, even in the presence of Menu Order. To support this claim,
we offer the following example.

Example 5. Let X = x1y1x2y2x3y3 · · · , A = x1x2x3 · · · , Bk = xkyk for
k ≥ 1, and D = {A,B1, B2, B3, . . .}. Moreover, let B1 ≺ B2 ≺ B3 ≺ · · · ,
and let A � Bk for k ≥ 1. While these preferences satisfy both Menu Order
and Weak Cover Dominance, they fail Implicit Optima. Indeed, the menu
A contains no implicit optimum since xk ∈ Bk ≺ A for k ≥ 1. Note that,
in view of Proposition 4A, % must fail Cover Dominance as well. This can
be verified by observing that A ⊂

⋃∞
k=1Bk and A � Bk for k ≥ 1, while the

conclusion A � A is obviously false.

Example 5 illustrates why Theorem 1 imposes nonemptiness of G(·, R̂).
To show that R̂ rationalizes %, we need the full strength of Implicit Optima
and not just Weak Cover Dominance (see Propositions 6–8). Under Menu
Order we know that Implicit Optima and Cover Dominance are equivalent
(see Proposition 4), but to ensure these conditions hold rationalizability alone
is insufficient—nonemptiness is also needed (see Proposition 3). Fortunately
nonemptiness of G(·, R̂) is guaranteed by Implicit Optima (see Proposition 5),
making possible the construction of a two-way result in Theorem 1.11

4 Additional results and discussion

4.1 Incomplete preferences

Theorem 1 can be adapted relatively easily to accommodate incompleteness
of the primitive relation % and the rationalizing relation R. Propositions 1–2

11At a somewhat deeper level, nonemptiness of G(·, R̂) is needed because our theory of
rationalizable menu preferences parallels the theory of rationalizable choice functions (see
Section 4.3). In the latter environment nonemptiness of each set of maximal alternatives
is typically imposed as a background assumption, whereas we state the property explicitly.
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show that the properties of a preorder (namely, reflexivity and transitivity)
transfer between meal and menu preferences independently of completeness,
and hence the following condition is a suitable adaptation.

Condition 5 (Menu Preorder). The relation % is a preorder.

Corollary 3. A. If % is rationalized by a preorder, then Menu Preorder
holds. B. Menu Preorder implies that R̂ is a preorder.

As for Cover Dominance, scrutiny of the proof of Theorem 1 reveals that
a slightly different version of the axiom yields a valid characterization with
or without the completeness assumption.12

Condition 6 (Negative Cover Dominance). Let A,D ∈ D and let B ⊂ D
cover D. If for each B ∈ B we have B 6% A, then D 6% A.

When % is complete, we have both B 6% A⇐⇒ [A % B∧B 6% A]⇐⇒ A � B
and D 6% A ⇐⇒ [A % D ∧D 6% A] ⇐⇒ A � D; and so the two versions of
the condition are logically equivalent. In this case we favor Cover Dominance
since it is the more transparent and readily interpretable form of the axiom,
but adapting our result to the incomplete case calls for the alternative form.

Theorem 2. The relation % is rationalized by a preorder R with G(·,R)
nonempty if and only if Menu Preorder and Negative Cover Dominance hold.

The proof of this result requires only minor changes to that of Theorem 1,
and is therefore left to the reader.

4.2 Domain restrictions

Our main result characterizes rationalizability of menu preferences using the
Menu Order and Cover Dominance axioms. To establish sufficiency we have
shown that in the presence of Menu Order, Cover Dominance is equivalent to
Implicit Optima, which in turn implies Weak Cover Dominance. But Weak
Cover Dominance is not in general strong enough to yield Implicit Optima,
even with Menu Order. For this to be the case we need to assume that the
domain D is finite, as established by the following proposition.

Proposition 9. Let D be finite. Then Menu Order and Weak Cover Domi-
nance imply Implicit Optima.

12On the other hand, there is little prospect of relaxing transitivity, which is used heavily
in the proof of Theorem 1. For instance, transitivity is employed to establish the necessity
of Cover Dominance (in Proposition 3) and to show the faithful-reproduction property of
R̂ (in Proposition 6).
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Assume now that the domain D is both finite and closed under union.13

This takes us into a setting where rationalizability is captured by the axiom
originally proposed by Kreps [11, p. 565].

