Kemfert, Claudia; Truong, Truong Phuoc; Bruckner, Thomas

Working Paper
Economic Impact Assessment of Climate Change: A Multi-gas Investigation with WIAGEM-GTAPEL-ICM

DIW Discussion Papers, No. 499

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

Suggested Citation: Kemfert, Claudia; Truong, Truong Phuoc; Bruckner, Thomas (2005) : Economic Impact Assessment of Climate Change: A Multi-gas Investigation with WIAGEM-GTAPEL-ICM, DIW Discussion Papers, No. 499, Deutsches Institut für Wirtschaftsforschung (DIW), Berlin

This Version is available at:
http://hdl.handle.net/10419/18350

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Claudia Kemfert*
Truong P. Truong**
Thomas Bruckner***

Economic Impact Assessment of Climate Change – A Multi-gas Investigation with WIAGEM-GTAPEL-ICM

Berlin, Juli 2005

* German Institute of Economic Research, Berlin, Germany, ckemfert@diw.de, Humboldt University of Berlin, Department of Economics, Germany
** University of New South Wales, Sydney 2052, Australia, t.truong@unsw.edu.au.
*** Institute for Energy Engineering, Technical University Berlin, Germany, bruckner@iet.tu-berlin.de
Economic Impact Assessment of Climate Change – A Multi-gas Investigation with WIAGEM-GTAPEL-ICM

Claudia Kemferta,b, Truong P. Truongc, and Thomas Brucknerd

\textit{Climate change is a long-term issue due to the long lifespan of greenhouse gases and the delayed response of the climate system. This paper investigates the long-term economic consequences of both climate change impacts and mitigation efforts by applying the multi-regional, multi-sectoral integrated assessment model WIAGEM based on GTAP-EL coupled with the reduced-form multi-gas climate model ICM. We investigate emissions reduction paths to reach a radiative forcing target of 4.5 \text{ W/m}^2. Economic impacts are studied and compared with and without the inclusion of all GHG gases. We find that multi-gas emissions reduction causes less economic losses compared with a case where only CO}_2 \text{ emissions reductions would be considered.}

INTRODUCTION

A continued accumulation of anthropogenic greenhouse gases (GHGs) will have severe consequences on our climate, ecological and social systems. Irreversible climate changes are expected to induce significant costs, and no future efforts can nullify the resulting damage. Climate change is a long-term issue because of the lifespan of greenhouse gases. In order to assess the total impacts of climate changes, short and long-term costs and benefits need to be assessed and compared. Increasing atmospheric concentrations of greenhouse gases have a substantial impact on global temperature change and sea-level rise, which might create extensive
economic, ecological and climatic impacts. The threat of climate change makes economic development strategies as well as energy and environmental policies increasingly important. Climate change is a global problem requiring a global solution.

Because of the long-term time horizon of climate change, climate policy involves a trade-off between short-term costs and long-term benefits. Greenhouse gas emissions reductions induced by environmentally friendly technologies require direct investments in clean technologies and abatement equipment. The benefits of climate change mitigation, however, is not restricted to the lifespan of the physical capital but linked to the lifespan of greenhouse gases. Due to this, it is often argued that investments in emissions reduction technologies should be postponed because the benefits of GHG emissions reduction can be only be detected in the distant future. For this reason, climate change policy has to determine a proper balance between future benefits and present day costs.

The most influential greenhouse gas causing negative impacts on the climate is CO$_2$. However, methane (CH$_4$) and nitrous oxide (N$_2$O) also have strong impacts on climate change. Furthermore, a group of industrial gases covering perfluorocarbons (PFCs), hydrofluorocarbons (HFCs) and sulfur hexafluoride (SF$_6$) together with the already banned chlorofluorocarbons (CFCs) have a very significant influence on the climate. Most studies investigating the economic impacts of climate change cover only CO$_2$ (McKibbin and Wilcoxen, 1999; Bernstein, Montgomery et al., 1999; Weyant and Hill, 1999; Edmonds, Scott et al., 1999; Kemfert, 2002a; Böhringer and Rutherford, 1999; Babiker, Reilly et al., 2000; Ellerman, 2000; Tietenberg, Grubb et al., 1999; and Zhang, 2001). Previous studies that incorporate a multi-gas reduction strategy find that a cost saving multi-gas emissions reduction strategy reduces abatement costs and welfare losses (see Manne and Richels, 2000; 2001, Reilly et al., 2002, 2003). A cost effective
control of climate change requires that climate policy strategies need to cover not only CO₂ but also other greenhouse gases. The reason why most of the studies focus primarily on CO₂ emissions is that this gas can relatively easy be measured and monitored by the use of fossil fuels. As each of the greenhouse gas has different lifetimes and impacts in the atmosphere, a comparison of the different effects of each gas is very challenging. A cost effective approach needs to cover reduction methods and impacts of each greenhouse gas.

