
Hengge, Martina; Leonard, Seton

Working Paper

Factor models for non-stationary series: Estimates of
monthly U.S. GDP

Graduate Institute of International and Development Studies Working Paper, No.
HEIDWP13-2017

Provided in Cooperation with:
International Economics Section, The Graduate Institute of International and Development Studies

Suggested Citation: Hengge, Martina; Leonard, Seton (2017) : Factor models for non-stationary
series: Estimates of monthly U.S. GDP, Graduate Institute of International and Development Studies
Working Paper, No. HEIDWP13-2017, Graduate Institute of International and Development Studies,
Geneva

This Version is available at:
https://hdl.handle.net/10419/184716

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/184716
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Graduate Institute of International and Development Studies

International Economics Department

Working Paper Series

Working Paper No. HEIDWP0013-2017

Factor Models for Non-Stationary Series:
Estimates of Monthly U.S. GDP

Martina Hengge
The Graduate Institute Geneva

Seton Leonard
The Graduate Institute Geneva

Chemin Eugène-Rigot 2
P.O. Box 136

CH - 1211 Geneva 21
Switzerland

c©The Authors. All rights reserved. Working Papers describe research in progress by the author(s) and are published to
elicit comments and to further debate. No part of this paper may be reproduced without the permission of the authors.



Factor Models for Non-Stationary Series:
Estimates of Monthly U.S. GDP

Martina Hengge∗ Seton Leonard∗∗

June 2017

Abstract

This paper presents a novel dynamic factor model for non-stationary
data. We begin by constructing a simple dynamic stochastic general equi-
librium growth model and show that we can represent and estimate the
model using a simple linear-Gaussian (Kalman) filter. Crucially, consistent
estimation does not require differencing the data despite it being cointe-
grated of order 1. We then apply our approach to a mixed frequency model
which we use to estimate monthly U.S. GDP from May 1969 to January
2016 using 171 series with an emphasis on housing related data. We suggest
our estimates may, at a quarterly rate, in fact be more accurate than mea-
surement error prone observations. Finally, we use our model to construct
pseudo real-time GDP nowcasts over the 2007 to 2009 financial crisis. This
last exercise shows that a GDP index, as opposed to real time estimates of
GDP itself, may be more helpful in highlighting changes in the state of the
macroeconomy.
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1 Introduction

Dynamic factor models (DFMs) have become a standard tool in the analysis of
large macroeconomic data sets. Perhaps surprisingly, these models are able to
describe fairly accurately large sets of macroeconomic data in a few series thereby
overcoming the curse of dimensionality (Giannone et al., 2005; Stock and Wat-
son, 2016). Popular empirical applications of factor models include indexing eco-
nomic activity (for example, Stock and Watson (1989), Mariano and Murasawa
(2003), Arouba et al. (2008), and Altissimo et al. (2010)), nowcasting (for exam-
ple, Angelini et al. (2008), Giannone et al. (2008), and Bańbura et al. (2011)),
and forecasting (for example, D’Agostino and Giannone (2006) and Bańbura et al.
(2015)).

Dynamic factor models, including those in this paper, are built on two simple
equations. The measurement or observation equation, which we write as

(1) Yt = HZt + εt

relates factors in the current period Zt to current period observations Yt via the
loadings Ht. The transition equation

(2) Zt+1 = AZt + et

describes the evolution of factors. Though equation (2) is written for a single lag
of the factors, Zt may contained stacked factors over p lags with A the companion
form of the VAR(p) process. Despite its simplicity many popular time series
models fit this format including VAR and ARMA processes.

The majority of current factor model applications require the data to be sta-
tionary. We begin with the observation that this approach is not consistent with
most macro theory models, which typically look at variables in deviations from
trend. In particular, we present a simple dynamic stochastic general equilibrium
(DSGE) model that features stochastic growth in the style of Aguiar and Gopinath
(2007). That is, the growth rate itself changes over time. We solve this model (to
a linear approximation) in terms of both log deviations from scaled steady state
values as is traditional in macro and in terms of variables in log levels. The latter
solution allows us to filter and smooth noisy observations generated by the model
to estimate the true underlying states without either differencing or de-trending
the data. Unsurprisingly, as we know the true model, our estimates of states are
very good with a mean squared error (MSE) that matches the (time-invariant)
factor covariance matrix from the Kalman smoother. Having established the prin-
ciple of operating on log level data directly we then show that when we do not
know the true model we can still consistently estimate it by maximum likelihood
(ML) based on Watson and Engle (1983) as in Doz et al. (2012).
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Having introduced our approach to estimating cointegrated factor models in a
DSGE setting1, we then present two popular applications of factor models using
U.S. data: estimates of monthly GDP and nowcasts for quarterly GDP. In both
cases, the novelty of our approach is in the fact that we estimate our model for
log level data and consequentially our results are also in log levels, not growth
rates as is commonly the case. Because we explicitly allow for measurement error,
we suggest that, at a quarterly rate, our monthly GDP estimates may in fact be
more accurate than observed GDP. Our nowcasting results are similar to those in
Giannone et al. (2008), Bańbura and Modugno (2010), Bańbura et al. (2011), and
Higgins (2014) in that estimates tend to improve as more data become available
throughout the quarter. However, we note that for large changes in the macroe-
conomy such as the 2007-2009 financial crisis an index based on common factors
may be more telling than a nowcast which includes persistent error components
as the latter causes estimates to revert towards previous quarter values.

Our choice of estimation routine for the factor model is not trivial: ML estima-
tion following, for example, Bańbura and Modugno (2010) and Doz et al. (2012)
and fully Bayesian estimation2 as in Kim and Nelson (1999) or Durbin and Koop-
man (2002) are both proven methods for estimating parameters of dynamic factor
models. Fully Bayesian estimation is similar to ML but incorporates a prior in es-
timates of parameter distributions, though this comes at the cost of computational
intensity.3 Until recently, ML estimation has been considered unfeasible for large
data sets because of the large number of parameters that need to be estimated.
Additionally, ML estimation typically assumes an exact factor structure, that is,
the covariance matrix for shocks to observations is assumed to be diagonal, possi-
bly resulting in misspecification. These drawbacks of MLE have led to a shift away
from traditional factor estimation by ML to principal components analysis (for ex-
ample, Bai (2003)). However, Doz et al. (2012) have shown that ML estimates
are consistent despite potential misspecification of the correlation in measurement
equation disturbances and that ML is indeed viable for large-dimensional factor
models. Moreover, ML estimation incorporates the dynamics of factors in tran-
sition equation estimates,4 can easily incorporate parameter restrictions, provides

1Series generated by our DSGE model are cointegrated by construction as growth comes from
a single state variable, in our case labor productivity, and the long run ratios of variables remain
constant.

2Kalman filtering is Bayesian in the sense that one step ahead forecasts form our prior for
factors in period t given observations through period t− 1; this prior is then updated as obser-
vations in period t become available. By fully Bayesian we mean that parameter estimates also
come from a prior distribution which is updated based on observations and estimated factors.

3The relative simplicity of our ML estimates comes from the fact that we do not estimate or
simulate the distribution of parameters as we assume some unknown “true” parameter values.

4Principle components based estimation and ML estimation coincide when there are no lagged
factors in the transition equation.

3



a clean framework for missing data (Jungbacker and Koopman, 2008; Bańbura
and Modugno, 2010), and allows us to identify both persistent and idiosyncratic
error components in the measurement equation. This latter consideration is an
extension of Bańbura and Modugno (2010) which we find useful in identifying
measurement error. We therefore opt for ML estimation of the factors, using the
Watson and Engle (1983) EM algorithm as in Bańbura and Modugno (2010) with
some slight alterations of our own.

Our econometric framework builds on the long tradition of work that incorpo-
rates level information from data in a state-space framework. As vector autoregres-
sions (VARs) are a special case of a factor model, this literature dates back at least
to the classic papers Engle and Granger (1987) and Johansen (1988). More re-
cently Bańbura et al. (2010) and Giannone et al. (2015) have shown that Bayesian
VARs are suitable for the estimation of large dynamic systems and perform com-
parably to factor models. Similar to our approach, these models can incorporate
level information from a cointegrating vector; one can view the approach in this
paper as simply using several cointegrating vectors instead of a single cointegrating
vector and first differences.

For non-stationary factor models, Barigozzi et al. (2016a) illustrate that fac-
tors that are cointegrated of order one can be represented by a vector error correc-
tion model. Barigozzi et al. (2016b) propose an estimator of this error correction
representation of factors and discuss the conditions under which it is consistent.
Though similar in spirit to the exercise in this paper there are several key differ-
ences. Barigozzi et al. (2016b) estimate loadings from the differenced data using
principle components, obtain factors using estimated loadings and the level data,
and then estimate the error correction model for the factors. In contrast, we es-
timate factors and loadings by maximum likelihood following Watson and Engle
(1983) operating directly on the non-stationary level data. Though the data we
use throughout the paper is non-stationary in the sense that it grows over time,
we deal only with models in which parameters are stationary.5 That is, we do not
address non-stationarity in the sense of time varying parameters (see, for example,
Hamilton (2005), Del Negro and Otrok (2008), or Eichler et al. (2011)).

2 Estimating a Stochastic Growth Model

This paper begins with the following question: supposing data is generated by
a simple DSGE growth model, how should we estimate underlying states of the
model? To make the exercise interesting, we model stochastic growth in the sense

5Note that growth, even the stochastic growth we model here, does not imply that shocks
to our transition and measurement equations will explode over time. This ensures consistent
parameter estimation.

4



of Aguiar and Gopinath (2007), that is, we allow the actual rate of growth to
fluctuate over time. This feature distinguishes our theoretical model from the
literature that looks at fluctuations around a steady state (be it deterministic or
risky as defined by Coeurdacier et al. (2011)). We insist on stochastic growth
as estimating a model in which variables fluctuate around a deterministic growth
path is trivial: one simply de-trends the model to enforce stationarity. Though
we too can solve our proposed model by scaling variables to enforce stationarity,
using this fact to estimate underlying factors assumes we can perfectly observe
the state that drives growth (productive labor in this case). As this assumption is
unrealistic, we instead write the system of difference equations that constitutes our
solution to the model in terms of log level variables. In the case that we know the
parameters of the model, this solution allows us to filter and smooth observations
to estimate the true underlying states. When we do not know the parameters of the
model, we estimate them by maximum likelihood. In the absence of identifying
restrictions, this allows to estimate a set of factors which span the underlying
states of the model; given credible identifying assumptions we can again estimate
the true states.