Condition 7 (Kreps Consistency). Let A,B ∈ D be such that A ∪ B ∈ D.
If A % B, then A ∼ A ∪B.

Proposition 10. If % is reflexive, then Weak Cover Dominance implies
Kreps Consistency.

For complete preferences, a straightforward implication of Kreps’s condition
is monotonicity with respect to set inclusion (also called [11, p. 566] “desire
for flexibility”).

Condition 8 (Monotonicity). Let A,B ∈ D. If A ⊂ B, then B % A.

Proposition 11. If % is complete, then Kreps Consistency implies Mono-
tonicity.

The latter fact is useful in proving the following converse to Proposition 10.

Proposition 12. Let D be finite and closed under union. Then Menu Order
and Kreps Consistency imply Weak Cover Dominance.

We can then state a version of our result that has Kreps’s (full-domain)
characterization [11, p. 566] as an immediate corollary.14

Theorem 3. Let D be finite and closed under union. Then % is rationalized
by an order R with G(·,R) nonempty if and only if Menu Order and Kreps
Consistency hold.

Corollary 4 (Kreps). Let X be finite and D = X \ {∅}. Then % is rational-
ized by an order if and only if Menu Order and Kreps Consistency hold.

Selected axioms and implications are summarized in Figure 3. When the
domain is both finite and closed under union, any of the four conditions
shown suffices (together with Menu Order) to characterize rationalizability.
If the domain is not closed under union, then Kreps Consistency no longer
suffices, and if D is not finite then Weak Cover Dominance too is inadequate.
For general domains, the desired axiomatization is supplied by either Cover

13A referee points out that when D is finite, the assumption that it is closed under union
is substantially less restrictive. This is because a rationalization R of menu preferences over
any finite D can be extended to the closure of D under union, and moreover nonemptiness
of G(·,R) will survive this extension. The same is not true for infinite D (cf. Example 5).

14Theorem 3 follows from Theorem 1 together with Propositions 4, 7, 9–10, and 12.
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Cover
Dominance

?Prop. 4A

% complete

6Prop. 4B

% order

Implicit
Optima

?Prop. 7

% transitive

6 Prop. 9

% order

D finite

Weak Cover
Dominance

?Prop. 10

% reflexive

6Prop. 12

% order
D finite,

⋃
-closed

Kreps
Consistency

Figure 3: Logical relationships between selected axioms. Each implication is
labeled with the relevant result (e.g., “Prop. 9”), the required assumptions
on menu preferences (e.g., “% [is an] order”), and any necessary restrictions
on the domain (e.g., “D [is] finite”).

Dominance or Implicit Optima. The latter condition employs an existential
quantifier and so can be seen as less attractive in terms of falsifiability. For
this reason we use Cover Dominance in the statement of Theorem 1.15

4.3 Analogy with rationalizability of choice functions

Several aspects of our investigation of rationalizable menu preferences have
counterparts in the theory of rationalizable choice functions. Here we briefly
outline the analogy between these two frameworks, assuming in the text for
expository purposes that the domain D is both finite and closed under union.

A choice function over D is a C : D→ X\{∅} such that ∀A ∈ D we have
C(A) ⊂ A. The members of C(A) are interpreted as the options chosen from
menu A. A rationalization of C is a relation R on X such that C = G(·,R).
Define the revealed meal-preference relation R̄ by xR̄y if and only if ∃A ∈ Dy

such that x ∈ C(A).
Recall that Weak Cover Dominance requires any menu weakly preferred

to the elements of a cover to be weakly preferred to the target of the cover.
The choice-theoretic counterpart of this requirement is a condition referred
to by Tyson [20, p. 955] as “extraction consistency”: Any alternative chosen
from the elements of a cover must be chosen (if available) from the target of
the cover.16 Extraction consistency is necessary and sufficient for C to admit

15For a penetrating analysis of the structure of axioms and falsifiability of the associated
theories, see Chambers et al. [4].

16Formally, for each D ∈ D and for any cover B ⊂ D of D, we have [
⋂

B∈B C(B)]∩D ⊂

14



a rationalization, just as Weak Cover Dominance is necessary and sufficient
for an order % to admit a rationalization. Indeed, extraction consistency
holds if and only if C = G(·, R̄), just as Weak Cover Dominance holds if and
only if %=%R̂.