In this paper, we shed some light on this issue and investigate and compare the impacts of pure CO₂ emissions versus a multi gas emission control. In order to do so, we have to go beyond traditional CO₂ concentration stabilization exercises. At first sight, investigating the stabilization of global mean temperature might be considered a suitable extension. The results, however, would considerably be dependent on the specific climate sensitivity of the selected climate model. In order to exclude the related additional uncertainty, we have selected to investigate the stabilization of radiative forcing, which is – along the chain of causes and effects – the first indicator that aggregates the influences of the different greenhouse gases. The radiative forcing target selected is 4.5 W/m² which corresponds to CO₂ equivalent concentration of 568 ppm, i.e. a concentration which is approximately twice the pre-industrial level.

We apply the multi-regional, multi-sectoral integrated assessment model WIAGEM (Kemfert, 2002a-b) which is also based on a multi regional trade model GTAP-EL (Burniaux and Truong, 2002; Burniaux. 2002) and coupled with a reduced-form climate module that covers all relevant greenhouse gases (ICM, see Bruckner et al., 2003; Hooss et al., 2001; Hooss, 2001; Joos et al., 2001; Meyer et al., 1999). Section two briefly describes the models and section three shows the different scenarios. Section four illustrates the main model outcomes, while the last section concludes.
THE APPLIED MODELLING TOOL

Our analysis is performed using the multi-regional WIAGEM model (World Integrated Assessment General Equilibrium Model). This is an integrated economy-energy-climate model that incorporates economic, energy and climatic modules in an integrated assessment approach. The model is based on a multi regional trade model GTAP-EL (Burniaux and Truong, 2002; Burniaux. 2002). To evaluate market and non-market costs and benefits of climate change, WIAGEM combines an economic approach with a special focus on the international energy market and integrates climate interrelations with temperature changes and sea level variations. The design of the model is focused on multilateral trade flows. The representation of the economic relations is based on an intertemporal general equilibrium approach and contains the international markets for oil, coal and gas. The model incorporates all greenhouse gases (GHG) that influence potential global temperature, sea level variation and the assessed probable impacts in terms of costs and benefits of climate change. Market and non-market damages are evaluated according to the damage costs approaches of Tol (2001). Additionally, this model includes net changes in GHG emissions from sources and removals by sinks resulting from land use change and forest activities.

WIAGEM is an integrated assessment model combining an economy model based on a dynamic intertemporal general equilibrium approach with an energy market model and a climatic sub-model. The model covers a time horizon of 100 years and solves in five-year time increments. The basic idea behind this modelling approach is the evaluation of market and non-

\[1\] See Kemfert (2002b) for a detailed model description.
market impacts induced by climate change. The economy is represented by 25 world regions which are further aggregated into 11 trading regions for this study (see Figure 1).

[Insert Table 1]

The economy of each region is disaggregated into 14 sectors, including five energy sectors: coal, natural gas, crude oil, petroleum and coal products, and electricity. Goods are produced for the domestic and export markets. The output of the non-energy sectors is aggregated into a non-energy macro good. The production function for this macro good incorporates technology through transformation possibilities on the output side and constant elasticity substitution (CES) possibilities on the input side. The CES production structure combines a nested energy composite with a capital-labour-land composite at lower levels. The energy composite is described by a CES function reflecting substitution possibilities for different fossil fuels (i.e. coal, gas, and oil). Fossil fuels are produced from fuel-specific resources. The energy-capital-labour-land composite is combined with material inputs to acquire the total output.

A representative household in each region allocates lifetime income across consumption in different time periods to maximize lifetime utility. In each period, households choose between current consumption and future consumption, which can be purchased via savings. The trade-off between current consumption and savings is given by a constant intertemporal elasticity of substitution. Domestic and imported varieties of the non-energy macro good are imperfect substitutes in each region as specified by a CES Armington aggregation function constrained to constant elasticities of substitution.

Producers invest as long as the marginal return on investment equals the marginal cost of capital formation. The rates of return are determined by a uniform and endogenous world interest
rate such that the marginal productivity of a unit of investment and a unit of consumption is
equalized within and across regions.

Induced technological change is considered as follows: Energy efficiency is improved
endogenously by increased expenditures in R&D. This means that, in the CES (constant
elasticity of substitution) production function, energy productivity is endogenously influenced by
changes in R&D expenditures. The incentives to invest in technology innovations are market-
driven. Because energy efficiency is improved by increased R&D expenditures, emissions
reduction targets can be met with fewer production drawbacks. Furthermore, investment in R&D
and technological innovation give a comparative advantage. The share of R&D expenditures in
the total expenditures is endogenously determined by production changes, implying that
investment in R&D expenditures competes with other expenditures (crowding out). Spillover
effects of technological innovations are reflected through trade effects and capital flows. That
means non-R&D-cooperating countries producing technological innovations can benefit from
spillover effects through trade of technological innovations and capital flows that can be used for
R&D investments. Model calculations show that capital flows increase to non-cooperating
countries because of improved competitiveness effects and terms of trade effects. This
consequently triggers spillover effects of technological innovations and energy efficiency
improvements through increased R&D investments. Figure 1 graphically explains the
interrelations of economic activities, energy consumption, climate and ecological impacts in
WIAGEM.

