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An auction story: how simple bids struggle with

uncertainty

Jörn C. Richstein*1, Casimir Lorenz1,2, and Karsten Neuhoff1

1DIW Berlin
2Technical University Berlin

October 21, 2018

Abstract

Short-term electricity markets are key to an efficient production by generation units. We

develop a two-period model to assess different bidding formats to determine for each bidding

format the optimal bidding strategy of competitive generators facing price-uncertainty. We

compare the results for simple bidding, block bidding and multi-part bidding and find that

even under optimal simple and block bidding generators face the risk of ex-post suboptimal

solutions, whereas in multi-part bidding these do not occur. This points to efficiency gains

of multi-part bidding in the presence of uncertainty in electricity markets.

Keywords: market design, electricity markets, bidding formats, auctions

JEL classification: D44, D47, Q48, L94

1 Introduction

Short-term electricity markets, especially day-ahead and intraday markets, have the goal to

efficiently match generation and demand of electricity. A key challenge for market operators

and participants is to account for inter-temporal linkages between time, which is caused by the

technical characteristics of generation units connected to the electricity grid (Elmaghraby and

Oren, 1999). An example of these intertemporal technical limitations are start-up costs that

occur once when a power plant is started up, ramping constraints that limit the rate of change

of production, the maximum time a load can be shed without impacting its service quality (for

*Corresponding author: JRichstein@diw.de
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example cooling houses) or the remaining electricity stored in a battery. All these limitations

imply that actors cannot sell electricity in different time periods as fully independent products,

and thus introduce some level of complementarity of sales in consecutive hours (or in the

case of limited storage capacity substitutes). Traditionally, these inter-temporal linkages have

received less attention in European intraday-markets, because (i) overall load profile followed

repeated patterns and thus could already be considered in bids or even in product design, (ii)

large and often integrated generators could optimize within their portfolio. With rising shares

of intermittent renewable energy sources and their stochastic variations with considerable

uncertainty remaining in the intraday time-frame, as well as the increasing role of smaller-scale

generation and flexibility providers, larger shares of generation or load need to be rescheduled

in shorter time frames.

This topic is broadly linked to the general literature on auction theory. However, while

most literature deals with auctions for single goods, the literature on multi-unit auctions is

not as well developed (Klemperer, 2004). The most closely related strand are combinatorial

auctions, which allow bidders to express the willingness to buy packages of goods (Cramton

et al., 2007). In this paper, we concentrate on the specific case of multi-unit auctions which

allow expressing complementaries via bidding multiple parameters, which exist in the praxis

of electricity markets.

Various bidding designs exist to coordinate production of generators, usually distinguishing

between simple bidding (single time period with one price component), block bidding (multi-

time period with one price component), and multi-part bidding (often in the form of three-part

bids), where generators submit bids describing their variable and start-up costs (and/or other

technical and financial parameters).

In simple bidding, generators need to account for startup costs in individually accepted

bids, to exclude inefficient solutions, while not excluding too many profitable combinations

where the price is low in one period, but so high in the other as to make the combination of

the two profitable. Due to this inherent trade-off in bidding, ex-post several inefficiencies in

production are possible for simple bidding: the unit is accepted for one or two periods, although

the price is not high enough to recover costs, and only one period is accepted, when it would

have been efficient to dispatch the unit in two periods. For block bidding, the unit can only

be accepted jointly, while under low prices below variable cost in one period and high prices

in the other, it would be more efficient to let the unit run for a single time period. To capture

these inefficiencies, we built a simple two-period model of a price taker’s optimal bids under

three different bidding formats: simple, block and multi-part bidding.
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The advantages and disadvantages of these market designs have been discussed previously

in literature. Elmaghraby and Oren (1999) compare energy only hourly auctions (termed

vertical auctions) with horizontal auctions (defined by load slices) in an analytical model

under certainty and conclude that, even under perfect information, no efficient outcome can be

achieved under energy only hourly auctions. Sioshansi et al. (2010) compare multi-part bids

with simple energy bids in a deterministic simulation study and find that energy-only simple

bidding results in inefficiencies due to ignoring the inter-temporal linkages and non-convex

generation costs, while multi-part bidding may result in some equity and incentive issues

(which can partly be mitigated by uplift payments). Sioshansi and Nicholson (2011) explicitly

look at market power issues with regard to multi-part (here two-part) and simple bidding

in an analytic framework of a duopoly under deterministic demand levels (with a numerical

quantification). The authors find that under both formats strategic bidding is taking place,

leading in many cases to mixed-strategy equilibria. Finally, they find that energy only markets

with simple bidding yield higher prices. O’Neill et al. (2005) emphasise that in markets with

non-convexities market-equilibria without multi-part bids might not exist, and present clearing

mechanisms and how to interpret prices in mixed-integer problems to arrive at market clearing

prices. Reguant (2014) analyses the usage of complementary bidding mechanisms (i.e. multi-

part bids in the terminology of this paper) in the Spanish electricity market using a structural

model and how they can be used to better explain apparent mark-ups that in part exist due to

start-up costs; however, she does not address the question of what drives firms to use one or

the other bidding format. In the corresponding thesis chapter (Reguant, 2011), an additional

computational analysis is presented, which compares the welfare effects of simple bidding and

multi-part bidding using a computational counter-factual analysis. Here, multi-part bidding

leads to efficiency gains, even in the presence of market power, as well as lower prices. This is

caused by increased volatility in the market if simple bids only are allowed, and the reduced

coordination of start-up decisions.

While these papers discuss inefficiencies arising in equilibrium with and without market

power, uncertainty may lead to further inefficiencies due to possible coordination issues.

Cramton (2017) discusses qualitatively that the internalisation of start-up and other costs based

on market expectations would often turn out to be wrong and distort the energy offer curve.

Engineering literature on the other hand, uses stochastic optimisation to derive optimal bidding

strategies under price uncertainty (Conejo et al., 2002). To our knowledge, however, the role

uncertainty explicitly plays in reducing the efficiency of simple bidding as compared to multi-

part bidding has not been discussed in literature using an analytical framework. In contrast,
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this paper concentrates on the effect that price uncertainty has in isolation from other effects

on the bidding strategies of generators in the presence of start-up cost. While this inefficiency

is similar in nature to the principal coordination issue of simple marginal prices if there are

indivisibilities and other non-convexities (O’Neill et al., 2005), in our model the inefficiency

would cease to exist in case that there was no uncertainty. This is a relevant problem especially

for short-term markets since in intra-day trading price uncertainty has very significant levels

(Neuhoff et al., 2016), and may increase in future with higher levels of variable renewable

energy sources.