2.1 A Simple DSGE Model

Our simple DSGE model follows a long line of macro theory literature including
classic papers such as Kydland and Prescott (1982) and Long and Plosser (1983)
in modeling a utility maximizing representative agent in a closed economy. In
particular, our agent maximizes a simple, time separable utility function

(3) U = Et

∞∑
s=0

βs
C1−σ
t+s

1− σ

subject to a budget constraint

(4) atK
α
t H

θ
t L

1−α−θ
t + (1− δ)Kt + (1− γ)Ht = Ct +Kt+1 +Ht+1

where at is productivity, Kt is physical capital, Ht is human capital, Lt productive
labor, and Ct is consumption.6 We suppose that total factor productivity follows
an exogenous, stationary process

ât+1 = ρaât + εt+1

where hats denote log deviation from trend. As in Solow (1956) growth is labor
augmenting. However, following Aguiar and Gopinath (2007) it is also stochastic

6We differentiate between physical and human capital only to add more states to the model
which makes estimation slightly more interesting.
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such that Lt+1 = τt+1Lt. We use upper case letters to denote variables that grow
over time. Like productivity, we allow the growth rate τ to vary according to

τ̂t+1 = ρτ τ̂t + εt+1

Again following Solow (1956) we enforce stationarity on the model by scaling
variables by (productive) labor.7 For example, the Euler equation

C−σt = βEt

[
C−σt+1

(
αat+1K

α−1
t+1 H

θ
t+1L

1−α−θ
t+1 + 1− δ

)]
becomes

c−σt = βEt

[
c−σt+1τ

−σ
t+1

(
αat+1k

α−1
t+1 h

θ
t+1 + 1− δ

)]
For the parameter values β = 0.99, τ = 1.0033, σ = 1.5, γ = 0.075, δ = 0.1,
α = 0.25, θ = 0.25, ρa = 0.7, and ρτ = 0.9, the log linear solution for scaled,
stationary next period state variables as a function of current period state variables
is

(5)


ât+1

τ̂t+1

k̂t+1

ĥt+1

 =


0.70 0 0 0

0 0.90 0 0
0.26 −1.41 0.38 0.48
0.11 −1.59 0.43 0.54



ât
τ̂t+1

k̂t
ĥt

+


εat+1

ετt+1

εkt+1

εht+1


To put the model in log levels we first augment the vector of states yt to include
labor Lt, so that equation (5) becomes8

(6)
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −1 0 0 1


︸ ︷︷ ︸

H


ât+1

τ̂t+1

k̂t+1

ĥt+1

Lt+1


︸ ︷︷ ︸
ŷt+1

=


0.70 0 0 0 0

0 0.90 0 0 0
0.26 −1.41 0.38 0.48 0
0.11 −1.59 0.43 0.54 0

0 0 0 0 1


︸ ︷︷ ︸

Â


ât
τ̂t+1

k̂t
ĥt
Lt


︸ ︷︷ ︸

ŷt

+


εat+1

ετt+1

εkt+1

εht+1

0


︸ ︷︷ ︸
ε̂t+1

where the last row of comes from the law of motion for productive labor, in logs
Lt+1 = τt+1 + Lt. We can write equation (6) concisely as

(7) yt+1 − ȳ =
ˆ̂
A(yt − ȳ) + ˆ̂εt+1

7Appendix A offers a complete derivation of the model results.
8Note here all variables are in logs.
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where
ˆ̂
A = H−1Â and ˆ̂εt = H−1ε̂t. Defining B̂ = ȳ − ˆ̂

Aȳ our final step is to
introduce the helper matrix

θ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


so that

θyt =


at
τt
Kt

Ht

Lt


Then our solution for the model in log levels is

(8) θyt+1︸ ︷︷ ︸
Yt+1

= θ
ˆ̂
Aθ−1︸ ︷︷ ︸
A

θyt︸︷︷︸
Yt

+ θB̂︸︷︷︸
B

+ θˆ̂εt+1︸ ︷︷ ︸
εt+1

or, using the parameters specified above,

(9)


at+1

τt+1

Kt+1

Ht+1

Lt+1

 =


0.70 0 0 0 0

0 0.90 0 0 0
0.26 −0.51 0.38 0.48 0.14
0.11 −0.69 0.43 0.54 0.03

0 0.90 0 0 1.00



at
τt
Kt

Ht

Lt

+


0

0.0003
0.1229
0.1665
0.0003

+ εt+1

Before filtering, smoothing, and estimating this model we briefly look at some
of its properties; Aguiar and Gopinath (2007) provide a much more in depth look
at models of stochastic growth. Figure 1 illustrates impulse response functions for
de-trended log deviations from the deterministic steady state (left hand panel) and
for log levels where initial values have been subtracted so that all variables begin at
zero. Capital initially falls in response to a positive growth rate shock for both de-
trended and level variables corresponding to the dis-saving Aguiar and Gopinath
(2007) find for a growth shock; because a growth shock permanently affects income,
on impact agents consume more and invest (save) less in anticipation of higher
lifetime consumption. Note also that the responses to a fairly small level shock
(0.1 in this example) are relatively large — much more so than in the case of a
stationary TFP shock.
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Figure 1: Impulse response functions for de-trended stationary variables (left hand
panel) log levels (right hand panel)

2.2 Estimating States when Parameters are Known

Despite the fact that the system of equations in (9) is non-stationary (non-stationary
in the sense that the transition matrix has a unit root due to the process for pro-
ductive labor), the covariance of shocks is stationary and thus the system poses no
problems for standard Kalman filtering and smoothing. As a simple first exercise
we simulate and then estimate the states of the model assuming we in fact know
the parameters in (9), including the jump variable consumption so that there are
six observables, five of which are states. Explicitly, in state space our model is
described by the measurement equation

at
τt
Kt

Ht

Lt
Ct

 =


1.0000 0 0 0 0

0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 1.0000 0
0 0 0 0 1.0000

0.0968 2.6377 0.1700 0.2171 0.6129




at
τt
Kt

Ht

Lt

+ εt

and the transition equation (9). Over 1000 repetitions of 600 observations the mean
squared error of our estimated states is: for TFP, 0.0076; for the growth shock,
0.0001; for physical capital, 0.0009; for human capital, 0.0008, and for labor 0.0007.
These values exactly match the factor variance given all observations arising from
the Kalman smoother.
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2.3 Estimating Unobserved Parameters

Before we move on to estimating unobserved parameters, several observations
about the solutions in equations (5) and (9) are important to our analysis. First,
the model cannot be written in first differences. For example, subtracting yt from
both sides of (5) yields ∆yt+1 = (A − I)yt + (I − A)ȳ + εt+1 where ȳ denotes
the points of approximation. Thus estimation with variables in first differences
to enforce stationarity will be misspecified. This autoregressive process can, how-
ever, be written as a system of independent AR(1) processes (though shocks will
be correlated). For the solution in log levels, using an eigendecomposition of the
transition matrix A = V ΛV −1 we can define a new set of states Ỹt = V −1Yt so
that

(10) Ỹt+1 = ΛỸt + V −1Ȳ + V −1εt+1

Though correlated, shocks to these otherwise independent series will still be nor-
mal. For the parameters we use, the eigenvalues of A are

diag(Λ) =
[
1.00 0.92 0.90 0.70 0.00

]
so that Ỹt consists of one random walk, three stationary AR(1) processes, and one
white noise process. Put differently, we can write the states in (9) as a random
walk and four cointegrating vectors.9 When we estimate the parameters of the
model we will be estimating this form — a single non-stationary factor, with the
remainder of factors representing cointegrating relationships.

The novelty of our approach lies in how we specify the non-stationary factor —
other elements of the model are simply taken from the existing literature. Several
interesting possibilities exist to capture growth in the log variables. The simplest
approach that is consistent with the model is to simply specify a random walk
with drift. Letting xLt denote the non-stationary factor in levels, we could write

(11) xLt+1 = µ+ xLt + vt+1

where the shock vt denotes velocity, the first difference of xLt+1. Alternatively, if
we wanted to allow the non-stationary factor to be integrated of order 2 we could
write [

xLt+1

vt+1

]
=

[
1 1
0 1

] [
xLt
vt

]
+

[
at+1

at+1

]
where the shock at+1 now corresponds, in a physical model, to acceleration.

9Two of these, those corresponding to the eigenvalues 0.9 and 0.7, are trivial as they are
simply the stationary processes for τt and at. Though the state corresponding to the eigenvalue
0 is not useful for predicting future states, it still matters in our factor model framework as a
determinant of contemporaneous observables.
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We opt for something between these two possibilities in which vt is stationary
but may depend on its own lags and the lags of other non-stationary factors. For
the illustrative case of three lags and two cointegrating vectors (that is, two ad-
ditional stationary factors) we write the transition equation for stationary factors
— the only part of the transition equation we will estimate — as

(12)

vtx1
t

x2
t

 = µ+B1

vt−1

x1
t−1

x2
t−1

+B2

vt−2

x1
t−2

x2
t−2

+B3

vt−3

x1
t−3

x2
t−3

+ et

where the evolution of the I(1) factor is given by (11).

T = 60 T = 120 T = 400 T = 600
k = 20 2.77 1.62 1.12 1.07
k = 50 2.47 1.53 1.09 1.06
k = 100 2.28 1.43 1.09 1.05

Table 1: Average MSE for T observations of k series for 1000 simulations

As we do not use a normalization which would allow us to identify the true
states10, we evaluate the performance of our model on its ability to estimate miss-
ing high frequency observations in a mixed frequency framework. This metric feels
appropriate as our interest in section 4 will be in estimating a quarterly-monthly
mixed frequency model for U.S. GDP. Table 1 provides results for 20 observable
series under several different scenarios; sample size refers to the number of obser-
vations T . We estimate the model by maximum likelihood based on Watson and
Engle (1983) but deffer a more thorough discussion of methodology until section
3. For each simulation we consider five series to be quarterly so that we observe
the mean of the current and previous two monthly observations for these series
every third period. The mean squared error is calculated from the error in our
high frequency (monthly) estimates of series we observe as quarterly. As the num-
ber of periods we observe increases, the MSE for high frequency estimates of low
frequency variables approaches its estimated variance arising from the Kalman
filter,11 which is close to the variance of shocks to the measurement equation.

The results in Table 1 are for the model estimated in log levels. However,
we can difference our level estimates to provide a metric against which we can
compare our model with the more standard approach of differencing variables first

10Recall that in this framework Yt = HXt+εt is observationally equivalent to Yt = Hθ−1θXt+
εt where θXt is some alternative linear combination of the factors Xt.

11The actual estimated variance — the variance for estimated series taking the parameters of
our model as true — is series specific and depends on the draw for the factor loadings H at each
iteration.
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Log Levels Model
T = 60 T = 120 T = 400 T = 600

k = 20 6.54 3.57 2.29 2.18
k = 50 5.70 3.34 2.22 2.14
k = 100 5.15 3.03 2.20 2.13

Log First Difference Model
T = 60 T = 120 T = 400 T = 600

k = 20 12.15 4.42 4.01 3.24
k = 50 5.35 3.12 2.26 2.27
k = 100 3.87 2.82 2.16 2.13

Table 2: Average MSE for T observations of k series for 1000 simulations

and then estimating a model for stationary variables. Table 2 presents the results
of this exercise. Our levels model is able to reduce the MSE for monthly estimates
of variables observed quarterly when the number of observable series k is low or
the number of periods observed T is high. However, for large k and small T the
model in first differences in fact performs better; we attribute this result to the
fact that the levels model estimates an additional factor, the I(1) factor, so that
in this case the model for differenced data is more parsimonious.

3 Maximum Likelihood Estimation

Popular approaches to estimating the parameters of dynamic factor models include
two step principle components as in Doz et al. (2011), maximum likelihood estima-
tion (MLE), or fully Bayesian estimation as in Koop and Korobilis (2010). From a
forecasting perspective, Bayesian estimation offers most of the advantages of max-
imum likelihood estimation with the additional possibility of reducing parameter
uncertainty via prior distributions. The big disadvantage of Bayesian estimation
versus MLE following Watson and Engle (1983) is the computational burden aris-
ing from the need to simulate posterior distributions; this is particularly important
for the simulations in sections 2 and 4.3. Two step principal components is faster
than MLE still — it is in fact where we begin our iterations of Watson and Engle
(1983)’s EM algorithm. However, we find that MLE has a number of advantages.
Perhaps most importantly, principal components is a static problem resulting in
noisy initial factor estimates. These noisy initial estimates tend to bias parame-
ters of the transition equation towards zero. Additionally, MLE allows for cleaner
handling of missing data, the ability to distinguish between persistent and idiosyn-
cratic error components as detailed in section 3.1, allows us to re-estimate initial
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factor values via the Kalman smoother at each iteration, and does not require the
data is standardized as covariances and intercepts are estimated.

To fix the notation we will use throughout the rest of the paper, we will write
the measurement equation as

(13) Yt = µ1 +H


xLt
x2
t
...
xmt

+ εt

where xLt is the non-stationary factor in levels, xjt , where j = 2, ...,m, are the
stationary factors, and εt are error terms potentially correlated across time. If
a subset of current observations Y Q

t depends on both current and lagged factors
then, denoting the vector of factors in period t as Xt, we can write equation (13)
as

Y Q
t = µQ +HQ


Xt

Xt−1
...