In addition to the non-energy macro good, oil, coal and natural gas are traded
internationally. The global oil market is characterized by imperfect competition to reflect the
ability of the OPEC regions to use their market power to influence market prices. Coal trades in a
competitive global market, while natural gas trades in competitive regional markets with prices determined by global or regional supply and demand.

Energy-related greenhouse gas emissions occur as a result of energy consumption and production activities. WIAGEM includes all greenhouse gases covered under the Kyoto Protocol: carbon dioxide (CO₂), methane (CH₄) and nitrous dioxide (N₂O) are considered to have the greatest impact on climate change over the 100-year period covered by the model. Furthermore, the fluorinated gases (HFCs, PFCs and SF₆) are considered as well, as described in the next section. The emissions limitation commitments of Annex B parties are specified as regional emissions limits to reduced coverage of greenhouse gases by the model.

By coupling the economic and climate impact part of WIAGEM with the detailed climate module ICM, we consider the relationship between man-made emissions and atmospheric concentrations and their resulting impact on temperature and sea level. We cover classes of atmospheric greenhouse gas stocks with different atmospheric lifetimes (modeled by the impulse response function) and reduced forms of the carbon cycle model developed by Maier-Reimer and Hasselmann (1987) and applied by Hooss (2001). Energy and non-energy related emissions of CO₂, CH₄ and N₂O as well as those of halocarbons and SF₆ alter the concentrations of these substances which in turn influence radiative forcing. Energy related emissions are calculated according to the energy development of each period. Energy related CO₂ emissions are considered according to the emissions coefficients of the EMF group.

Climatological Context and Concept

Integrated assessment (IA) studies typically evaluate many greenhouse-policy scenarios with their respective time-dependent greenhouse gas emissions, the corresponding changes in climate and global environment, and the resulting impact on human society and economy. This is
done either by comparing hundreds to thousands of scenarios directly or - with a similar computational burden - by applying numerical optimization schemes. A climate module designed for IA application must, on the one hand, provide the required climate-change information without prohibitive computational effort. On the other hand, it should desirably approach the reliability of sophisticated circulation models.

Coupled general circulation models (GCMs) are the most reliable instruments currently available for the estimation of anthropogenic climate change. They are, though, extensive in computation time and difficult to handle. For typical climate scenarios of a few hundred to one thousand simulated years, they need roughly half a year of real time even in coarse-resolution experiments. Of the enormous amount of data in GCM simulations, only a few climate variables, such as global-mean temperature change or sea-level rise, are typically required for assessments of economic impacts of anthropogenic climate change.

The theory of impulse-response functions (IRFs) allows us to construct simple models that reproduce the greenhouse response of any given GCM in appropriately selected variables to arbitrary perturbations, consuming CPU time in the order of seconds on a workstation. Once calibrated against the outcome of a single GCM simulation, an IRF model works without further reference to the GCM, and may serve as an accurate substitute for the GCM, as long as the forcing is so small that the system responds linearly.

For a choice of policy-relevant climate variables, the time-dependent response of the climate system to small perturbations, therefore, can be computed to good accuracy through a collection of impulse-response function (IRF) modules. In many contemporary integrated assessment models, the greenhouse gas perturbation is represented as a time series of emission
impulses, and the concentration response is computed as a linear superposition of the responses to these single impulses (Maier-Reimer and Hasselmann, 1987).

Because of the general nonlinear nature of the climate system, the use of such linearized IRF models is confined to, approximately, a doubling of the atmospheric CO$_2$ concentration with respect to the pre-industrial value of 280 ppm, or to a corresponding equilibrium warming of about 2.5 degrees C. In order to extend the range of applicability to larger CO$_2$ concentrations and temperatures, a model has been designed that is still based on the IRF approach but is able to treat the most important nonlinear processes.

Non-linear Impulse-response representation of the coupled Carbon cycle-Climate System (NICCS)

The most critical processes limiting the linear response of the carbon cycle are the following: the oceanic uptake of CO$_2$ is governed by the non-linear carbon chemistry of seawater; the higher the background concentration the slower the downward transport of additional carbon through the surface layer (see e.g. Maier-Reimer & Hasselmann, 1987, or Maier-Reimer, 1993). The carbon cycle further exhibits a fertilization of the land vegetation, which is often described using a logarithmic dependency. In NICCS, a similar differential analogue to a modified version of the Joos vegetation IRF model (Joos et al., 1996) is applied.