2 Bidding format description & optimal bidding strategies

We are investigating bidding formats using a simplified analytical framework of a single, price-

taking actor with a power plant exposed to uncertain power prices in two time periods. The

power plant is participating in a uniform price auction in a large competitive market. The

model consists of two stages, which are presented in Figure 1. In Table 1 (Appendix A), all

parameters and variables of the model can be found.

Bid Clearing & production

Price uncertainty

Figure 1: Model time-line

In the first stage, depending on the bidding format, the actor chooses his bids in order to

maximize his expected profit over both trading periods, given the price expectations, as well as

the clearing rules of the bidding format.

In the second stage, the market is cleared according to the bids of the actor, the clearing

rule of the bidding formats (described in detail below) and the stochastic realisations of the

prices in the two consecutive periods. The prices are independently uniformly distributed

U (0,pmax). As a result of market clearing, bids of the actor are either accepted or not. If any

of the bids are accepted the power plant needs to produce power and its owner receives the

revenue of the accepted period(s), as well as incurs production costs. The power plant has

fixed, positive start-up costs cs, which occur if the power plant produces in one or two periods.

Secondly, the plant has positive variable production costs of cv , which occur in every period

that the plant is producing. For simplicity, we assume that the capacity K of the power plant,
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as well as the length l of one trading period are 1, so prices and costs can be simply added to

result in the profit. We assume, that there is no possibility for the power plant to not produce,

by, for example, paying an imbalance price instead, or by retrading electricity in a consecutive

market. We relax the assumption of a single trading round, as well as the power plant size and

period length in Section 4. In the following, the three bidding formats and clearing rules of the

auction are described.

2.1 Simple bids

In the simple bid format, the power plant can bid for each period separately with the bids b1

and b2. If the realised prices p1 and p2 are equal or larger than the respective bid, the bid is

accepted and the unit needs to produce with the associated costs. Bids can be individually

accepted, so that a unit may produce in one period, but not the other.

Depending on the prices p1 and p2 the profit for the actor is thus:

πSimple(b1,b2,p1,p2) =



p1 + p2 − cs − 2cv for p1 ≥ b1 ∧ p2 ≥ b2

p1 − cs − cv for p1 ≥ b1 ∧ p2 < b2

p2 − cs − cv for p1 < b1 ∧ p2 ≥ b2

0 otherwise

(1)

The payoffs for an example can be found in Figure 2, where the profit for the actor is

depicted depending on realisations of p1 and p2 and for a bid b = b1 = b2 (marked with dotted

lines in the figure, and corresponding to the optimal bid derived below). To the right of the

vertical dotted line period 1 is accepted as p1 >= b1, and above the horizontal dotted line the

bid in period 2 is accepted as p2 >= b2. Within the fourth quadrant in the top right, bids in both

periods are accepted. In this example, the actor faces a risk of losing money for low levels of p1

and p2 that are just above the bid level b.

Expected profits & optimal bidding: For simple bidding, since the two distributions are

assumed to be identical, bidding in the two time periods is symmetric (a full derivation to

show that the bids are identical can be found in the appendix B.1) and we can simplify the

derivation to an identical decision variable b for both periods. Given the probability of having a

bid accepted (1− b
pmax

) and the expected profit conditional on the acceptance of a bid (pmax+b
2 ),

the expected profit for a given bid level b is:
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Figure 2: Ex-post payoffs for simple bidding example as iso-profit lines (pmax = 1, cv = 0.2, cs = 0.5,b =

0.4)

E[πSimple(b)] =
∫ pMax

0

∫ pMax

0
ρ(p1) · ρ(p2) ·πSimple(b,p1,p2)dp1dp2

=
∫ pMax

b

∫ pMax

b

p1 + p2 − cs − 2cv
p2
max

dp1dp2 +
∫ b

0

∫ pMax

b

p1 − cs − cv
p2
max

dp1dp2

+
∫ pMax

b

∫ b

0

p2 − cs − cv
p2
max

dp1dp2

=(1− b
pmax

)2(pmax + b − cs − 2cv)

+
2b
pmax

(1− b
pmax

)(
pmax + b

2
− cs − cv+)

(2)

.

Deriving for b and checking for sufficient and necessary optimality conditions (see Appendix

B.1), the optimal bidding strategy (with b∗ = pmax equivalent to no bidding) is:

b∗ =


cv ·pmax
pmax−cs for cs + cv < pmax

No bid otherwise
(3)

Thus the optimal strategy is to adjust the bid above marginal short-term cost, in the presence

of start-up costs (in case of zero start-up costs, it is optimal to bid at variable costs). Two points
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are notable about the solution: First, the optimal bid can only be equal to or lower than the

simple sum of variable and fixed costs. This means that in case of start-up costs the actor is

willing to run the risk of losing money in case only one time period is accepted rather than two,

as the probability of profits by being accepted in two periods is outweighing the risk of only

being accepted in a single period. Second, the solution is not equal to the simple heuristic of

bidding variable costs plus the distributed fixed cost over the two time periods. The optimal

bid may be both lower and higher than this heuristic.

With the optimal bids, the expected profit can be derived:

E[π∗Simple] =


(pmax−cs−cv)2

pmax−cs for cs + cv < pmax

0 otherwise
(4)

As anticipated the expected profit under optimal bidding is decreasing both with start-up

costs cs and variable costs cv .

2.2 Block bids

In block bidding, the actor couples two bids, so that the two periods are either jointly accepted

or rejected. Hence, if the block bid is accepted, the unit is producing in both periods. Therefore

the profit function is:

πBlock(bb,p1,p2) =


p1 + p2 − cs − 2cv for p1 + p2 ≥ bb

0 otherwise
(5)

The payoffs for realisations of p1 and p2 for an example can be found in Figure 3, which

corresponds to the optimal bidding strategy derived below.

