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This paper provides insights into agricultural commodity markets in terms of re-

turn and volatility spillover effects. To replicate a broad agricultural market, grain

products, softs and oilseeds are taken into account, including daily spot prices for

sugar, wheat, soybeans and coffee over the period 2008-2016. The study shows the

importance of both asymmetry and risk in spot return’s volatility and spot returns

itself, respectively. During the study the VAR(1)-GARCH-ABEKK(1,1)-in-mean

model emerged as the best model to capture the special characteristics of spot mar-

ket returns. The study provides evidence of return and volatility linkages between

agricultural commodities. Based on the model results optimal dynamic portfolio

weights and dynamic hedge ratios are calculated.

Keywords: Agricultural commodity spot markets, VAR-ABEKK-in-mean, optimal asset allo-

cation, optimal hedge ratios

1 Introduction

In agricultural commodity markets one can observe sharp price changes and an increased volatil-

ity in recent years. Sumner (2009) and Headey (2011) reported that prices for the most important

products tripled between 2005 and 2008 and reached unprecedented price levels price levels. An-

other example for turmoils in agricultural markets is the food crisis in 2011. Price movements

on agricultural markets are due to shifts in demand and supply. On the demand side, popula-

tion growth, increasing affluence and the use of grains as fuel exert have influences on prices.



According to The State of Agricultural Commodity Markets (2015), the world’s population will

increase by 34 % to 9.1 billion people up to 2050. Since not only population but also urbanization

will increase, people will become richer in the upcoming years and therefore a shift in demand

for agricultural products is expected. Headey (2011) determined the demand for biofuels as an

entirely new demand source, which also affects food prices. On the supply side, geopolitical and

climate-related changes are decisive. For example, heat waves are responsible for failure of crops

and result in excess demand. Additionally, other markets influence the prices of agricultural

commodity markets, e.g. energy markets. High oil prices affect food prices in both direct and

indirect ways, as found in the literature (see Onour and Sergi (2016) or Birur et al. (2008)).

On the one hand, however, much is known about the linkage of agricultural and non agricul-

tural markets, on the other hand, it is crucial to know exactly how agricultural markets are

interacting with each other, particularly with regard to "feeding the world" and "food crisis".

This paper amplifies the literature by investigating the internal return and volatility structure

of major agricultural commodities after the financial crisis with a special spot on the influence

of uncertainty (in terms of volatility) on spot price returns. This study provides a return and

volatility analysis for spot prices of four major agricultural products: wheat, sugar, soybeans and

coffee. Based on a multivariate model for conditional heteroscedasticity, optimal hedge ratios

and portfolio weights are calculated as well. To examine how uncertainty affects agricultural

spot prices, an unrestricted full VAR-ABEKK-in-mean model is appropriate.

The paper is structured as follows: Section 2 gives a review of recent literature relating to agri-

cultural commodity markets. Section 3 describes the data and model used for this approach.

Section 4 shows and handles the empirical findings, followed by a conclusion.

2 Literature Review

The literature provides a great amount of investigations of the interrelationship of agricultural,

energy or precious commodities and stocks. Kang et al. (2017) studied dynamic spillover effects

such as crude oil, gold, silver and agricultural commodities (corn, wheat and rice) for a period

from 2002 to 2016 by using a DECO-GARCH model1 and spillover index. They found that

agricultural commodities are net receivers of spillover effects and concluded that return and

1 DECO stands for dynamic equicorrelation and is a special case of the DCC (dynamic conditional correlation)
model. The model is able to overcome the limitation of DCC, namely the computational and presentational
disadvantages.
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volatility spillovers in these markets are more distinctive in times of financial crises.

Among others, Mensi et al. (2014) explained the dynamics of return and volatility across energy

and cereal spot market returns between 2000 and 2013. They showed with both a VAR-DCC-

GARCH model and a VAR-BEKK-GARCH model, how WTI, Brent, gasoline, heating oil, bar-

ley, corn, sorghum and wheat are interrelated. In their analysis, they built pairs of cereal markets

and energy markets in a bivariate context. Similar to Kang et al. (2017) they found a rising

tendency of dynamic conditional correlation during the financial crisis in 2007 for all commodity

returns (except gasoline and sorghum). Onour and Sergi (2016) investigated volatility spillover

effects between wheat, corn, crude oil and fertilizers with monthly data (1992 to 2011). With a

MGARCH-VECH specification the authors pointed out that firstly corn price volatility transmits

to wheat price volatility and secondly the volatility of the investigated agricultural commodities

are both influenced by crude oil. Al-Maadid et al. (2016) also found empirical significant link-

ages in terms of return and volatility between agricultural commodities (corn, soybeans, coffee,

cocoa, sugar and wheat) and energy (crude oil and ethanol) in a bivariate VAR-GARCH-BEKK

framework. They also controlled for parameter shifts by including dummy variables and, based

on this specification, observed that disturbances in the world economy affect the linkage between

agricultural and energy markets.

Baldi et al. (2016) considered agricultural commodities and stock markets. They used weekly

data in a wide range from 1970 to 2015 of the S&P500 Index, S&P Agricultural Index, Grain

Index and Corn Index. Their study resulted in an increasing connection of these markets in

terms of increasing volatility spillovers after the crisis in 2008.

Common to all introduced articels is their lack of investigation of the pure agricultural com-

modity market, and their focus on the interrelation of agricultural commodities and other asset

classes. Even less authors deal with the very relationship of agricultural commodity markets.