For perturbations beyond doubled pre-industrial carbon dioxide concentrations, the problem of non-linear deformations of the carbon cycle response has been overcome through the basic mathematical concept of a differential analogue that can be tuned to a GCM-calibrated IRF in the linear limit of small CO$_2$ emissions. Although only a mathematical tool to reproduce the detected impulse-response, the differential equations of the analogue are physically interpretable in a manner that is sufficient for treatment of critical non-linear processes. Thus the model's
validity is extended into the non-linear domain, up to the uncertain thresholds of abrupt state transitions in the dynamics of the climate system. In a further extension, the greenhouse warming module of NICCS computes not only the global annual mean of the surface temperature, but also - as a first attempt to include spatial information- the first principal components of the annual-mean change in surface temperature, precipitation, cloudiness, and sea level rise (Hooss et al., 2001). The corresponding empirical orthogonal function (EOF) patterns and the IRFs for the EOF coefficients have been calibrated against a transient 850 year simulation with the periodically-synchronously coupled ECHAM3-LSG (Voss et al., 1998; Voss and Mikolajewicz, 2001).

A common problem of climate impact assessments is the determination of probabilities and thresholds for abrupt shifts in the large scale behaviour of the climate system. Candidates in the current debate are:

- Breakdown of the North-Atlantic thermohaline circulation accompanied by a severe cooling of Northern and Central Europe;
- Destabilization of the West-Antarctic Ice shield with a potential sea level rise by up to 6 meters;
- Large-scale ecosystem disruptions with significant climatic feedbacks, e.g. a climate-accelerated desertification of large parts of the Amazon or African rain forest;

Abrupt climate changes of this kind and magnitude have been reconstructed from the geological records; despite the astonishing relative stability of the climate system throughout the past 10,000 years (after the end of the last glaciation), the system might turn out to be not so stable at all if sufficiently perturbed. Initial efforts (Zickfeld and Bruckner, 2003; Mastrandrea and Schneider, 2001; Keller et al., 2000) to include potential abrupt climate changes into
integrated assessments with a simplified treatment of the economic system exist. As a similar inclusion in WIAGEM lies beyond the scope of this paper, we have to emphasize that all results presented here are subject to alterations if the risk of abrupt climate changes is proven to influence climate change decision making in this century significantly.

The ICLIPS Climate Model (ICM)

As part of the ICLIPS (Integrated Assessment of Climate Protection Strategies) project (cf. Toth et al., 2003, and references therein), the NICCS model has been rewritten and supplemented by modules describing the atmospheric chemistry and radiative forcing contributions of non-CO2 greenhouse gases. (Bruckner et al., 2003).

As a result, the multi-gas climate model ICM was obtained that takes into account all important greenhouse gases (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride, tropospheric and stratospheric ozone, and stratospheric water vapour) and aerosols by modelling their dynamic atmospheric behaviour as well as the radiative forcing originating from changes in the concentration of the respective substances.

ICM is driven by time-dependent paths of the anthropogenic emissions of CO₂, CH₄, N₂O, halocarbons, SF₆ and SO₂. In WIAGEM total anthropogenic emissions are determined by:

\[\text{TOTEM}_{r,t} = E_{r,t} + \text{NonE}_{r,t} - S_{r,t} \]

with TOTEM indicating the total anthropogenic emissions per region and time period, \(E_{r,t} \) as regional emissions per time period. Non-energy related emissions are countered for each greenhouse gas, regional and time period. Sinks \(S_{r,t} \) reduce total emissions.²

The atmospheric concentration of greenhouse gases may be altered due to direct emissions, exchange with reservoirs (e.g., ocean, biosphere, pedosphere) and chemical reactions
(destruction or formation). The biogeochemical submodules of ICM take into account these different processes in a greenhouse gas-specific manner. In general, the modules are reduced-form models of complex two- or three-dimensional greenhouse gas cycles or atmospheric chemistry models and are calibrated with respect to historical concentration records.

The carbon cycle module (see Appendix I) developed at the Max-Planck Institute for Meteorology in Hamburg consists of (a) a differential impulse-response representation of the 3 dimensional Hamburg Model of the Ocean Carbon Cycle (HAMOCC), extended into the non-linear high-CO₂ domain by explicit treatment of the chemistry governing the CO₂ uptake through the ocean surface, and (b) a simple non-linear impulse response model of the terrestrial biosphere’s CO₂ fertilization. Applying an inverse calibration technique, the quantitatively unknown CO₂-fertilization factor has been adjusted in order to give a balanced 1980s mean budget as advised by the IPCC inter-model comparison exercise.

Various components of the MAGICC model (Wigley, 1988; Wigley and Raper, 1992; Wigley, 1994; Osborn and Wigley, 1994; Wigley et al., 1996, Harvey et al., 1997) were adopted in order to simulate the atmospheric chemistry of major non-CO₂ greenhouse gases.