Expected profits & optimal Bidding: For block bidding the expected profit is:

E[πBlock(bb)] =
∫ pMax

0

∫ pMax

0
ρ(p1) · ρ(p2) ·πBlock(bb,p1,p2)dp1dp2 (6)

The expected profit for block bidding is:

E[πBlock(bb)] =
∫ pMax

0

∫ pMax

0
ρ(p1) · ρ(p2) ·πBlock(bb,p1,p2)dp1dp2 (7)

Two cases can be distinguished. For 0 ≤ bb < pmax the integral needs to distinguish two
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Figure 3: Ex-post payoffs for block bidding example as iso-profit lines (pmax = 1, cv = 0.2, cs = 0.5,bb = 0.9)

areas:

E[πBlock(bb)] =
∫ pmax

bb

∫ pmax

0

1

p2
max

(−cs − 2cv + p1 + p2)dp1dp2+∫ bb

0

∫ pmax

bb−p2

1

p2
max

(−cs − 2cv + p1 + p2)dp1dp2 =

pmax − cs +
cs · b2

b

2p2
max
− 2cv +

cv · b2
b

p2
max
−

b3
b

3p2
max

for: bb < pmax

(8)

For 2pmax > bb ≥ pmax, only one area needs to be considered:

E[πBlock(bb)] =
∫ pmax

bb−pmax

∫ pmax

bb−p2

1

p2
max

(−cs − 2cv + p1 + p2)dp1dp2 =

1

6p2
max

(bb − 2pmax)
2(−3cs − 6cv + 2pmax + 2bb) for: 2pmax > bb ≥ pmax

(9)

As it is not profitable to produce if the cost exceed the maximum revenue over two periods,

the expected profit is:

E[πBlock(bb)] =


pmax − cs + cs·b2

b

2p2
max
− 2cv + cv ·b2

b

p2
max
− b3

b

3p2
max

for 0 ≤ bb < pmax
1

6p2
max

(bb − 2pmax)2(−3cs − 6cv + 2pmax + 2bb) for pmax ≤ bb < 2pmax

0 for bb ≥ 2pmax

(10)
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Differentiating the expected profit, and checking that the optimality conditions are fulfilled

(see appendix) we find the optimal bid bb to be:

b∗b =


cs + 2cv for cs + 2cv < 2pmax

No bid otherwise
(11)

This is also intuitively correct, as the actor, as a price taker under uniform bidding, will bid his

true cost for a joint delivery of two periods. In contrast to simple bidding, there is no trade-off

between risking potential losses for a higher expected profit: as a joint bid for two periods

is submitted there is no risk involved in only having one bid accepted. However, there are

situations in which one period has a very high price covering both variable and fixed costs in a

single period, and the other period has a very low price not covering variable costs (as will be

discussed further in the Section 3).

Inserting the optimal bidding strategy into the expected profit function of block bidding

yields the expected profit under optimal bidding:

E[π∗Block] =


pmax − cs − 2cv + (cs+2cv)3

6p2
max

for cs + 2cv < pmax

1
6p2

max
(2pmax − cs − 2cv)3 for pmax ≤ cs + 2cv < 2pMax

0 otherwise

(12)

The expected profit under optimal bidding differentiates for two cases. In the first case, the

bid (which equals the cost of producing in two periods) could theoretically be covered by the

prices in one period. The second case represents the setting where the bid is larger than the

highest reachable price in the market and the revenues from both periods are necessary.

2.3 Multi-part bidding

For multi-part bidding, the actor can bid start-up cost bs and variable cost bv that are valid for

both periods. Dependent on market prices the actor will be accepted in one, two, or no periods

for which the profit function is:

πMultipart(bs,bv ,p1,p2) =



p1 − cs − cv for p1 ≥ bs + bv ∧ p2 < bv

p2 − cs − cv for p2 ≥ bs + bv ∧ p1 < bv

p1 + p2 − cs − 2cv for p1 + p2 ≥ bs + 2bv ∧ p1 ≥ bv ≤ p2

0 otherwise

(13)
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Figure 4: Ex-post payoffs for multipart bidding example as iso-profit lines (pmax = 1, cv = 0.25, cs = 0.4)

The payoffs for realisations of p1 and p2 for an example can be found in Figure 4. Visually

the case differentiation between the dispatch of one and two units can be seen to occur as kinks

in the iso-lines at variable cost levels.

Expected profits & optimal bidding: For multi-part bidding the expected profit is:

E[πMultipart] =
∫ pMax

0

∫ pMax

0
ρ(p1) · ρ(p2) ·πMultipart(bv ,bs,p1,p2)dp1dp2 (14)

As the multi-part algorithm is defined in such a way that units are only accepted in the

auction if the prices exceed the variable costs in the respective period and if startup costs are

covered over either one or two periods (according to bids) potential profit are foregone if the

actor bids either above or below the true costs. It is thus optimal to bid the truthful variable

and start-up costs (i.e. b∗s = cs and b∗v = cv . A formal derivation of this result can be found in the

Appendix B.3).

By distinguishing three cases defined by combinations of cs and cv , that determine whether

only jointly accepted bids or also individually accepted are possible solutions, we find the

expected profit under optimal bidding to be:
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E[π∗Multipart] =



c3
s

6p2
max

+
c2
s · cv
p2
max

+
cs · c2

v

p2
max
− cs +

c2
v

pmax
− 2cv + pmax for cs + cv < pmax

1
6p2

max
(2pmax − cs − 2cv)3 for pmax ≤ cs + 2cv < 2pmax

0 otherwise

(15)

The case differentiation for the expected profit (at cs + cv = pmax) occurs at the combination

of start-up and variable costs where the dispatch in a single time period becomes inefficient,

as start-up and variable cost exceed the maximum price level in the period. In that case, the

expected profits of block and multi-part bidding are identical.

3 Inefficiencies & comparison of expected profits

We show in the following that under price uncertainty actors face suboptimal market outcomes

under simple and block bidding, as compared to multi-part bidding. The model describes a

single actor facing suboptimal ex-post realised profits which constitute inefficiencies, as the

actor is either making a loss while producing (Cases A, C, D and E), or it would have been

efficient to produce (more) at the given prices (Case B)1. These inefficiencies fundamentally

derive from the existence of uncertainty regarding market prices under interdependency

of the two time steps, introduced by start-up costs. In simple bidding, actors need to bid

independently for two time periods, despite start-up costs introducing time interdependencies.