Lahiani et al. (2013) investigated spillover effects within four major agricultural commodities

(wheat, cotton, corn and sugar). Their main findings included a significant return and volatil-

ity spillover across the markets for wheat, cotton, sugar and corn. The authors devided the

commodities into three levels of news-sensitiveness and concluded that sugar is the most news-

sensitive. They also highlighted that the corn transmits its variance shock to all other explored

markets. Hernandez et al. (2014) discovered the volatility dynamics for corn, wheat and soybeans

across major agricultural exchanges in the US, Europe and Asia. They focused on different clos-

ing times of the exchanges and concluded a high interrelation between the markets. Moreover,
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the exchange in the United States plays a major role in terms of spillover effects on the other

markets.

With a SVAR model allowing for GARCH-in-mean errors, Beckmann and Czudaj (2014) ex-

amined futures markets of corn, cotton and soft red wheat from 2000 to 2012. They observed

(short-run) volatility spillover effects in each market. Nevertheless, they recognized an influence

of volatility of returns of corn futures on returns itself, of cotton and wheat futures. According

to the authors, this is an indication for potential speculation in one market, affecting agricultural

markets. Also Hernandez et al. (2014) engaged in exploring volatility transmissions in major

agricultural futures markets in the US, Europe and Asia. They examined the interrelationships

of futures markets of corn, wheat and soybeans2 . To generate a hypothesis, they used daily

closing data of commodity futures contracts traded at each market for a time period from 2005

until 2009. As a special case, they dealt with asynchronous trading times and used different

multivariate GARCH models for their investigation3 . Their work provides interesting insights

into the dynamics of different markets of the same commodity. They found that the United

States play a major role in terms of volatility spillover effects and concluded an overall impor-

tant status of the USA in global agricultural markets. From a structural point of view, Chen and

Weng (2017) also explored dynamic links between markets of soybeans, wheat and corn in the

USA and China. They argued with the importance of the consideration of an asymmetric error

distribution and therefore choose a skew Student t distribution as the underlying distribution.

They estimated a VAR-BEKK-GARCH model and considered daily futures prices from 2005 to

2014. The results are in line with Hernandez et al. (2014), consolidating the assumption that

the US market is taking lead.

Etienne et al. (2016) examined volatility spillover effects and dynamic conditional correlations

between corn, soybean meal and DDGS4 between 2000 and 2016 with weekly data and a trivari-

ate VECM-MGARCH model5 . They detected high interrelationships between the markets in

price and volatility dynamics. Especially, they found a stronger dynamic correlation between

DDGS and corn between 2006 and 2012 which is consistent with the literature. Furthermore,

they uncovered strong unidirectional spillovers from corn and soybean meal prices into DDGS,

2 The relation of the commodities, e.g. wheat, between USA, Europe and Asia. Finally, three trivariate models
for three commodities and three markets have been estimated.

3 A diagonal BEKK-GARCH model, a full BEKK-GARCH model, a Constant Conditional Correlation (CCC)
model and a Dynamic Conditional Correlation (DCC) model. Furthermore, they assumed in each case a
multivariate Student t distribution of the error terms.

4 DDGS stands for distiller dried grains with solubles of 10 % moisture and is a co-product of ethanol productions
5 They estimated both a DCC-GARCH and a BEKK-GARCH specification
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whereas they observed both-sided volatility spillovers between corn and soybean meal.

However, the existing literature mainly take into consideration the agricultural futures markets

and volatility spillover between different assets and agricultural commodities. With this paper,

I want to contribute by analyzing four major agricultural spot prices between 2008 and 2016

with an asymmetric VAR-GARCH-BEKK-in-mean specification, which is flexible enough to deal

with spillover effects in returns and volatility. Moreover, the model specification measures the

variance-covariance matrix directly and it is also possible to measure how risk affects spot price

returns in agricultural markets.

3 Data and Methodology

3.1 Data

The markets of interest are sugar, wheat, soybeans and coffee. The choice of these markets is

driven by the aim to represent the whole width of major agricultural commodity classifications.

For example, Thomson Reuters categorize agriculture commodities in grains (containing wheat),

softs (sugar and coffee) and oilseeds (soybeans)6 . In this case the luxury food coffee will be

considered additionally to the basic foods sugar corn and soybeans. Adding the luxury food de-

termines whether there is a potential relationship between the prices of basic foods and luxury

foods.

For the spot market analysis, I use S&P-GSCI commodity indices, which are widely used bench-

marks. All data are denoted in US Dollar to avoid exchange rate effects. The data are obtained

from Thomson Reuters Datastream. Table 1 gives an overview of the data and data source.

commodity Datastream RIC period observations
S&P GSCI Sugar spot price GSSBSPT 01.01.2008 - 21.12.16 2348
S&P GSCI Wheat spot price SGWTSPT 01.01.2008 - 21.12.16 2348
S&P GSCI Soybeansnspot price GSSOSPT 01.01.2008 - 21.12.16 2348
S&P GSCI Coffee spot price GSKCSPT 01.01.2008 - 21.12.16 2348

Table 1: Overview data

To guarantee stationarity (see ADF test in table 3) in the following analysis, each return series

6 Additionally there are biofuels (e.g. ethanol and biodiesel), livestock and dairy, fertilizer and forestry

5



is computed as log-return rt as follows

rt = ln
( Pt

Pt−1

)

· 100 (1)

where Pt denotes the closing price at time t.

Figure 1 plots the spot prices and log returns of sugar, wheat, soybeans and coffee, respectively.
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Figure 1: Spot prices and log returns of sugar, wheat, soybeans and coffee

A first look suggests that the commodities behave differently but they all had a strong increase

during 2011. Also, they seem to be quite volatile (particularly sugar and wheat), which is

confirmed by the standard deviation in table 2, summarizing the descriptive statistics. As

expected, the mean of each series is close to zero and all commodity returns exhibit a positive

excess kurtosis. The log returns of sugar and soybeans are negatively skewed, whereas the

relative price changes of wheat and coffee are positively skewed.