Changes in the concentration of non-CO₂ greenhouse gases (CH₄, N₂O, halocarbons, and SF₆) are calculated by a simple one-box model approach according to

\[
\frac{dC(t)}{dt} = \frac{1}{b} \sum_{r} TOTEM_r - \frac{1}{\tau} (C - C_{pre-industrial})
\]

where \(b \) is a concentration-to-mass conversion factor and \(\tau \) is the lifetime of the greenhouse gas. For N₂O, halocarbons and SF₆, the lifetime is assumed to be constant (IPCC, 1996; Harvey et al., 1997). CH₄ is removed from the atmosphere by soil uptake and chemical reactions with OH. The lifetime of CH₄ takes into account both processes and as the OH concentration itself is

2 This means also that the emissions reductions targets are reduced.
influenced by CH$_4$, the lifetime attributed to chemical processes is modeled to be dependent on the CH$_4$ concentration according to Osborn and Wigley, 1994).

[INSERT Table 2]

The atmospheric concentration of different greenhouse gases has the following impact on radiative forcing (IPCC, 1990):

\begin{equation}
\Delta F_{CO2} = 6.3 \ln \left(\frac{CO2}{CO2_0} \right)
\end{equation}

\begin{equation}
\Delta F_{CH4} = 0.036 \left(CH \ 4^{0.5} - CH \ 4_0^{0.5} \right) - f(CH\ 4, N\ 2O) + f(CH\ 4_0, N\ 2O_0)
\end{equation}

\begin{equation}
\Delta F_{N2O} = 0.14(N2O^{0.5} - N2O_0^{0.5}) - f(CH4_0, N2O) + f(CH4, N2O_0)
\end{equation}

with ΔF measured in Wm$^{-2}$, concentrations for CH$_4$ and N$_2$O given in ppbv and the subscript 0 used to indicate pre-industrial concentrations. The CH$_4$-N$_2$O interaction term (expressed in Wm$^{-2}$) is determined by:

\begin{equation}
f(CH4, N2O) = 0.47 \ln \left[1 + 2.01 \cdot 10^{-5} \cdot (CH4 \cdot N2O)^{0.75} + 5.31 \cdot 10^{-15} \cdot CH4 \cdot (CH4 \cdot N2O)^{1.52} \right]
\end{equation}

where CH$_4$ and N$_2$O have to be replaced by actual CH$_4$ and N$_2$O concentrations or alternatively by their respective pre-industrial levels as expressed in equations 3 and 4.

Total radiative forcing F can be approximated (IPCC, 2001, p. 355) by adding each greenhouse gas radiative forcing effect. In addition to the components just described, the radiative forcing description in ICM takes into account the contributions from SF$_6$, tropospheric ozone and stratospheric water vapour (both dependent on CH$_4$ concentrations), aerosols, and halocarbons including indirect effects according to stratospheric ozone depletion.
The time evolution of the global annual mean surface air temperature is calculated according to the impulse response function approach used in NICCS. A detailed description of this component can be found in Hooss (2001), Hooss et al. (2001), Bruckner et al. (2003), Joos et al. (2001), and Meyer et al. (1999). In order to include the radiative forcing of non CO₂-greenhouse gases, the carbon dioxide concentration used in NICCS is to be replaced by the equivalent carbon dioxide concentration (measured in ppm) defined by IPCC (1996a, p.320):

\[C_{\text{equiv}} = 278 \text{ ppm} \cdot \text{Exp}\left(\frac{\Delta F}{6.3 \frac{W}{m^2}}\right) \]

(7)

ICM estimates the climatic changes due to greenhouse gas emissions and the impact modules estimates the corresponding impacts. Market and non-market damages associated with these impacts, are assessed by coupling the climate module of ICM with WIAGEM. We express impacts as changes to regional and global welfare and GDP.
Scenario Definition

The main aim of this paper is to investigate the economic impacts of the inclusion of all greenhouse gases. Due to this, we compare scenarios where we consider only CO₂ emissions or all greenhouse gases, namely methane (CH₄) and nitrous oxide (N₂O). We additionally include fluorinated gases (HFCs, PFCs and SF₆). Figure 2 demonstrates the total greenhouse gas emissions until 2100 in the so-called “business as usual” or reference scenario where no climate control takes place. In this scenario, carbon emissions follow the IPCC emissions scenario report (IPCC, 2000). Additional to the coverage of multi-gases, namely methane (CH₄) and nitrous oxide (N₂O), we add fluorinated gases (HFCs, PFCs and SF₆) in carbon equivalent amounts.

In order to assess the economic impacts of CO₂ and GHG emissions reduction options, we compare different GHG and CO₂ reduction scenarios:

Reference: no climate control policy takes place, emissions development follows the baseline emissions path.