In block bidding these interdependencies are considered, however acceptance in single time

periods is ruled out.

It is important to note that this inefficiency is not identical (but similar in nature) to the

principal coordination issue of simple marginal prices if there are indivisibilities and other

non-convexities (O’Neill et al., 2005). In contrast, in our model the inefficiency would cease to

exist in case that there was no uncertainty in at least one of the two periods, as the bid for the

uncertain period could be adjusted taking into account the price of the certain period.

The example in Figure 5 shows three types of inefficiency of simple as compared to multi-

part bidding and two types of inefficiencies of block bidding as compared to multi-part bidding.

1Discrete start-up choices and other non-convexities can also lead to market results, where prices indicate

profitable production opportunities while a unit is not dispatched and vice versa (leading to uplift payments or

paradoxically rejected bids). However, the effect here is not due to the discreteness of the start-up decisions, but due

to the uncertainty over several periods, making the ex-post losses (or unrealised profits) an inefficiency.
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(a) (b)

Figure 5: Inefficiencies of simple bidding (a, dotted lines) and block bidding (b, dashed lines) as

compared to multi-part bidding (solid lines) (pmax = 1, cv = 0.2, cs = 0.5,b = 0.4)

In the following, we are showing the inefficiency in all four cases by comparing the difference

in profits between the profit functions of simple, block and multi-part bidding.

Area A shows the inefficiency of an ex-post overproduction where the power plant is

producing in one time period, although the price in the single period is not sufficient to cover

variable and start-up costs for a single period. No production is taking place under multi-part

bidding, resulting in zero profit. As a result profits under simple bidding are negative and

smaller than under multi-part bidding.

∆πASimple−Multipart =


p1 − cs − cv < 0 for p1 ≥ b∗ ∧ p2 < b

∗ ∧ p1 < cs + cv ∧ p1 + p2 < 2cv + cs

p2 − cs − cv < 0 for p2 ≥ b2 ∧ p1 < b
∗ ∧ p2 < cs + cv ∧ p1 + p2 < 2cv + cs

(16)

In areas B we depict the inefficiency of an ex-post underproduction where the plant produces

in only one time period, whereas a production in two time periods is taking place under multi-

part bidding. The difference between the profit functions of simple and multi-part bidding can

be expressed as2

∆πBSimple−Multipart =


cv − p2 < 0 for p1 > b

∗ ∧ p2 < b
∗ ∧ p1 + p2 >= 2cv + cs

cv − p1 < 0 for p2 > b2 ∧ p1 < b
∗ ∧ p1 + p2 >= 2cv + cs

(17)

2For the first case the simplification is: ∆π = p1 − cv − cs − (p1 +p2 −2cv − cs) = cv −p2, the second case is analogue

to the first case.
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As the profit under simple bidding is smaller than under multi-part bidding this represents

an inefficiency.

In area C we see the inefficiency of an ex-post overproduction in two periods, where the

plant is dispatched in two time slots as compared to no dispatch at all in the efficient case (and

as is the case under multi-part bidding).

∆πCSimple−Multipart =
{
p1 + p2 − 2cv − cs < 0 for p1 ≥ b∗ ∧ p2 ≥ b∗ ∧ p1 + p2 < 2cv + cs (18)

The example in Figure 5 shows two inefficiencies of block as compared to multi-part bidding.

In the areas D the plant is not dispatched at all, although a dispatch in one period would be

efficient as is taking place under multi-part bidding, representing a missed profit:

∆πDBlock−Multipart =


cv + cs − p1 < 0 for p1 + p2 < 2cv + cs = b∗b ∧ p1 > cv + cs

cv + cs − p2 < 0 for p1 + p2 < 2cv + cs = b∗b ∧ p2 > cv + cs

(19)

In the area E the plant is accepted for two periods under block bidding, although it would

be more efficient to produce in a single period, as the revenue in the additional period exceeds

the variable cost.

∆πEBlock−Multipart =


p1 − cv < 0 for p1 + p2 >= 2cv + cs = b∗b ∧ p1 < cv

p2 − cv < 0 for p1 + p2 >= 2cv + cs = b∗b ∧ p2 < cv

(20)

As a result for all combinations of variable costs cv and start-up costs cs with non-zero

profits, multi-part expected profits are larger than either single bid or block bid profits (for

proof see appendix C). Whether block or simple bidding is more profitable depends on the

combination of cv and cs as compared to the price distribution.

In the following, we show numerical evaluations for the profits and ratios of expected profits

for all relevant combinations of cv and cs for two periods of 1 hour each with uniform price

expectations between 0 and 100 Eur/MWh. For illustration we compare these profit differences

to typical ranges of cv and cs of common power plant types: coal, combined cycle gas turbines

(CCGT) and open cycle gas turbines (OCGT), with variations on start-up costs based on whether

it is a cold or hot start (assumptions can be found in Appendix E, based on Schröder et al.

(2013)). While this comparison is based on expected profits given fixed distributions in two

hours and not a market equilibrium, it gives a first indication of the order of magnitude of

efficiency losses under the different bidding formats.

Figure 6 compares the expected profits from multi-part bidding and simple bidding. We

draw isolines that depict the combinations of start-up and variable costs that result in constant
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(a) Exp. profit simple bidding: E[π∗Simple]
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(b) Exp. profit multi-part bidding:

E[π∗Multipart]
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Figure 6: Comparison multi-part and simple bidding profit
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(a) Exp. profit block bidding: E[π∗Block]
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Figure 7: Comparison multi-part and block bidding profit

levels of expected profits. We do this for simple bidding in Subfigure (a), for multi-part

bidding in Subfigure (b) and depict the ratio of expected profits of simple bidding and multi-

part bidding in Subfigure (c). It is evident, that if the only available format is simple bidding,

producers with high start-up costs, such as cold coal power plants and CCGTs, have significantly

lower expected profits as compared to the multi-part benchmark both in absolute and relative

terms (at least for the example dispatch duration of 2 hours).