Extraction consistency is equivalent to the conjunction of two conditions:
The first, “contraction consistency,” says that any meal chosen from a larger
menu must be chosen (if available) from a smaller menu, and is the analog
of Monotonicity. The second, “weak expansion consistency,” says that any
meal chosen from each menu in a collection must be chosen from the union
of the collection, and is the analog of the following menu-preference axiom.17

Condition 9 (Weak Union Dominance). Let A ∈ D and let B ⊂ D be such
that

⋃
B ∈ D. If for each B ∈ B we have A % B, then A %

⋃
B.

We can now state a counterpart to the equivalence result for choice functions.

Proposition 13. If D is closed under union and % is a preorder, then Weak
Cover Dominance is equivalent to the conjunction of Monotonicity and Weak
Union Dominance.

With regard to rationalizability, there are two notable differences between
the menu-preference and choice-function frameworks. The first concerns the
ordering properties of the rationalizing relation R. Transitivity of R is needed
for our main result, in contrast to the characterization of rationalizable choice
functions via extraction consistency. Moreover, in view of Propositions 1–2
we can ensure that R has the relevant ordering properties simply by imposing
these same properties on %, without modifying Cover Dominance. This
differs from the choice-function setting, where extraction consistency must
be strengthened to guarantee the existence of an order rationalization.18

The second difference concerns the existence of an R-greatest alternative
on each menu. In the menu-preference setting we deal with this issue directly,
proving (in Proposition 4A) that the Implicit Optima condition follows from
our axiomatization and including nonemptiness of G(·,R) in the statement
of our results. Indeed, it is to capture precisely this requirement that we use
Cover Dominance in Theorem 1 rather than Weak Cover Dominance (the
more direct analog of extraction consistency). In the choice-function setting,

C(D). This is equivalent to Richter’s [16, p. 33] “V-Axiom,” apparently the first statement
of the condition.

17Formally, contraction consistency requires that for each A,B ∈ D with A ⊂ B we have
C(B) ∩ A ⊂ C(A), while weak expansion consistency requires that for each B ⊂ D with⋃

B ∈ D we have
⋂

B∈B C(B) ⊂ C(
⋃
B). These conditions are, respectively, Sen’s [17,

p. 384] “Property α” and [18, p. 314] “Property γ.”
18Richter’s [15, p. 637] Congruence Axiom is the classical condition achieving this goal.
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on the other hand, nonemptiness of G(·,R) is ensured by nonemptiness of the
primitive C together with the definition of a rationalization, independently
of any axioms imposed.

Despite these differences, the theories of rationalizability for menu prefer-
ences and for choice functions have a considerable amount in common when
formulated to allow arbitrary datasets, and this analogy may prove fruitful
for future work in both areas.

A Proofs

Proof of Proposition 1. A. For all A ∈ D and ∀x ∈ A we have xRx, since R
is reflexive, and hence A %R A. Thus %R is reflexive.

B. For all A,B ∈ D we have

A 6%R B ⇐⇒¬∀y ∈ B ∃x ∈ A xRy

⇐⇒∃y ∈ B ∀x ∈ A ¬xRy

=⇒∃y ∈ B ∀x ∈ A yRx

=⇒∀x ∈ A ∃y ∈ B yRx

⇐⇒B %R A,

where the third implication uses the completeness of R. Thus %R is complete.
C. For all A,B,D ∈ D we have

A %R B %R D ⇐⇒[∀y ∈ B ∃x ∈ A xRy] ∧ [∀z ∈ D ∃w ∈ B wRz]

=⇒∀z ∈ D ∃w ∈ B ∃x ∈ A xRwRz

=⇒∀z ∈ D ∃x ∈ A xRz

⇐⇒A %R D,

where the second implication assigns y = w and the third uses the transitivity
of R. Thus %R is transitive.

Proof of Proposition 2. A. For all x ∈ X and ∀A ∈ Dx we have A % A, since
% is reflexive, and hence xR̂x. Thus R̂ is reflexive.