CO₂ Scenario: this scenario covers a reduction of radiative forcing that should not exceed 4.5 W/m² by the end of the model horizon. This should be equivalent to a stabilisation of 3°C by 2100. A reduction of emissions can only be reached by CO₂ emissions reduction.

GHG Scenario: this scenario covers also a reduction of radiative forcing that should not exceed 4.5 W/m² by the end of the model horizon. This should be equivalent to a stabilisation of 3°C by 2100. However, a reduction of emissions can be reached by multi gas emissions reduction options.

The main reason for differentiating between these different scenarios is to investigate the economic impacts of different emissions reduction strategies. As in a multi gas reduction case more low cost emission reduction option occurs, marginal abatement costs are lower. Previous studies find substantial lower emissions abatement costs in a multi gas context (Manne and Richels, 2000, 2003), and Reilly et al., 2000, 2002).

SCENARIO RESULTS

Emissions and Carbon Taxes

A stabilisation of radiative forcing by 4.5 W/m^2 or a stabilisation of temperature by 3°C by the end of the modelling horizon induce substantial emissions reductions. Figure 2 shows the trajectories of the emissions for all gases, and Figure 3 shows the emission reductions relative to the reference case. It can be seen from these Figures that if the above target of radiative forcing stabilisation is to be achieved by CO₂ emissions mitigation alone, then the overall CO₂ emissions will need to be reduced substantially, by about 67 per cent relative to the reference case by 2100, or an average of 6.7 percent per decade. The figure is improved only slightly if non-CO₂ gases (CH₄ and N₂O) are also to be included, from –67% to –60% (cumulative), or from –6.7% to –6% (per decade). Despite this small impact on the level of CO₂ emission reductions, the impact on marginal abatement cost is substantial (see Figure 4). The MAC reaches a level of about 225 US$ 1995 per ton of carbon equivalent ($/TCe) by the year 2100, for the CO₂ alone scenario, but reduced to only about 100 $/TCe 1995 by the year 2100 if non-CO₂ gases are also included.⁴

Emissions of CH₄ and N₂O are also reduced substantially (by 53% and 39% respectively relative to the reference case by the year 2100) for the CO₂ alone scenario. This is because all

⁴ These figures are quoted for the most optimistic case when all countries participate in emission trading to reduce the cost of emission reductions to a minimum. The opposite (most pessimistic) case when no trading is allowed will increase this cost quite substantially for some regions such as the EU and the USA.
GHGs emissions are linked via production and consumption activities, and hence, the reduction of CO₂ emission reductions will lead to the reductions of CH₄ and N₂O emissions - even if the latter are not subject to a target reduction, i.e. not subject to a carbon tax. If CH₄ and N₂O are now also subject to a carbon tax in the same way as CO₂\(^5\) (the GHG scenario), then the emissions from CH₄ and N₂O will rise slightly, and the emissions from CO₂ will decrease, as expected (see Figures 2 and 3).

[Insert Figures 2, 3, 4 and 5]

Economic Effects

Economic efforts to reduce a higher percentage of emissions are higher if we consider only CO₂ emissions and not all greenhouse gases. The reason for this is that the inclusion of multi gases offers more cost saving opportunities than if we consider only CO₂. A cost minimizing strategy leads to lower permit prices in the case of multi-gas scenario, which in turn also leads to lower production (GDP) losses and lower consumption losses (see Table 3).

[Insert Table 3]

We find higher economic losses in terms of GDP mitigation if we only consider CO₂ emissions abatement. Europe and the USA suffer high economic losses because of high abatement costs. These costs are reduced if we consider multi gas emissions reduction options. A pure CO₂ emissions abatement strategy leads to high GDP losses in 2050 and 2100. This results from the fact that meeting the radiative forcing target of 4.5 \(\text{W/m}^2\) leads to significant emissions reductions by 2100. The distribution of regional burden sharing varies over time. Those countries with a very high share of fossil fuel production and consumption have to reduce a substantial amount of CO₂ emissions. Because of substitution and growth assumptions in the

\(^5\) The tax is to be based on carbon equivalent unit (Ceq), which is derived using the IPCC Global Warming Potential (GWP) indices (CO₂ = 0.27 Ceq, GWP = 1; CH₄ = 5.73 Ceq, GWP = 21; N₂O = 84.55 Ceq, GWP = 310).
model, the share of emissions reduction changes and therefore also economic losses in terms of GDP changes. Some developing countries like Asia and China do suffer, not only because of real production cutbacks, but also because of the negative terms of trade effects. Economic losses will be reduced if we consider multi gas options. This is because the economic costs of emission reduction will be lower in this case.