Figure 7 compares the expected profits in a multi-part format with block bidding. The

subfigures show the absolute profits of block bids (Subfigure a) and the relative difference in

comparison to multi-part bidding (Subfigure b). Under block bidding power plants with very

high start-up costs have nearly as high expected profits using block bids, as in the multi-part

bidding format, whereas power plants with lower start-up costs and high variable costs have

significantly lower profits as compared to the multi-part case (and the simple bidding case).

As sometimes markets allow both block and simple bids, market participants will choose

the optimal bid type according to their power plant type. Figure 8 shows the expected profits

if the optimal choice (in expectation) is made between block and simple bids (Subfigure a).

Where the isolines have a kink, block and simple bidding yield the same profits. Subfigure b

shows the ratio between the optimal simple-block choice and multi-part bidding. Given the

chosen period length and price distributions the biggest inefficiencies occur for OCGT plants

and CCGT plants that are half-way cooled down.

The results in this section are example quantifications for the specific case of a dispatch

in two consecutive hours under high price uncertainty. It is important to stress that results
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Figure 8: Comparison of the multi-part profit to the optimal combination of simple and block bidding

profit

are changing if the conditions are changed. Coal plants and CCGT power plants especially

are usually not dispatched for two hours at a time, so that the corresponding inefficiency over

longer time periods, and under lower uncertainty, will be lower.

We do not asses the profitability of a combination of simple and block bids against multi-

part bids due to the following reason: A combination of block bids and simple bids would lead

to the risk of double selling the production volumes as soon as the simple bid and the block

bid is accepted. Therefore, either an additional buy offer in form of a block bid or the simple

bid could be used to offset the double buying (trading in several time periods is outside of the

scope of this model).

4 Model extension: retrading for simple bidding

So far we did not model a second trading round where agents can readjust their position. This

represents a limitation of the model, as a second trading round (and further trading rounds)

can potentially reduce the inefficiencies identified in the paper for simple bidding:

• Case A: When the unit is accepted in one of two time periods, but ex-post it would have

been more efficient to be accepted in none, the power plant operator aims to buy power

back in order not to produce at all.

• Case B: When the unit is accepted in one of two time periods, but ex-post it would have
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been more efficient to be accepted in both periods, the actor aims to sell in the additional

period.

• Case C: When the unit is accepted in both periods, but ex-post it would have been more

efficient to be accepted in none, the actor tries to buy power back for both periods.

However, several effects may limit the effectiveness of sequential markets to reduce the

discussed inefficiencies.

• As the time of delivery gets closer fewer flexibility options can be utilized, which leads to

a steeper merit order curve (Henriot, 2014) and the missed utilisation of more efficient

units.

• Secondly, in the case of continuous markets at a given point, the market usually only has

limited liquidity, leading to price effects for relatively small volumes of traded energy

and increased uncertainty for actors that have open positions (Neuhoff et al., 2016).

Therefore, in order to approximate these effects, we consider the effect of the traded capacity

on the price in a second trading round.

Case A: Ex-post over supply

This case describes the inefficiency area A, shown in Figure 5, as in this area, the power

plant is dispatched in one time period, although a dispatch is not efficient giving the prices of

the first auction round. Therefore, the power plant operator could buy the power back in a

second auction round, in order not to need to produce.

Equation (21) shows the inequality for which production would result in lower costs than

retrading in a second round, and uses the price sensitivity m (in Eur/(MWh ·MW )), which

depends on the traded capacity K . As long as this inequality holds, the actor will decide not to

retrade.

cv ·K · l + cs ·K < (pα1 +m1 ·K) ·K · l (21)

In order for this inequality to hold, m1 must be bigger than a certain threshold for the price

sensitivity.

m1 >
cv + cs

l − p
α
1

K · l
(22)

To assess what the impact of different variable costs and start-up costs is on retrading, we

look at the situation of a just accepted bid (pα1 = b∗), which we hold constant, while varying
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either cv or cs. Reformulating equation (22) (see appendix for full documentation) towards cv

will lead to:

m1 >
(pmax − b∗)(b∗ − cv)

b∗ ·K
(23)

Equation (23) shows that for an increasing share of cv in the production costs, the necessary

m1 for retrading to be unprofitable is decreasing. This means that for power plants with

relatively high variable costs compared to their start-up costs (e.g. fast starting gas power

plants) retrading is only an option when the price elasticity of the market is very low. Fast

starting power plants with high variable cost are normally used at the upper end of the

merit-order where a higher price elasticity can be observed. Reformulating equation (22) (see

appendix for full documentation) towards cs will lead us to:

m1 >
(pmax − b∗) · cs
K · pmax

(24)

This means that for power plants with relatively high startup costs compared to their variable

costs (e.g. lignite or nuclear power plants) retrading is an option even when the price elasticity

of the market is high. However, these power plants are normally very large (hence a big K)

which will reduce m1 again.

Case B: Ex-post under supply

This case describes the inefficiency area B, shown in Figure 5, as in this area the plant is

dispatched in only one time period, although a dispatch in two time periods would be efficient

giving the prices of the first auction round. Therefore, the power plant operator could have an

intention to sell the electricity for the second time period in a second auction round.

cv ·K · l + cs ·K < 2 · cv ·K · l + cs ·K − (pα2 −m2 ·K) ·K · l (25)

Similarly to the case before, setting the price pα2 = b∗, and holding b∗ constant while varying

either cv or cs yields:

m2 >
b∗ − cv
K

(26)

This shows that for increasing shares of cv in the total production cost, the necessary m2 for

retrading to be unprofitable is decreasing. Hence, power plants with a high share of variable

costs have no intention to retrade as already a small price elasticity makes it unprofitable.

m2 >
b∗ · cs

K · l · pmax
(27)
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Power plants with a low share of variable cost and higher shares of start-up costs, on the

other hand, will be willing to retrade also during times of high price elasticity. However, these

power plants are normally very large which will then reduce necessary m2 again.

Case C: Ex-post over supply in two periods

cv · (K · l +K · l) + cs ·K < (pα1 +m1 ·K) ·K · l + (pα2 +m2 ·K) ·K · l (28)

In order to compare the effect of cv and cs on the necessary price elasticity for the model to

be correct, we reformulate equation (28) by assuming m1 and m2 to be equal and the bids to be

just accepted in the two periods at pα1 = pα2 = b∗. Secondly, as done previously, we fix b∗, and

vary only one of the two parameters at a time (see appendix for full documentation).