Xt−(s−1)

+ uQt

where factors from s periods determine the observations in Y Q
t . Defining xDt =

∆xLt , we model the evolution of factors as

(14)


xDt
x2
t
...
xmt

 = µ1 +B1


xDt−1

x2
t−1
...

xmt−1

+B2


xDt−2

x2
t−2
...

xmt−2

+ . . .+Bp


xDt−p
x2
t−p
...

xmt−p

+ vt

where p is the number of lags in the vector autoregression equation (14).
The difficulty with these equations lies in the fact that the variables entering

into equation (13) are not the same as those entering into equation (14). To
circumvent this problem we define an augmented vector of factors; with one lag in
the transition equation this vector is

Zt =


xLt
xDt
x2
t
...
xmt


Simply stacking these augmented vectors when the transition equation contains
more than one lag would cause the companion matrix A to be singular (since the

12



current level of the non-stationary variable is just the past level plus the current
difference). Thus for p lags in the transition equation, the state vector is

Zt =



xLt
xDt
x2
t
...
xmt
xDt−1

x2
t−1
...

xmt−1
...

xDt−p
x2
t−p
...

xmt−p


Our measurement equation is then Yt = H̃Zt + εt, where H̃ = HJ and J is a

helper matrix to extract the relevant elements of Z. For example, where m = 3
for all variables, we have

J =

1 0 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .


Our transition equation is the companion matrix for the coefficients B =[

B1 B2 . . . Bp

]
in equation (14) modified to incorporate the non-stationary

factor. Specifically, we write the matrix A in equation (2), Zt = AZt−1 + et, as

A =



1 b1
1,1 b1

1,2 . . . b1
1,m b2

1,1 . . .
0 b1

1,1 b1
1,2 . . . b1

1,m b2
1,1 . . .

0 b1
2,1 b1

2,2 . . . b1
2,m b2

2,1 . . .
...

...
...

. . .
...

...
. . .

0 b1
m,1 b1

m,1 . . . b1
m,m b2

m,1 . . .
0 1 0 . . . 0 0 . . .
0 0 1 . . . 0 0 . . .
...

...
...

. . .
...

...
. . .


where b1

i,j is element (i, j) of the matrix B1 in equation (14), b2
i,j is element (i, j)

of the matrix B2 in equation (14), and so on. While the transition equation is
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non-stationary, the equation we estimate, equation (14), remains stationary as it
does not include the series xLt thereby ensuring consistency.

3.1 Including AR(1) Error Terms

An important feature of the real data not present in our simulations is the fact
that series depart from their long run relationships to the factors in a persistent
way. That is, in our measurement equation

Yt = µ1 + H̃Zt + εt

the individual error terms εit are autocorrelated. Ignoring this feature leads to
estimates which tend towards the conditional mean of the data in every period.
To correct for the persistence of εit in section 4 we follow Bańbura et al. (2011) in
modeling each series of error terms as AR(1) so that εit = uit+ε

i
t and uit = ρuit−1 +et

and then include the vector of error terms ut as a state. That is, our modified
state-space model becomes

(15) Yt =

[
µ1

0

]
+
[
H̃ Ik

]︸ ︷︷ ︸
H

[
Zt
ut

]
+ εt

and

(16)

[
Zt
ut

]
=

[
µ2

0

]
+

[
A 0
0 Bρ

]
︸ ︷︷ ︸

A

[
Zt−1

ut−1

]
+

[
Vt
et

]

where Ik is a k× k identity matrix and Bρ is a diagonal matrix of the AR(1) coef-
ficients on the error terms. Note that unlike Bańbura et al. (2011) we distinguish
between a persistent component of errors terms ut and an idiosyncratic component
εt. We have found this distinction to be essential in constructing maximum likeli-
hood estimates of model parameters following Watson and Engle (1983); omitting
the idiosyncratic component implies that the covariance matrix of the augmented
vector of factors Ft =

[
Za
t uat

]′
(Za

t and uat are defined in detail below) will be
singular, preventing the use of the Kalman smoother.

3.2 Estimation of the State-Space Model

As our transition equation in (16) consists of two independent systems, we estimate
the parameters for A and Bρ separately. Define the vector of observations in
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equation (14), the parameters necessary to construct A in (16), as

Xs
t =


xDt
x2
t
...
xmt

 , Zs
t =


1
Xs
t

Xs
t−1
...

Xs
t−p+1


where the superscript s denotes the fact that Xs

t and Zs
t contain only stationary

elements. Then we can write the transition equation (14) concisely as

(17) Xs
t = BZs

t−1 + vt

The parameters of (17) we need to estimate in the M step of the EM algorithm are
B and the covariance matrix for vt which we denote as q. The maximum likelihood
estimates of these matrices are given by12

(18) B = E
(
Xs
t (Z

s
t−1)′

)[
E
(
Zs
t−1(Zs

t−1)′
)]−1

(19) q = E(vtv
′
t)

As detailed by Watson and Engle (1983), we cannot calculate the expectations
in (18) and (19) directly as factors are not observed but estimated. Instead, we
estimate E(Zs

t−1(Zs
t−1)′) as

1

T

[∑
t

Zs
t−1|T (Zs

t−1|T )′ +
∑
t

Pt−1|T

]
and estimate E(Xs

t (Z
s
t−1)′) as

1

T

[∑
t

Xs
t|T (Zs

t−1|T )′ +
∑
t

Ct|T

]
where Zs

t−1|T denotes values of Zs
t−1 estimated by the Kalman smoother, Pt−1|T

is the variance of Zs
t−1|T from the smoother, Xs

t|T are estimates of Xs
t from the

smoother, and Ct|T estimates E
((
Xs
t|T−Xs

t

)(
Zs
t−1|T−Zs

t

))
, also obtained from the

smoother by including an extra lag of Xs
t in the state vector. Thus the augmented

vector of states in the Kalman filter and smoother is13

Ft =

[
Za
t

uat

]
12We omit hats for parameter estimates to keep the notation clean.
13See Watson and Engle (1983) for more detail.
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where

Za
t =


Xs
t

Xs
t−1
...

Xs
t−p+1

Xs
t−p

 , uat =

[
ut
ut−1

]

Lastly, for q we estimate E(vtv
′
t) as

1

T

[∑
t

vt|Tvt|T +
∑
t

P x
t|T +

∑
t

BPt−1|TB
′ −
∑
t

BCt|T −
∑
t

C ′t|TB
′
]

where P x
t|T is the covariance matrix for Xs

t|T obtained from the smoother. We es-
timate Bρ and the covariance of et analogously.

The parameters of the measurement equation we need to estimate are H in
equation (13), used to construct H̃ in (15), µ1, and the covariance of εt in equation
(15). Define Z̃t = JZt. Then our maximum likelihood estimates of these parameter
matrices are given by

(20)
[
µ H

]
= E

(
Yt
[
1 Z̃ ′t

]) [
E

([
1

Z̃t

] [
1 Z̃ ′t

])]−1

and

(21) R = E (εtε
′
t)

Here the difficulty lies in the fact that again Z̃t is estimated, not observed,
and additionally Yt may contain missing values. We follow Bańbura and Modugno
(2010) in addressing the latter issue;14 however, our application of Watson and
Engle (1983) is slightly different from that in Bańbura and Modugno (2010) as
we allow for an idiosyncratic error component in the measurement equation so
that our left hand side variable is in fact ỹit = yit − uit. For

[
µ H

]
the term

E
(
Ỹt
[
1 Z̃ ′t

])
does not require any adjustment due to the fact that factors are

estimated. For the second term

E

([
1

Z̃t

] [
1 Z̃ ′t

])
= E

([
1

Z̃t|T

] [
1 Z̃ ′t|T

])
+

[
0 0
0 E

(
P h
t|T
)]

where P h
t|T is the covariance matrix for Z̃t|T (as opposed to Zs

t|T above) obtained
from the Kalman smoother. Finally, for R we have

E(εtε
′
t) = E(εt|T ε

′
t|T ) + E

(
HP ε

t|TH
′)

14Effectively this means only using periods in which yi,t is observed to calculate parameters
for each series i.
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where H is defined in equation (15) and P ε
t|T is the covariance matrix of

[
Zt|T
ut|T

]
obtained from the Kalman smoother.

4 Empirical Application

In this section we use our econometric model to construct both estimates of
monthly U.S. GDP and pseudo real-time nowcasts of current-quarter GDP. These
applications require modifying our econometric model to account for the fact that
GDP is a quarterly series.

4.1 Data set

Our data set consists of 171 monthly and quarterly time series from 1968:10 to
2016:01. It comprises both national series and regional series for the four U.S.
Census Bureau regions: Northeast, Midwest, South, and West. We obtained the
data from Thomson Reuters Datastream and grouped them into 14 categories:
housing prices (10); housing starts and sales (14); housing other (8); production
(11); inventories, orders and sales (6); employment and unemployment (45); in-
come and earnings (10); prices (17); interest rates and yields (22); money and
credit (8); mortgage debt and delinquencies (8); stock prices (4); exchange rates
(6); and other (2). We then transformed the series as needed to ensure cointegra-
tion of order one.15 Our series for GDP is deflated by consumer prices less energy
and when available we have used seasonally adjusted data. The data series and
their transformation are described in more detail in appendix C.1.

4.2 Mixed-frequency estimation

An important challenge when using actual data is to identify monthly GDP when
in fact we have no observations of that series. Denoting log monthly GDP at an
annual rate as yMt and log quarterly GDP at an annual rate as yQt what we in fact
observe is

(22) ey
Q
t =

1

3
ey

M
t +

1

3
ey

M
t−1 +

1

3
ey

M
t−2

In addition to equation (22), we assume that monthly log GDP is a function of
our estimated monthly factors, that is,

(23) yMt = αXt + uMt
15This included taking logs of certain series and standardizing the variance of each series

around its linear trend.
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The difficulty in estimating monthly GDP is that equation (22) is in levels while
equation (23) is in logs. To circumvent this problem we take a linear approximation
of equation (22) so that

ey
Q

(yQt − yQ) =
1

3
ey

M
(

(yMt − yM) + (yMt−1 − yM) + (yMt−2 − yM)
)

where variables without time subscripts indicate points of approximation. Because
both monthly and quarterly GDP are at annualized rates we have that yQ = yM

so that, as in Mariano and Murasawa (2003), our approximation simplifies to

yQt =
1

3
yMt +

1

3
yMt−1 +

1

3
yMt−2

Plugging equation (23) into the above yields the equation we in fact estimate in
our model

(24) yQt =
1

3
αXt +

1

3
αXt−1 +

1

3
αXt−2 +

1

3
uMt +

1

3
uMt−1 +

1

3
uMt−2

Thus the states that determine quarterly GDP are the factors Xt, Xt−1, and Xt−2

as well as the error terms uMt , uMt−1, and uMt−2 since we maintain the assumption
from section 3.1 that uit = ρiu

i
t−1. Including these additional lags of the error term

with the properly specified transition matrix and measurement equation allows us
to construct estimates for monthly GDP as described by equation (23).

