Ahrens, Steffen; Lustenhouwer, Joep; Tettamanzi, Michele

Working Paper
The stabilizing role of forward guidance: A macro experiment

BERG Working Paper Series, No. 137

Provided in Cooperation with:
Bamberg Economic Research Group, Bamberg University

This Version is available at:
http://hdl.handle.net/10419/184678

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privategebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
The Stabilizing Role of Forward Guidance: A Macro Experiment

Steffen Ahrens, Joep Lustenhouwer and Michele Tettamanzi

Working Paper No. 137
September 2018

Bamberg Economic Research Group
Bamberg University
Feldkirchenstraße 21
D-96052 Bamberg
Telefax: (0951) 863 5547
Telephone: (0951) 863 2687
felix.stuebben@uni-bamberg.de
http://www.uni-bamberg.de/vwl/forschung/berg/

Redaktion:
Dr. Felix Stübben*
The Stabilizing Role of Forward Guidance:
A Macro Experiment

Steffen Ahrens* Joep Lustenhouwer† Michele Tettamanzi ‡

First version: May 12, 2017
This version: August 31, 2018

Abstract
Expectations are among the main driving forces for economic dynamics. Therefore, managing expectations has become a primary objective for monetary policy seeking to stabilize the business cycle. In this paper, we study whether central banks can manage market expectations by means of forward guidance in a New Keynesian learning-to-forecast experiment. Forward guidance takes the form of one-period ahead inflation projections that are published by the central bank in each period. Subjects in the experiment observe these projections along with the historic development of the economy and subsequently submit their own one-period ahead inflation forecasts. In this context, we find that the central bank can significantly manage market expectations through forward guidance and that this management strongly supports monetary policy in stabilizing the economy. Moreover, forward guidance drastically reduces the probability of a deflationary spiral after strong negative shocks to the economy.

JEL classification: C92, E32, E37, E58.

Keywords: learning-to-forecast experiment, forward guidance, heterogeneous expectations.

*Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany. Email: steffen.ahrens@tu-berlin.de
†Otto-Friedrich-Universität Bamberg, Feldkirchenstraße 21, 96052 Bamberg, Germany. Email: joep.lustenhouwer@uni-bamberg.de
‡Università Cattolica del Sacro Cuore Milano, Via Necchi 5, 20123 Milano, Italy. Email: michele.tettamanzi@unicatt.it

We thank Tiziana Assenza, Frank Heinemann, Cars Hommes, Paul Hubert, Domenico Massaro, Cathrin Mohr, Julián A. Parra-Polania, and seminar participants of the CREED Seminar at Universiteit van Amsterdam, the DEFAP PhD Seminar at Università Cattolica di Milano, the Macroeconomics Seminar at University of Illinois at Urbana-Champaign, and the Nuremberg Research Seminar in Economics at Friedrich-Alexander-Universität Erlangen-Nürnberg for valuable comments. We also thank participants of the 2015 Barcelona LeeX Experimental Economics Summer School in Macroeconomics at Universitat Pompeu Fabra, the 21st WEHIA Annual Workshop in Castellón de la Plana, the EU FP7 project “Integrated Macro-Financial Modeling for Robust Policy Design” (MACFINROBODS), the 8th BES-LAB International Workshop on Theoretical and Experimental Macroeconomics in Stony Brook, and the 9th Conference on Growth and Business Cycles in Theory and Practice in Manchester for fruitful discussions. All remaining errors are ours.

The authors gratefully acknowledge the financial support of NWO (Dutch Science Foundation) Project No. 40614011 “Monetary and Fiscal Policy under Bounded Rationality and Heterogeneous Expectations” and the DFG (German Research Foundation) through CRC 649 “Economic Risk” and CRC TRR 190 “Rationality and Competition.”
1 Introduction

Market expectations determine the effectiveness of the main conventional monetary policy instrument, i.e. the short-term nominal interest rate, in normal times. Moreover, they are key to the transmission of unconventional monetary policy, e.g. quantitative easing and forward guidance, when the short-term nominal interest rate is restricted by the zero lower bound. Therefore, managing market expectations has become a primary objective for monetary policy makers.

As a means to influence market expectations, nowadays central banks provide the public with detailed information about their views of monetary policy and the fundamental factors driving their monetary policy decisions (Blinder et al., 2008). A pivotal aspect in this regard is the central bank practice to publish inflation projections. This practice, which qualifies as a tool of forward guidance, 1 intends to provide superior information about future macroeconomic developments to the private sector and thereby to reduce private-sector uncertainty (Campbell et al., 2012). But central banks may also use this tool to strategically influence private-sector expectations by intentionally over- or underreporting the projected level of inflation (Gomez-Barrero and Parra-Polania, 2014; Charemza and Ladley, 2016; Jensen, 2016). Independent of the central banks’ motive to publish inflation projections, ample empirical evidence reveals that this practice considerably impacts on private-sector expectations (Hubert, 2014, 2015a,b).

While the publication of central bank inflation projections might be a powerful tool for private-sector expectations management, the central bank must consider its effects on the (endogenous) credibility of its future projections 2 (Blinder, 2000). Publishing accurate inflation projections strengthens the central bank’s reputation as a credible forecaster, but it prevents the central bank from strategically managing private-sector expectations. Conversely, publishing intentionally biased inflation projections may allow the central bank to steer private-sector expectations in the direction necessary to drive inflation closer to the central bank’s inflation target, but it may be damaging to credibility if the published projections result in large forecast errors. Thus, by exploiting its impact on private expectations the central bank faces the risk of diminishing its ability to influence private-sector expectations in the future. This trade-off between short term gains and potential long term losses raises the question how the central bank’s ability to manage expectations via inflation projections depends on the credibility of its projections and how in turn credibility depends on its past forecasting performance.

In this paper, we study (i) whether central banks can influence or even manage private-sector expectations via the publication of strategic inflation projections. 3 If so, (ii) whether such expectations management can be used as an

1 In this paper, the term “forward guidance” refers to the rather vague concept of “Delphic forward guidance,” which publicly states a forecast of macroeconomic fundamentals and the likely future course of monetary policy (Campbell et al., 2012). In our experiment, inflation projections by the central bank convey information about the expected future interest rate policy via a fixed Taylor rule.

2 Throughout this paper, the term credibility refers exclusively to the central bank’s inflation projections, and not to the central bank as the monetary authority.

3 The focus on the publication of inflation projections rather than interest rate projections is motivated by the work of Ferrero and Secchi (2010), who study the effect of different central
The analysis is conducted by means of a laboratory experiment. For the question at hand, a laboratory experiment has several advantages over traditional empirical or theoretical approaches. First, it allows us to study the expectation formation process of the subjects and its interaction with monetary policy design, without having to rely on prescribed expectations formation processes, as e.g., rational or adaptive expectations. Second, we are able - in a very natural way - to depart from the representative agent hypothesis commonly put forth in macroeconomics and to allow for substantial heterogeneity. Finally, we can control the subjects' incentives and information sets in the laboratory.

The underlying economic environment of the experiment is given by a standard forward-looking New Keynesian model with zero lower bound on the nominal interest rate. The experimental task for the subjects is a learning-to-forecast experiment as pioneered by Marimon and Sunder (1993). All but one subject play the role of “professional forecasters” in the private sector who are asked repeatedly to form one-period ahead expectations about future inflation, having only a limited understanding of the true data generating process. The remaining subject is assigned the role of the “central bank forecaster”. Each period the central bank publishes a one-period ahead inflation projection, which is based on a superior knowledge of the true data-generating process. Professional forecasters are presented with this projection before they submit their own inflation forecasts.

The novelty of the proposed experiment is that we study the impact of strategic forward guidance on the subjects' expectation formation process and the resulting dynamic evolution of the underlying theoretical economy. We find that the publication of strategic inflation projections strongly affects private-sector expectations. Instead of simply following trends, subjects put a large weight on the public inflation projection when forming their expectations about future inflation. Strategic inflation projections act as a focal point, anchoring expectation and thereby decreasing the dispersion among individual forecasts. Moreover, strategic inflation projections help stabilize the economy; they bring inflation and output faster and closer towards the central bank’s target and reduce their volatility over the business cycle. At the zero lower bound, the publication of overly optimistic strategic projections greatly reduce the risk of deflationary spirals. We show that this result does not solely come from the bank communication strategies in a standard New Keynesian model when agents are learning. They find that the communication of interest rate projections can be destabilizing, while the communication of inflation projections is stabilizing. Although, the model attributes a stabilizing role also to output gap projections, we choose to abstract from output gap projections entirely based on institutional and empirical grounds. Institutionaly, it is inflation stabilization which has traditionally been the core mandate of many central banks. Empirically, the relationship between output gap predictions and private-sector expectations is rather vague. E.g., in the United States, the FOMC’s central bank output gap projections neither have an informational advantage over private-sector output gap forecasts (Romer and Romer, 2000), nor do they significantly influence private-sector output gap expectations (Hubert, 2014).

For a thorough discussion about the potential advantages of laboratory experiments for the conduct of monetary policy analysis, see Cornand and Heinemann (2014).
role of projections as a focal point, but also depends on the reasonability of the projections. For instance, if inflation projections are pure noise, they remain without effect for macroeconomic stability. Finally, we show that credibility is an important factor for the stabilizing role of forward guidance. Nevertheless, achieving full credibility on expense of all strategic behavior is not optimal.

Albeit publishing inflation projections is common practice for central banks, it has yet received very little attention in the context of learning-to-forecast experiments. To the best of our knowledge, the only exception is Mokhtarzadeh and Petersen (2017), who study the effects of central bank projections of inflation, the output gap, and the interest rate on expectation formation and economic stability. In contrast to this paper, however, projections are always provided by a computer algorithm and abstract from any strategic motive, i.e. they are unbiased. Furthermore, Mokhtarzadeh and Petersen (2017) do not study situations when the zero lower bound of the nominal interest rate is binding.

The paper is organized as follows. Section 2 reviews the relevant literature. Section 3 describes our experimental design. Section 4 analyzes the expectation formation processes of the subjects. In Section 5 we study the influence of forward guidance on economic stability. Section 6 analyses the interaction of strategic forward guidance and credibility, and discusses its influence for the stabilizing role of forward guidance. Finally, Section 7 concludes.

2 Related Literature

Laboratory experiments on monetary policy have become increasingly popular in recent years (see Cornand and Heinemann (2014) for a survey). A considerable fraction of this newly developed literature deals with learning-to-forecast experiments in New Keynesian models. Adam (2007) shows that in such an environment subjects’ expectation formation processes generally fail to be rational, but can be rather described by simple forecasting rules based on lagged inflation. Assenza et al. (2013) and Pfajfar and Zakelj (2014, 2016) study the expectation formation process of the subjects and its interaction with conventional monetary policy rules. They find a stronger mandate for price stability advances the coordination of private expectations and reduces the volatility of economic fundamentals. Kryvtsov and Petersen (2015) show that much of the stabilizing power of monetary policy is through its effect on private-sector expectations. Close to the zero lower bound, however, Hommes et al. (2015) find that conventional monetary policy is generally not very effective in stabilizing the economy and cannot reduce the risk of falling into an expectations-driven liquidity trap.

The effects of forward guidance on economic stability in New Keynesian learning-to-forecast experiments are mixed. While Cornand and M’Baye (2016a,b) find that the communication of the central bank’s inflation target can reduce the volatility of the economy in normal times, Arıfovic and Petersen (2017) find that it does not provide a stabilizing anchor in crisis times, e.g. in a liquidity trap. Mokhtarzadeh and Petersen (2017) find that providing the economy with central bank projections for inflation and the output gap stabilizes the economy, while Kryvtsov and Petersen (2015) find that providing the expected future interest rate path diminishes the effectiveness of monetary policy in stabilizing
the economy.