Moreover, agricultural commodities manifest the typical characteristics of financial time series.

Table 3 shows well-established time series tests. The Ljung-Box statistics indicate no serial

correlation in returns (except for wheat) but dependencies in the second moment. The ARCH-
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Sugar Wheat Soybeans Coffee

mean 0.025 -0.033 -0.008 0.0003
std. deviation 2.118 2.082 1.589 1.990
exc. kurtosis 2.346 3.085 2.191 1.867
skewness -0.273 0.149 -0.244 0.069
min -12.367 -9.795 -7.338 -11.249
max 8.557 15.597 6.432 10.853

Table 2: Descriptive Statistics

univariate time series tests
Jarque Bera ADF LB(6) LB(12) LB2(6) LB2(12) ARCH-LM

sugar 570.01 -12.31 9.98 14.17 159.49 195.47 118.52
(0.000) (0.000) (0.125) (0.194) (0.000) (0.000) (0.000)

wheat 942.81 -13.04 12.75 24.57 217.59 301.59 148.38
(0.000) (0.000) (0.047) (0.017) (0.000) (0.000) (0.000)

soybeans 494.90 -12.68 7.29 10.58 320.56 588.49 252.42
(0.000) (0.000) (0.295) (0.565) (0.000) (0.000) (0.000)

coffee 344.33 -13.13 10.26 15.23 43.36 137.70 89.96
(0.000) (0.000) (0.114) (0.229) (0.000) (0.000) (0.000)

Table 3: Preliminary tests for the four return series. The Jarque Bera statistic tests normality
of the data. ADF is the Augmented Dickey Fuller test for stationarity and LB stands
for Ljung-Box test for autocorrelation. LB2 tests autocorrelation in squared returns.
Values in parenthesis are p values.

LM test of R. Engle (1982) states conditional heteroscedasticity in the data.

3.2 Methodology

Univariate GARCH models

The financial literature provides a huge amount of studies about ARCH and GARCH models

since its introduction by R. Engle (1982) and Bollerslev (1986), respectively. These models have

become a very important tool in the analysis of behaviour of time series volatility. For this

paper, a univariate AR(1)-GARCH(1,1)-in-mean model and a univariate AR(1)-EGARCH(1,1)-

in-mean model has been estimated.

On the one hand, the conditional mean is described by an autoregressive process. One could

argue that the return at time t depends not only on an autoregressive part, but on its standard

deviation (risk) at time t, as well. To consider that assumption, R. F. Engle et al. (1987)
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introduced the GARCH-in-mean model.

rt = µ+ φ · rt−1 + ψ · σt + εt, εt|It−1 ∼ (0, σ2t ) (2)

εt = νt · σt, νt ∼ (0, 1) (3)

σ2t = w + a · ε2t−1 + b · σ2t−1 (4)

rt is the return at time t and φ is an autoregressive parameter, which measures the influence of

the own past returns. The parameter ψ is the risk premium, an investor wants to be compensated

for. εt is a random variable with εt|It−1 ∼ (0, σ2t ) and can be interpreted as a market shock or

unexpected return. It is the information set, which contains all information available at time t.

Equation 4 is the conditional variance with w as a constant and a measures the ARCH effect,

that is the influence of a market shock on the conditional volatility7 , whereas b measures the

GARCH effect of the time series and can be interpreted as the persistence of the conditional

volatility8 .

Black (1976) was the first one to recognize the negative correlation of stock returns and stock

stock returns’ volatility. This phenomenon is called leverage effect. An implication of the leverage

effect is that decreasing stock prices tend to higher volatility, whereas increasing stock prices tend

to a lower volatility. In other words, volatility reacts asymmetric to returns. Christie (1982)

as well as Nelson (1991) already noted this result and described, given a similar magnitude,

the different impacts of positive and negative returns. In time series where the leverage effect is

observable, the GARCH model is not appropriate because it captures only a symmetric reaction.

Nelson (1991) published an approach capable of handling the asymmetry. For this purpose, I

use the definition of an EGARCH model given in (Xekalaki & Degiannakis, 2010, p. 43)

ln(σ2t ) = w + a ·
( |εt−1|

σt−1

− E(
|εt−1|

σt−1

)
)

+ c ·
εt−1

σt−1

+ b · ln(σ2t−1) (5)

Equation 5 describes another specification of the conditional variance, which can be substituted

in (4). The parameter c measures the magnitude of asymmetry. The expectation of the stan-

dardized error term, E( |εt−1|
σt−1

), depends on the assumed underlying distribution. For a normal

distribution, the expectation E(·) turns to
√

2

π
.