CONCLUSION

The main aim of this paper has been to investigate and compare the economic consequences of a pure CO₂ and a multi-gas emission reduction strategy. We have applied a multi-sectoral integrated assessment model WIAGEM based on GTAP-EL coupled with a detailed climate model ICM. The main finding is that a multi-gas mitigation option is a lower cost option leading to a less economic burden. Meeting a radiative forcing target of 4.5 w/m² by the end of the model horizon requires a substantial reduction of greenhouse gases. A multi gas reduction strategy leads to a considerable reduction of methane emissions. A CO₂ emissions reduction strategy causes production and GDP losses in countries with a high share of fossil fuel emissions.

ACKNOWLEDGEMENT

The Ministry of Science and Culture in Germany and the VW Foundation gave financial support to this study. We would also like to thank Klaus Hasselmann, Alan Manne, Richard Richels, Richard Tol and John Weyant, for their very useful commentary and suggestions.

REFERENCES

Appendix I: Mathematical description of ICM

Mathematically the carbon cycle model containing all differential equations can be described as follows:

\[
\dot{c}_1 = D(c_1) \cdot \left\{ e - \frac{n_2}{h_5} c_2(c_1) + \frac{n_2}{h_2} c_2 - (b_3 + b_4) B(c_1) + \frac{1}{\tau B_3} c_{B3} + \frac{1}{\tau B_4} c_{B4} \right\} \quad (A1) (A2)
\]

\[
\dot{c}_2 = \frac{\eta_2}{h_5} c_2(c_1) - \frac{\eta_2 + \eta_3}{h_2} c_2 + \frac{\eta_3}{h_3} c_3 \quad (A3)
\]

\[
\dot{c}_3 = \frac{\eta_3}{h_2} c_3 - \frac{\eta_3 + \eta_4}{h_3} c_3 + \frac{\eta_4}{h_4} c_4 \quad (A4)
\]

\[
\dot{c}_4 = \frac{\eta_4}{h_3} c_4 - \frac{\eta_4}{h_4} c_4 \quad (A5)
\]

\[
\dot{c}_{Bc} = A(c_1) \cdot \dot{c}_1 \quad (A6)
\]

\[
\dot{c}_{B3} = b_3 \cdot B(c_1) - \frac{c_{B3}}{\tau B_3} \quad (A7)
\]

\[
\dot{c}_{B4} = b_4 \cdot B(c_1) - \frac{c_{B4}}{\tau B_4} \quad (A8)
\]

with:

- \(t \) Simulation time
- \(x \) Spatial coordinates
- \(e \) Anthropogenic CO2 emissions
- \(C_{CO2} \) Atmospheric CO2 concentration (by volume)
- \(C_{CO2,\text{equiv}} \) Atmospheric equivalent CO2 concentration
- \(C_{CO2,\text{pre}} \) Pre-industrial CO2 concentration
- \(c_a \) Anthropogenic carbon in the atmosphere (in GtC)
- \(c_s \) Anthropogenic carbon in the oceanic mixed layer
- \(c_j \) Anthropogenic carbon in the \(j \)-th oceanic layer
- \(c_l \) Anthropogenic carbon in the composite layer
- \(q_j \) Carbon flux from layer \(j-1 \) into layer \(j \)
- \(c_B \) Anthropogenic carbon allocated by the land vegetation
- \(c_{Bi} \) Anthropogenic carbon in land biosphere reservoir \(i \)
- \(c_{Bc} \) Short-term anthropogenic carbon in land biosphere
- \(B(C_l) \) Nonlinear auxiliary function (= additional NPP)
- \(A(C_l), D(C_l) \) Nonlinear auxiliary functions
- \(T \) Near-surface temperature change (relative to pre-industrial level)
- \(CC \) Cloud-cover change (relative to pre-industrial level)
- \(P \) Precipitation change (relative to pre-industrial level)
- \(H \) Humidity change (relative to pre-industrial level)
- \(SLR \) Sea-level rise (relative to pre-industrial level)
- \(PC \) Principal component
- \(EOF \) Empirical orthogonal function
Table 1: Definitions of Countries and Regions in WIAGEM

<table>
<thead>
<tr>
<th>Regions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>India and other Asia (Republic of Korea, Indonesia, Malaysia, Philippines, Singapore, Thailand, China, Hong Kong, Taiwan)</td>
</tr>
<tr>
<td>CHN</td>
<td>China</td>
</tr>
<tr>
<td>CNA</td>
<td>Canada, New Zealand and Australia</td>
</tr>
<tr>
<td>EU15</td>
<td>European Union</td>
</tr>
<tr>
<td>JPN</td>
<td>Japan</td>
</tr>
<tr>
<td>LSA</td>
<td>Latin America (Mexico, Argentina, Brazil, Chile, Rest of Latin America)</td>
</tr>
<tr>
<td>MIDE</td>
<td>Middle East and North Africa</td>
</tr>
<tr>
<td>REC</td>
<td>Russia, Eastern and Central European Countries</td>
</tr>
<tr>
<td>ROW</td>
<td>Other Countries</td>
</tr>
<tr>
<td>SSA</td>
<td>Sub Saharan Africa</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
</tbody>
</table>