3 Experimental Design

The experimental design heavily borrows from Assenza et al. (2013). Subjects interact with the economy through expectations of inflation, which affect the contemporaneous outcome of the economy through a positive feedback\(^5\) of the form:

\[
\pi_t = f (\bar{E}_t \pi_{t+1}),
\]

where \(\pi_t\) and \(\bar{E}_t \pi_{t+1}\) denote inflation and aggregate private-sector expected future inflation, respectively, and \(f\) is a functional form, which is specified below. Note that subjects do not yet know the realization of \(\pi_t\) when they form their expectation about \(\pi_{t+1}\), but have information about the economy only up to period \(t - 1\). We follow Kryvtsov and Petersen (2015) and Arifovic and Petersen (2017) and define aggregate inflation expectations as the median\(^6\) of the individual inflation expectations, i.e. \(\bar{E}_t \pi_{t+1} = median(E_t \pi_{t+1})\), where \(E_t \pi_{t+1}\) is a vector collecting all \(j = 1, \ldots, J\) professional forecasters’ individual inflation expectations \(E_{fc,j} \pi_{t+1}\) of period \(t\) for period \(t + 1\).

3.1 The New Keynesian Economy

The underlying economy evolves according to a New-Keynesian model under heterogeneous expectations:\(^7\)

\[
y_t = \bar{E}_t y_{t+1} - \frac{1}{\sigma} \left(r_t - \bar{E}_t \pi_{t+1} - \bar{r} \right) + e_t, \tag{2}
\]

\[
\pi_t = \beta \bar{E}_t \pi_{t+1} + \kappa y_t + u_t, \tag{3}
\]

\[
r_t = \max \left[0, \bar{r} + \pi^T + \phi_x \left(\pi_t - \pi^T \right) + \phi_y y_t \right], \tag{4}
\]

where \(y_t\) is the aggregate output gap, \(r_t\) is the nominal interest rate, \(\bar{r} = \frac{1}{\beta} - 1\) is the steady state interest rate, and \(\bar{E}_t y_{t+1}\) is the aggregate expected future output gap. The parameter \(\pi^T\) denotes the central bank’s target value for inflation. Finally, the economy is perturbed by stochastic i.i.d demand and supply shocks, denoted by \(e_t\) and \(u_t\), respectively.\(^8\)

The calibration of the constant model parameters follows Clarida et al. (2000). I.e., we set the quarterly discount factor \(\beta = 0.99\), implying an annual

\(^5\)Positive feedback means that the derivative of the function \(f(\cdot)\) is positive. Note that although the nominal interest rate rule (4) adds some negative feedback to the economy, the overall feedback of inflation expectations on current inflation remains positive, independent of the coefficients in this interest rate rule.

\(^6\)When the aggregate is determined as the mean of all forecasts, an individual could cast an extreme forecast, in order to obtain an extreme aggregate, which would then feed back into the economy. Such individual strategic power that does not reflect the real world is eliminated when the aggregate is instead determined by the median of all forecasts.

\(^7\)Microfoundations for this model under heterogeneous expectations can be found, for instance, in Branch and McGough (2009), Kurz et al. (2013), and Hommes and Lustenhouwer (2015).

\(^8\)There are six economies (groups) in each treatment. Therefore, there are six random shock processes each for \(u_t\) and \(e_t\). These are applied to all treatments so that each shock sequence is applied once in each treatment. In particular, the following pairings arise: E1-E7-E13-E19, E2-E8-E14-E20, E3-E9-E15-E21, E4-E10-E16-E22, E5-E11-E17-E23, E6-E12-E18-E24.
risk-free interest rate of four percent. The coefficient of relative risk aversion is set to $\sigma = 1$ and the output elasticity of inflation is $\kappa = 0.3$. The quarterly inflation target is set to $\pi^T = 0.00045$, implying an annual inflation rate of 0.18 per cent.\(^9\) The Taylor rule coefficients are chosen to be $\phi_{\pi} = 1.25$ and $\phi_y = 0.3$, which is well within the range of values that are common in related experiments.\(^10\)

Equation (2) refers to an optimized IS curve, equation (3) is the New Keynesian Phillips curve and equation (4) is the rule for the nominal interest rate set by the central bank. We assume the central bank follows a Taylor (1993) type interest rate rule, where it adjusts the interest rate in response to inflation and output gap. Furthermore, equation (4) also shows that the nominal interest rate is subject to a zero lower bound.\(^11\) Under rational expectations this model has two steady state equilibria. A determinate equilibrium equal to the target steady state\(^12\) that has values of inflation and output (close to) $\pi_t = y_t = 0$ given that π^T is (close to) zero, and an indeterminate equilibrium where the zero lower bound on the nominal interest rate is binding and $(\pi_t, y_t) = (-\bar{r}, -\frac{1-\beta}{\kappa}\bar{r})$ (Benhabib et al., 2001). Under adaptive learning and other backward-looking expectation formation processes the target steady state is locally stable (if the Taylor principle is satisfied), while the zero lower bound steady state is an unstable saddle-point (see e.g. (Evans et al., 2008) and (Hommes and Lustenhouwer, 2015)). Therefore, depending on initial conditions, either convergence to the target steady state occurs or the economy falls into a deflationary spiral (Evans et al., 2008).

Finally, aggregate output gap expectations $\hat{E}_t y_{t+1}$ are endogenously determined by the model. $\hat{E}(y)$ follows a Heuristic Switching Model (Brock and Hommes, 1997), that was originally developed to fit a learning-to-forecast experiment in an asset price setting (Anufriev and Hommes, 2012), but has proven its robustness to fit also learning-to-forecast experiments in New Keynesian frameworks (e.g. Assenza et al., 2013). The Heuristic Switching Model can be summarized by the following equations:

\[
\begin{align*}
\text{Adaptive Rule} & \quad \rightarrow \quad E_t^{\text{ada}} y_{t+1} = 0.65y_{t-1} + 0.35E_t y_{t-1} y_{t} \\
\text{Weak Trend} & \quad \rightarrow \quad E_t^{\text{wtr}} y_{t+1} = y_{t-1} + 0.4(y_{t-1} - y_{t-2}) \\
\text{Strong Trend} & \quad \rightarrow \quad E_t^{\text{str}} y_{t+1} = y_{t-1} + 1.3(y_{t-1} - y_{t-2}) \\
\text{Learn and Anchor} & \quad \rightarrow \quad E_t^{\text{laa}} y_{t+1} = \frac{(y_{t-1} + y_{t-1})}{2} + (y_{t-1} - y_{t-2})
\end{align*}
\]

\(^9\)We choose a value of the inflation target near zero to be in line with the zero inflation steady state that is assumed when log-linearizing the macro economic model to obtain equations (2) and (3). We choose however a value slightly different from zero in order not to present subjects with a round number on which they can easily coordinate.

\(^10\)Standard values for comparable experiments range from $\phi_{\pi} \in (1,2)$ and $\phi_y \in (0,0.5)$, e.g., Cornand and M’Baye (2016b) and Arifovic and Petersen (2017) among others.

\(^11\)Note that under commitment to a Taylor rule, setting the nominal interest rate is not part of the task attributed to the subject with the role as central bank forecaster. Rather the nominal interest rate is influenced implicitly, through the effects of forward guidance on private-sector expectations and their feedback on the economy. Information about likely feedback effects and the corresponding prescribed reaction of future interest rates are provided to the central bank (described in detail in Section 3.4.2) as input for the inflation projection. Thereby, forward guidance and the nominal interest rate are in practice not chosen independent of each other.

\(^12\)The rational expectations equilibrium coincides with the steady state because shocks are not autocorrelated.
\[U^h_{t-1} = \frac{100}{1 + |y_{t-1} - E^h_{t-2}y_{t-1}|} + \eta U^h_{t-2} \] \hspace{1cm} (6)

\[n^h_t = \delta n^h_{t-1} + (1 - \delta) \frac{exp(\gamma U^h_{t-1})}{\sum_{j=1}^{4} exp(\gamma U^j_{t-1})} \] \hspace{1cm} (7)

\[\tilde{E}_{t+1}y_{t+1} = E_{t+1}^{ada}y_{t+1}n^{ada}_{t} + E_{t+1}^{wtr}y_{t+1}n^{wtr}_{t} + E_{t+1}^{str}y_{t+1}n^{str}_{t} + E_{t+1}^{laa}y_{t+1}n^{laa}_{t} \] \hspace{1cm} (8)

Equation (5) lists the set of heuristics available to the agents when forming their expectations. The variable \(y_{t-1} \) denotes the average past output gap. Once heuristics are used, the agents weight their past performance following equation (6), with \(\eta \) denoting the parameter describing the preference for the past. Equation (7) updates the probability of using heuristic \(h \) when forecasting for period \(t + 1 \). Notice that \(\gamma \) captures the sensitivity of agents to heuristic performances and \(\delta \) denotes the fraction of agents that in period \(t \) stick to the heuristic they used in period \(t - 1 \). Then, using, (8) the expectation are aggregated and \(\tilde{E}_{t+1}y_{t+1} \) is determined. The calibration of the Heuristic Switching Model follows Assenza et al. (2013), i.e., we set \(\eta = 0.7 \), \(\delta = 0.9 \), and \(\gamma = (0.4 \cdot 4^2) = 6.4 \).

3.2 The Experiment

We apply a learning-to-forecast experiment following the approach of Assenza et al. (2013). The general setup is as follows: subjects in the laboratory are randomly divided in groups of 7. Subjects either take the role as a professional forecaster or as a central bank forecaster. Professional forecasters are employed at the forecasting department of a company which needs predictions about future inflation as input for the management’s operative decisions. Professional forecasters’ job is to generate these inflation forecasts and to communicate them to the management. Professional forecasters are provided with some qualitative knowledge of the economy,\(^ {14} \) the direction of the feedback on their expectations (i.e. positive feedback), and a public central bank projection. The professional forecasters’ payoffs are determined according to their forecasting performance, measured by the following payoff function from Assenza et al. (2013):

\[\Pi_{f,c,j} = \frac{100}{1 + |\pi_{t+1} - E_{t+1}\pi_{t+1}|} \] \hspace{1cm} (9)

The central bank forecaster is employed at the forecasting department of the central bank and the central bank forecaster’s job, too, is to generate inflation forecasts, which we denote \(E_{t+1}^{cbf}\pi_{t+1} \). However, this forecast does not enter the vector \(E_{t+1}\pi_{t+1} \) from which the aggregate inflation expectation is determined. The incentives for the central bank forecaster in determining her inflation forecasts, therefore, are different from the incentives of professional forecasters and also differ strongly between treatments. These differences will be explained in

\(^{13} \) We multiply \(\gamma \) by \(4^2 \) relative to the calibration of Assenza et al. (2013) because we use a Heuristic Switching Model with quarterly rather than annualized data.

\(^{14} \) This is a common assumption in much of the relevant literature. Exceptions to this assumption are Adam (2007), who does not provide any information about the working of the economy, and Kryvtsov and Petersen (2015), Arifovic and Petersen (2017), and Mokhtarzadeh and Petersen (2017), who provide the subjects with the fully quantified set of equations.
Section 3.4.

Whether a subject is assigned the role of a professional forecaster or a central bank forecaster is the outcome of a preliminary stage (henceforth: Stage I). Independent of the treatment, in Stage I, all subjects of a group play 8 initial rounds of the experiment as professional forecasters in the absence of any public central bank inflation projection. To level the playing field, all participating subjects are presented with an identical three-period history (for periods $t = -2, t = -1, \text{ and } t = 0$) for inflation, the output gap and the interest rate, which initializes the economy off the central bank’s target values. Subjects are ranked according to their relative forecasting performance. The role of the central bank forecaster for the remaining rounds of the experiment (period 9-37) is assigned to the best ranked subject. This is common knowledge.

Since we are interested in the expectations channel of monetary policy both in normal times and in times when the zero lower bound on the nominal interest rate may become binding, in the spirit of Arifovic and Petersen (2017), starting in period 29 there is a series of four consecutive negative demand shocks. The shocks are chosen such that the forced recession is likely to drive the economy into the liquidity trap and therewith the possibility of a deflationary spiral. With this subdivision, the economy is fairly stable in the first part of the actual experiment (periods 9-28; henceforth: Stage II). Here it is investigated whether central bank forward guidance can influence private-sector expectations and actively stabilize the economy. In the latter part of the experiment (periods 29-37; henceforth: Stage III), on the other hand, it is investigated whether the central bank can prevent or reverse a deflationary spiral by means of forward guidance.