7 Relatively high values correspond with high sensibility to market movements.
8 Relatively high values can be interpreted as a slow decline of volatility after a shock.
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Multivariate GARCH models

To detect spillover effects in returns and volatility of financial time series, multivariate GARCH

models are appropriate. In this study, I use the VAR(1)-GARCH-BEKK(1,1)-in-mean specifi-

cation9

rt = µ+Φrt−1 +Ψ
√

diag(Ht)+ εt (6)

εt|It−1 ∼ (0,Ht) (7)

Ht = CC ′ +A′εt−1εt−1
′A+B′Ht−1B (8)

Equation (6) describes the conditional mean. Here, rt is a (px1) vector of returns at time t. µ

is a (px1) vector with constants and Φ with φij ∈ Φ is a (pxp) matrix, which measures return

spillover effects. φii measures the influence of the own past of each return series. The off-diagonal

elements φij , i 6= j can be interpreted as the spillover effects in returns; this means if return

of series i at time t is influenced by the return of series j at time t-1.

rt =



















r1,t

r2,t

r3,t

r4,t



















, µ =



















µ1

µ2

µ3

µ4



















, Φ =



















φ11 φ12 φ13 φ14

φ21 φ22 φ23 φ24

φ31 φ32 φ33 φ34

φ41 φ42 φ43 φ44



















, Ψ =



















ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34

ψ41 ψ42 ψ43 ψ44



















√

diag(Ht) =



















√

h11,t
√

h22,t
√

h33,t
√

h44,t



















With equation (8) the conditional variance can be computed. Ht is the conditional variance-

covariance matrix at time t with hij ∈ Ht. The diagonal elements are the conditional variances

of each series. The off-diagonal elements are covariances between series i and series j. aij ∈ A

and bij ∈ B are (pxp) parameter matrices. The elements of both matrices denote cross market

effects for i 6= j and own effects for i = j. C is lower triangular matrix with constants.

To deal with asymmetry Grier et al. (2004) introduced a GARCH-BEKK model with consider-

9 BEKK stands for the names of the developers of the model, namely Yoshi Baba, Robert Engle, Dennis Kraft
and Ken Kroner). The model itself was published by R. F. Engle and Kroner (1995).

9



ation of asymmetry. The so-called GARCH-ABEKK model can be written as follows

Ht = CC ′ +A′εt−1εt−1
′A+B′Ht−1B +D′ζt−1ζt−1

′D (9)

where G is a (pxp) parameter matrix, which measures the effects of asymmetry. ζt is a (px1)

vector and corresponds to εt if εt is negative or zero otherwise.

Ht =



















h11,t h12,t h13,t h14,t

h21,t h22,t h23,t h24,t

h31,t h32,t h33,t h34,t

h41,t h42,t h43,t h44,t



















, C =



















c11 0 0 0

c21 c22 0 0

c31 c32 c33 0

c41 c42 c43 c44



















, A =



















a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



















B =



















b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44



















, D =



















d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44



















, ζt =



















ζ1,t

ζ2,t

ζ3,t

ζ4,t



















Estimation and numerical procedure

To estimate all models, I use the maximum likelihood approach. Assuming normal error terms,

the (conditional) log likelihood function is maximized so that the probability to achieve the true

parameters is maximized. The multivariate normal distribution has the form

L(x) =
1

√

(2π)p · det(H)
· exp(−0.5 · (x− µ)′H−1(x− µ)) (10)

Assuming that the error vector has zero mean and a time-varying variance-covariance the (condi-

tional) log likelihood function of the joint distribution L is the sum of all log likelihood functions

of (conditional) distributions.

L(θ) =

T
∑

t=1

Lt(θ), Lt(θ) = −0.5 · p · log(2π)− 0.5 · log(det(Ht))− 0.5 · ε′tH
−1

t εt (11)

θ represents the parameter vector, which contains all parameters to be estimated. T is the

sample size, p is the dimension of the system and equal to the number of time series.

Because of both, the large number of parameters to estimate and the highly non-linear structure
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of the Log-Likelihood function, the choice of initial values is elementary. To find the optimal

values, which maximize the Log-Likelihood function, I carry out a two-step estimation proce-

dure. To reach better starting values, in a first step I use the Nelder-Mead algorithm, which is

a gradient-less method. For the first estimation, I take the estimated parameters from the uni-

variate cases as initial values in the main diagonals in the variance equation. All other elements

are set to zero.

For the main optimization process, I use the estimates from step one as starting values for

the second estimation, where the BHHH algorithm is applied. All models are programmed in

the statistical software R. Within the program code, I use the maxLik package provided by

Henningsten and Toomet (2011) to compute the numerical parts.

4 Empirical Findings and Discussion

4.1 Interdependencies in agricultural markets

As a first step, both an univariate AR(1)-GARCH(1,1)-in-mean model (Panel A in table 4) and

an AR(1)-EGARCH(1,1)-in-mean model (Panel B in table 4) have been estimated. Looking

at each univariate return series, both own past and own volatility do not play a role when

modelling the conditional mean. Except for the negative autoregressive parameter for wheat (-

0.0392) neither the autoregressive part nor the in-mean part is significantly different from zero.

Conditional variance offers a different perspective in both model specifications. The influence

of a market shock on the conditional volatility (measured in the parameter a) is statistically

highly significant, whereas the coefficients vary in magnitude. The conditional volatility of

soybeans is most news-sensitive (a = 0.1429), followed by wheat (a = 0.0143) compared to the

other commodities. Nevertheless, all parameters show a positive sign indicating that positive

(negative) market shocks influence conditional volatility in a positive (negative) way.

The coefficient b is close to one in each case, indicating a relatively high persistence after a

volatility shock. That means when one commodity is hit by a volatility shock, conditional

volatility decays slowly, concluding that each commodity holds typical time series characteristics.

It is a common fact that the leverage effect in stock returns is negative (expressed as negative

values for γ). This is not true for agricultural commodities. For the spot returns of sugar, wheat

and coffee, the estimates are significantly different from zero and positive.

To check whether the models capture the data characteristics in an appropriate manner, the

11



residual diagnostics of the standardized residuals10 in table 4 indicate an acceptable fit. The

unconditional first and second moment of the standardized residual is zero and one, respectively.

Furthermore, no time series show significant autocorrelation (see Ljung-Box statistics) and no

conditional heteroscedasticity (see Lagrange-Multiplier test for ARCH effects).