4.3 Estimates of Monthly GDP

Though the observable series we choose to include have a greater impact on our
estimation than the number of factors m and lags p, the latter choice still mer-
its careful thought. We opt for an external validity approach to this choice by
dropping some observations, estimating the model, and calculating mean squared
errors for dropped observations. This does not provide a definitive answer as re-
sults for nowcasting, when we only observe lagged values, are different than results
for reconstructing missing data, in which we have both leading and lagged obser-
vations. We thus bias our selection towards parsimony setting m = 3 and p = 3.
Once we determine m and p we estimate monthly GDP as outlined in the previous
two subsections. Figure 2 illustrates our results over the 2007-2009 financial crisis
using the full data set. Shaded bars indicate recessions as dated by the NBER’s
Business Cycle Dating Committee. We find that our model tracks the evolution
of GDP well. GDP peaked in November 2007, declined for 4 months, went up
slightly in April and May 2008, and then fell over the next 12 months, reaching a
trough in May 2009. Not only do our estimates provide a high frequency series for
GDP; as we suggest below, it may even be the case that our estimates are more

18



accurate than the observed figures for expenditure side GDP. Estimates over the
full sample from May 1969 to January 2016 are available in appendix D.

Figure 2: Estimates for monthly log real GDP at an annual rate with two standard
deviation confidence intervals (estimated from the filter and smoother as opposed
to simulation) over the financial crisis. Realizations for quarterly GDP are marked
by circles.

As monthly GDP is not observed we cannot directly assess the accuracy of our
GDP estimates presented above. We therefore simulate data using the estimated
parameters of the state-space model. Following the approach outlined in section
4.2, we extract monthly simulated GDP and compute its MSE. For 1000 repetitions
of our simulation, the MSE of estimated monthly GDP growth relative to the
variance of simulated GDP growth is 0.49. This indicates that our estimates
perform reasonably well.16

The MSE estimates of GDP growth from the simulation assume that our model
is correctly specified — as mentioned above the parameters we use to simulate
data are those we estimate. The real world data generating process will of course
not fit this framework exactly. In particular, while assuming persistent errors uit
are AR(1) as opposed to AR(p) reduces the number of parameters we need to
estimate, any true data generating process is unlikely to be so simple. For this
reason we also simulate data in which errors are highly persistent and AR(3) so

16We calculate GDP growth by differencing the log level series.
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that our estimated model will be misspecified. For 1000 repetitions, the ratio
of the MSE of monthly GDP growth relative to the unconditional variance of
GDP growth is 0.68. Unsurprisingly, misspecification of the error term in the
measurement equation reduces the accuracy of our estimates. However, if we
assume that i.i.d. shocks to GDP represent measurement error while true shocks
to GDP are persistent then estimated quarterly GDP — the three month aggregate
of our estimated monthly GDP — is still more accurate than observed quarterly
GDP; the ratio of the MSE of estimated quarterly GDP to the MSE of observed
quarterly GDP (again, assuming that i.i.d. errors to GDP represent measurement
error) is 0.49.

Our ability to identify transient shocks, which we call measurement error, is
due to the fact that we distinguish between three types of shocks. Shocks to
common factors, vt, have a strong cross-sectional component; a shock to a factor
will contemporaneously impact many if not all of the series we observe. Shocks to
persistent errors, et, have a strong intertemporal component; these shocks impact
a single variable over many periods and identification comes from filtering and
smoothing. Finally, transient shocks, εt, have neither a strong cross-sectional or
intertemporal component and do not enter into our estimated series.

4.4 Pseudo Real-Time Nowcasts of Quarterly GDP

Economic decision making is complicated by uncertainty about the present state
of the economy. A large number of high frequency data are available in real
time. Yet, many key macroeconomic indicators, including GDP, are released at low
frequency and with a publication lag. Consequently, forecasting the present — that
is, nowcasting — is an important task for economic policy makers. To exploit all
the information available in real time, nowcasting typically takes into consideration
that variables in a multivariate data set are available at mixed frequencies. In
addition, differing publication lags and release dates across variables result in an
intricate pattern of missing observations towards the end of the sample — the
so-called ragged edge. Our econometric model takes into account both of these
features of the data.

In this section we nowcast current-quarter GDP based on data that would
have been available for a specified nowcast date. Within the quarter, we consider
12 potential nowcast dates: weeks 1 through 4 of each of the three months that
comprise the quarter.17 Each week, we let the data set expand based on a stylized
release calendar.18 The impact of each release on the updated current-quarter

17Of course there may not be four weeks, or at least four Fridays, in every month. We break
down every month into four sub-periods and consider each a week, regardless of the actual date.

18Appendix C.2 provides detailed information on the stylized release calendar.
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nowcast will depend on how much information the newly released series contain
for our target variable, GDP.19 We apply this framework to a specific question:
how well could this model have nowcasted U.S. GDP over the 2007-2009 financial
crisis?20

Recall from equation 24 that our nowcasts for GDP are made up of two com-
ponents: the contribution of common factors XM

t through XM
t−2 and the persistent

error terms uMt through uMt−2. These two components play very different roles in
our nowcasts. The factors’ common movements in the data depend less on in-
tertemporal smoothing; as new developments in the economy evolve this is where
we would expect to see the action. As noted in the previous section, identification
of persistent error terms comes primarily from smoothing the data over time. As
real-time analysis necessarily precludes forward values, these estimates will be less
reliable. Figure 3 illustrates the contribution of common factors and the contribu-
tion of persistent errors to our GDP nowcasts.

19As in Giannone et al. (2008) the highest frequency we consider is monthly. We thus assume
that data which are weekly or daily (such as financial data) become available at the end of the
month. This implies that our January nowcasts for Q1 GDP are in fact an average of an one-
step ahead forecast for January, a two-step ahead forecast for February, and a three-step ahead
forecast for March. The February nowcasts then combine data from January with one-step ahead
and two-step ahead forecasts for February and March, respectively. Finally, in March, current-
quarter GDP nowcasts combine data available up to February with a one-step ahead forecast for
March.

20Note that this procedure does not take into account revisions to the data. Schumacher and
Breitung (2008) have shown that data revisions tend not have a substantial impact on forecast
accuracy.
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Figure 3: Contribution of common factors XM
t through XM

t−2 and contribution of
persistent error terms uMt through uMt−2 to GDP nowcasts.

Note that as new data become available, our GDP estimate for 2008 Q4 based
on common factors is overall revised downwards. The opposite is true for the
persistent errors. This part of our estimate is continuously revised upwards. Es-
timated persistent errors were positive as realized GDP was well above its level
implied by the common factors. Put differently, persistent errors have a tendency
to automatically smooth nowcasts when factor estimates change. This in fact cov-
ered up the deteriorating economic conditions; as illustrated by figure 4, our 2008
Q4 GDP nowcast underestimates the scale of the contraction. At the through in
2009 Q2, however, the persistence in the errors pushed the current-quarter GDP
nowcasts closer towards realized GDP. The nowcasts thus provide a better esti-
mate than the common factors — which we might consider a GDP index — on
their own.
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Figure 4: Nowcasts of current-quarter GDP over 2007 Q1- 2009 Q4

5 Conclusion

This paper makes several contributions to the macroeconomics literature. First,
we present a novel method for estimating state-space models when data is cointe-
grated of order 1. This econometric model bridges a gap that still remains between
macroeconomic theory and macroeconometrics. Theoretical models typically de-
scribe results in deviations from trend and only consider shocks to productivity.
Econometric models, on the other hand, typically difference data to enforce sta-
tionarity and often allow what would in theory be considered jump variables to
enter VARs. By considering observables as a function of unobserved states of the
economy we are able to make our econometric estimates consistent with theory,
so long as our theoretical framework allows for shocks to all state variables. Thus
we are able to show that for our chosen data generating process our econometric
approach offers an improvement over the standard practice of differencing even if
the econometrician is not directly interested in the levels of observations.
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Second, we use our model to construct estimates of monthly log real GDP in
levels from October 1969 to January 2016. These estimates allow us to describe the
monthly evolution of GDP over the recent financial crisis with a peak in November
2007 and a trough in June 2009. Additionally, simulation shows that our estimated
GDP may be a more accurate measure of GDP than observed expenditure side
GDP due to measurement error in the observed series.

Finally, we nowcast quarterly GDP in log levels differentiating between a com-
ponent based on common factors and a component based on persistent error terms.
While the common factor component does better at capturing changes in GDP,
that is, nowcasts in first differences, level nowcasts require the inclusion of persis-
tent error terms.

In this paper we have proposed a novel application of state-space models to
cointegrated data generated by a simple dynamic stochastic general equilibrium
model, yet much work remains to be done. None of the elements that go into our
estimation are in fact new — we simply use principle components as an initial
guess, the Kalman filter, and maximum likelihood estimation. However, we do
not know a-priori the number of factors which will in fact be non-stationary; this
is only something we learn after our estimation. What, then, are the conditions
under which there will be a single non-stationary factor and all other factors will
be stationary? In a broader context, how important is the differentiation between
state and jump variables in empirical estimation? What are the implications of
the misspecification entailed in estimating jump variables in a transition equation
(that is, a VAR)? While we believe the framework we present in this paper offers a
promising direction for improving both nowcasts and forecasts more generally, we
also hope the questions it raises will stimulate further debate on their construction
and estimation.

24



References

Aguiar, M. and Gopinath, G., 2007. Emerging Market Business Cycles: The Cycle
Is the Trend. Journal of Political Economy, 115:69–102.

Altissimo, F., Cristadora, R., Forni, M., Lippi, M., and Veronese, G., 2010. New
Eurocoin: Tracking Economic Growth in Real Time. The Review of Economics
and Statistics, 92(4):1024–1034.
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A Derivations for a Simple Theoretical Growth

Model

This appendix contains the derivations for the simple theoretical growth models
used to simulate data in section ??. The two models are identical except for the
fact that in the first case, when we estimate the correctly specified models, the
stationary productivity shock follows an AR(1) process, while in the second case,
when we estimated the misspecified model, this productivity shock is AR(2).

The model is described by a representative agent who maximizes utility

(25) U = Et

∞∑
s=0

βs
C1−σ
t+s

1− σ

subject to

(26) atK
α
t H

θ
t L

1−α−θ
t + (1− δ)Kt + (1− γ)Ht = Ct +Kt+1 +Ht+1

(27) ât+1 = ρaât + εat

and

(28) τ̂t+1 = ρτ τ̂t + ετt

where Lt+1 = τt+1Lt. Upper case letters represent levels of variables that grow over
time while lower case letters represent stationary variables. We take first order
conditions in levels. Writing the Lagrangian for this constrained maximization
problem as

L = Et

∞∑
s=0

βs
[
C1−σ
t+s

1− σ
+λt+s

(
at+sK

α
t+sH

θ
t+sL

1−α−θ
t+s +(1−δ)Kt+s+(1−γ)Ht+s−Ct+s−Kt+s+1−Ht+s+1

)]
the combined first order conditions for consumption (Ct) and physical capital (Kt)
is

(29) C−σt = βEt
[
C−σt+1(αat+1K

α−1
t+1 H

θ
t+1L

1−α−θ
t+1 + 1− δ)

]
The combined first order condition for consumption and human capital (Ht) is,
similarly,

(30) C−σt = βEt
[
C−σt+1(θat+1K

α
t+1H

θ−1
t+1 L

1−α−θ
t+1 + 1− γ)

]
The structure of our model (in particular, the fact that production is homoge-
neous of degree one) makes it convenient to scale by productive labor (Lt) so that
equation (29) becomes(

Ct
Lt

)−σ
= βEt

[(
Ct+1

Lt+1

)−σ
τ−σt+1(αat+1

(
Kt+1

Lt+1

)α−1(
Ht+1

Lt+1

)θ (
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)1−α−θ

+ 1− δ)

]
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where we have used equation (28) on the right hand side. Thus

(31) c−σt = βEt
[
c−σt+1τ

−σ
t+1(αat+1k

α−1
t+1 h

θ
t+1 + 1− δ)

]
where xt = Xt

Lt
and equation (29) becomes

(32) c−σt = βEt
[
c−σt+1τ

−σ
t+1(θat+1k

α
t+1h

θ−1
t+1 + 1− γ)

]
The system of difference equations describing this model is completed by the bud-
get constraint, which in terms of scaled variables is