The timing of the experiment is as follows: In $t = 1, \ldots, 8$ (Stage I), all subjects submit their inflation forecast $E_{t+1}^{F-c,j}$ simultaneously. In $t = 9, \ldots, 37$ (Stages II and III), first the central bank forecaster submits her forecast E_{t+1}^{F-cb}. Professional forecasters observe the public projection E_{t+1}^{pub} and subsequently submit their own forecasts E_{t+1}^{F-c} after all professional forecasters have submitted their forecast, the aggregate inflation forecast E_{t+1} is determined and the values for the variables in period t are computed. The economy proceeds to the next round.

3.3 The Central Bank Inflation Projection

In each period, the central bank forecasting department generates an inflation projection. To do so, it is provided with superior information about the experimental economy.

First, the central bank is provided with a data-driven forecast E_{t+1}^{ddf}. The data-driven forecast predicts what level of inflation is likely to prevail in period $t+1$. For this it uses the New Keynesian model equations (2) to (4); the Heuristic Switching model that describe output gap expectations in the economy (equations (5) to (8)); and analogue heuristic switching model to predict subject’ inflation expectations; and data up to period $t-1$. To account for the potential self-fulfilling properties that a published central bank projection can have on

15 The history is displayed in Figure 4 in Appendix C. It comprises the first three observations.
the economy16 the heuristic switching model for inflation is extended with a fifth heuristic which is termed “Follow the Published Projection” and which is defined by $E_{t}^{pp} \pi_{t+1} = E_{t}^{pub} \pi_{t+1}$. The data-driven forecast then performs a grid search to choose the forecast that is most likely to be accurate, taking account of the effects that such a forecast is likely to have on aggregate expectations.17

Second, the central bank is provided with information about which aggregate inflation expectations for the following period would need to prevail for inflation to jump (in expectations) immediately to the target level π^{T}. This specific aggregate inflation expectation is calculated by performing a grid search on $E_{t} \pi_{t+1}$ in the model defined by equations (2) to (8). This information tells the central bank in what direction it should steer aggregate expectations about $t+1$ to get closer to its inflation target in period t. We label this piece of information “required for target” and denote it by $E_{t}^{rft} \pi_{t+1}$.

Third, the central bank is presented with a “credibility index” measuring aggregate credibility given to the central bank projections by the individual professional forecasters from the recent past. In the spirit of Cecchetti and Krause (2002), we base our measure of the central bank’s credibility towards a professional forecaster j by the distance between the central bank’s inflation projection and j’s inflation forecast. We normalize this distance such that $Cred_{t}^{j}$ takes values between 0 (projection is not credible at all) and 1 (projection fully credible). Hence, individual credibility is given by

$$
Cred_{t}^{j} = \exp \left(-3 \cdot \left(E_{t}^{pub} \pi_{t+1} - E_{t}^{fc,j} \pi_{t+1} \right)^{2} \right). \tag{10}
$$

The scale parameter 3 is calibrated based on pilot data such that deviations from mean credibility of more than one standard deviation result in a zero payoff. The “credibility index” provided to the central bank forecaster is defined as the average credibility given to the central bank by all professional forecasters in the last four periods, i.e. $I_{t}^{cred} = \frac{1}{24} \sum_{j=1}^{6} \sum_{i=1}^{4} Cred_{t-i}^{j}$. $I_{t}^{cred} = 1$ if all individual forecasts from the last four periods met the central bank projection, and I_{t}^{cred} goes to 0 if all forecasts moved infinitely far away from it.

The the data-driven forecast and the “required for target” define an interval of generally sensible inflation projections. If the central bank wants to build up credibility, it follows the data-driven forecast and provides a “non-strategic” inflation projection. If the central bank intends to steer the economy, it provides a “strategic” projection which is biased towards the “required for target” criterion. The extend to which the inflation projections are biased away from the data-driven forecast and towards the “required for target” criterion determines

16This works as follows: When the central bank publishes a projection, this is likely to affect, to some extent, the inflation expectations of the professional forecasters. Since the main determinant of current inflation is inflation expectations, aggregate expectations of professional forecasters in turn affect realized inflation. This implies that when the published projection is high, this is likely to also lead to somewhat higher aggregate inflation expectation, and therefore to a higher inflation realization.

17Since the published forecast about $t+1$ affects realizations in period t, and the published forecast about $t+2$ affects realizations in $t+1$, an assumption needs to be made about what the published forecast about $t+2$ will be, in order to evaluate whether the forecast made about $t+1$ is likely to come true. The data driven forecast simply assumes here that the published forecast about $t+2$ will be the same as the published forecast about $t+1$. Since both inflation and the published forecast turn out to be highly persistent, also in our experimental sessions, this is arguably not a very restrictive assumption.
the degree of strategic-ness.18 Inflation projections outside of this interval are not sensible. We term the latter “random” projections.

To sum up, when generating the inflation projection, the central bank must decide whether it follows the data-driven forecast or to what extent it publishes a projection which is biased towards the “required for target” criterion, taking into account its credibility.

3.4 Treatments

We consider four treatments in this experiment.

3.4.1 Treatment 1: No Forward Guidance (Control Treatment)

In this treatment, the control treatment, no central bank projections are published, i.e., there is no central bank forward guidance. The central bank forecaster produces forecasts, but these forecasts are not revealed. For her predictions, she is paid according to equation (9).

3.4.2 Treatment 2: Forward Guidance from a Human Central Bank Forecaster

In this treatment, the central bank publishes official central bank inflation projections (i.e., $E_{t}^{gbF} \pi_{t+1} = E_{t}^{cbF} \pi_{t+1}$) which are generated by the central bank forecaster subject. The other subjects of her group are informed (i) that there is a central bank forecaster publishing official central bank inflation projections in this economy, (ii) that the central bank forecaster is the subject that predicted inflation best in Stage I, (iii) that the central bank forecaster has additional information about the economy without specifying this any further, and (iv) that the central bank has an inflation target without quantifying this target. Note that it is not a priori clear whether it is optimal for professional forecasters to use the published projection when forming their own forecasts or to ignore it. This depends on what a subject believes about how the central bank forms its projection and about how other subjects form their expectations.19

The central bank forecaster’s objective, in this treatment, is twofold: On the one hand she has to stabilize inflation, i.e., minimize the deviations of inflation from her target values, while on the other hand her inflation projections have to remain maximally credible, as measured by the credibility index. We consider central bank credibility explicitly, as it is of utmost importance for the functioning of monetary policy and thereby enjoys a lot of attention of monetary policy makers (Blinder, 2000; Bordo and Siklos, 2014). In line with this strategy, Gomez-Barrero and Parra-Polania (2014) present a theoretical model of strategic central bank forecasting which explicitly considers reputational concerns of central bank credibility in the central bank’s loss function. The payoff

18We formalize the concept of strategic-ness for our numerical analysis in Section 6.2.

19For example, it is optimal for a subject to predict exactly the published forecast when she thinks that the central bank is able to foresee what the median forecast will be and that the central bank will use all its information to publish a truthful forecast. If, on the other hand, the subject believes that the central bank is not good in predicting the median forecast of the professional forecasters or if she believes that the central bank is more concerned with strategically trying to steer the economy rather then publishing accurate projections, then the subject is better of ignoring the published forecast.
functions of the central bank forecaster have the following form:

\[
\begin{align*}
\Pi_{cbf}^{\text{stability}} &= \max \left(0, 100 - 44.4 \left(\pi_t - \pi^T \right)^2 \right), \\
\Pi_{cbf}^{\text{credibility}} &= \max \left(0, 100 - 400 \left(1 - I_{cred}^t \right)^2 \right).
\end{align*}
\] (11)

Equation (11) is calibrated such that in each period the central bank forecaster receives a payoff of zero for stability if inflation deviates from target by more than 1.5 percentage points and receives a payoff of zero for credibility of the projection if the credibility index is below 0.5. At the end of the experiment, one of these two objectives is chosen randomly by the computer and the central bank forecaster is paid according to the total payoff of the chosen objective. The randomization eliminates any incentives to focus on only one of the two goals or to strategically play one goal of another in any other way.

3.4.3 Treatment 3: Forward Guidance from a “good” Computerized Central Bank Forecaster

In this treatment, the published central bank projection comes from a computer algorithm. Analogous to the previous treatment, the subjects are informed (i) that there is a computer algorithm publishing official central bank inflation projections in this economy, (ii) that the central bank forecaster has additional information about the economy without specifying this any further, (iii) that it may or may not exploit this superior information and (iv) that the central bank has an inflation target without quantifying this target.

The computer algorithm makes strategic inflation projections. The extent to which the projections are strategic depends primarily on the current state of the economy (in particular, whether previous inflation was (i) close to, (ii) above, or (iii) below its target value) and secondarily on the credibility of recent central bank inflation projections.

The computer algorithm works as follows: (i) If previous inflation was close to target (within ±0.5 percentage points), the central bank tries to initiate long term coordination on its inflation target through projections equal to the inflation target. (ii) If previous inflation was sufficiently above target (for more than 0.5 percentage points), the algorithm solves a trade-off between building credibility and steering the economy. If past projections have been little credible, the algorithm aims at building credibility through accurate inflation projections based primarily on the data driven forecast (which is calculated in the same way as in Treatment 2). If projections have been credible, the algorithm leans more towards the “required-for-target” information. (iii) If previous inflation was sufficiently below target (for more than 0.5 percentage points) the economy faces the risk of a binding zero lower bound and a deflationary spiral. Now, building up credibility by following the data-driven forecast becomes dangerous as the data-driven forecast may predict a deflationary spiral. Therefore, the algorithm balances forecasting the target with forecasting the last observed inflation level, where the latter can improve on credibility without amplifying the downturn in inflation. The weight on the last observed value is relatively high when there is a downward trend in inflation, because then it might not be credible that inflation will suddenly go up by much. On the other hand, if there is an upward trend in inflation it might be more credible that inflation will go up more, so
the computer algorithm can put more weight on the target.

The explicit algorithm is spelled out below:

“close to target”: \(E^\text{pub}_t \pi_{t+1} = \pi^T \)

“sufficiently above target”: \(E^\text{pub}_t \pi_{t+1} = I^{cred}_t E^\text{rft}_t \pi_{t+1} + (1 - I^{cred}_t) E^\text{ddf}_t \pi_{t+1} \)

“sufficiently below target”:
- if \(\pi_{t-1} < \pi_{t-2} \):
 \(E^\text{pub}_t \pi_{t+1} = 0.5\pi^T + 0.5\pi_{t-1} \)
- if \(\pi_{t-1} > \pi_{t-2} \):
 \(E^\text{pub}_t \pi_{t+1} = 0.8\pi^T + 0.2\pi_{t-1} \)

For reasons of comparability, in this treatment, the central bank forecaster subject takes the same role as in Treatment 1 and is, again, paid for her prediction accuracy according to equation (9).

3.4.4 Treatment 4: Forward Guidance from a “bad” Computerized Central Bank Forecaster

This treatment is similar to Treatment 3, but with a different computer algorithm in Stage II. In Stage II of this treatment, the computer algorithm publishes inflation projections, which are randomly drawn from a uniform distribution with support from -5 to 5, i.e., \(E^\text{pub}_t \pi_{t+1} \sim \text{Unif}(-5, 5) \). The support is chosen according to the support of realized inflation throughout the first three treatments of this experiment.

In Stage III of this treatment, the computer algorithm is the same as in Treatment 3. This twist after Stage II allows us to draw conclusions about the persistence of central bank credibility in the light of drastic changes in the economic environment.