Table 2: Summary Key Assumptions greenhouse gases

<table>
<thead>
<tr>
<th>Trace Gas</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Industrial (ppmv)</td>
<td>278</td>
<td>.789</td>
<td>0.275</td>
</tr>
<tr>
<td>1992 (ppmv)</td>
<td>353</td>
<td>1.72</td>
<td>0.310</td>
</tr>
<tr>
<td>Energy related Emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 (billion tons)</td>
<td>6.0</td>
<td>.08</td>
<td>.0001</td>
</tr>
<tr>
<td>growth rate, post 1992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-energy related Emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 (billion tons)</td>
<td>.2</td>
<td>.454</td>
<td>.0139</td>
</tr>
<tr>
<td>growth rate, post 1992</td>
<td>0</td>
<td>.8</td>
<td>.2</td>
</tr>
</tbody>
</table>

Table 3: Regional GDP Changes (%) Compared to Reference Case of Different Scenarios

<table>
<thead>
<tr>
<th>CON- CO2</th>
<th>2010</th>
<th>2050</th>
<th>2100 GDP- Multi Gas</th>
<th>2010</th>
<th>2050</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPN</td>
<td>-3.01</td>
<td>-3.38</td>
<td>-4.07 JPN</td>
<td>-1.38</td>
<td>-2.14</td>
<td>-2.83</td>
</tr>
<tr>
<td>CHN</td>
<td>-2.23</td>
<td>-2.74</td>
<td>-3.72 CHN</td>
<td>-1.20</td>
<td>-1.85</td>
<td>-2.10</td>
</tr>
<tr>
<td>USA</td>
<td>-3.15</td>
<td>-3.67</td>
<td>-4.02 USA</td>
<td>-1.83</td>
<td>-2.10</td>
<td>-2.49</td>
</tr>
<tr>
<td>SSA</td>
<td>-2.09</td>
<td>-2.78</td>
<td>-3.06 SSA</td>
<td>-1.53</td>
<td>-1.85</td>
<td>-2.09</td>
</tr>
<tr>
<td>ROW</td>
<td>-1.21</td>
<td>-2.10</td>
<td>-2.53 ROW</td>
<td>-0.56</td>
<td>-1.10</td>
<td>-1.23</td>
</tr>
<tr>
<td>CAN</td>
<td>-3.05</td>
<td>-3.76</td>
<td>-4.04 CAN</td>
<td>-1.79</td>
<td>-2.11</td>
<td>-2.53</td>
</tr>
<tr>
<td>EU15</td>
<td>-3.98</td>
<td>-4.70</td>
<td>-5.98 EU15</td>
<td>-2.08</td>
<td>-2.81</td>
<td>-3.12</td>
</tr>
<tr>
<td>REC</td>
<td>-0.12</td>
<td>-2.25</td>
<td>-4.02 REC</td>
<td>-0.11</td>
<td>-1.13</td>
<td>-2.53</td>
</tr>
<tr>
<td>LSA</td>
<td>-2.10</td>
<td>-2.53</td>
<td>-3.08 LSA</td>
<td>-1.13</td>
<td>-1.85</td>
<td>-2.14</td>
</tr>
<tr>
<td>ASIA</td>
<td>-2.10</td>
<td>-2.83</td>
<td>-3.77 ASIA</td>
<td>-1.09</td>
<td>-1.85</td>
<td>-2.10</td>
</tr>
<tr>
<td>MIDE</td>
<td>-3.08</td>
<td>-4.10</td>
<td>-4.75 MIDE</td>
<td>-1.83</td>
<td>-2.42</td>
<td>-2.79</td>
</tr>
<tr>
<td>MEX</td>
<td>-2.10</td>
<td>-2.80</td>
<td>-3.76 MEX</td>
<td>-1.09</td>
<td>-1.85</td>
<td>-2.40</td>
</tr>
</tbody>
</table>

Source: IPCC (90) and IPCC (92)
Figure 1: Interrelations in WIAGEM
Figure 2: Emissions Trajectories of different Scenarios

a) CO₂ Emissions

![CO₂ Emissions Graph](image1)

Year

b) CH₄ Emissions

![CH₄ Emissions Graph](image2)

Year

c) N₂O Emissions

![N₂O Emissions Graph](image3)

Year
Figure 3: Cumulative Emissions Reductions relative to Reference Case

a) CO₂ Emissions

b) CH₄ Emissions

c) N₂O Emissions
Figure 4: Cumulative MACs/Carbon Price in US$ 1995 Per Ton Carbon

Figure 5: Radiative Forcing and Temperature of different Scenarios

a) Radiative Forcing

b) Temperature Development