10calculated as εt
σt
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Panel A: AR(1)-GARCH(1,1)-in-mean Panel B: AR(1)-EGARCH(1,1)-in-mean
cond. mean rt = µ+ φ · rt−1 + ψ · σt + εt cond. mean rt = µ+ φ · rt−1 + ψ · σt + εt

sugar wheat soybeans coffee sugar wheat soybeans coffee
µ -0.1523 -0.1550 0.1175 0.0097 -0.1259 -0.1612 0.1304 0.3628

(0.204) (0.227) (0.271) (0.976) (0.299) (0.182) (0.205) (0.224)
φ 0.0244 -0.0340 0.0161 -0.0276 0.022 -0.0392 0.0169 -0.0280

(0.254) (0.110) (0.486) (0.197) (0.287) (0.064) (0.4347) (0.186)
ψ 0.0825 0.0505 -0.079 -0.0155 0.073 0.0537 -0.0785 -0.1846

(0.217) (0.487) (0.414) (0.927) (0.288) (0.432) (0.301) 0.238
cond. variance σ2t = ω + a · ε2t−1

+ b · σ2t−1
cond. variance ln(σ2

t
) = w + a ·

( |εt−1|

σt−1

− E(
|εt−1|

σt−1

)
)

+ c ·

εt−1

σt−1

+ b · ln(σ2

t−1
)

ω 0.0050 0.0225 0.0282 0.0817 0.0036 0.0143 0.0165 0.0423

(0.074) (0.000) (0.000) (0.000) (0.013) (0.004) (0.00) (0.00)
a 0.0208 0.0512 0.0617 0.0315 0.0410 0.117 0.1429 0.0746

(0.000) (0.000) (0.000) (0.000) (0.00) (0.00) (0.00) (0.00)
b 0.9778 0.9446 0.9273 0.9478 0.9983 0.9919 0.9869 0.9712

(0.000) (0.000) (0.000) (0.000) (0.00) (0.00) (0.00) (0.00)
γ 0.0089 0.0254 -0.0026 0.0404

(0.087) (0.01) (0.80) (0.00)

Log Likelihood -4903.09 -4862.20 -4215.04 -4895.43 -4903.42 -4857.62 -4215.01 -4891.03
Residual diagnostic
mean 0.004580 0.012427 -0.003049 0.010901 0.000523 0.013522 -0.011762 -0.001548
sd 0.999931 0.999666 1.000548 1.000468 1.000027 0.999879 0.999918 0.999989
LB(12) 0.043201 0.030213 0.216261 0.380479 0.012411 0.006732 0.233851 0.107183

(0.835) (0.862) (0.642) (0.537) (0.911) (0.935) (0.629) (0.743)
ARCH LM 10.64369 6.452859 13.15504 13.84739 12.69984 5.892210 14.17322 12.361450

(0.560) (0.892) (0.359) (0.311) (0.391) (0.921) (0.90) (0.417)

Table 4: Estimation results of an AR(1)-GARCH(1,1)-in-mean model (Panel A) and AR(1)-EGARCH(1,1)-in-mean model (Panel B). Values in
parenthesis are p values.
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For a deeper insight into the interdependencies of returns and volatility of agricultural com-

modities, the use of multivariate GARCH models is appropriate. To check return spillover

effects, the conditional mean equation corresponds to a VAR construction. To find the optimal

lag length, I calculated three information criteria (AIC, HQ, SC). Each criterion suggests a

VAR(1) model for the conditional mean.

For the variance equation, I tested several specifications, beginning with the simplest form, a

BEKK representation. Both with and without consideration of asymmetry in the variance equa-

tion all models behave poorly when examining residual diagnostics. So far, the best model is a

VAR(1)-ABEKK(1,1)-in-mean model. Table 5 demonstrates the estimation results.

Starting with analyzing the results of the conditional mean equation, keep in mind that the

columns of all matrices in table 5 represent the markets in the following chronological order:

sugar, wheat, soybeans, coffee. The entry ij can be translated as the influence of commodity

j on commodity i. For example, we assumed i = 2 and j = 3 is the influence of soybeans on

wheat.

I detect return spillover effects (matrix Φ) from wheat (-0.0395) and soybeans (0.0511) to sugar

in a unidirectional way. This means, that higher returns in the wheat (soybeans) spot market

lead to lowering (increasing) the returns in the sugar spot market. Furthermore, return spillovers

from coffee (0.0334) to wheat and from soybeans to coffee (0.0616) are observed. Soybeans ex-

hibit the highest return spillover effects (0.0511, 0.0616) compared to the other commodities

and have in both cases a positive influence. By contrast, soybeans are not affected by other

commodities. Sugar returns are not only affected by price changes in wheat and soybeans, but

also indirectly by coffee due to the fact that wheat is influenced by coffee and influences sugar.

Taking it together, sugar reacts very sensitive to return changes in other markets.

Matrix Ψ considers the effects of risk (measured as conditional standard deviation) on returns.