3.5 Hypotheses

Our experimental design allows us to address several hypothesis, where we distinguish between “strategic” and “random” forward guidance. We consider forward guidance to be strategic, if the central bank inflation projection lies systematically (i.e., most of the time) inside the interval between the data-driven forecast and the “required for target” information. Analogously, forward guidance is considered “random,” if the central bank inflation projection lies systematically (i.e., most of the time) outside the interval between the data-driven forecast and the “required for target” information.

According to this criterion, forward guidance from a human central banker forecaster and from the “good” computerized central bank forecaster are considered “strategic” and forward guidance from the “bad” computerized central bank forecaster is considered “random.”

Hypothesis 1: Strategic forward guidance anchors private-sector inflation expectations; random forward guidance does not.

\(^{20}\)For the central bank forecaster subjects, more than 85% of all public central bank projections lie within the required interval; for the “good” computer algorithm it is more than 80% (and above 90% if the predictions of the target inflation rate when the economy is “close to target” are considered as well). For the “bad” computer algorithm, less than 4% of all public central bank projections lie within the required interval.
In their seminal theoretical contribution, Morris and Shin (2002) show that public central bank information can act as a coordination device by anchoring private-sector expectations and thereby reduce the dispersion of private-sector expectations. Empirical support for such an anchoring effects for expectations (especially in the context of public central bank projections) is given by Hubert (2014) for the Federal Reserve, by Fujiwara (2005) for the Bank of Japan, and by Ehrmann et al. (2012) for 12 advanced economies (including the former two).

Hypothesis 2: Strategic forward guidance stabilizes the economy (a) in normal times and (b) in times of severe economic stress; random forward guidance does not.

Although from an empirical point of view published central bank inflation projections seem beneficial for macroeconomic stability (Chortareas et al., 2002), from a theoretical point of view, the effects of published central bank inflation projections on macroeconomic stability are generally ambiguous and depend on the quality of the projections. Having superior information, central bank projections can be stabilizing through an anchoring effect on private-sector inflation expectations in normal times (Eusepi and Preston, 2010; Ferrero and Secchi, 2010) and at the zero lower bound (Goy et al., 2017). This anchoring effect can, by contrast, be destabilizing if potentially noisy projections crowd out more accurate private information (Geraats, 2002; Amato and Shin, 2006; Walsh, 2007).

Hypothesis 3: The ability of the central bank to stabilize the economy by means of its projections depends positively on the credibility of the central bank projections.

Filardo and Hofmann (2014) argue that a good deal of credibility is necessary for forward guidance to be effective in stabilizing the economy. A particularly illustrative example in this respect is provided by Svensson (2015) for the Swedish case (although with respect to interest path projections). While credible projections remarkably influenced market behavior towards stabilization in 2009, in 2011 non-credible projections left the market unimpressed and without any response in market behavior.

Hypothesis 4: The credibility of the central bank projections depends positively on their past performance.

In a survey among 84 central bank presidents worldwide, Blinder (2000) finds that the most important matter for credibility is believed to be a consistent track record. With respect to inflation projections and projection of inflation in particular, such a consistent track record is established primarily by a sustained projection accuracy. Loss in credibility of the central bank’s projections can therefore be attributed to a (systematic) failure to produce accurate projections (Mishkin, 2004). Following this line of reasoning, also Mokhtarzadeh and Petersen (2017) determine central bank credibility by looking at past central bank forecasting performance.
3.6 Experimental Procedure

Each treatment of this experiment consists of six economies with seven subjects each. Thus, the experiment has a total of $4 \times 6 \times 7 = 168$ subjects. Subjects were recruited from a variety of academic backgrounds using ORSEE (Greiner, 2015). The subject population comprised undergraduate students (64%), graduate students (34%), and non students (2%). Subjects were mostly from the natural sciences (61%) and the social sciences (16%). Around two thirds of the subjects were male (62%) and one third were female (38%). During the experiment, subjects earned experimental currency units (ECU) according to their respective payoff functions. At the end of the experiment, subjects were paid €1 for every 85 ECU; that is, each ECU paid approximately €0.012. The average payment was €31.66. The experimental software was programmed in oTree (Chen et al., 2016). The experiment was conducted in May and June 2016 at the experimental lab of the Technische Universität Berlin.

4 Expectation Formation of Professional Forecasters

For central bank projections to be an effective tool of monetary policy, they must influence the expectation formation process of the professional forecasters. Therefore, in this section we investigate if professional forecasters form expectations differently when presented with central bank projections and if so, how this depends on the quality of the projections. Since Stage I is a learning stage in all treatments and Stage III presents subjects with an inherently unstable environment, we focus this analysis on Stage II only.

We follow Assenza et al. (2013) and Pfajfar and Zakelj (2014) and regress each subject’s inflation forecast on a general linear forecasting rule of the form

$$E_{t}^{c,j} \pi_{t+1} = c^j + \sum_{i=1}^{2} \alpha^j_i E_{t-i}^{c,j} \pi_{t+1-i} + \sum_{i=1}^{2} \beta^j_i \pi_{t-i} + \gamma^j y_{t-1} + \delta^j E_{t}^{\text{pub}} \pi_{t+1} + \epsilon^j_t, \quad (12)$$

where ϵ^j_t is the error term of each individual regression. For Treatment 1, δ^j is set equal to zero. The results are summarized in Table 1. The table show the percentage of individually significant regressors and the median estimated parameter values for each treatment, respectively.\footnote{In the estimation we follow Massaro (2012) by iteratively eliminating all insignificant regressors.} First, we consider all professional forecasters who did not see a published projection before making their forecasts. This group consists of all professional forecasters in Treatment 1 (the control treatment). The Column [1] of Table 1 shows that 92% of subjects consider the first lag of inflation when forming their expectation about future inflation. 36% of subjects consider the second lag of inflation. Given that the sign of the coefficient on the first lag is generally positive with a median of 1.11, while the sign on the second lag of inflation is generally negative with median of -1.14 it appears that many professional forecasters engaged either in naive adaptive or in trend following behavior when forecasting inflation. In line with early evidence from Adam (2007) only few subjects consider past realizations of the output gap to predict future inflation.
Table 1: Percentages of significant regressors and the median regression coefficients (in parentheses) estimating equations (12) for all professional forecasters per treatment. Additionally, the table shows the average R^2 and the average number of significant coefficients per forecaster for each treatment.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>39%</td>
<td>36%</td>
<td>56%</td>
<td>50%</td>
</tr>
<tr>
<td>$E_{t-1} c_j \pi_t$</td>
<td>14%</td>
<td>19%</td>
<td>14%</td>
<td>19%</td>
</tr>
<tr>
<td>$E_{t-1} c_j \pi_{t-1}$</td>
<td>3%</td>
<td>11%</td>
<td>17%</td>
<td>8%</td>
</tr>
<tr>
<td>π_{t-1}</td>
<td>92%</td>
<td>47%</td>
<td>56%</td>
<td>42%</td>
</tr>
<tr>
<td>π_{t-2}</td>
<td>36%</td>
<td>25%</td>
<td>17%</td>
<td>11%</td>
</tr>
<tr>
<td>μ_{t-1}</td>
<td>14%</td>
<td>11%</td>
<td>14%</td>
<td>25%</td>
</tr>
<tr>
<td>$E_{t} c_{t+1} \pi_{t+1}$</td>
<td>(-1.055)</td>
<td>(0.971)</td>
<td>(0.348)</td>
<td>(1.350)</td>
</tr>
<tr>
<td>avg. R^2</td>
<td>0.76</td>
<td>0.72</td>
<td>0.66</td>
<td>0.46</td>
</tr>
<tr>
<td>#Sign.Coeff</td>
<td>1.97</td>
<td>2.19</td>
<td>2.03</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Next, we consider all subjects which were shown a public central bank projection prior to submitting their own forecast. This group consists of all subjects in Treatment 2, 3, and 4. Column [2] of Table 1 shows the results of the regression on the subjects with a published projection provided by a human central banker. It can be seen that for 69% of the subjects the published projection has a statistically significant effect on their expectations. This is more than for the first lag of inflation which is now statistically significant for less than half of the subjects. The significance of the second lag of inflation is also reduced considerably. When the public central bank projection is given by the good computer algorithm, it is statistically significant for 31% of the subjects (Column [3]). The first and second lag of past inflation lose significance compared to the control treatment. A similar result is obtained for the bad computer algorithm (Column 4). Note, however, that although 31% of subjects consider the random projection informative, the average coefficient of 0.216 implies that their forecast is only marginally influenced by it. We conclude from this that when subjects are presented with a published central bank projection, many subjects let their own forecast be affected by the public projection. In this case, subjects put less weight on past inflation and trend behavior in inflation in particular.

The bottom row of Table 1 presents the average number of significant regressors used in the expectation formation process in each of the four treatments. Interestingly, this number is around two for all of the four treatments. This low number is the result of the design of the computer algorithm. Note that the computer algorithm publishes the target value whenever the economy is close to the target, thereby resulting in very little variation of the projection. Since individual forecasts vary slightly around the prediction, they are not picked up by the econometric procedure as following the prediction. However, in Section 5 we will present further results, which support the notion that the computerized forecasts from Treatment 3 significantly influence the forecasters expectations.
Table 2: Average median dispersion of professional forecasts in economies of treatment \(j \) (standard deviation in parentheses) for \(j = 1, ..., 4 \). The \(p \)-values result from Wilcoxon rank sum tests for pairwise comparisons with \(N = 6 \) observation of treatment 1 with treatments 2, 3, and 4.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment 1</th>
<th>Treatment 2</th>
<th>Treatment 3</th>
<th>Treatment 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>0.351</td>
<td>0.293</td>
<td>0.248</td>
<td>0.670</td>
</tr>
<tr>
<td></td>
<td>(0.155)</td>
<td>(0.148)</td>
<td>(0.116)</td>
<td>(0.342)</td>
</tr>
<tr>
<td>(p)-value</td>
<td>—</td>
<td>0.589</td>
<td>0.485</td>
<td>0.065</td>
</tr>
<tr>
<td>III</td>
<td>2.371</td>
<td>0.528</td>
<td>0.512</td>
<td>0.781</td>
</tr>
<tr>
<td></td>
<td>(2.705)</td>
<td>(0.360)</td>
<td>(0.134)</td>
<td>(0.495)</td>
</tr>
<tr>
<td>(p)-value</td>
<td>—</td>
<td>0.093</td>
<td>0.093</td>
<td>0.240</td>
</tr>
</tbody>
</table>

leads to the conclusion that subjects rather substitute the public central bank inflation projection for another source of information than complement their information set in the expectation formation process.

5 Macroeconomic Results

Having established that central bank projections influence private-sector expectations, we now turn to the ramifications of this influence for the macroeconomy.

5.1 Anchoring Effect of Forward Guidance

Central bank projections are common to all professional forecasters and thereby provide public information. Such public information can act as a focal point, anchoring private-sector expectations (Morris and Shin, 2002), and thereby giving rise to potential expectations management.

Anchoring of expectations manifests itself in a lower cross-sectional dispersion of individual professional forecasts in each period \(t \). Following Ehrmann et al. (2012) and Hubert (2014), we measure dispersion by the the inter-quartile range of professional forecasts in any given period. Table 2 presents the average median dispersion of professional forecasts per treatment.\(^{23}\) The table shows that although strategic forward guidance (Treatments 2 and 3) reduces the average dispersion roughly by one third the differences are not statistically significant. Random forward guidance (Treatment 4), by contrast, significantly increases average dispersion, almost doubling it.

Kernel density estimates of per-period dispersion in Treatments 1-4 are depicted in Figure 1. The more right-skewed is a Kernel density estimate, the less disperse are the elicited individual professional forecasts. Relative to Treatment 1, density estimates are significantly more right-skewed under strategic forward guidance (\(p < 0.05 \)) and significantly less right-skewed under random forward guidance (\(p < 0.001 \)). These results hint towards an important (de-)anchoring effect of (random) strategic forward guidance.