B. For all x, y ∈ X we have

¬xR̂y ⇐⇒¬∀A ∈ Dx ∃B ∈ Dy A % B

⇐⇒∃A ∈ Dx ∀B ∈ Dy ¬A % B

=⇒∃A ∈ Dx ∀B ∈ Dy B % A

=⇒∀B ∈ Dy ∃A ∈ Dx B % A

⇐⇒yR̂x,
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where the third implication uses the completeness of %. Thus R̂ is complete.
C. For all x, y, z ∈ X we have

xR̂yR̂z ⇐⇒[∀A ∈ Dx ∃B ∈ Dy A % B] ∧ [∀D ∈ Dy ∃E ∈ Dz D % E]

=⇒∀A ∈ Dx ∃B ∈ Dy ∃E ∈ Dz A % B % E

=⇒∀A ∈ Dx ∃E ∈ Dz A % E

⇐⇒xR̂z,

where the second implication assigns D = B and the third uses the transi-
tivity of %. Thus R̂ is transitive.

Proof of Proposition 3. For all A,D ∈ D and B ⊂ D that covers D, we have

∀B ∈ B A � B =⇒∀B ∈ B B 6% A

⇐⇒∀B ∈ B B 6%R A

⇐⇒∀B ∈ B ¬∀y ∈ A ∃x ∈ B xRy

⇐⇒∀B ∈ B ∃y ∈ A ∀x ∈ B ¬xRy

=⇒∃z ∈ A ∀B ∈ B ∃y ∈ A ∀x ∈ B [zRy ∧ ¬xRy]

=⇒∃z ∈ A ∀B ∈ B ∀x ∈ B ¬xRz

=⇒∃z ∈ A ∀x ∈ D ¬xRz

⇐⇒¬∀z ∈ A ∃x ∈ D xRz

⇐⇒D 6%R A

⇐⇒D 6% A

⇐⇒[A % D ∧D 6% A]

⇐⇒A � D,

where the fifth implication in the chain follows from G(A,R) 6= ∅, the sixth
from the transitivity of R, the seventh from the fact that B covers D, and
the eleventh from the completeness of R. Hence Cover Dominance holds.

Proof of Proposition 4. A. Suppose that Implicit Optima fails, in which case
∃A ∈ D such that ∀x ∈ A we can find a Bx ∈ Dx with Bx 6% A. Since % is
complete we have A % Bx and thus A � Bx. We have also A ⊂

⋃
x∈ABx,

and so Cover Dominance implies that A � A, a contradiction.
B. For all A,D ∈ D and B ⊂ D that covers D, we have

∀B ∈ B A � B =⇒∃x ∈ D ∃Bx ∈ B ∩Dx A � Bx % D

⇐⇒∃x ∈ D ∃Bx ∈ B ∩Dx [A % Bx % D ∧Bx 6% A]

=⇒D 6% A

⇐⇒[A % D ∧D 6% A]

⇐⇒A � D,
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where the first implication follows from Implicit Optima, the third from the
transitivity of %, and the fourth from the completeness of %. Hence Cover
Dominance holds.

Proof of Proposition 5. We have that

∀A ∈ D ∃x ∈ A ∀B ∈ Dx B % A

=⇒∀A ∈ D ∃x ∈ A ∀B ∈ Dx ∀y ∈ A ∃E ∈ Dy B % E

⇐⇒∀A ∈ D ∃x ∈ A ∀y ∈ A ∀B ∈ Dx ∃E ∈ Dy B % E

⇐⇒∀A ∈ D ∃x ∈ A ∀y ∈ A xR̂y

⇐⇒∀A ∈ D G(A, R̂) 6= ∅,

where the initial assertion is Implicit Optima. Hence G(·, R̂) is nonempty.

Proof of Proposition 6. For all A,B ∈ D we have

A % B ⇐⇒∃x ∈ A ∀D ∈ Dx D % A % B

=⇒∃x ∈ A ∀D ∈ Dx D % B

⇐⇒∀y ∈ B ∃x ∈ A ∀D ∈ Dx D % B

=⇒∀y ∈ B ∃x ∈ A xR̂y

⇐⇒A %R̂ B,

where the first implication follows from Implicit Optima and the second from
the transitivity of %. Hence we have %⊂%R̂.