If b is fixed, and we vary cv , we need to substitute cs, which results in the following condition:

m >
(pmax − 2b∗)(b∗ − cv)

2 · b∗ ·K
(29)

Thus, as in the previous cases, with an increasing variable cost share in the bidding price,

the necessary price elasticity for retrading to be unprofitable is decreasing.

If b is fixed, and we vary cs, we need to substitute cv , which results in the following condition:

m >
cs(pmax − 2b∗)
2 ·K · l · pmax

(30)

Thus, as previously, with increasing fixed costs, the necessary price elasticity in the market

needs to be higher for electricity producers preferring not to retrade.

5 Reflections on assumptions

The analytic model is based on a set of simplifications necessary for tractability and clarity of

economic effects. Only two time slots, rather than 24 hourly or even more quarterly products are

considered. Usually commitment to longer periods is possible, which reduces the significance

of start-up costs; however, it also implies additional interactions across multiple hours that

could increase the relevance of the effect.

Secondly, we model in a sensitivity analysis (cf. Section 4) a second auction round and

could identify a mitigation of some of the effects. Additional auction rounds thus might

further mitigate inefficiency of simple and block bidding as compared to multi-part bidding.

However, a second effect might partially off-set this opportunity. Market parties may be find

it increasingly costly to close an open positions in subsequent markets, as these usually have
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limited depth, (Neuhoff et al., 2016) and exhibit a steepening merit order curve as fewer units

can respond closer to real-time.

Finally, we do not model a portfolio of generators and the possibility for generators to make

a generic bid and then dispatch those of their units which can fulfil the bids at the lowest cost

(portfolio based bidding is still common in Western European power markets). This may also

reduce the inefficiencies of simple bids discussed in this paper for those market players that

have a large portfolio, whereas smaller market participants would be more exposed to this sort

of inefficiency.

6 Conclusions

Several bidding formats exist to clear electricity markets, with simple bids and block bidding

on the one side and multi-part bidding, which explicitly lets generators state cost components

and technical constraints in their bids on the other side. While these bidding formats have

been discussed in the literature, this discussion has mostly focused on the direct coordination

problem due to indivisibility, and other non-convexities which exists both in deterministic and

uncertain settings. The suitability of different bidding formats to coordinate the clearing of

electricity markets in the presence of uncertainty and complementarities across several hours

has been less well analysed in economic literature.

We derive optimal bidding strategies for each of the bidding formats simple bidding, block

bidding and multi-part bidding using a two-period model of a price taker in a simultaneously

cleared uniform price auction. We show in an analytic model that in the presence of start-up

costs and price uncertainty in electricity markets, generators face ex-post suboptimal market

outcomes under simple and block bidding, while this doesn’t occur in multi-part bidding. The

question, whether simple or block bidding is more efficient depends on whether start-up costs

are high as compared to variable costs, in which case block bids are more profitable.

With uncertainty about auction clearing prices and simple or block bidding formats do

not allow producers to specify their willingness to produce as function of the outcome in the

adjacent hour for which they face complementarities in their production function (for example

due to start-up costs). Using numerical examples of different power plant types we show that

this effect could occur at significant levels given common electricity market prices and power

plant characteristics.

Our results point to inefficiencies in electricity markets in the absence of multi-part bids.

These may be mitigated to the extent that further trading rounds or continuous trading allows

generators to re- adjust their production schedules. In an extension of the model, we assess how
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a further trading can reduce the inefficiency. While subsequent markets may help to alleviate

the problem, this might be offset by declining liquidity and depth, as well as the steepening

merit order curve over time.
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A Parameter and Variables

Table 1: Description of parameters and variables

Parameters Variables

ph price in trading period h bh Simple bid for period h

pmax maximum price b Symmetric simple bid

cs start-up cost bb block bid

cv variable cost bs multi-part bid for start-up cost

K capacity of power plant bv multi-part bid for variable cost

l length of trading period πSimple profit from simple bidding

B Derivations of expected profits & optimal bidding

B.1 Simple bidding

B.1.1 Simple bidding with symmetric bids

The expected profit for a given bid level b is:

E[πSimple(b)] =(1− b
pmax

)2(pmax + b − cs − 2cv)

+
2b
pmax

(1− b
pmax

)(
pmax + b

2
− cs − cv+)

(31)

.

In order to find stationary points, we derive by b:

d
db

E[πSimple(b)] =
1

p2
max

(2csb+ 2cvpmax − 2pmaxb) (32)

Solving for b we find a stationary point, which is optimal for b < pMax 3.

b∗ =
cvpmax
pmax − cs

(33)

The probability functions for prices are 0, except for 0 <= p <= pMax. To completely describe

the strategy space of the generator, we can limit the bids to 0 <= b < pMax. Therefore, we

test the conditions on cv and cs, that can be derived by imposing the limits on the bids (this

doesn’t mean that cv or cs need to obey those limits. However, outside these limits the generator

shouldn’t bid).

3Second derivative: d2

db2 E[πSimple](b∗) = 1
p2
max

(2cs − 2pmax) < 0, for cs < pMax
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From b <= pMax

pmax >
−cv ∗ pmax
cs − pmax

=⇒ cv + cs < pmax (34)

B.1.2 Proof that identical price distribution leads to symmetric bidding

For two separate bids the expected profit given bids b1 and b2 is:

E[πSimple(b1,b2)] =
b1

pmax
(− b2

pmax
+ 1)(

b2

2
− cs − cv +

pmax
2

)+

b2

pmax
(− b1

pmax
+ 1)(

b1

2
− cs − cv +

pmax
2

)+

(− b1

pmax
+ 1)(− b2

pmax
+ 1)(

b1

2
+
b2

2
− cs − 2cv + pmax)

(35)

Taking the gradient and finding stationary points

∇E[πSimple(b1,b2)] = (
1

p2
max

(−b1pmax+b2cs+cvpmax),
1

p2
max

(b1cs−b2pmax+cvpmax)) = (0,0) (36)

We can solve for b1 and b2:

b1 =
cvpmax
pmax − cs

, b2 =
cvpmax
pmax − cs

(37)

Checking for optimality (second order derivatives should be negative):

d2

db2
1
E[πSimple)] =

d2

db2
2
E[πSimple] = − 1

pMax
< 0 (38)

Second optimality condition:

d2

db2
1
E[πSimple)] ·

d2

db2
2
E[πSimple]− (

d2

db1db2
E[πSimple)])

2 =
1

p4
max

(−c2
s + p2

max) > 0 (39)

Since pmax and cs are positive, it implies that the bids are optimal if cs < pmax. The solution

is identical to the simple version in Section 2.