To quantify the anchoring effect of public inflation projections, in the spirit of Ehrmann et al. (2012) and Hubert (2014), we resort to a simple regression

\(^{23}\)The results are similar if dispersion is measured via the standard deviation and the range as well as for the means instead of the medians of the dispersion measures.
Figure 1: Kernel density estimates of per period dispersion in Stage II (left panel) and Stage III (right panel) per treatment.

analysis of the form

$$\sigma_{fc,t} = \text{constant} + \beta_1 PP_t + \beta_2 \sigma_{fc,t-1} + \beta_3 X_{t-1} + \varepsilon_t,$$

(13)

where $\sigma_{fc,t}$ is the cross-sectional dispersion of the professional forecasters in period t, PP_t is a dummy variable which takes value 1 when a public inflation projection is present and X_t is a vector of macroeconomic controls. The macroeconomic controls X_{t-1} comprise the lagged inflation rate, the lagged output gap, and lagged inflation uncertainty defined by $IU_{t-1} = |\pi_{t-2} - \pi_{t-3}|$, which is the absolute error of a random walk forecast (Ahrens and Hartmann, 2015). We expect a positive relationship between lagged inflation uncertainty and the dispersion across individuals. The higher lagged inflation uncertainty, the harder the prediction of inflation and thereby the greater the dispersion across individuals (Capistrán and Timmermann, 2009; Dovern and Hartmann, 2016). Concerning the remaining control variables, first, we expect dispersion to be positively influenced by lagged inflation. Mankiw et al. (2004) show that a higher level of inflation yields more disagreement in inflation expectations. For the lagged output gap we expect a negative relationship, since Dovern et al. (2012) and Hubert (2014) document a higher disagreement in recessions. The parameter estimates are summarized in Table 3.

Column [1] in Table 3 shows the results when all four treatments are considered. In this case, the table shows that the publication of inflation projections per se has no anchoring effect, i.e., PP_t is close to zero and statistically insignificant as are the interest rate and output gap coefficients. For the complete set of data, cross-sectional dispersion is a persistent phenomenon which is mainly driven by inflation uncertainty. In Columns [2]-[4] we distinguish between strategic and random forward guidance. While Columns [2] and [3] show variants which abstract from random forward guidance (Treatment 4), Column [4] abstracts from strategic forward guidance. Consider Columns [2] and [3] first.
Table 3: Anchoring effect of forward guidance. The table shows the results from estimating equation (13) for different subsamples of the experimental data. The respective samples are: [1] T1-T4; [2] T1 vs T2; [3] T1 vs T3; [4] T1 vs T4 Column [2] shows the parameter estimates of (13) using data from Treatments 1 and 2 and Column [3] using data from Treatments 1 and 3. First, the table shows that parameter values generally have the expected sign. Strategic forward guidance unambiguously reduces the dispersion of individual expectations. The reduction is statistically significant. The influence of inflation uncertainty on the dispersion remains statistically significant. The interest rate and the output gap coefficients again are negligible and statistically insignificant. Finally, Column [4] shows the parameter estimates of (13) using data from Treatments 1 and 4 only. Now, the effect of publishing inflation projections is positive and statistically significant. Random forward guidance increases the cross-sectional dispersion by approximately 29%. The results are similar if we consider contemporaneous macroeconomic controls X_t, as applied in the original studies by Ehrmann et al. (2012) and Hubert (2014).

Taken together, the above results give rise to the notion that strategic forward guidance acts as an anchor for private-sector inflation expectations, while random forward guidance unleashes disturbing forces driving private-sector expectations apart. Therefore, the evidence supports Hypothesis 1.

From a policy maker’s point of view, this anchoring effect can be a useful monetary policy instrument. Eusepi and Preston (2010) point out that in economies with potentially self-fulfilling expectations and learning, expectation may be unanchored and inconsistent with monetary policy. Therefore, unlike under rational expectations, the Taylor principle alone does not guarantee macroeconomic stability. Central bank projections, by contrast, can generate macroeconomic stabilization through anchoring of private-sector expectations on a path consistent with monetary policy. In the following section, we have a closer look at the role of central bank projections for macroeconomic stability.
5.2 Macroeconomic Stability

In this Section, we analyze to what extent strategic forward guidance successfully increases macroeconomic stability. To fix ideas, first we juxtapose the median economic dynamics arising from the actual experiment in each of the four treatments and their statistical properties.

Figure 2 shows the median evolution of inflation, the output gap, and the interest rate for all four treatments; Treatment 1 is depicted by the solid lines, Treatment 2 by the dashed lines, Treatment 3 by the dotted lines, and Treatment 4 by the dashed-dotted lines. The figure shows that all four treatments share a common pattern for the evolution of the macroeconomy over much of the 37 rounds of the experiment. First, there is convergence towards the central bank’s target levels (horizontal gray line). Second, starting in period 29 (the second vertical, gray line), a deep recession takes place which drives the economy towards the zero lower bound. While median economies recover from the recession under strategic forward guidance (Treatments 2-4 in Stage III), the median economy falls into a deflationary spiral in the absence of forward guidance (Treatment 1).

Although all four treatments share a common pattern (with the exception of Stage III), there are considerable quantitative effects of forward guidance on macroeconomic stability. In the following, we analyze these effects separately for normal times and for times of severe economic stress.

5.2.1 Macroeconomic Stability in Normal Times

First we analyze the stabilizing role of central bank forward guidance for the economy in normal times, i.e., we focus entirely on Stage II. We evaluate macroeconomic stability by the mean squared deviations of inflation and the output gap from their respective target values.

\[S_{\pi ij} = \frac{1}{20} \sum_{t=9}^{28} (\pi_t - \pi^T)^2, \] (14)

\[S_{y ij} = \frac{1}{20} \sum_{t=9}^{28} y_t^2. \] (15)

The lower \(S_{\pi ij} \) and \(S_{y ij} \) the more stable the economy. Columns [1] to [4] of Table 4 summarize the treatment-average mean squared deviation from target for inflation (\(\bar{S}_{\pi} = \frac{1}{4} \sum_{i=1}^{4} S_{\pi ij} \)) and the output gap (\(\bar{S}_{y} = \frac{1}{4} \sum_{i=1}^{4} S_{y ij} \)). Strategic forward guidance (Treatments 2 and 3) reduces \(\bar{S}_{\pi} \) by approximately two thirds and \(\bar{S}_{y} \) by approximately one third. These differences are statistically significant. Random forward guidance, by contrast, has no statistically significant effect on macroeconomic stability.

To assess distributional differences in economic stability, Figure 3 presents Kernel density estimates for \(S_{\pi ij} \) and \(S_{y ij} \) per treatment. Compared to Treatment 1, inflation and output gap are considerably right-skewed (i.e. more stable) in Treatments 2 and 3. These distributional differences are statistically significant for Treatment 2 and 3 inflation (\(p < 0.05 \)) and for the Treatment 2 output

\[\text{Figures 5 to 8 in Appendix C show all 6 individual economies for each treatment, respectively.} \]
Figure 2: Median responses of inflation (upper panel), the output gap (middle panel), and the interest rate (lower panel) for all four treatments. For each treatment, median responses are generated by taking the median of each inflation, the output gap, and the interest rate from all six economies at each period $t = 1, \ldots, 37$.

Note that for Treatment 1 the median interest rate leaves the zero lower bound despite a deflationary recession. This abnormal artifact is a result from the aggregation procedure (median) as three economies of Treatment 1 remain at the zero lower bound, while three economies leave the zero lower bound (see Figure 5 in Appendix C.)
<table>
<thead>
<tr>
<th></th>
<th>Treatment 1</th>
<th>Treatment 2</th>
<th>Treatment 3</th>
<th>Treatment 4</th>
<th>CF1</th>
<th>CF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{S}_j</td>
<td>1.605</td>
<td>0.532</td>
<td>0.411</td>
<td>1.130</td>
<td>0.736</td>
<td>0.163</td>
</tr>
<tr>
<td>p-value</td>
<td>(0.991)</td>
<td>(0.367)</td>
<td>(0.425)</td>
<td>(0.923)</td>
<td>(0.379)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>\bar{S}_j^o</td>
<td>0.378</td>
<td>0.233</td>
<td>0.231</td>
<td>0.285</td>
<td>0.236</td>
<td>0.182</td>
</tr>
<tr>
<td>p-value</td>
<td>(0.137)</td>
<td>(0.046)</td>
<td>(0.080)</td>
<td>(0.160)</td>
<td>(0.035)</td>
<td>(0.065)</td>
</tr>
</tbody>
</table>

Table 4: Average mean-squared-deviation of Stage II inflation and the output gap from their respective targets in economies of treatment j (standard deviation in parentheses) for $j = 1, \ldots, 4$, and of the counterfactual simulations. The p-values in column [2]-[6] result from Wilcoxon rank sum tests for pairwise comparisons to Treatment 1 with $N = 6$ observation.

Figure 3: Kernel density estimates of economy-average mean squared deviations of inflation (left panel) and output gap (right panel) from their respective targets per treatment.
Table 5: Important key indicators for Stage III. The table shows treatment medians of key indicators describing the severity of the recession and the accompanying liquidity trap in Stage III.

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periods at zero lower bound</td>
<td>5</td>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Length of recession</td>
<td>7.5</td>
<td>4.5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Depth of recession</td>
<td>-239.76</td>
<td>-4.28</td>
<td>-4.18</td>
<td>-4.22</td>
</tr>
<tr>
<td>Periods of deflation</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>6.5</td>
</tr>
<tr>
<td>Deflationary spirals</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5 shows that strategic forward guidance on average halves the median time spent at the zero lower bound, from 5 periods in Treatment 1 to less than 2.5 periods on average in Treatments 2-4. Secondly, the length of the recession is significantly reduced from 8 periods in Treatment 1 to less than 4 periods on average in Treatments 2-4. Also, the depth of the recession radically reduces in the presence of strategic forward guidance. We measure

25 Be reminded that in Stage III of Treatment 4 the public inflation projection is produced by the “good” computer algorithm instead of the random number generator.

26 According to the NBER, a recession is a drop in economic activity between peak and trough.
the depth of the recession by comparing the latest pre-crisis output gap with the largest negative output gap during the crisis. In Treatment 1, the median depth is a loss in output gap of approximately -240 percent, whereas this loss is around -4 percent on average for Treatments 2-4. Prices, in all economies, fall, i.e., there is deflation. However, with 6.5 periods on average in Treatments 2-4 median deflation episodes are reduced by 1.5 periods relative to Treatment 1. All qualitative results carry over for pairwise comparisons of Treatment 1 to Treatments 2, 3, and 4.

Despite binding zero lower bounds and prolonged deflationary episodes, deflationary spirals are rare. However, they occur much more often in the absence of strategic forward guidance than in the presence of strategic forward guidance. In Treatment 1 three out of six economies result in a deflationary spiral after a series of severe fundamental shocks. While deflationary spirals can be avoided successfully in all six economies of Treatment 3, in both Treatments 2 and 4 one out of six economies result in a deflationary spiral. Therefore, forward guidance significantly \(p(T_1, T_2, T_4) = 0.060 \) reduces the occurrence of deflationary spirals.

The stabilizing role of forward guidance at the zero lower bound is particularly surprising, since at the zero lower bound an overoptimistic (or strategic) inflation projection can by no means be supported with movements of the interest rate. We believe that the evidence presented in this section supports Hypothesis 2(b).

6 Discussion

In this section we analyze the relationship between anchoring, credibility, and strategic-ness and its implications for the stabilizing role of forward guidance. This way, we shed light on the transmission channel through which forward guidance affects the economy. We argue that the stabilizing effect of forward guidance functions through the anchoring of expectations around the public projection, i.e. credibility.\(^{27}\) A high degree of strategic-ness helps stabilize the economy only if the projections are credible. In case projection are not credible at all, forward guidance is without any effect on the macroeconomy.