Surprisingly, risk does not play an important role in describing commodity’s return (in terms

of significant influence). However, soybeans are most affected by risk. On the one hand, own

past conditional volatility influences the return series negatively (-0.2318). Higher conditional

volatility in the market for soybeans leads to decreasing soybeans returns. On the other hand,

rising conditional volatility of wheat results in increasing returns of soybeans (0.2217). Lastly,

conditional volatility of sugar affects coffee (0.1961). The spillover effects behave as expected,
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conditional mean rt = µ+Φrt−1 +Ψ
√

diag(Ht)+ εt

µ =

























−0.2712
(0.249)
−0.1593
(0.410)
0.0831
(0.746)
−0.2689
(0.386)

























Φ =

























0.0149 −0.0395 0.0511 0.0201
(0.492) (0.091) (0.080) (0.288)
0.0234 −0.0297 −0.0065 0.0334
(0.237) (0.204) (0.820) (0.077)
0.0193 −0.0124 0.0227 0.0221
(0.171) (0.452) (0.344) (0.122)
0.0266 0.0100 0.0616 −0.0432
(0.166) (0.652) (0.032) (0.047)

























Ψ =

























0.0364 0.0040 0.1234 0.0095
(0.798) (0.977) (0.326) (0.938)
−0.0286 0.1145 −0.0596 0.0068
(0.786) (0.445) (0.654) (0.943)
−0.0599 0.2217 −0.2318 −0.0291
(0.542) (0.035) (0.032) (0.811)
0.1961 −0.0397 −0.0491 0.0070
(0.088) (0.764) (0.679) (0.968)

























conditional variance Ht = CC ′ +A′εt−1ε
′

t−1
A+B′Ht−1B +D′ζt−1ζ

′

t−1
D

C =

























0.1162
(0.000)

−0.1079 0.1261
(0.060) (0.004)
0.0329 0.0393 0.1939
(0.564) (0.568) (0.000)
0.1867 0.1619 −0.0083 0.0004
(0.000) (0.003) (0.915) (0.997)

























A =

























0.0812 0.0806 0.0204 0.0069
(0.000) (0.000) (0.122) (0.587)

−0.0382 0.1948 −0.0303 −0.0123
(0.028) (0.000) (0.038) (0.464)
0.040 −0.0269 0.2022 0.0328
(0.055) (0.292) (0.000) (0.104)
0.0169 0.0003 −0.0002 0.1323
(0.166) (0.985) (0.988) (0.000)

























B =

























0.9879 −0.0027 −0.0051 −0.0026
(0.000) (0.549) (0.050) (0.279)
0.0162 0.9735 0.0166 0.0070
(0.005) (0.000) (0.006) (0.178)

−0.0142 −0.0022 0.9529 −0.0085
(0.031) (0.793) (0.000) (0.170)

−0.0058 −0.0046 −0.0013 0.9816
(0.032) (0.500) (0.782) (0.000)

























D =

























−0.1575 0.0266 −0.0518 −0.0232
(0.000) (0.434) (0.029) (0.239)
0.1384 0.1796 0.0524 0.0811
(0.000) (0.000) (0.071) (0.003)
0.0242 0.0699 0.1663 −0.0007
(0.420) (0.065) (0.000) (0.983)
0.0322 −0.0641 0.0198 −0.045
(0.165) (0.0899) (0.541) (0.146)

























Log Likelihood -18232.05

Table 5: Estimation result of a VAR(1)-ABEKK(1,1)-in-mean model for agricultural spot re-
turns. The values in parenthesis are p values

that is higher conditional standard deviation leads to higher commodity returns.

All in all, returns of the chosen commodities seem not to be much affected by each other, but
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neglecting the mean specifications lead to misspecification of the model, which is also convinced

by residual diagnostic in table 6 and preliminary estimations of different specifications. The

reason for that could be unusual risk factors as the weather, which is a dominant and influential

factor in agricultural commodity markets. Weather is a non-economical measure for risk and

hence not easy to estimate. But it is a fact that, as a risk factor, it is present and appears not

directly in coefficients but rather in misspecification if risk is ignored.

Next, the conditional variance equation is regarded and I start the analysis with matrix A

which measures the effects of market shocks or unexpected news to the conditional variance.

As expected, all diagonal elements are positive and significantly different from zero, implying

that the own past of each commodity has an influence on the actual conditional variance. The

off-diagonal entries aij represent spillover effects in terms of market shocks from market i to

market j.

It stands out immediately that coffee is less important. Conditional volatility of coffee is neither

influenced by, nor influences other markets through unexpected shocks. In wheat, quite the

opposite is to be discovered. It negatively affects conditional variance of sugar and soybeans

(a21 = −0.0382, a23 = −0.0303). Additionally, wheat and sugar are in a bidirectional relation-

ship, because both a12 and a21 are significantly different from zero but interestingly with diverse

signs. A shock in the wheat market shows a negative impact on the conditional variance of sugar

whereas a shock in the sugar market influences the conditional variance of wheat in a positive

way. Lastly, shocks in soybeans affect the sugar market (a31 = 0.040). The conclusion for

matrix A is that wheat plays a dominate role. It impacts conditional variance of all basic food

markets and can be thought of a major commodity. Furthermore, sugar is very news-sensitive,

because conditional variances are affected by shocks in both wheat and soybeans markets. The

last finding is in line with literature, e.g. Lahiani et al. (2013) recognized this fact as well.

Matrix B measures the effect of lagged conditional variance. Here, all coefficients bii specify the

persistence of a (own) volatility shock and exhibit values close to one. This indicates a high

persistence of own conditional volatility shocks in each market. Again, the off-diagonal entries

in B offer spillover effects from market i to market j.

As in the analysis of unexpected shocks it seems that, in terms of volatility shocks, sugar is also

very news-sensitive, since each market influences conditional volatility of sugar (b21 = 0.0162,

b31 = −0.0142, b41 = −0.0058). Sugar and soybeans are the only commodities where a bidirec-

tional linkage is observable. Similar to unexpected market shocks, wheat plays a major role again
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when considering volatility shocks. The significant coefficients b21 and b24 implicate positive im-

pact of volatility shocks in the wheat market on conditional variance of sugar and soybeans.