B.2 Block bidding

B.2.1 Finding extrema, for 0 ≤ bb < pmax

d
dbb

E[πBlock(bb)] = −
b2
b

p2
max

+
bbcs
p2
max

+
2bb
p2
max

cv = 0 =⇒ (40)

bb = {0, cs + 2cv} (41)

Testing for optimality:

d2

db2
b

E[πBlock(bb)] = − 2bb
p2
max

+
cs
p2
max

+
2cv
p2
max

(42)
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d2

db2
b

E[πBlock(0)] =
cs
p2
max

+
2cv
p2
max

> 0 (for cv > 0∧ pmax > 0) (43)

=⇒ The stationary point 0 is a minimum.

d2

db2
b

E[πBlock(cs + 2cv)] = − 1

p2
max

(cs + 2cv) < 0 (for cv > 0∧ pmax > 0) (44)

=⇒ The stationary point cs + 2cv is an optimum.

As the function is of degree 3, it has a maximum of two stationary points. As the bid for the

maximum is larger than the minumum (cs + 2cv > 0), the function is strictly decreasing after the

maximum (making it global for the investigated interval).

B.2.2 Finding extrema for pmax ≤ bb ≤ 2pmax

d
dbb

E[πBlock(bb)] =
(bb − 2pmax)2

3p2
max

+
1

6p2
max

(2bb − 4pmax)(2bb − 3cs − 6cv + 2pmax) = 0 =⇒ (45)

b∗b = {2pmax, cs + 2cv} (46)

Testing for optimality:

d2

db2
b

E[πBlock(bb)] =
1

3p2
max

(4bb − 8pmax) +
1

3p2
max

(2bb − 3cs − 6cv + 2pmax) (47)

Testing optimality for first stationary point:

d2

db2
b

E[πBlock(2pmax)] =
1

p2
max

(−cs − 2cv + 2pmax) (48)

2pmax is minimum for cs + 2cv < 2pmax.

Testing second stationary point:

d2

db2
b

E[πBlock(cs + 2cv)] =
1

p2
max

(cs + 2cv − 2pmax) (49)

is negative for cs + 2cv < 2pMax => is an optimum.

As the function is of degree 3 and the minimum point is at the upper limit of the investigated

interval (2pmax), cs + 2cv is the absolute maximum in the interval [pmax,2pmax]

B.3 Multi-part bidding

For multi-part bidding the expected profit is (E[πMultipart] = E[πM ]):

E[πM ] =
∫ pMax

0

∫ pMax

0
ρ(p1) · ρ(p2) ·πMultipart(bv ,bs,p1,p2)dp1dp2 (50)

Three cases can be differentiated for the expected profit:
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1. Either single period and the two-period dispatch can be succesful (If 0 ≤ cv + cs < pmax)

2. Only two period disptach can be succesful (If cv + cs ≥ pmax and 2cv + cs < 2pmax)

3. No dispatch can be successful (If 2cv + cs >= 2 · pmax)

B.3.1 Finding optima for 0 ≤ cv + cs < pmax

E[πM ] =
∫ bv

0

∫ pmax

bs+bv

1

p2
max

(−cs − cv + p1) dp1dp2

+
∫ pmax

bs+bv

∫ bv

0

1

p2
max

(−cs − cv + p2) dp1dp2

+
∫ pmax

bs+2bv−p1

∫ pmax

bs+2bv−p2

1

p2
max

(−cs − 2cv + p1 + p2) dp1dp2

=
∫ bv

0

∫ pmax

bs+bv

1

p2
max

(−cs − cv + p1) dp1dp2

+
∫ pmax

bs+bv

∫ bv

0

1

p2
max

(−cs − cv + p2) dp1dp2

+
∫ pmax

bv

∫ pmax

bv

1

p2
max

(−cs − 2cv + p1 + p2) dp1dp2

−
∫ bs+bv

bv

∫ bs+2bv−p2

bv

1

p2
max

(−cs − 2cv + p1 + p2) dp1dp2

= pmax − cs − 2cv +
1

p2
max

(−b
3
s

3
− 2b2

s bv +
b2
s cs
2

+ b2
s cv − 2bsb

2
v + 2bsbvcs + 2bsbvcv + b2

vcs − b2
vpmax + 2bvcvpmax)

(51)

To find the stationary points:

∇(E[πM ])(bv ,bs) =


∂E[πM ](bv ,bs)

∂bv
∂E[πM ](bv ,bs)

∂bs

 =


2
p2
max

(
−b2

s − 2bsbv + bscs + bscv + bvcs − bvpmax + cvpmax
)

1
p2
max

(
−b2

s − 4bsbv + bscs + 2bscv − 2b2
v + 2bvcs + 2bvcv

)
 = 0

(52)

Bidding truthfully (bs = cs, bv = cv) is the stationary point fulfilling the assumptions (only

positive bidding and cv + cs < pmax).