As the influences of credibility and strategic-ness are generally interdependent in our experimental setup, we make use of two counterfactual simulations, which allow us to study each channel separately. In these counterfactuals, we assume that central bank projections are fully credible. Under this assumption, all professional forecasters strictly adopt the central bank projection in each period. In the first counterfactual (henceforth: CF1), the central bank publishes the non-strategic data-driven forecast as projection. This counterfactual allows us to isolate the role of credibility. By contrast, in the second counterfactual (henceforth: CF2), the projections are generated by the computer algorithm from Treatment 3. This counterfactual highlights the power of strategic-ness of a credible central bank.

\(^{27}\)Note that by definition credibility implies anchoring (around the projection), but that anchoring not necessarily implies credibility (e.g. if it takes place far away from the projection). In our experiment, however, there is a strong negative correlation between anchoring and credibility, suggesting that we can use these terms interchangeably in the following analysis.
Table 6: Average session-median strategic-ness for Treatments 2 to 4 and the two counterfactuals. Standard deviations in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Treatment 2</th>
<th>Treatment 3</th>
<th>Treatment 4</th>
<th>CF1</th>
<th>CF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage II</td>
<td>0.347</td>
<td>0.808</td>
<td>2.788</td>
<td>0.000</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td>(0.177)</td>
<td>(0.102)</td>
<td>(1.259)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Stage III</td>
<td>0.505</td>
<td>0.553</td>
<td>0.512</td>
<td>0.000</td>
<td>0.634</td>
</tr>
<tr>
<td></td>
<td>(0.303)</td>
<td>(0.132)</td>
<td>(0.134)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

6.1 The Effect of Credibility on Economic Stability

Now, we study in isolation the influence of credibility for the stabilizing role of forward guidance, i.e. we abstract from strategic behavior of the central bank. To do so, we compare CF1 to Treatments 1, i.e. Columns [1] and [5] of Table 4. Column [5] of Table 4 shows the average stability measures for inflation and output gap of the 6 counterfactual economies of CF1, where a fully credible non-strategic projection was available. The average stability measures from CF1 is significantly lower \(p < 0.05 \) than the stability measures of Treatment 1, where no projection was available. Thus, anchoring of expectations around the path implied by the data-driven forecast increases economic stability, even though these forecasts are non-strategic.

6.2 The Effect of Strategic-ness on Economic Stability

Next, we study the influence of strategic-ness for the stabilizing role of forward guidance. We measure the degree of strategic-ness in any period \(t \) by the deviation of the published inflation projection from the data-driven forecast, normalized by the necessary deviation from the data-driven forecast to reach the central bank’s target values. This measure is given by

\[
SP_t = \frac{E_{t}^{pub} \pi_{t+1} - E_{t}^{ddf} \pi_{t+1}}{E_{t}^{pf} \pi_{t+1} - E_{t}^{ddf} \pi_{t+1}}. \tag{16}
\]

If \(SP_t = 0 \) the published projection coincides with the data-driven forecast. This is the case of purely informational behavior. A value \(0 < SP_t < 1 \) implies a positive degree of strategic behavior. If \(SP_t = 1 \) the published projection coincides with the “required for target.” This is the case of perfectly strategic behavior.\(^{29}\)

Table 6 summarizes the average session-median strategic-ness for Treatments 2 to 4 and the two counterfactuals. In Treatments 2 and 3 average session-

\(^{28}\)Note that the absence of a projection is observationally equivalent to the presence of a projection which is fully ignored, i.e. fully non-credible.

\(^{29}\)The index can also take values above unity and below zero. If \(SP_t > 1 \) the published projection lies outside the interval of the data driven forecast and the “required for target” information, on the side of the “required for target”. This implies that the central bank is trying to steer more than necessary to achieve the target. If \(SP_t < 0 \), the published projection lies outside the band of the data driven forecast and the “required for target” information, on the side of the data driven forecast. This implies that the central bank CB tries to drive expectations “away” from target. A proof of these claims is presented in Appendix B.
median “strategic-ness” measures significantly exceed zero in all of the cases, indicating an overall strategic behavior of the central bank forecaster. Second, the median strategic-ness in Treatment 3 is statistically significantly higher than in Treatment 2 (p-value=0.006). The Spearman rank correlation between median strategic-ness and the inflation stability measure in the 12 economies of Treatment 2 and 3 is -0.4974 (p-value=0.05), which implies that that economies with more strategic projections are associated with higher macroeconomic stability.

In order to study in isolation (i.e. keeping credibility fixed) the influence of strategic-ness for the stabilizing role of forward guidance, we compare CF1, where the published forecast equals the non-strategic data driven forecast to CF2, where the publish forecast follows the strategic algorithm of Treatment 3. In particular, we compare Columns [5] and [6] of Table 4. Column [6] of Table 4 shows the average stability measures for inflation and output gap from the 6 counterfactual economies of CF2. The results show that inflation in CF2 is significantly more stable ($p<0.01$) compared to inflation in CF1. By contrast, for the output gap this difference is only marginally significant ($p<0.1$). Thus, anchoring of expectations around a strategic path implied by the algorithm of Treatment 3, under full credibility, increases further economic stability.

CF1 and CF2 also provide insights into the role of strategic-ness at the zero lower bound (i.e. Stage III). In particular, we find that when the central bank publishes the data-driven forecast (CF1) all forced recessions result in a deflationary spiral. By contrast, when the central bank acts strategically (CF2), none of the forced recessions results in a deflationary spiral.

Another particularly illustrative example for the importance of strategic-ness to prevent deflationary spirals can be found when looking at the single economies from Treatment 2. Table 7 summarizes the median strategic-ness measures for the single economies in Stage III. First note the central bank forecaster in economy E11. The median “strategic-ness” measure (-0.0050) implies that this central bank forecaster does not act strategically at the zero lower bound, but instead resorts fully to the data-driven forecast, which predicts a deflationary spiral. Since projections act as a focal point for private-sector expectations, the economy falls into an expectation-driven deflationary spiral. The central bank forecasters of the other five economies, by contrast, do not publicly predict a deflationary spiral, but resort to strategic (in this case over-optimistic) inflation projections. None of their economies experiences a deflationary spiral.\footnote{ Figure 9 in the appendix presents the Stage III time series for the inflation projection, the data-driven forecast, the “required for target,” and the individual private-sector forecasts. The figure shows that the central bank forecaster in economy E11 tracks almost perfectly the data-driven forecast. Private forecasts are highly anchored on these predictions and consequently too follow the data-driven forecast. In the other five economies, the central bank forecaster substantially deviates upwards from the data-driven forecast, pulling expectations out of the slump.}

<table>
<thead>
<tr>
<th></th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
<th>E10</th>
<th>E11</th>
<th>E12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0.7273</td>
<td>0.8061</td>
<td>0.4106</td>
<td>0.6970</td>
<td>-0.0050</td>
<td>0.3929</td>
</tr>
</tbody>
</table>

Table 7: Median “strategic-ness” measures (equation (16)) for the human central bank forecasters of Treatment 2.
From the above analysis, we conclude that credibility is the catalyst by which strategic projections translate into the economy, i.e. credibility is necessary for strategic forward guidance to work. However, excessive strategic-ness of forward guidance may hamper credibility through systematic positive or negative forecast errors. The relationship between forecast performance and credibility is subject of the next section.

6.3 The Determinants of Credibility

To analyze the determinants of credibility, we follow Mokhtarzadeh and Petersen (2017) and estimate a series of probit models, where the dependent variable $Utilize_t$ is binary taking value 1 if individual professional forecasters utilized the central bank projection and 0 if not. A central bank projection is said to be utilized if an individual professional forecasters forecast is within 5 basis points of the respective central bank projection.31 This measure acts as a proxy for our credibility measure from above, as it gives us the increase in the likelihood that a projection is closely followed. In accordance with Mokhtarzadeh and Petersen (2017), our explanatory variable is past forecasting performance of the central bank projections, measured by the absolute 32 forecast error from the previous period. As controls we employ the absolute deviation of previous inflation from the central bank’s inflation target, the professional forecasters previous absolute forecast error, period $t-2$ utilization of the central bank projection, and the interaction of the latter two. The interaction term measures the degree to which past shaken confidence in the central bank projection influences the willingness to utilize the central bank projection in the future. Additionally, we control for past aggregate credibility of the central bank projection measured by the period $t-1$ credibility index, and the subjects cognitive ability measured by the three-item “cognitive reflection test” of Frederick (2005). The estimation results for Stage II from Treatments 2, 3, and 4 are presented in Table 12 and for Stage III in Table 13. Both tables are located in Appendix C.

The tables show that central bank projections are more likely to be adopted in the future, if they were accurate in the past, independent of whether the economy functions in normal times or in times of severe economic stress. Consequently, credibility increases in past forecasting performance, confirming Hypothesis 4. Additionally, credibility also seems to be a persistent phenomenon. If a professional forecaster adopted the central bank projection in the past or if it was credible in the past, the professional forecasters are more likely to adopt the central bank projection in the future. Even if the adoption of a past projection ex-post turns out to be a disappointment, i.e., it resulted in an own large forecast error, the willingness of the professional forecaster to adopt future central bank projections remains unchanged, which can be read from the insignificance of the interaction term in Tables 12 and 13. Subjects seem to pay more attention to the performance of the central bank projections than to reflect

31Mokhtarzadeh and Petersen (2017) choose a band of 2 basis points to identify utilization of the central bank projection, which yields approximately 20% of private forecasts to utilize the central bank projection in their experiment. In our experiment, a 2-basis-point band yields a utilization of only around 7.5%, whereas a 5-basis-point band yields around 17.5% utilization. The increased number of observations in the 5-basis-point case does not change the qualitative results of the estimation, but results in stronger statistical significance.

32Results do not change if forecast errors are squared. Only exception is that the interaction term gains significance. Results are available from the authors on request.
on their past behavior and its outcomes. Finally, the probit regressions shows
that cognitive ability increases the likelihood to adopt central bank projection.

Finally, we would like to raise a note of caution; although credibility, be it
high or low, is a very persistent phenomenon, it can change quickly in response
to extreme changes in the economic environment. An illustrative example can
be found comparing the severe recessions of Treatments 3 and 4. Whereas
the central bank’s average Treatment 3 credibility reduces dramatically when
entering the recession in Stage III (from 0.9 in Stage II to 0.5 in Stage III),
the average Treatment 4 credibility increases massively (from 0.0 to 0.4) by
switching from the random projections in Stage II to the good algorithm in
Stage III, despite the challenges put forth to the algorithm by the recession.

7 Conclusion

In this paper, we study the stabilizing role of central bank forward guidance
in a standard New Keynesian learning-to-forecast laboratory experiment. Subjects
take the role of “professional forecasters” in the private sector who form
one-period ahead inflation forecasts. Subjects are provided with a limited un-
derstanding of the true data generating process and a public central bank in-
flation projection, i.e. central bank forward guidance. We show that central
banks can manage private-sector expectations via the publication of (strategic)
central bank inflation projections and that such expectations management can
successfully be applied as an additional monetary policy instrument to stabilize
the economy.

In particular, we show that such central bank forward guidance consider-
ably influences the subjects’ expectations formation process. In the absence of
forward guidance, subjects expectation formation process is well characterized
as mostly backward-looking with simple trend following. In the presence of
forward guidance, by contrast, the public inflation projection becomes an influ-
ential piece of information which starkly diminishes the prevalence of backward-
looking expectation formation. Consequently, strategic inflation projections act
as a focal point, anchoring expectation and thereby decreasing the dispersion
among individual forecasts.

This anchoring effect allows the central bank to stabilize the economy; i.e. to
bring inflation and output faster and closer towards their respective target values
and reduce their volatility over the business cycle. At the zero lower bound,
the publication of overly optimistic (i.e. strategic) projections greatly reduce
the risk of deflationary spirals. Random inflation projections, by contrast, are
generally harmful to the economy as they unleash disturbing forces which give
rise to large fluctuations of the economy. Finally, we show that credibility is
an important precondition for the stabilizing role of forward guidance, but that
achieving full credibility on the expense of all strategic behavior is not optimal
either.