Matrix D estimates asymmetric responses, that is negative price shocks end in more price volatil-

ity compared to a positive shock with the same magnitude. Except for coffee, all commodities

reach asymmetry (coefficients dii are significantly different from zero). Note, that significant

asymmetric effects are only observable for commodities with both significant dij and significant

aij . I also observe cross price asymmetric behaviour where wheat plays a major role. A negative

shock in the wheat market is responsible for higher conditional volatility in sugar spot prices as

well as soybeans spot prices (d21 and d23 in combination with significant a21 and a23). An in-

teresting fact is the magnitude a asmmytric effect coming from wheat. It affects the conditional

volatility of sugar much more than the conditional volatility of soybeans what is, again, another

indicator for the news sensitiveness of sugar.

The overall result of the spillover analysis shows, that the basic food commodities sugar, wheat

and soybeans are strongly linked. Coffee as a luxury food, however, takes a stand-alone position

in this analysis, indicating that basic food products and luxury food products are not linked.

Above all, this result is comprehensible comparing the world wide production of each commod-

ity. According to the United States Department of Agriculture the average annual world wide

production of wheat is 740 million tons, whereas the world wide annual production of coffee is

only 154 million tons, what explains the importance of wheat in the world economy hence the

finding that wheat transmits shocks to the other investigated basic food commodities.

4.2 Residual Diagnostics and specification tests

To check if the estimated model is adequate, standardized residuals are investigated. Figure

2 shows the standardized residuals for each agricultural commodity, calculated as H
− 1

2
t εt, and

table 6 shows residual diagnostic tests for standardized residuals. Panel A demonstrates uni-

variate diagnostics for each series. The Ljung-Box (LB) statistics is statistically not different

from zero (including 8 and 12 lags), suggesting that there is no more autocorrelation in the

standardized error terms. Except for standardized residuals of coffee, all commodities exhibit

no ARCH effects.

The second part of panel A in table 6 deals with multivariate diagnostic tests. Here, I calculated

a multivariate version of the Ljung-Box-test and the Li-McLeod-test to test autocorrelation for

all commodities simultaneously. The test statistics indicate that there is no significant joint
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Figure 2: Standardized Residuals

autocorrelation. To test for conditional heteroscedasticity in the standardized residuals I per-

form a multivariate ARCH test and its robust specification11 as documented in (Tsay, 2014, pp.

401-405). Although coffee shows heteroscedasticity in the standardized residuals, the hypothesis

that there is heteroscedasticity in all series contemporaneous is rejected.

With regard to both different models estimated12 and residual diagnostics I conclude that

a VAR(1)-GARCH-ABEKK(1,1)-in-mean model represents the investigated agricultural com-

modities best.

Panel B of table 6 illustrates three specification tests: no VAR effects in the conditional mean,

no GARCH-in-mean effects and no asymmetry. All tests13 reject the null hypothesis that par-

ticular coefficients are zero simultaneously. Besides the results from the residual diagnostics the

executed specification tests support that the model choice is adequate.

11The robust modification of the Ljung-Box-statistic is to trim away the upper 5 % tail. With this approach one
can reduce the effects of potential heavy tails in the error terms.

12As already described I started the investigation with the simplest model, e.g. a BEKK specification. I compared
both residual diagnostics and log likelihood values. All models behaved poorly when doing goodness of fit tests.
I also modeled a VARMA(1,1)-GARCH-ABEKK(1,1)-in-mean model but with no improvement.

13For each Null I performed likelihood ratio (LR) tests.
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Panel A: Residual diagnostic for standardized residuals

univariate diagnostic sugar wheat soybeans coffee
mean 0.0052 0.0137 -0.0031 0.0066

(0.8011) (0.506) (0.887) (0.751)
sd 0.9981 0.9999 1.0002 0.9991

(0.901) (0.997) (0.984) (0.963)
LB(12) 8.6945 11.8105 11.6596 13.7207

(0.729) (0.461) (0.473) (0.319)
LB(8) 3.6374 9.8576 6.8315 4.2503

(0.888) (0.275) (0.555) (0.834)
ARCH(12) 12.9416 14.9708 7.5479 32.2128

(0.373) (0.243) (0.819) (0.001)
ARCH(8) 8.8749 12.1111 6.7654 19.8851

(0.353) (0.146) (0.562) (0.011)
multivariate diagnostic
multivariate LB(12) 186.9100

(0.590)
multivariate LB(8) 110.4000

(0.870)
Li-McLeod(12) 186.8841

(0.591)
Li-McLeod(8) 110.4174

(0.867)
multivariate ARCH(12) 198.4609

(0.359)
multivariate ARCH(8) 131.4232

(0.400)
Robust Test (5%) 188.6387

(0.555)
Panel B: Specification tests

No VAR 30.153 H0: all elements in Φ are zero
(0.017)

No GARCH-in-mean 744.785 H0: all elements in Ψ are zero
(0.000)

No asymmetry 136.2267 H0: all elements in D are zero
(0.000)

Table 6: Residual diagnostics and specification tests. Values in parenthesis are p values. To test
the H0 for each specification test a likelihood ratio (LR) test was performed.

Because of the rejection of the null hypothesis for both VAR and in-mean effects, I conclude

that risk plays an important role in modelling agricultural spot markets.