(33) atk
α
t h

θ
t + (1− δ)kt + (1− γ)ht = ct + τt+1kt+1 + τt+1ht+1

In matrix form the log linearized system of difference equations described by this
model is

Et


1 0 0 0 0
0 1 0 0 0
0 τ(k + h) τk τh 0

βτ−σαkα−1hθ −σβτ−σ(αkα−1hθ + (1 − δ)) (α− 1)βτ−σαkα−1hθ θβτ−σαkα−1hθ −σβτ−σ(αkα−1hθ + (1 − δ))

βτ−σθkαhθ−1 −σβτ−σ(θkαhθ−1 + (1 − γ)) αβτ−σθkαhθ−1 (θ − 1)βτ−σθkαhθ−1 −σβτ−σ(θkαhθ−1 + (1 − γ))


︸ ︷︷ ︸

H


ât+1
τ̂t+1

k̂t+1

ĥt+1
ĉt+1



=


ρa 0 0 0 0
0 ρτ 0 0 0

kαhθ 0 αkαhθ + (1 − δ)k θkαhθ + (1 − γ)h −c
0 0 0 0 −σ
0 0 0 0 −σ


︸ ︷︷ ︸

N


ât
τ̂t
k̂t
ĥt
ĉt



Hats indicate log deviation from steady state values and variables without time
subscripts indicate steady state values. Letting A = H−1N , defining Λ the diag-
onal matrix of stable eigenvalues of A, and Cs the square upper 4 × 4 submatrix
of the eigenvectors associated with Λ, the the solution to this model, in terms of
state variables in t+ 1 as a function of state variables in t, is

(34) Yt+1 = WYt + εt+1

where Yt =
[
ât τ̂t k̂t ĥt ĉt

]′
, W = CsΛC

−1
s , and εt+1 is a vector of shocks to

state variables. In the macro theory literature typically only at+1, total factor
productivity, and perhaps τt+1, labor augmenting productivity, would be subject
to shocks. However, as the econometrics literature allows for shocks to all state
variables, we do so as well (that is, none of the elements of εt+1 are restricted to
zero), though in deference to the macro theory, shocks to at+1 are much larger;
in our parameterized model εat+1 has a standard deviation of .01 and all other
shocks have a standard deviation of 10−6. The other parameter values we use in
our simulations are β = 0.99, τ = 1.0033, σ = 1.5, γ = 0.075, δ = 0.1, α = 0.25,
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θ = 0.25, ρa = 0.7, and ρτ = 0.9. Using these values we can write the solution to
our model, equation (34), as

ât+1

τ̂t+1

k̂t+1

ĥt+1

 =


0.70 0 0 0

0 0.90 0 0
0.23 −0.98 0.34 0.52
0.09 −1.17 0.41 0.62



ât
τ̂t+1

k̂t
ĥt

+


εat+1

ετt+1

εkt+1

εht+1


In the case that productivity follows an AR(2) process we simply augment the vec-
tor of state variables to include at−1. That is, we can write the AR(2) productivity
shock in matrix form as[

ât+1

ât

]
=

[
ρ1 ρ2

1 0

] [
at
at−1

]
+

[
εat+1

0

]
The Matlab programs used to simulate these models are available upon request.

B Simulated GDP

Our first set of simulations in which our model is correctly specified is analogous
to the construction of IRFs for frequentest VARs by simulation. We begin by
estimating the 8 factor 12 lag model from our 171 observed series as outlined in
the paper. We then use the estimated transition matrix for stationary factors
B to simulate factors where shocks are normally distributed with mean zero and
covariance matrix q, the estimated covariance of the errors vt. The non-stationary
factor in the simulated augmented vector of factors Za

t is simply the sum of the
differenced factor over the preceding periods. Because this first factor is non-
stationary the influence of initial values will not fade over time; for this reason we
start every simulation using estimated initial values from the data. We simulate the
persistent component of errors in the measurement equation using the estimated
AR(1) terms for each series where shocks are zero mean with variance given by
the estimated variance of et. For our second set of simulations, those for the
misspecified model, the only difference is the evolution of the persistent deviations
in variables ut; in these second simulations the evolution for ut for every series is

ut = .3ut−1 + .3ut−2 + .3ut−3 + et

where the variance of et is again given by the estimated variance. In this alternative
process for errors the largest eigenvalue of the associated companion matrix is 0.95
so that shocks to errors are highly persistent.

Once we have simulated the factors Zt and ut we construct observations using
the estimated matrix H and the helper matrix J described in section 3.1. The
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i.i.d. shocks to variables, which we consider to be measurement error, are zero mean
with covariance matrix R where again R comes from our original estimations. We
also save what we consider to be the unobserved true monthly realizations for all
variables including low frequency variables given by

Y true
t =

[
H Ik

] [Xt

ut

]
That is, what we consider to be the true realizations of variables do not include
i.i.d. errors εt.

Once we have our simulated observations and saved true realizations, we esti-
mate the model using the simulated observations where only every third realization
for quarterly series is observed.

We obtain the mean squared error for GDP growth by comparing estimated
monthly GDP growth y∗t − y∗t−1 with true monthly GDP growth ytruet − ytruet−1 . Note
that estimated GDP growth does not use any measure of actual monthly GDP as
monthly GDP is not observed. In our second set of simulations for the misspecified
model we also report the mean squared error for quarterly estimated GDP, yQ,estt −
yQ,truet , relative to the mean squared error for quarterly observed GDP, yQ,obs −
yQ,truet . The complete set of Matlab programs used for these simulations is available
on request.
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C Detailed description of the data set

C.1 Data set

Table 3: Data set

Series Freq. Start End Trans- Datastream

date date formations code

Housing prices
S&P/Case-Shiller national home price index M 1975:01 2015:08 ln USCSHP.ME
S&P/Case-Shiller national home price index - 20 city composite M 2000:01 2015:08 ln USCSHP20E
Median price of existing one family homes sold - Midwest M 1968:11 2015:09 ln USHPMERMA
Median price of existing one family homes sold - Northeast M 1968:11 2015:09 ln USHPMERNA
Median price of existing one family homes sold - South M 1968:11 2015:09 ln USHPMERSA
Median price of existing one family homes sold - West M 1968:11 2015:09 ln USHPMERWA
Average price of existing one family homes sold - Midwest M 1989:01 2015:09 ln USHPAERMA
Average price of existing one family homes sold - Northeast M 1989:01 2015:09 ln USHPAERNA
Average price of existing one family homes sold - South M 1989:01 2015:09 ln USHPAERSA
Average price of existing one family homes sold - West M 1989:01 2015:09 ln USHPAERWA

Housing starts and sales
Housing started - 5 units or more M 1968:10 2015:09 USHB5ANDO
Housing started - Midwest M 1968:10 2015:09 USHBRM..O
Housing started - Northeast M 1968:10 2015:09 USHBRN..O
Housing started - South M 1968:10 2015:09 USHBRS..O
Housing started - West M 1968:10 2015:09 USHBRW..O
Housing authorized - Midwest M 1968:10 2015:09 USHARM..P
Housing authorized - Northeast M 1968:10 2015:09 USHARN..P
Housing authorized - South M 1968:10 2015:09 USHARS..P
Housing authorized - West M 1968:10 2015:09 USHARW..P
Sales of new one family houses M 1968:10 2015:09 ln USHOUSESE
Existing one-family homes sold - Midwest M 1989:01 2015:09 ln USHSOERMO
Existing one-family homes sold - Northeast M 1989:01 2015:09 ln USHSOERNO
Existing one-family homes sold - South M 1989:01 2015:09 ln USHSOERSO
Existing one-family homes sold - West M 1989:01 2015:09 ln USHSOERWO

Housing other
Home ownership rates - Midwest Q 1968:11 2015:08 USHOWNMWR
Home ownership rates - Northeast Q 1968:11 2015:08 USHOWNNER
Home ownership rates - South Q 1968:11 2015:08 USHOWNSOR
Home ownership rates - West Q 1968:11 2015:08 USHOWNWER
Rental vacancy rate - Midwest Q 1968:11 2015:08 USHVRRM.%
Rental vacancy rate - Northeast Q 1968:11 2015:08 USHVRRN.%
Rental vacancy rate - South Q 1968:11 2015:08 USHVRRS.%
Rental vacancy rate - West Q 1968:11 2015:08 USHVRRW.%

Production
Industrial production M 1968:10 2015:10 ln USIPTOT.G
Industrial production - automotive products M 1968:10 2015:10 ln USIPMAUPG
Industrial production - business equipment M 1968:10 2015:10 ln USIPMBUQG
Industrial production - consumer goods M 1968:10 2015:10 ln USIPMCOGG
Industrial production - durable consumer goods M 1968:10 2015:10 ln USIPMDUCG
Industrial production - energy M 1968:10 2015:10 ln USIPMENTG
Industrial production - final products M 1968:10 2015:10 ln USIPTOT.G
Industrial production - materials M 1968:10 2015:10 ln USIPMMATG
Industrial production - nondurable consumer goods M 1968:10 2015:10 ln USIPMNOCG
Capacity utilization rate M 1968:11 2015:10 USCAPUTLQ

continued on next page
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Table 3: Data set

Series Freq. Start End Trans- Datastream

date date formations code

GDP Q 1968:10 2015:10 ln USGDP...B

Inventories, orders and sales
Inventories/sales ratio - manufacturing M 1997:01 2015:08 USISSMFGQ
Inventories/sales ratio - retail trade M 1997:01 2015:08 USISSR..Q
Inventories - manufacturing M 1992:01 2015:09 ln USINMFG.B
New orders - manufacturing M 1992:01 2015:09 ln USNEWORDB
MFRS new orders M 1968:10 2015:09 USMNOEACQ
ISM manufacturers survey (supplier delivery index) M 1968:10 2015:10 USNAPMDL

Employment
Labor force - Midwest M 1976:01 2015:09 ln USLFPI2EO
Labor force - Northeast M 1976:01 2015:09 ln USLFR6FOO
Labor force - South M 1976:01 2015:09 ln USLFKRPCO
Labor force - West M 1976:01 2015:09 ln USLF8Q9EO
Employed - construction M 1968:10 2015:10 ln USEM23..O
Employed - durable goods M 1968:10 2015:10 ln USEMIMD.O
Employed - education and health services M 1968:10 2015:10 ln USEMIE..O
Employed - federal M 1968:10 2015:10 ln USEMGF..O
Employed - financial activities M 1968:10 2015:10 ln USEMIF..O
Employed - goods producing M 1968:10 2015:10 ln USEMPG..O
Employed - government M 1968:10 2015:10 ln USEMIG..O
Employed - information M 1968:10 2015:10 ln USEM51..O
Employed - leisure and hospitality M 1968:10 2015:10 ln USEMIL..O
Employed - local government M 1968:10 2015:10 ln USEMGL..O
Employed - manufacturing M 1968:10 2015:10 ln USEMPMANO
Employed - mining M 1968:10 2015:10 ln USEM21..O
Employed - natural resources and mining M 1968:10 2015:10 ln USEMIU..O
Employed - nondurable goods M 1968:10 2015:10 ln USEMIMN.O
Employed - nonfarm industries total M 1968:10 2015:10 ln USEMPALLO
Employed - other services M 1968:10 2015:10 ln USEM81..O
Employed - private service providing M 1968:10 2015:10 ln USEMPP..O
Employed - professional and business services M 1968:10 2015:10 ln USEMIB..O
Employed - retail trade M 1968:10 2015:10 ln USEMIR..O
Employed - state government M 1968:10 2015:10 ln USEMGS..O
Employed - utlities M 1968:10 2015:10 ln USEM22..O
Employed - wholesale trade M 1968:10 2015:10 ln USEM42..O
Employment - Northeast M 1976:01 2015:09 ln USLER6FQO
Employment - Midwest M 1976:01 2015:09 ln USLEPI2GO
Employment - South M 1976:01 2015:09 ln USLEKRPEO
Employment - West M 1976:01 2015:09 ln USLE8Q9GO
Unemployed - less than 5 weeks M 1968:10 2015:10 ln USUNWK5.O
Unemployed - 5-14 weeks M 1968:10 2015:10 ln USUNWK14O
Unemployed - 15-26 weeks M 1968:10 2015:10 ln USUNWK26O
Unemployed - 15 weeks and more M 1968:10 2015:10 ln USUNPLNGE
Unemployed - 27 weeks and more M 1968:10 2015:10 ln USUNWK27O
Average weekly hours - total private nonfarm M 1968:10 2015:10 USHKIP..O
Average weekly hours - manufacturing M 1968:10 2015:10 USHKIM..O
Average overtime hours - manufacturing M 1968:10 2015:10 USHXPMANO
Unemployment rate - 25-54 years M 1968:10 2015:10 USUR2554Q
Unemployment rate - 55 years and over M 1968:10 2015:10 USUR55..Q
Unemployment rate - Midwest M 1976:01 2015:09 USLRPI24Q
Unemployment rate - Northeast M 1976:01 2015:09 USLRR6FEQ
Unemployment rate - South M 1976:01 2015:09 USLRKRP2Q

continued on next page
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Table 3: Data set