Our results have important implications for central bank practice. We show
that central bank forward guidance is a powerful tool for stabilization policy in
normal times and at the zero lower bound. However, while a good track record
of accurate forecasts is important for credibility, we find that some strategic-
ness in the published forecasts greatly enhances the stabilizing power of forward
guidance. Especially in times of severe economic stress, fully truthful projections
may be harmful rather than beneficial.

References

A Estimation procedure for equation (12)

First Formula (12) is estimated with OLS. Then the joint significance of all the coefficients that where found to be individually insignificant in the above regression is tested. If these coefficients are jointly insignificant, all of them are removed. If they are jointly significant, exactly 1 coefficient is removed. The coefficient that is removed is then the individually insignificant coefficient that ranks first in the following order of removal list: \(\alpha_2, \gamma_1, \beta_2, \delta, \beta_1, \alpha_1, c \).

After one or more coefficients are removed, Equation (12) is reestimated without this (these) coefficient(s). Then the joint significance of the coefficients found to be individually insignificant in the new regression is tested and coefficient(s) are removed according to the same procedure as above. This process is repeated until either a regression is performed where all remaining coefficients are individually significant, or until all coefficients are removed.

B Proof of “strategic-ness” index

Below we proof the following three claims about the “strategic-ness” index, \(SP_t \), of equation (16):

(a) \(0 < SP_t < 1 \) implies that the published forecast lies in the band between the data driven forecast and the “required for target” information:

\[
E_t^{\text{df}} \pi_{t+1} < E_t^{\text{pf}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} \quad \text{or} \quad E_t^{\text{df}} \pi_{t+1} < E_t^{\text{pf}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1}
\]

(b) \(SP_t > 1 \) implies that the published forecast lies outside the band of the data driven forecast and the “required for target” information, on the side of the “required for target”:

\[
E_t^{\text{ddf}} \pi_{t+1} < E_t^{\text{pf}} \pi_{t+1} < E_t^{\text{df}} \pi_{t+1} \quad \text{or} \quad E_t^{\text{df}} \pi_{t+1} < E_t^{\text{pf}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1}
\]

(c) \(SP_t < 0 \) implies that the published forecast lies outside the band of the data driven forecast and the “required for target” information, on the side of the data driven forecast:

\[
E_t^{\text{df}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} < E_t^{\text{pf}} \pi_{t+1} \quad \text{or} \quad E_t^{\text{pf}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} < E_t^{\text{df}} \pi_{t+1}
\]

Proof:

(1) When \(0 < SP_t \) either both numerator and denominator in Equation (16) are negative or both are positive:

(i) Consider that both numerator and denominator are negative. It must be that \(E_t^{\text{ddf}} \pi_{t+1} < E_t^{\text{df}} \pi_{t+1} \) and \(E_t^{\text{pf}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} \). Since the denominator is negative \(SP_t < 1 \) further implies that \(E_t^{\text{ddf}} \pi_{t+1} - E_t^{\text{df}} \pi_{t+1} > E_t^{\text{pf}} \pi_{t+1} - E_t^{\text{ddf}} \pi_{t+1} \) so that \(E_t^{\text{ddf}} \pi_{t+1} < E_t^{\text{df}} \pi_{t+1} \) and hence \(E_t^{\text{df}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} \). \(SP_t > 1 \), on the other hand, implies that \(E_t^{\text{ddf}} \pi_{t+1} > E_t^{\text{df}} \pi_{t+1} \) and hence \(E_t^{\text{df}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} < E_t^{\text{pf}} \pi_{t+1} \).

(ii) Consider that both numerator and denominator are positive. \(0 < SP_t \) implies \(E_t^{\text{df}} \pi_{t+1} > E_t^{\text{ddf}} \pi_{t+1} \) and \(E_t^{\text{pf}} \pi_{t+1} > E_t^{\text{ddf}} \pi_{t+1} \). \(SP_t < 1 \) then implies \(E_t^{\text{df}} \pi_{t+1} - E_t^{\text{ddf}} \pi_{t+1} < E_t^{\text{pf}} \pi_{t+1} - E_t^{\text{ddf}} \pi_{t+1} \) so that \(E_t^{\text{ddf}} \pi_{t+1} < E_t^{\text{df}} \pi_{t+1} \) and hence \(E_t^{\text{pf}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} \). \(SP_t > 1 \) implies \(E_t^{\text{ddf}} \pi_{t+1} > E_t^{\text{pf}} \pi_{t+1} \) and \(E_t^{\text{df}} \pi_{t+1} > E_t^{\text{ddf}} \pi_{t+1} \). This completes the proof of (a) and (b).

(2) When \(SP_t < 0 \), either the numerator of Equation (16) is negative while the denominator is positive, or the numerator is positive while the denominator is negative: In the first case, it must hold that \(E_t^{\text{df}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} \) while \(E_t^{\text{pf}} \pi_{t+1} > E_t^{\text{ddf}} \pi_{t+1} \). In the second case, it must hold that \(E_t^{\text{pf}} \pi_{t+1} > E_t^{\text{ddf}} \pi_{t+1} \) while \(E_t^{\text{df}} \pi_{t+1} < E_t^{\text{ddf}} \pi_{t+1} \). This proves (c).
C Additional tables and figures

<table>
<thead>
<tr>
<th>Statistic/Economy</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.0</td>
<td>2.6</td>
<td>2.8</td>
<td>2.6</td>
<td>2.0</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Median</td>
<td>2.6</td>
<td>3.2</td>
<td>2.4</td>
<td>2.5</td>
<td>2.1</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Variance</td>
<td>0.4</td>
<td>1.6</td>
<td>1.0</td>
<td>0.4</td>
<td>2.5</td>
<td>2.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.9</td>
</tr>
<tr>
<td>Median</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.8</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.9</td>
</tr>
<tr>
<td>Variance</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7.4</td>
<td>7.0</td>
<td>7.3</td>
<td>7.1</td>
<td>6.2</td>
<td>6.2</td>
<td>6.9</td>
</tr>
<tr>
<td>Median</td>
<td>6.9</td>
<td>7.7</td>
<td>6.8</td>
<td>6.8</td>
<td>6.3</td>
<td>5.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Variance</td>
<td>0.8</td>
<td>2.5</td>
<td>1.6</td>
<td>0.8</td>
<td>3.7</td>
<td>4.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.2</td>
<td>0.5</td>
<td>1.4</td>
<td>0.8</td>
<td>-0.3</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Median</td>
<td>1.1</td>
<td>0.5</td>
<td>1.4</td>
<td>0.5</td>
<td>-1.0</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Variance</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>3.2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.7</td>
<td>-0.3</td>
<td>-0.5</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>Median</td>
<td>-0.7</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.3</td>
<td>0.0</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>Variance</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5.3</td>
<td>4.6</td>
<td>5.6</td>
<td>4.9</td>
<td>3.5</td>
<td>5.2</td>
<td>4.9</td>
</tr>
<tr>
<td>Median</td>
<td>5.2</td>
<td>4.3</td>
<td>5.7</td>
<td>4.6</td>
<td>2.7</td>
<td>5.1</td>
<td>4.6</td>
</tr>
<tr>
<td>Variance</td>
<td>0.7</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>4.7</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-1.6</td>
<td>-1.0</td>
<td>-0.2</td>
<td>-65.9</td>
<td>-73.7</td>
<td>-128.4</td>
<td>-45.1</td>
</tr>
<tr>
<td>Median</td>
<td>-1.9</td>
<td>-1.6</td>
<td>-0.4</td>
<td>-14.6</td>
<td>-11.5</td>
<td>-21.8</td>
<td>-8.6</td>
</tr>
<tr>
<td>Variance</td>
<td>1.0</td>
<td>1.9</td>
<td>1.0</td>
<td>1.1*10^4</td>
<td>1.9*10^4</td>
<td>6.2*10^4</td>
<td>1.5*10^4</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-1.5</td>
<td>-1.2</td>
<td>-1.9</td>
<td>-92.5</td>
<td>-90.6</td>
<td>-156.6</td>
<td>-57.4</td>
</tr>
<tr>
<td>Median</td>
<td>-2.1</td>
<td>-1.1</td>
<td>-1.5</td>
<td>-14.7</td>
<td>-12.4</td>
<td>-26.3</td>
<td>-9.7</td>
</tr>
<tr>
<td>Variance</td>
<td>3.1</td>
<td>2.1</td>
<td>4.2</td>
<td>2.5*10^4</td>
<td>2.8*10^4</td>
<td>8.7*10^4</td>
<td>2.3*10^4</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.5</td>
<td>2.3</td>
<td>3.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Median</td>
<td>1.2</td>
<td>1.8</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Variance</td>
<td>2.5</td>
<td>4.7</td>
<td>3.8</td>
<td>0.5</td>
<td>2.5</td>
<td>0.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Table 8: Descriptive Statistics of Treatment 1 (Control). The table summarizes mean, median, and variance in each of the three stages for each of the six economies of Treatment 1 as well as their corresponding averages over all six economies of Treatment 1.
<table>
<thead>
<tr>
<th>Statistic/Economy</th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
<th>E10</th>
<th>E11</th>
<th>E12</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periods 1-8 (Stage I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.1</td>
<td>2.5</td>
<td>2.9</td>
<td>3.4</td>
<td>2.2</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Median</td>
<td>3.2</td>
<td>3.0</td>
<td>2.7</td>
<td>3.4</td>
<td>2.3</td>
<td>1.5</td>
<td>2.7</td>
</tr>
<tr>
<td>Variance</td>
<td>1.3</td>
<td>1.8</td>
<td>0.5</td>
<td>0.1</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-1.3</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.5</td>
<td>-0.9</td>
</tr>
<tr>
<td>Median</td>
<td>-1.4</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-1.1</td>
<td>-1.0</td>
<td>-0.6</td>
<td>-1.0</td>
</tr>
<tr>
<td>Variance</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7.5</td>
<td>6.9</td>
<td>7.5</td>
<td>8.0</td>
<td>6.5</td>
<td>5.9</td>
<td>7.0</td>
</tr>
<tr>
<td>Median</td>
<td>7.7</td>
<td>7.4</td>
<td>7.1</td>
<td>7.9</td>
<td>6.7</td>
<td>5.7</td>
<td>7.1</td>
</tr>
<tr>
<td>Variance</td>
<td>2.2</td>
<td>2.8</td>
<td>0.8</td>
<td>0.2</td>
<td>1.9</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Periods 9-28 (Stage II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Median</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8</td>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Variance</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>Median</td>
<td>-0.5</td>
<td>-0.2</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>Variance</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.5</td>
<td>4.2</td>
<td>4.4</td>
<td>5.0</td>
<td>4.0</td>
<td>4.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Median</td>
<td>4.4</td>
<td>4.3</td>
<td>4.5</td>
<td>5.0</td>
<td>4.1</td>
<td>4.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Variance</td>
<td>0.4</td>
<td>0.3</td>
<td>0.6</td>
<td>1.1</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Periods 29-37 (Stage III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.9</td>
<td>-1.2</td>
<td>-1.7</td>
<td>-1.3</td>
<td>-23.1</td>
<td>-0.9</td>
<td>-4.9</td>
</tr>
<tr>
<td>Median</td>
<td>-1.0</td>
<td>-0.6</td>
<td>-2.0</td>
<td>-1.6</td>
<td>-8.9</td>
<td>-0.7</td>
<td>-2.5</td>
</tr>
<tr>
<td>Variance</td>
<td>1.0</td>
<td>2.7</td>
<td>6.7</td>
<td>3.5</td>
<td>1155.5</td>
<td>2.5</td>
<td>195.3</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-2.0</td>
<td>-1.5</td>
<td>-2.4</td>
<td>-1.8</td>
<td>-29.6</td>
<td>-1.6</td>
<td>-6.5</td>
</tr>
<tr>
<td>Median</td>
<td>-2.3</td>
<td>-1.7</td>
<td>-2.3</td>
<td>-2.2</td>
<td>-10.4</td>
<td>-1.3</td>
<td>-3.4</td>
</tr>
<tr>
<td>Variance</td>
<td>4.7</td>
<td>3.0</td>
<td>4.6</td>
<td>4.7</td>
<td>1898.8</td>
<td>2.9</td>
<td>319.8</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.3</td>
<td>2.3</td>
<td>2.1</td>
<td>2.2</td>
<td>0.2</td>
<td>2.5</td>
<td>1.9</td>
</tr>
<tr>
<td>Median</td>
<td>2.0</td>
<td>3.0</td>
<td>0.4</td>
<td>1.3</td>
<td>0.0</td>
<td>2.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Variance</td>
<td>3.7</td>
<td>4.4</td>
<td>7.6</td>
<td>4.9</td>
<td>0.4</td>
<td>4.8</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Table 9: Descriptive Statistics of Treatment 2. The table summarizes mean, median, and variance in each of the three stages for each of the six economies of Treatment 2 as well as their corresponding averages over all six economies of Treatment 2.
<table>
<thead>
<tr>
<th>Statistic/Economy</th>
<th>E13</th>
<th>E14</th>
<th>E15</th>
<th>E16</th>
<th>E17</th>
<th>E18</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.4</td>
<td>2.2</td>
<td>2.4</td>
<td>2.8</td>
<td>3.0</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Median</td>
<td>1.8</td>
<td>2.6</td>
<td>2.5</td>
<td>2.9</td>
<td>2.7</td>
<td>2.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Variance</td>
<td>0.7</td>
<td>1.7</td>
<td>0.0</td>
<td>1.5</td>
<td>0.4</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.5</td>
<td>-0.9</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-0.9</td>
</tr>
<tr>
<td>Median</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-1.1</td>
<td>-1.1</td>
<td>-0.9</td>
</tr>
<tr>
<td>Variance</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.7</td>
<td>6.5</td>
<td>6.8</td>
<td>7.3</td>
<td>7.0</td>
<td>7.5</td>
<td>7.0</td>
</tr>
<tr>
<td>Median</td>
<td>6.0</td>
<td>6.9</td>
<td>6.9</td>
<td>7.3</td>
<td>7.0</td>
<td>7.1</td>
<td>6.9</td>
</tr>
<tr>
<td>Variance</td>
<td>1.2</td>
<td>2.8</td>
<td>0.1</td>
<td>2.6</td>
<td>0.7</td>
<td>2.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.4</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>Median</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
<td>-0.1</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>Variance</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.4</td>
<td>4.0</td>
<td>4.2</td>
<td>4.3</td>
<td>3.9</td>
<td>4.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Median</td>
<td>4.4</td>
<td>4.0</td>
<td>4.3</td>
<td>4.3</td>
<td>3.7</td>
<td>4.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Variance</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Output gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.8</td>
<td>-1.8</td>
<td>-0.9</td>
<td>-1.0</td>
<td>-1.7</td>
<td>-2.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>Median</td>
<td>-0.8</td>
<td>-2.3</td>
<td>-0.9</td>
<td>-1.6</td>
<td>-1.7</td>
<td>-1.8</td>
<td>-1.5</td>
</tr>
<tr>
<td>Variance</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>3.1</td>
<td>1.5</td>
<td>3.5</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Table 10: Descriptive Statistics of Treatment 3. The table summarizes mean, median, and variance in each of the three stages for each of the six economies of Treatment 3 as well as their corresponding averages over all six economies of Treatment 3.
Table 11: Descriptive Statistics of Treatment 4