4.3 Conditional Correlation, Optimal Portfolio Weights and Hedge Ratios

Figure 4 plots the dynamic conditional correlations, computed as hij,t

hii,t,hjj,t
, where i, j = 1, 2, 3, 4

i 6= j and sugar=1, wheat=2, soybeans=3, coffee=4. All commodities are positively correlated
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Figure 3: Dynamic correlation of the investigated commodities. Arrangement of the plots cor-

responding to





ρ21,t
ρ31,t ρ32,t
ρ41,t ρ42,t ρ43,t



, where 1 = sugar, 2 = wheat, 3 = soybenas, 4 =

coffee. The dotted line represents the unconditional correlation.

over time. Since 2008, one can observe a sharp increase for all examined commodities with a

peak in 2009. Since 2009, conditional correlations are lowering for all considered returns. With

this result the study is in line with the existing literature. I can confirm, that the correlation is

higher in times of market turmoils or crises. Interestingly, the conditional correlation (median)

between wheat and soybeans is strongest (ρmedian
2,3 = 0.4765), whereas the conditional correlation

(median) between coffee and wheat is detected as the weakest (ρmedian
4,2 = 0.1854), followed by

sugar and wheat (ρmedian
1,2 = 0.1979) and sugar and soybeans (ρmedian

1,3 = 0.2167). The dynamic

correlation (median) between soybeans and coffee or sugar and coffee is (ρmedian
3,4 = 0.2305) and

(ρmedian
1,4 = 0.2851), respectively.

The results are in line with the spillover analysis.

With the knowledge of the behaviour of spillovers in agricultural spot markets, it is now possible

to calculate optimal dynamic portfolio weights and optimal dynamic hedge ratios. Following
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Portfolio med(w∗
ij,t) med(hrij,t)

sugar/wheat 0.49 wheat/sugar 0.19
sugar/soybeans 0.32 soybeans/sugar 0.15
sugar/coffee 0.48 sugar/coffee 0.29
wheat/soybeans 0.22 soybeans/wheat 0.35
wheat/coffee 0.49 wheat/coffee 0.18
soybeans/coffee 0.68 soybeans/coffee 0.17

Table 7: optimal portfolio weights and hedge ratios

the well-established approach of Kroner and Ng (1998), an investor can minimize the portfolio

risk of a two-asset portfolio without reducing the portfolio’s expected return. With a no-short

constraint, the optimal time varying portfolio weights w∗
ij,t for an optimal fully invested portfolio

are

w∗
ij,t =































0 if wij,t < 0

wij,t if wij,t ∈ [0, 1]

1 if wij,t > 1

wij,t =
hjj,t − hij,t

hii,t − 2 · hij,t + hjj,t
(12)

where hij,t is the conditional covariance (for i 6= j) of commodity i and commodity j at time

t, whereas hii is the conditional variance at time t. wij,t is the weight of the i-th agricultural

commodity in an one-dollar portfolio of a two-commodity portfolio with commodity i and com-

modity j at time t.

Kroner and Sultan (1993) introduced the beta hedge approach where the time-variant hedge

ratios hrij,t are based on conditional moments.

hrij,t =
hij,t

hjj,t
(13)

With that approach one can detect how a one-dollar long position of commodity i should be

hedged by a short position of $1 ·hrij,t in commodity j. Note, that effectiveness is reached when

choosing the cheapest hedge ratio. Table 7 shows the median of optimal portfolio weights and

hedge ratios in a two-asset portfolio.

First, considering optimal portfolio weights to minimize risk without reducing expected return.

Sugar/wheat, sugar/coffee and wheat/coffee should be equal weighted over time14 . Furthermore,

in a sugar/soybeans portfolio, sugar should be underweighted with 33 % and in a wheat/soybeans

14Because of the fact that we calculated two-asset portfolios the weight of the denumerator in table 7 is (1−w
∗

ij,t)
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portfolio, wheat should be weighted with 25 %. The overall result is that an investor should

have been overweighted soybeans in all cases.

Next, we take into account optimal hedge ratios. For example, a one-dollar long position in

wheat can be hedged (on average) by $1 · 0.19 = $0.19 in shorting sugar. The most expensive

portfolio to hedge is a soybeans/wheat portfolio ($0.35). Each portfolio exhibits peaks of hedging

ratios in 2008/2009, which means that a hedging position was most expensive during that time

period. All portfolios have in common that the hedging ratios were declining after the crisis.
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Figure 4: Optimal dynamic hedge ratios corresponding to





hr21,t
hr31,t hr32,t
hr14,t hr24,t hr34,t



, where 1 =

sugar, 2 = wheat, 3 = soybeans, 4 = coffee.

5 Conclusion

This study provides detailed insights into the empirical linkages of agricultural commodity spot

markets. The paper engaged in return and volatility spillover effects of agricultural commodity

markets between 2008 and 2016. For this purpose, daily spot returns of sugar, wheat, soybeans
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and coffee have been used. After testing several models the author’s choice is a VAR(1)-GARCH-

ABEKK(1,1)-in-mean model which can capture the characteristics of spot returns best. All other

tested models behave poorly in residual diagnostics. However, modelling these commodities

seems to be difficult. During the estimation process, numerical problems arise again and again,

suggesting a special state of agricultural commodities compared to classic assets like stocks.

Four major findings can be concluded. First, the results indicate that volatility and therefore risk

plays an important role in agricultural spot markets with respect to the conditional mean as well

as conditional volatility. Furthermore asymmetry must be taken into account. Second, wheat

seems to play a major role in investigated spot markets, because a volatility shock in the wheat

market is transferred to all other markets. Additionally, wheat spot returns are very sensitive

for asymmetric responses. Third, conditional variance of sugar reacts very news-sensitive to

both unexpected shocks and volatility shocks. Coffee in contrast is not affected by other market

shocks. One can argue that coffee is a rather luxurious commodity and due to that not linked to

the other markets. Lastly, conditional correlation between markets showed a peak after the crisis

in 2008, but the strenghth of correlation was continously relaxxing and is found at a moderate

level compared to 2008.
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