Series Freq. Start End Trans- Datastream

date date formations code

Unemployment rate - West M 1976:01 2015:09 USLR8Q94Q
Average weekly initial claims M 1976:01 2015:09 USUNINSCQ

Income and earnings
Disposable personal income per capita M 1968:10 2015:09 ln USINPERCB
Average hourly earnings - total private nonfarm M 1968:10 2015:10 ln USWRIP..B
Average hourly earnings - durable goods M 1968:10 2015:10 ln USWRIMD.B
Average hourly earnings - goods producing M 1968:10 2015:10 ln USWRPG..B
Average hourly earnings - natural resources and mining M 1968:10 2015:10 ln USWRIU..B
Average hourly earnings - nondurable goods M 1968:10 2015:10 ln USWRIMN.B
Average hourly earnings - other services M 1968:10 2015:10 ln USWR81..B
Average hourly earnings - professional and business services M 1968:10 2015:10 ln USWRIB..B
Average hourly earnings - retail trade M 1972:01 2015:10 ln USWRIR..B
Average hourly earnings - wholesale trade M 1972:01 2015:10 ln USWR42..B

Prices
CPI - all urban M 1968:10 2015:10 ln USCONPRCE
CPI - all items less energy M 1968:10 2015:10 ln USCPXENGE
CPI - all items less food M 1968:10 2015:10 ln USCPXF..E
CPI - all items less medical care M 1968:10 2015:10 ln USCPXMEDE
CPI - all items less shelter M 1968:10 2015:10 ln USCPXHS.E
CPI - commodities M 1968:10 2015:10 ln USCPCOMME
CPI - durables M 1968:10 2015:10 ln USCPD...E
CPI - medical care M 1968:10 2015:10 ln USCPMEDCE
CPI - services M 1968:10 2015:10 ln USCPSERVE
CPI - transportation services M 1968:10 2015:10 ln USCPST..E
PPI - finished consumer goods M 1968:10 2015:10 ln USWPCONFE
PPI - intermediate materials, supplies and components M 1968:10 2015:10 ln USWPINTME
PPI - petroleum products M 1968:10 2015:09 ln USBCIPPEE
PCE M 1968:10 2015:09 ln USCP...CE
PCE - durables M 1968:10 2015:09 ln USCONDUCE
PCE - nondurables M 1968:10 2015:09 ln USCONNDCE
PCE - services M 1968:10 2015:09 ln USCONSRCE

Interest rates and yields
Fed funds effective rate M 1968:10 2015:11 FRFEDFD
Conventional mortgage points - 15 years M 1990:01 2015:11 USMFCF1
Conventional mortgage points - 30 years M 1990:01 2015:11 USMFCF3
FHA mortgage points M 1990:01 2015:11 USMFGFH
US treasury bonds constant maturity - 1 year M 1968:10 2015:11 FRTCM1Y
US treasury bonds constant maturity - 5 year M 1968:10 2015:11 FRTCM5Y
US treasury bonds constant maturity - 10 year M 1968:10 2015:11 FRTCM10
US treasury bill secondary market - 3 month M 1968:10 2015:11 FRTBS3M
US treasury bill secondary market - 6 month M 1968:10 2015:11 FRTBS6M
US commercial paper - 3 month M 1971:04 2015:09 USI60BC.
US corporate bond yield - Moody’s AAA M 1968:10 2015:10 USCRBYLD
US corporate bond yield - Moody’s BAA M 1968:10 2015:10 USCRBBAA
US rate 3 month Euro-Dollar deposit M 1968:10 2015:10 USOIR075R
Corporate BAA - Tbond10 M 1968:10 2015:10
Corporate AAA - Tbond10 M 1968:10 2015:10
Tbill6 - Tbill3 M 1968:10 2015:11
Tbond1 - Tbill3 M 1968:10 2015:11
Tbond5 - Tbill3 M 1968:10 2015:11
Tbond10 - Tbill3 M 1968:10 2015:11
CP3 - Tbill3 M 1971:04 2015:09

continued on next page
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Table 3: Data set

Series Freq. Start End Trans- Datastream

date date formations code

Mortg15 - Tbond10 M 1990:01 2015:11
Mortg30 - Tbond10 M 1990:01 2015:11

Money and credit
Money supply M1 M 1968:10 2015:10 ln USM1....B
Money supply M2 M 1968:10 2015:10 ln USM2....B
Monetary base (adjusted for reserve requirements) M 1968:10 2015:10 ln USMYBSS.B
Reserve balance of depository institutions with Federal Reserve banks M 1968:10 2015:10 ln USRSBALNA
Consumer credit outstanding M 1968:10 2015:09 ln USCRDCONB
Consumer credit outstanding as share of GDP Q 1968:11 2015:08
Non-revolving consumer credit outstanding M 1968:10 2015:09 ln USCRDNRVB
Commercial and industrial loans M 1968:10 2015:10 ln USBCACI.B

Mortgage debt and delinquencies
Credit market debt outstanding - home mortgages Q 1968:12 2015:06 ln US15MGHDB
Home mortgages as share of GDP Q 1968:11 2015:08 ln
Credit market instruments - total mortgages Q 1968:12 2015:06 ln US89MGTAB
Total mortgages -nonfinancial business, nonfarm, noncorporate Q 1968:12 2015:06 ln US11MGTLB
Home mortgages - nonfinancial corporate businesses Q 1968:12 2015:06 ln US10MGHLB
Delinquent residential mortgage loans - Northeast Q 1979:03 2015:09 USMGDHN.R
Delinquent residential mortgage loans - South Q 1979:03 2015:09 USMGDHS.R
Delinquent residential mortgage loans - West Q 1979:03 2015:09 USMGDHW.R

Stock prices
Wilshire 5000 M 1971:01 2015:11 ln WIL5TMK
S&P 500 Composite M 1968:10 2015:11 ln S&PCOMP
S&P 500 Industrials M 1989:09 2015:11 ln SP5EIND
Dow Jones Industrials M 1968:10 2015:11 ln DJINDUS

Exchange rates
USD nominal effective exchange rate M 1975:01 2015:10 ln USE$EF..
Exchange rate - CAD per USD M 1968:10 2015:09 ln CNI..AE.
Exchange rate - CHF per USD M 1968:10 2015:09 ln SWI..AE.
Exchange rate - EUR per USD M 1999:01 2015:09 ln EMI..AE.
Exchange rate - GBP per USD M 1968:10 2015:09 ln UKI..AE.
Exchange rate - JPY per USD M 1968:10 2015:09 ln JPI..AE.

Other
ISM purchasing managers index M 1968:10 2015:10 USCNFBUSQ
Economic policy uncertainy index (news based) M 1985:01 2015:10 USEPUNEWR
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C.2 Release calendar

Table 4: Release calendar

Series Week of Lags

update (in months)

Housing prices
S&P/Case-Shiller national home price index 4 2
S&P/Case-Shiller national home price index - 20 city composite 4 2
Median price of existing one family homes sold - Midwest 3 1
Median price of existing one family homes sold - Northeast 3 1
Median price of existing one family homes sold - South 3 1
Median price of existing one family homes sold - West 3 1
Average price of existing one family homes sold - Midwest 3 1
Average price of existing one family homes sold - Northeast 3 1
Average price of existing one family homes sold - South 3 1
Average price of existing one family homes sold - West 3 1

Housing starts and sales
Housing started - 5 units or more 3 1
Housing started - Midwest 3 1
Housing started - Northeast 3 1
Housing started - South 3 1
Housing started - West 3 1
Housing authorized - Midwest 3 1
Housing authorized - Northeast 3 1
Housing authorized - South 3 1
Housing authorized - West 3 1
Sales of new one family houses 4 1
Existing one-family homes sold - Midwest 3 1
Existing one-family homes sold - Northeast 3 1
Existing one-family homes sold - South 3 1
Existing one-family homes sold - West 3 1

Housing other

Home ownership rates - Midwest1) 4 1

Home ownership rates - Northeast1) 4 1

Home ownership rates - South1) 4 1

Home ownership rates - West1) 4 1

Rental vacancy rate - Midwest1) 4 1

Rental vacancy rate - Northeast1) 4 1

Rental vacancy rate - South1) 4 1

Rental vacancy rate - West1) 4 1

Production
Industrial production 3 1
Industrial production - automotive products 3 1
Industrial production - business equipment 3 1
Industrial production - consumer goods 3 1
Industrial production - durable consumer goods 3 1
Industrial production - energy 3 1
Industrial production - final products 3 1
Industrial production - materials 3 1
Industrial production - nondurable consumer goods 3 1
Capacity utilization rate 3 1

GDP
1)

2 2
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Table 4: Release calendar

Series Week of Lags

update (in months)

Inventories, orders and sales
Inventories/sales ratio - manufacturing 4 2
Inventories/sales ratio - retail trade 4 2
Inventories - manufacturing 1 2
New orders - manufacturing 1 2
MFRS new orders 3 1
ISM manufacturers survey (supplier delivery index) 1 1

Employment
Labor force - Midwest 4 1
Labor force - Northeast 4 1
Labor force - South 4 1
Labor force - West 4 1
Employed - construction 1 1
Employed - durable goods 1 1
Employed - education and health services 1 1
Employed - federal 1 1
Employed - financial activities 1 1
Employed - goods producing 1 1
Employed - government 1 1
Employed - information 1 1
Employed - leisure and hospitality 1 1
Employed - local government 1 1
Employed - manufacturing 1 1
Employed - mining 1 1
Employed - natural resources and mining 1 1
Employed - nondurable goods 1 1
Employed - nonfarm industries total 1 1
Employed - other services 1 1
Employed - private service providing 1 1
Employed - professional and business services 1 1
Employed - retail trade 1 1
Employed - state government 1 1
Employed - utlities 1 1
Employed - wholesale trade 1 1
Employment - Northeast 1 1
Employment - Midwest 1 1
Employment - South 1 1
Employment - West 1 1
Unemployed - less than 5 weeks 1 1
Unemployed - 5-14 weeks 1 1
Unemployed - 15-26 weeks 1 1
Unemployed - 15 weeks and more 1 1
Unemployed - 27 weeks and more 1 1
Average weekly hours - total private nonfarm 1 1
Average weekly hours - manufacturing 1 1
Average overtime hours - manufacturing 1 1
Unemployment rate - 25-54 years 1 1
Unemployment rate - 55 years and over 1 1
Unemployment rate - Midwest 4 1
Unemployment rate - Northeast 4 1
Unemployment rate - South 4 1
Unemployment rate - West 4 1
Average weekly intial claims 3 1
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Table 4: Release calendar