The table summarizes mean, median, and variance in each of the three stages for each of the six economies of Treatment 4 as well as their corresponding averages over all six economies of Treatment 4.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>-0.712***</td>
<td>-0.559***</td>
<td>-1.452***</td>
<td>-1.709***</td>
<td>-1.697***</td>
</tr>
<tr>
<td></td>
<td>[0.063]</td>
<td>[0.066]</td>
<td>[0.162]</td>
<td>[0.175]</td>
<td>[0.175]</td>
</tr>
<tr>
<td>$</td>
<td>E_{t-2}^{100} \pi_{1-1} - \pi_{t-1}</td>
<td>$</td>
<td>-0.393***</td>
<td>-0.331***</td>
<td>-0.131**</td>
</tr>
<tr>
<td></td>
<td>[0.051]</td>
<td>[0.047]</td>
<td>[0.055]</td>
<td>[0.055]</td>
<td>[0.056]</td>
</tr>
<tr>
<td>Utilize_{t-2}</td>
<td>0.693***</td>
<td>0.666***</td>
<td>0.501***</td>
<td>0.491***</td>
<td>0.361***</td>
</tr>
<tr>
<td></td>
<td>[0.126]</td>
<td>[0.121]</td>
<td>[0.124]</td>
<td>[0.125]</td>
<td>[0.088]</td>
</tr>
<tr>
<td>$</td>
<td>E_{t-2}^{100} \pi_{1-1} - \pi_{t-1}</td>
<td>$</td>
<td>-0.054</td>
<td>-0.013</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>[0.073]</td>
<td>[0.027]</td>
<td>[0.030]</td>
<td></td>
<td>[0.028]</td>
</tr>
<tr>
<td>$</td>
<td>E_{t-2}^{100} \pi_{1-1} - \pi_{t-1}</td>
<td>* Utilize_{t-2}$</td>
<td>-0.317</td>
<td>-0.292</td>
<td>-0.299</td>
</tr>
<tr>
<td></td>
<td>[0.196]</td>
<td>[0.184]</td>
<td>[0.190]</td>
<td></td>
<td>[0.190]</td>
</tr>
<tr>
<td>$</td>
<td>\pi_{t-1} - \pi_{t}</td>
<td>$</td>
<td>-0.440***</td>
<td>-0.319***</td>
<td>-0.319***</td>
</tr>
<tr>
<td></td>
<td>[0.098]</td>
<td>[0.100]</td>
<td>[0.100]</td>
<td></td>
<td>[0.100]</td>
</tr>
<tr>
<td>l_{t-1}^{ned}</td>
<td>1.208***</td>
<td>1.185***</td>
<td>1.179***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.190]</td>
<td>[0.191]</td>
<td>[0.191]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td>0.110***</td>
<td>0.113***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.035]</td>
<td>[0.035]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12: Determinants of the utilization of central bank projections in Stage II. This table summarizes the results of a series of probit models from Section 6.3, where the dependent variable *Utilize* is binary taking value 1 if individual professional forecasters utilized the central bank projection and 0 if not. A central bank projection is said to be utilized if an individual professional forecasters forecast is within 5 basis points of the respective central bank projection. The data used for estimation of the series of probit models stems from Stage II of Treatments 2, 3, and 4.
Table 13: Determinants of the utilization of central bank projections in Stage III. This table summarizes the results of a series of probit models from Section 6.3, where the dependent variable Utilize is binary taking value 1 if individual professional forecasters utilized the central bank projection and 0 if not. A central bank projection is said to be utilized if an individual professional forecasters forecast is within 5 basis points of the respective central bank projection. The data used for estimation of the series of probit models stems from Stage II of Treatments 2, 3, and 4.
Figure 4: Computer interface as seen by the subjects. The figure shows the graphical and tabular representation of the complete history of the economy as well as the timer and the input box. The exemplary subject is currently in period 3 and she is asked to provide a forecast for period 4.
Figure 5: Resulting aggregate time series for inflation (solid line), the output gap (dashed line), and the interest rate (dotted line) for all six experimental economies of Treatment 1 (control treatment).
Figure 6: Resulting aggregate time series for inflation (solid line), the output gap (dashed line), and the interest rate (dotted line) for all six experimental economies of Treatment 2.
Figure 7: Resulting aggregate time series for inflation (solid line), the output gap (dashed line), and the interest rate (dotted line) for all six experimental economies of Treatment 3.
Figure 8: Resulting aggregate time series for inflation (solid line), the output gap (dashed line), and the interest rate (dotted line) for all six experimental economies of Treatment 4.
Figure 9: Stage III time series for the public central bank inflation projection (solid line), the data-driven forecast (dashed line), the “required for target” (dotted line), and the individual private-sector forecasts (x) for all six experimental economies of Treatment 2. Vertical gray lines denote the four-period fundamental shock sequence.
BERG Working Paper Series (most recent publications)

104 Noemi Schmitt and Frank Westerhoff, Evolutionary competition and profit taxes: market stability versus tax burden, August 2015.

106 Christian R. Proaño and Benjamin Lojak, Debt Stabilization and Macroeconomic Volatility in Monetary Unions under Heterogeneous Sovereign Risk Perceptions, November 2015.

107 Noemi Schmitt and Frank Westerhoff, Herding behavior and volatility clustering in financial markets, February 2016

109 Stefanie P. Herber and Michael Kalinowski, Non-take-up of Student Financial Aid: A Microsimulation for Germany, April 2016

110 Silke Anger and Daniel D. Schnitzlein, Cognitive Skills, Non-Cognitive Skills, and Family Background: Evidence from Sibling Correlations, April 2016

111 Noemi Schmitt and Frank Westerhoff, Heterogeneity, spontaneous coordination and extreme events within large-scale and small-scale agent-based financial market models, June 2016

112 Benjamin Lojak, Sentiment-Driven Investment, Non-Linear Corporate Debt Dynamics and Co-Existing Business Cycle Regimes, July 2016

113 Julio González-Díaz, Florian Herold and Diego Domínguez, Strategic Sequential Voting, July 2016

114 Stefanie Yvonne Schmitt, Rational Allocation of Attention in Decision-Making, July 2016

116 Lisa Planer-Friedrich and Marco Sahm, Why Firms Should Care for All Consumers, September 2016.

117 Christoph March and Marco Sahm, Asymmetric Discouragement in Asymmetric Contests, September 2016.

118 Marco Sahm, Advance-Purchase Financing of Projects with Few Buyers, October 2016.

Marco Sahm, Risk Aversion and Prudence in Contests, March 2017

Marco Sahm, Are Sequential Round-Robin Tournaments Discriminatory?, March 2017

Noemi Schmitt, Jan Tuinstra and Frank Westerhoff, Stability and welfare effects of profit taxes within an evolutionary market interaction model, May 2017

Johanna Sophie Quis and Simon Reif, Health Effects of Instruction Intensity – Evidence from a Natural Experiment in German High-Schools, May 2017

Lisa Planer-Friedrich and Marco Sahm, Strategic Corporate Social Responsibility, May 2017

Peter Flaschel, Matthieu Charpe, Giorgos Galanis, Christian R. Proaño and Roberto Veneziani, Macroeconomic and Stock Market Interactions with Endogenous Aggregate Sentiment Dynamics, May 2017

Christoph March and Marco Sahm, Contests as Selection Mechanisms: The Impact of Risk Aversion, July 2017

Ivonne Blaurock, Noemi Schmitt and Frank Westerhoff, Market entry waves and volatility outbursts in stock markets, August 2017

Christoph Laica, Arne Lauber and Marco Sahm, Sequential Round-Robin Tournaments with Multiple Prizes, September 2017

Joep Lustenhouwer and Kostas Mavromatis, Fiscal Consolidations and Finite Planning Horizons, December 2017

Cars Hommes and Joep Lustenhouwer, Managing Unanchored, Heterogeneous Expectations and Liquidity Traps, December 2017

Cars Hommes, Joep Lustenhouwer and Kostas Mavromatis, Fiscal Consolidations and Heterogeneous Expectations, December 2017

Roberto Dieci, Noemi Schmitt and Frank Westerhoff, Interactions between stock, bond and housing markets, January 2018

Noemi Schmitt, Heterogeneous expectations and asset price dynamics, January 2018

Carolin Martin and Frank Westerhoff, Regulating speculative housing markets via public housing construction programs: Insights from a heterogeneous agent model, May 2018

Roberto Dieci, Noemi Schmitt and Frank Westerhoff, Steady states, stability and bifurcations in multi-asset market models, July 2018

Steffen Ahrens, Joep Lustenhouwer and Michele Tettamanzi, The Stabilizing Role of Forward Guidance: A Macro Experiment, September 2018