Proof of Proposition 7. For all A,D ∈ D and B ⊂ D that covers D, we have

∀B ∈ B A % B =⇒∃x ∈ D ∃Bx ∈ B ∩Dx A % Bx % D

=⇒A % D,

where the first implication follows from Implicit Optima and the second from
the transitivity of %. Hence Weak Cover Dominance holds.

Proof of Proposition 8. For all A,B ∈ D we have

A %R̂ B ⇐⇒∀y ∈ B ∃x ∈ A xR̂y

⇐⇒∀y ∈ B ∃x ∈ A ∀D ∈ Dx ∃Ey ∈ Dy D % Ey

=⇒∀y ∈ B ∃Ey ∈ Dy A % Ey

=⇒A % B,

where the fourth implication follows from Weak Cover Dominance. Hence
we have %R̂⊂%.
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Proof of Theorem 1. If % is rationalized by an order R with G(·,R) non-
empty, then Menu Order holds by Corollary 1 and Cover Dominance holds
by Proposition 3. Conversely, if Menu Order and Cover Dominance hold then
Implicit Optima holds by Proposition 4A, Weak Cover Dominance holds by
Proposition 7, R̂ rationalizes % by Propositions 6 and 8, R̂ is an order by
Corollary 2, and G(·, R̂) is nonempty by Proposition 5.

Proof of Proposition 9. Suppose Implicit Optima fails, in which case ∃A ∈ D
such that ∀x ∈ A we can find a Bx ∈ Dx with Bx 6% A. Since D is finite,
the set B = {Bx : x ∈ A} ⊂ D is also finite. Moreover, since % is an order,
∃y ∈ A such that ∀x ∈ A we have By % Bx. Observing that A ⊂

⋃
B, Weak

Cover Dominance now implies that By % A, contradicting By 6% A.

Proof of Proposition 10. Let A,B ∈ D be such that A ∪B ∈ D and A % B.
We have A % A since % is reflexive, and therefore A % A∪B by Weak Cover
Dominance. Moreover, we have A∪B % A∪B ⊃ A since % is reflexive, and
it follows that A∪B % A by Weak Cover Dominance. Thus A ∼ A∪B, and
Kreps Consistency holds.

Proof of Proposition 11. Given A,B ∈ D with A ⊂ B, suppose that B 6% A.
Then A % B since % is complete and A ∪ B = B ∈ D since A ⊂ B, so that
A ∼ A ∪B = B by Kreps Consistency. But this contradicts B 6% A.

Proof of Proposition 12. Given A,D ∈ D and B ⊂ D that covers D, suppose
that ∀B ∈ B we have A % B. Since D is finite, B ⊂ D is finite and can be
enumerated as B = {B1, . . . , Bn}. For each k ≤ n, write Ek :=

⋃k
i=1Bi and

note that both Ek ∈ D and A∪Ek ∈ D since D is closed under union. Since
A % B1, we have A ∼ A∪B1 = A∪E1 by Kreps Consistency. [Inductive step
begins.] Suppose that for some k < n we have A ∼ A ∪ Ek. Since A % Bk+1

and % is transitive, it follows that A ∪ Ek % Bk+1. But then

A ∼ A ∪ Ek ∼ [A ∪ Ek] ∪Bk+1 = A ∪ Ek+1,

using Kreps Consistency. [Inductive step ends.] By induction we can conclude
that A ∼ A ∪ En. Since D ⊂

⋃
B = En ⊂ A ∪ En and % is complete, we

have also A∪En % D by Proposition 11, and so A % D since % is transitive.
Hence Weak Cover Dominance holds.

Proof of Proposition 13. If Weak Cover Dominance holds then Weak Union
Dominance is immediate. Moreover, ∀A,B ∈ D if A ⊂ B then since % is
reflexive we have B % B and thus B % A by Weak Cover Dominance. Hence
Monotonicity holds.

19



For the converse, suppose Monotonicity and Weak Union Dominance hold
and take any A,D ∈ D and B ⊂ D that covers D. Since D is closed under
union, we have

⋃
B ∈ D. If for each B ∈ B we have A % B, then A %

⋃
B

by Weak Union Dominance, and since D ⊂
⋃
B we have

⋃
B % D by

Monotonicity. But then A %
⋃

B % D, and so A % D since % is transitive.
Hence Weak Cover Dominance holds.
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