Series Week of Lags

update (in months)

Income and earnings
Disposable personal income per capita 4 1
Average hourly earnings - total private nonfarm 1 1
Average hourly earnings - durable goods 1 1
Average hourly earnings - goods producing 1 1
Average hourly earnings - natural resources and mining 1 1
Average hourly earnings - nondurable goods 1 1
Average hourly earnings - other services 1 1
Average hourly earnings - professional and business services 1 1
Average hourly earnings - retail trade 1 1
Average hourly earnings - wholesale trade 1 1

Prices
CPI - all urban 3 1
CPI - all items less energy 3 1
CPI - all items less food 3 1
CPI - all items less medical care 3 1
CPI - all items less shelter 3 1
CPI - commodities 3 1
CPI - durables 3 1
CPI - medical care 3 1
CPI - services 3 1
CPI - transportation services 3 1
PPI - finished consumer goods 3 1
PPI - intermediate materials, supplies and components 3 1
PPI - petroleum products 3 1
PCE 4 1
PCE - durables 4 1
PCE - nondurables 4 1
PCE - services 4 1

Interest rates and yields
Fed funds effective rate 1 1
Conventional mortgage points - 15 years 1 1
Conventional mortgage points - 30 years 1 1
FHA mortgage points 1 1
US treasury bonds constant maturity - 1 year 1 1
US treasury bonds constant maturity - 5 year 1 1
US treasury bonds constant maturity - 10 year 1 1
US treasury bill secondary market - 3 month 1 1
US treasury bill secondary market - 6 month 1 1
US commercial paper - 3 month 4 1
US coporate bond yield - Moody’s AAA 1 1
US coporate bond yield - Moody’s BAA 1 1
US rate 3 month Euro-Dollar deposit 1 1
Corporate BAA - Tbond10 1 1
Corporate AAA - Tbond10 1 1
Tbill6 - Tbill3 1 1
Tbond1 - Tbill3 1 1
Tbond5 - Tbill3 1 1
Tbond10 - Tbill3 1 1
CP3 - Tbill3 4 1
Mortg15 - Tbond10 3 1
Mortg30 - Tbond10 3 1
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Table 4: Release calendar

Series Week of Lags

update (in months)

Money and credit
Money supply M1 2 1
Money supply M2 2 1
Monetary base (adjusted for reserve requirements) 1 1
Reserve balance of depository institutions with Federal Reserve banks 1 1
Consumer credit outstanding 2 2

Consumer credit outstanding as share of GDP1) 2 2
Non-revolving consumer credit outstanding 2 2
Commercial and industrial loans 2 1

Mortgage debt and delinquencies

Credit market debt outstanding - home mortgages1) 2 3

Home mortgages as share of GDP1) 2 2

Credit market instruments - total mortgages1) 2 3

Total mortgages -nonfinancial business, nonfarm, noncorporate1) 2 3

Home mortgages - nonfinancial corporate businesses1) 2 3

Delinquent residential mortgage loans - Northeast1,2) - -

Delinquent residential mortgage loans - South1,2) - -

Delinquent residential mortgage loans - West1,2) - -

Stock prices
Wilshire 5000 1 1
S&P 500 Composite 1 1
S&P 500 Industrials 1 1
Dow Jones Industrials 1 1

Exchange rates
USD nominal effective exchange rate 1 1
Exchange rate - CAD per USD 4 1
Exchange rate - CHF per USD 4 1
Exchange rate - EUR per USD 4 1
Exchange rate - GBP per USD 4 1
Exchange rate - JPY per USD 4 1

Other
ISM purchasing managers index 1 1
Economic policy uncertainy index (news based) 1 1

1) If released in month of update.
2) Not used for sequential updates.
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D Observed GDP and estimated monthly GDP series

Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

1969m5 NaN 3.2895
1969m6 3.2894 3.2923
1969m7 NaN 3.2953
1969m8 NaN 3.2967
1969m9 3.2964 3.2949
1969m10 NaN 3.2923
1969m11 NaN 3.2892
1969m12 3.2892 3.2869
1970m1 NaN 3.2846
1970m2 NaN 3.2837
1970m3 3.2836 3.2834
1970m4 NaN 3.2831
1970m5 NaN 3.2842
1970m6 3.2841 3.2866
1970m7 NaN 3.2907
1970m8 NaN 3.2907
1970m9 3.2913 3.2883
1970m10 NaN 3.2816
1970m11 NaN 3.2815
1970m12 3.2817 3.2898
1971m1 NaN 3.3042
1971m2 NaN 3.3131
1971m3 3.3136 3.3181
1971m4 NaN 3.3188
1971m5 NaN 3.3206
1971m6 3.3204 3.3234
1971m7 NaN 3.3279
1971m8 NaN 3.3304
1971m9 3.3311 3.3328
1971m10 NaN 3.3327
1971m11 NaN 3.3355
1971m12 3.3352 3.3411
1972m1 NaN 3.3506
1972m2 NaN 3.3588
1972m3 3.3590 3.3671
1972m4 NaN 3.3748
1972m5 NaN 3.3806
1972m6 3.3810 3.3854
1972m7 NaN 3.3864
1972m8 NaN 3.3906
1972m9 3.3903 3.3958
1972m10 NaN 3.4044
1972m11 NaN 3.4127
1972m12 3.4125 3.4208
1973m1 NaN 3.4291
1973m2 NaN 3.4351
1973m3 3.4349 3.4378
1973m4 NaN 3.4379
1973m5 NaN 3.4365
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

1973m6 3.4368 3.4336
1973m7 NaN 3.4282
1973m8 NaN 3.4261
1973m9 3.4264 3.4294
1973m10 NaN 3.4361
1973m11 NaN 3.4386
1973m12 3.4385 3.4361
1974m1 NaN 3.4295
1974m2 NaN 3.4263
1974m3 3.4261 3.4260
1974m4 NaN 3.4289
1974m5 NaN 3.4297
1974m6 3.4298 3.4279
1974m7 NaN 3.4232
1974m8 NaN 3.4190
1974m9 3.4189 3.4165
1974m10 NaN 3.4163
1974m11 NaN 3.4133
1974m12 3.4131 3.4084
1975m1 NaN 3.4039
1975m2 NaN 3.4029
1975m3 3.4028 3.4045
1975m4 NaN 3.4089
1975m5 NaN 3.4146
1975m6 3.4142 3.4191
1975m7 NaN 3.4251
1975m8 NaN 3.4306
1975m9 3.4301 3.4334
1975m10 NaN 3.4362
1975m11 NaN 3.4401
1975m12 3.4404 3.4467
1976m1 NaN 3.4558
1976m2 NaN 3.4625
1976m3 3.4625 3.4670
1976m4 NaN 3.4700
1976m5 NaN 3.4714
1976m6 3.4714 3.4717
1976m7 NaN 3.4714
1976m8 NaN 3.4723
1976m9 3.4722 3.4748
1976m10 NaN 3.4790
1976m11 NaN 3.4836
1976m12 3.4836 3.4874
1977m1 NaN 3.4901
1977m2 NaN 3.4942
1977m3 3.4945 3.5003
1977m4 NaN 3.5071
1977m5 NaN 3.5131
1977m6 3.5131 3.5183
1977m7 NaN 3.5226
1977m8 NaN 3.5266
1977m9 3.5267 3.5307
1977m10 NaN 3.5341
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

1977m11 NaN 3.5354
1977m12 3.5356 3.5351
1978m1 NaN 3.5320
1978m2 NaN 3.5352
1978m3 3.5350 3.5441
1978m4 NaN 3.5579
1978m5 NaN 3.5664
1978m6 3.5668 3.5705
1978m7 NaN 3.5694
1978m8 NaN 3.5710
1978m9 3.5706 3.5745
1978m10 NaN 3.5806
1978m11 NaN 3.5842
1978m12 3.5842 3.5843
1979m1 NaN 3.5805
1979m2 NaN 3.5782
1979m3 3.5782 3.5774
1979m4 NaN 3.5767
1979m5 NaN 3.5781
1979m6 3.5781 3.5805
1979m7 NaN 3.5832
1979m8 NaN 3.5845
1979m9 3.5846 3.5841
1979m10 NaN 3.5822
1979m11 NaN 3.5804
1979m12 3.5803 3.5788
1980m1 NaN 3.5772
1980m2 NaN 3.5718
1980m3 3.5718 3.5624
1980m4 NaN 3.5496
1980m5 NaN 3.5416
1980m6 3.5417 3.5390
1980m7 NaN 3.5415
1980m8 NaN 3.5446
1980m9 3.5446 3.5483
1980m10 NaN 3.5531
1980m11 NaN 3.5592
1980m12 3.5592 3.5672
1981m1 NaN 3.5769
1981m2 NaN 3.5818
1981m3 3.5823 3.5826
1981m4 NaN 3.5786
1981m5 NaN 3.5757
1981m6 3.5754 3.5746
1981m7 NaN 3.5756
1981m8 NaN 3.5746
1981m9 3.5746 3.5718
1981m10 NaN 3.5686
1981m11 NaN 3.5640
1981m12 3.5641 3.5581
1982m1 NaN 3.5505
1982m2 NaN 3.5475
1982m3 3.5472 3.5472
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

1982m4 NaN 3.5495
1982m5 NaN 3.5500
1982m6 3.5499 3.5483
1982m7 NaN 3.5456
1982m8 NaN 3.5451
1982m9 3.5450 3.5464
1982m10 NaN 3.5489
1982m11 NaN 3.5528
1982m12 3.5529 3.5577
1983m1 NaN 3.5634
1983m2 NaN 3.5685
1983m3 3.5689 3.5748
1983m4 NaN 3.5813
1983m5 NaN 3.5879
1983m6 3.5880 3.5949
1983m7 NaN 3.6019
1983m8 NaN 3.6073
1983m9 3.6078 3.6140
1983m10 NaN 3.6196
1983m11 NaN 3.6245
1983m12 3.6246 3.6294
1984m1 NaN 3.6341
1984m2 NaN 3.6394
1984m3 3.6392 3.6448
1984m4 NaN 3.6506
1984m5 NaN 3.6553
1984m6 3.6553 3.6583
1984m7 NaN 3.6593
1984m8 NaN 3.6606
1984m9 3.6608 3.6626
1984m10 NaN 3.6648
1984m11 NaN 3.6680
1984m12 3.6678 3.6710
1985m1 NaN 3.6743
1985m2 NaN 3.6768
1985m3 3.6769 3.6792
1985m4 NaN 3.6813
1985m5 NaN 3.6849
1985m6 3.6848 3.6893
1985m7 NaN 3.6946
1985m8 NaN 3.6984
1985m9 3.6986 3.7003
1985m10 NaN 3.6997
1985m11 NaN 3.7001
1985m12 3.7000 3.7014
1986m1 NaN 3.7033
1986m2 NaN 3.7047
1986m3 3.7050 3.7057
1986m4 NaN 3.7058
1986m5 NaN 3.7057
1986m6 3.7055 3.7060
1986m7 NaN 3.7080
1986m8 NaN 3.7089
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