The Hessian matrix is:

H(E[πM ])(bv ,bs) =


1
p2
max

(−4bs + 2cs − 2pmax)
1
p2
max

(−4bs − 4bv + 2cs + 2cv)

1
p2
max

(−4bs − 4bv + 2cs + 2cv) 1
p2
max

(−2bs − 4bv + cs + 2cv)

 (53)

The determinant at the stationary point is:

D(cv , cs) = − 1

p4
max

(
2c2
s + 4cscv − 2cspmax + 4c2

v − 4cvpmax
)
> 0 for: cs + cv < pmax (54)

and as ∂2
E[πM ](bv ,bs)

∂b2
v

< 0, the stationary point is a maximum. The expected maximum profit

in this case is thus:
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E[π∗M ] = pmax − 2cv − cs +
c3
s

6p2
max

+
c2
s cv
p2
max

+
csc

2
v

p2
max

+
c2
v

pmax
for: 0 ≤ cv + cs < pmax (55)

B.3.2 Finding optima for 2pmax > 2cv + cs and cv + cs ≥ pmax

In this case only producing in the two periods is economically sensible (as the revenue in a

single period would be insufficient to cover costs). This case is thus identical to the case of

block bidding, and as the optimal bid under block bidding is bb = cs + 2cv this also corresponds

to truthful bidding under multi-part bidding (in the case of 2pmax > cv + cs > pmax), and the

expected profit is:

E[π∗M ] =
1

6p2
max

(2pmax − cs − 2cv)3 for: 2 · pmax > 2 · cv + cs and cv + cs ≥ pmax (56)

C Proof that expected multi-part profit is larger than simple bid

and block bid profit

C.1 Simple bid

Substracting the expected multipart profit by the expected simple part profit we get:

E[π∗Multipart]−E[π∗Simple] =



c2
s

p2
max(cs−pmax)

(
c2
s
6 + cscv −

cspmax
6 + c2

v − cvpmax
)

for cs + cv < pmax

1
6p2

max
(2pmax − cs − 2cv)3 for pmax ≤ cs + cv ∧ cs + 2cv < 2pmax

0 otherwise

(57)

For the first case (cv + cs < pmax):

c2
s

p2
max (cs − pmax)

(
c2
s

6
+ cscv −

cspmax
6

+ c2
v − cvpmax

)
≥ 0 (58)

The first factor is strictly smaller than 0, since cs < pmax (follows from pmax > cs + cv).

Therefore we can simplify to:

c2
s

6
+ cscv −

cspmax
6

+ c2
v − cvpmax ≤ 0 (59)

c2
s

6
−
cspmax

6
+ cv (cs + cv − pmax) ≤ 0 (60)

Since cv(cv + cs − pmax) < 0, it is sufficient to show that

c2
s /6−

cspmax
6
≤ 0↔ cs

6
(cs − pmax) ≤ 0 (61)
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Since cs > 0 and cs ≤ pmax, q.e.d

For the second case 1
6p2

max
(2pmax − cs − 2cv)3 > 0 follows directly from the definition of the

piecewise function pmax ≤ cs + cv ∧ cs + 2cv < 2pmax.

C.2 Block bid

Substracting the expected multipart profit by the expected block bid profit we get:

E[π∗Multipart]−E[π∗Block] =



c2
v

p2
max

(
pmax − cs −

4cv
3

)
for cs + 2cv < pmax

1
3p2

max
(cs + cv − pmax)2 (cs + 4cv − pmax) for cs + cv < pmax

0 otherwise

(62)

For the first case, since cs + 2cv < pmax it follows that:

c2
v

p2
max

(
pmax − cs −

4cv
3

)
> 0 (63)

For the second case:

1

3p2
max

(cs + cv − pmax)2 (cs + 4cv − pmax) ≥ 0 (64)

Since the first two factors are quadratic in nature (and thus positive) it is sufficient if:

(cs + 4cv − pmax) ≥ 0 (65)

Which is true, since per function definition cs + cv < pmax =⇒ cs + 4cv < pmax

D Derivations for second trading round

Case A: Ex-post over supply Equation (21) shows the inequality for which production would

result in lower costs than retrading in a second round. As long as this inequality holds, the

actor will prefer to produce the electricity rather than retrade.

cv ·K · l + cs ·K < (pα1 +m1 ·K) ·K · l (66)

In order for this inequality to hold, m1 must be bigger than a certain threshold (22).

m1 >
cv + cs

l − p
α
1

K
(67)

In the worst case, the market price equals the bid of the producer pα1 = b′, meaning the

producer got just accepted at the lowest price possible. A market price lower than the bid of

the producer is not relevant as then the producer would not accepted at all. Therefore, we can

reformulate equation (67) and result at (68)
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m1 >
cv + cs

l − b
′

K
(68)

In order to test the influence of cs and cv on the necessary m1 for the actor not to wish to

retrade, we vary the share of cs and cv on the total production cost and leave b constant. We

rearrange the equation for cv and cs.

b∗ =
cv · pmax
pmax − cs/l

(69)

cs =
(b′ − cv) · l · pmax

b′

cv =
(pmax −

cs
l ) · b′

pmax

(70)

We now replace cs in equation (67).

m1 >
(pmax − b′)(b′ − cv)

b′ ·K
(71)

We now replace cv in equation (67).

m1 >
(pmax − b′) · cs
K · pmax

(72)

Case B: Ex-post under supply The derivation is analogue to Case A.

Case C: Ex-post over supply in two periods

Equation (73) shows the inequality for which production would result in lower costs than

retrading in a second round.

cv · (K · l +K · l) + cs < (pα1 +m1 ·K) ·K · l + (pα2 +m2 ·K) ·K · l (73)

In order for this inequality to hold m1 +m2 must be bigger than a certain threshold.

m1 +m2 >
2 · cv + cs

q − p
α
1 − p

α
2

K
(74)

If we simplify the case, by assuming that in both periods the offer has just been accepted

with the identical bid b∗, and that the price elasticity m1 and m2 are identical for both periods,

the inequality simplifies to:

m >
−2 · b∗ · l + cs + 2cv · l

2 ·K · l
(75)

The remaining derivations are than analogue to Case A.

29



E Variable and start-up costs of power plants

cv,min cv,max cs,hot cs,cold

Euro/MWh Euro/MWh Euro/MW Euro/MW

OCGT 48.34 52.99 16 28

CCGT 36.10 38.91 23 54

Coal 16.90 18.71 28 74

Table 2: Power plant example costs

F Code & numerical figures

The code to create the figures is published as a digital appendix at https://doi.org/10.5281/

zenodo.1463730. Jupyer Notebook (v5.6.0) was used, running Python (v3.5.5), with the Sympy

(v1.2), Numpy (v1.15.0) and Maplotlib (v2.2.3) packages. Inkscape was used to create Figure 1

and add the shaded areas in Figure 5.
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