1986m9 3.7089 3.7091
1986m10 NaN 3.7087
1986m11 NaN 3.7091
1986m12 3.7091 3.7106
1987m1 NaN 3.7124
1987m2 NaN 3.7146
1987m3 3.7146 3.7166
1987m4 NaN 3.7184
1987m5 NaN 3.7204
1987m6 3.7204 3.7224
1987m7 NaN 3.7252
1987m8 NaN 3.7282
1987m9 3.7281 3.7321
1987m10 NaN 3.7378
1987m11 NaN 3.7416
1987m12 3.7418 3.7442
1988m1 NaN 3.7452
1988m2 NaN 3.7480
1988m3 3.7477 3.7510
1988m4 NaN 3.7547
1988m5 NaN 3.7578
1988m6 3.7580 3.7603
1988m7 NaN 3.7615
1988m8 NaN 3.7631
1988m9 3.7632 3.7656
1988m10 NaN 3.7689
1988m11 NaN 3.7722
1988m12 3.7722 3.7757
1989m1 NaN 3.7791
1989m2 NaN 3.7821
1989m3 3.7820 3.7844
1989m4 NaN 3.7858
1989m5 NaN 3.7873
1989m6 3.7875 3.7895
1989m7 NaN 3.7916
1989m8 NaN 3.7927
1989m9 3.7928 3.7922
1989m10 NaN 3.7896
1989m11 NaN 3.7897
1989m12 3.7894 3.7912
1990m1 NaN 3.7941
1990m2 NaN 3.7970
1990m3 3.7968 3.7990
1990m4 NaN 3.8002
1990m5 NaN 3.8004
1990m6 3.8004 3.7994
1990m7 NaN 3.7968
1990m8 NaN 3.7933
1990m9 3.7932 3.7895
1990m10 NaN 3.7854
1990m11 NaN 3.7819
1990m12 3.7820 3.7785
1991m1 NaN 3.7749
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

1991m2 NaN 3.7734
1991m3 3.7734 3.7743
1991m4 NaN 3.7770
1991m5 NaN 3.7791
1991m6 3.7794 3.7812
1991m7 NaN 3.7823
1991m8 NaN 3.7828
1991m9 3.7830 3.7834
1991m10 NaN 3.7835
1991m11 NaN 3.7841
1991m12 3.7843 3.7864
1992m1 NaN 3.7900
1992m2 NaN 3.7933
1992m3 3.7933 3.7964
1992m4 NaN 3.7997
1992m5 NaN 3.8024
1992m6 3.8023 3.8045
1992m7 NaN 3.8067
1992m8 NaN 3.8093
1992m9 3.8092 3.8122
1992m10 NaN 3.8155
1992m11 NaN 3.8175
1992m12 3.8177 3.8181
1993m1 NaN 3.8173
1993m2 NaN 3.8174
1993m3 3.8171 3.8177
1993m4 NaN 3.8194
1993m5 NaN 3.8210
1993m6 3.8211 3.8225
1993m7 NaN 3.8239
1993m8 NaN 3.8259
1993m9 3.8259 3.8292
1993m10 NaN 3.8333
1993m11 NaN 3.8370
1993m12 3.8371 3.8404
1994m1 NaN 3.8433
1994m2 NaN 3.8463
1994m3 3.8464 3.8504
1994m4 NaN 3.8549
1994m5 NaN 3.8576
1994m6 3.8578 3.8591
1994m7 NaN 3.8591
1994m8 NaN 3.8606
1994m9 3.8606 3.8639
1994m10 NaN 3.8684
1994m11 NaN 3.8716
1994m12 3.8716 3.8732
1995m1 NaN 3.8729
1995m2 NaN 3.8725
1995m3 3.8724 3.8721
1995m4 NaN 3.8713
1995m5 NaN 3.8719
1995m6 3.8721 3.8742
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

1995m7 NaN 3.8769
1995m8 NaN 3.8796
1995m9 3.8797 3.8820
1995m10 NaN 3.8833
1995m11 NaN 3.8848
1995m12 3.8848 3.8861
1996m1 NaN 3.8866
1996m2 NaN 3.8902
1996m3 3.8899 3.8944
1996m4 NaN 3.9001
1996m5 NaN 3.9047
1996m6 3.9048 3.9076
1996m7 NaN 3.9083
1996m8 NaN 3.9096
1996m9 3.9095 3.9113
1996m10 NaN 3.9137
1996m11 NaN 3.9166
1996m12 3.9165 3.9193
1997m1 NaN 3.9220
1997m2 NaN 3.9254
1997m3 3.9255 3.9293
1997m4 NaN 3.9334
1997m5 NaN 3.9379
1997m6 3.9377 3.9420
1997m7 NaN 3.9466
1997m8 NaN 3.9496
1997m9 3.9497 3.9519
1997m10 NaN 3.9533
1997m11 NaN 3.9549
1997m12 3.9548 3.9567
1998m1 NaN 3.9586
1998m2 NaN 3.9603
1998m3 3.9604 3.9620
1998m4 NaN 3.9638
1998m5 NaN 3.9664
1998m6 3.9662 3.9694
1998m7 NaN 3.9728
1998m8 NaN 3.9772
1998m9 3.9771 3.9819
1998m10 NaN 3.9870
1998m11 NaN 3.9912
1998m12 3.9913 3.9946
1999m1 NaN 3.9966
1999m2 NaN 3.9992
1999m3 3.9990 4.0013
1999m4 NaN 4.0031
1999m5 NaN 4.0061
1999m6 4.0060 4.0096
1999m7 NaN 4.0138
1999m8 NaN 4.0182
1999m9 4.0181 4.0229
1999m10 NaN 4.0291
1999m11 NaN 4.0336
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

1999m12 4.0336 4.0360
2000m1 NaN 4.0362
2000m2 NaN 4.0386
2000m3 4.0384 4.0434
2000m4 NaN 4.0511
2000m5 NaN 4.0552
2000m6 4.0554 4.0568
2000m7 NaN 4.0559
2000m8 NaN 4.0565
2000m9 4.0564 4.0581
2000m10 NaN 4.0607
2000m11 NaN 4.0618
2000m12 4.0619 4.0610
2001m1 NaN 4.0578
2001m2 NaN 4.0572
2001m3 4.0570 4.0590
2001m4 NaN 4.0625
2001m5 NaN 4.0637
2001m6 4.0638 4.0624
2001m7 NaN 4.0589
2001m8 NaN 4.0565
2001m9 4.0563 4.0549
2001m10 NaN 4.0543
2001m11 NaN 4.0550
2001m12 4.0551 4.0570
2002m1 NaN 4.0600
2002m2 NaN 4.0625
2002m3 4.0626 4.0646
2002m4 NaN 4.0658
2002m5 NaN 4.0675
2002m6 4.0675 4.0693
2002m7 NaN 4.0705
2002m8 NaN 4.0714
2002m9 4.0715 4.0722
2002m10 NaN 4.0726
2002m11 NaN 4.0741
2002m12 4.0738 4.0758
2003m1 NaN 4.0790
2003m2 NaN 4.0814
2003m3 4.0814 4.0838
2003m4 NaN 4.0870
2003m5 NaN 4.0915
2003m6 4.0912 4.0968
2003m7 NaN 4.1032
2003m8 NaN 4.1083
2003m9 4.1086 4.1133
2003m10 NaN 4.1176
2003m11 NaN 4.1214
2003m12 4.1213 4.1249
2004m1 NaN 4.1281
2004m2 NaN 4.1310
2004m3 4.1311 4.1338
2004m4 NaN 4.1364
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

2004m5 NaN 4.1394
2004m6 4.1393 4.1427
2004m7 NaN 4.1471
2004m8 NaN 4.1509
2004m9 4.1509 4.1539
2004m10 NaN 4.1562
2004m11 NaN 4.1591
2004m12 4.1593 4.1639
2005m1 NaN 4.1698
2005m2 NaN 4.1740
2005m3 4.1741 4.1764
2005m4 NaN 4.1775
2005m5 NaN 4.1804
2005m6 4.1804 4.1854
2005m7 NaN 4.1914
2005m8 NaN 4.1954
2005m9 4.1951 4.1967
2005m10 NaN 4.1980
2005m11 NaN 4.2016
2005m12 4.2013 4.2059
2006m1 NaN 4.2113
2006m2 NaN 4.2156
2006m3 4.2156 4.2182
2006m4 NaN 4.2185
2006m5 NaN 4.2187
2006m6 4.2187 4.2188
2006m7 NaN 4.2186
2006m8 NaN 4.2194
2006m9 4.2197 4.2216
2006m10 NaN 4.2241
2006m11 NaN 4.2263
2006m12 4.2261 4.2277
2007m1 NaN 4.2287
2007m2 NaN 4.2303
2007m3 4.2302 4.2325
2007m4 NaN 4.2357
2007m5 NaN 4.2381
2007m6 4.2382 4.2399
2007m7 NaN 4.2411
2007m8 NaN 4.2424
2007m9 4.2423 4.2431
2007m10 NaN 4.2434
2007m11 NaN 4.2421
2007m12 4.2422 4.2398
2008m1 NaN 4.2361
2008m2 NaN 4.2345
2008m3 4.2342 4.2346
2008m4 NaN 4.2371
2008m5 NaN 4.2379
2008m6 4.2378 4.2371
2008m7 NaN 4.2351
2008m8 NaN 4.2311
2008m9 4.2308 4.2232
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

2008m10 NaN 4.2140
2008m11 NaN 4.2073
2008m12 4.2069 4.2017
2009m1 NaN 4.1964
2009m2 NaN 4.1922
2009m3 4.1922 4.1889
2009m4 NaN 4.1868
2009m5 NaN 4.1860
2009m6 4.1857 4.1849
2009m7 NaN 4.1856
2009m8 NaN 4.1869
2009m9 4.1868 4.1891
2009m10 NaN 4.1919
2009m11 NaN 4.1946
2009m12 4.1948 4.1968
2010m1 NaN 4.1989
2010m2 NaN 4.2016
2010m3 4.2017 4.2054
2010m4 NaN 4.2102
2010m5 NaN 4.2144
2010m6 4.2143 4.2178
2010m7 NaN 4.2205
2010m8 NaN 4.2233
2010m9 4.2234 4.2264
2010m10 NaN 4.2298
2010m11 NaN 4.2310
2010m12 4.2313 4.2305
2011m1 NaN 4.2272
2011m2 NaN 4.2262
2011m3 4.2261 4.2279
2011m4 NaN 4.2320
2011m5 NaN 4.2343
2011m6 4.2346 4.2352
2011m7 NaN 4.2343
2011m8 NaN 4.2345
2011m9 4.2346 4.2362
2011m10 NaN 4.2395
2011m11 NaN 4.2423
2011m12 4.2423 4.2449
2012m1 NaN 4.2473
2012m2 NaN 4.2492
2012m3 4.2492 4.2506
2012m4 NaN 4.2519
2012m5 NaN 4.2533
2012m6 4.2533 4.2544
2012m7 NaN 4.2555
2012m8 NaN 4.2556
2012m9 4.2557 4.2554
2012m10 NaN 4.2548
2012m11 NaN 4.2554
2012m12 4.2553 4.2564
2013m1 NaN 4.2575
2013m2 NaN 4.2583
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Table 5: Quarterly observed GDP and estimated monthly GDP

Date Observed Estimated

GDP monthly GDP

2013m3 4.2586 4.2597
2013m4 NaN 4.2607
2013m5 NaN 4.2621
2013m6 4.2619 4.2638
2013m7 NaN 4.2661
2013m8 NaN 4.2691
2013m9 4.2690 4.2726
2013m10 NaN 4.2767
2013m11 NaN 4.2788
2013m12 4.2788 4.2783
2014m1 NaN 4.2760
2014m2 NaN 4.2761
2014m3 4.2759 4.2780
2014m4 NaN 4.2820
2014m5 NaN 4.2859
2014m6 4.2859 4.2900
2014m7 NaN 4.2939
2014m8 NaN 4.2966
2014m9 4.2967 4.2980
2014m10 NaN 4.2980
2014m11 NaN 4.2977
2014m12 4.2978 4.2968
2015m1 NaN 4.2957
2015m2 NaN 4.2958
2015m3 4.2955 4.2978
2015m4 NaN 4.3024
2015m5 NaN 4.3057
2015m6 4.3057 4.3077
2015m7 NaN 4.3089
2015m8 NaN 4.3091
2015m9 4.3092 4.3086
2015m10 NaN 4.3077
2015m11 NaN 4.3076
2015m12 4.3076 4.3088
2016m1 NaN 4.3104
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