
Costantini, Mauro; Kunst, Robert M.

Working Paper

On using predictive-ability tests in the selection of time-
series prediction models: A Monte Carlo evaluation

IHS Economics Series, No. 341

Provided in Cooperation with:
Institute for Advanced Studies (IHS), Vienna

Suggested Citation: Costantini, Mauro; Kunst, Robert M. (2018) : On using predictive-ability tests in
the selection of time-series prediction models: A Monte Carlo evaluation, IHS Economics Series, No.
341, Institute for Advanced Studies (IHS), Vienna

This Version is available at:
https://hdl.handle.net/10419/183484

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/183484
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


IHS Economics Series

Working Paper 341

July 2018

On Using Predictive-ability Tests in 

the Selection of Time-series 

Prediction Models: A Monte Carlo 

Evaluation

Mauro Costantini

Robert M. Kunst



Impressum

Author(s):

Mauro Costantini, Robert M. Kunst

Title:

On Using Predictive-ability Tests in the Selection of Time-series Prediction Models: A 

Monte Carlo Evaluation

ISSN: 1605-7996 

2018 Institut für Höhere Studien - Institute for Advanced Studies (IHS)

Josefstädter Straße 39, A-1080 Wien

E-Mail:   o ce@ihs.ac.atffi  

Web: ww      w  .ihs.ac.  a  t  

All IHS Working Papers are available online: http://irihs.  ihs.  ac.at/view/ihs_series/   

This paper is available for download without charge at: http://irihs.ihs.ac.at/4712/

mailto:o%EF%AC%83ce@ihs.ac.at
mailto:o%EF%AC%83ce@ihs.ac.at
http://irihs.ihs.ac.at/view/ihs_series/
http://irihs.ihs.ac.at/view/ihs_series/
http://irihs.ihs.ac.at/view/ihs_series/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
mailto:o%EF%AC%83ce@ihs.ac.at
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selection of time-series prediction models:

A Monte Carlo evaluation
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August 7, 2018

Abstract

Comparative ex-ante prediction experiments over expanding subsamples are a
popular tool for the task of selecting the best forecasting model class in finite sam-
ples of practical relevance. Flanking such a horse race by predictive-accuracy tests,
such as the test by Diebold and Mariano (1995), tends to increase support for the
simpler structure. We are concerned with the question whether such simplicity boost-
ing actually benefits predictive accuracy in finite samples. We consider two variants
of the DM test, one with naive normal critical values and one with bootstrapped
critical values, the predictive-ability test by Giacomini and White (2006), which con-
tinues to be valid in nested problems, the F test by Clark and McCracken (2001), and
also model selection via the AIC as a benchmark strategy. Our Monte Carlo simula-
tions focus on basic univariate time-series specifications, such as linear (ARMA) and
nonlinear (SETAR) generating processes.

Keywords: forecasting, time series, predictive accuracy, model selection
JEL Code: C22, C52, C53
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1 Introduction

If two model-based forecasts for the same time-series variable are available over some time

range where they can also be compared to actual realizations, it appears natural to use the

forecast with the better track record in order to predict the physical future. It has become

customary, however, to subject the outcome of horse races over training samples to various

significance tests, following the seminal contributions by Diebold and Mariano (1995) and

West (1996) or one of the numerous later developed procedures, for example Clark and

McCracken (2001, 2005, 2012) and Giacomini and White (2006, GW).

Here, we are interested in the consequences of basing the preference for a forecasting

model on the result of such a significance test, using the simpler model unless it is rejected

at a 5% level. We are concerned by the possibility that such a strategy becomes too con-

servative, with an undue support for the simpler rival. Our argument is well grounded in

the literature on statistical model selection (Wei, 1992; Inoue and Kilian, 2006; Ing, 2007),

which has shown that the model choice determined by minimizing prediction errors over

a test sample is, under conditions, asymptotically equivalent to traditional information

criteria, such as AIC and BIC. The asymptotic implications of selecting models by infor-

mation criteria on forecasting performance are a well-explored topic. Roughly, selecting

models based on AIC optimizes prediction (Shibata, 1980), whereas BIC chooses the cor-

rect model, assuming it is in the choice set, at the cost of slightly larger prediction errors.

This fact implies that subjecting the selection to any further criterion on top of the track

record may involve the risk of becoming more ‘conservative’ than appears to be optimal.

Our contribution is a systematic Monte Carlo evaluation of these effects. In some

designs, one of the rival forecasting models belongs to the same class as the generator,

whereas in others, the generator is more complex than any of the rival models. We note

that, while we build on the related literature, we also digress from it in several important

aspects. First, the two recent decades have seen a strong emphasis on questions such as the

asymptotic or finite-sample distributions of forecast accuracy test statistics and the power

properties of the thus defined tests. By contrast, we see these aspects as a means to the end

of selecting the model that optimizes forecast accuracy. Unlike statistical hypothesis testing

proper, forecast model selection cannot choose a size level freely but has to determine the
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size of a test tool in such a way that it benefits the decision based on the test.

Second, most of the literature targets the decision based on true or pseudo-true param-

eter values, in the sense that a nesting model will forecast at least as precisely as a nested

model. By contrast, we are interested in forecast model selection at empirically relevant

sample sizes. A simple structure can outperform a complex class that may even contain

the generating structure if all parameters are unknown and are estimated. Similarly, GW

argued that the null hypothesis of the DM and Clark-McCracken tests may not support the

forecaster’s aim. Consider the task of forecasting an economic variable, say aggregate in-

vestment, by its past and potentially by another variable, say an interest rate. In the world

of the DM and Clark-McCracken tests, the complex alternative is conceptually preferred

whenever the coefficients of the interest rate in a joint model are non-zero. Furthermore,

a univariate model for investment can never forecast better than the joint model, even if

the coefficients on interest are very small and their estimates have large sampling variation

in finite samples. The concept of GW accounts for this sampling variation, so if the co-

efficients are non-zero but small, the forecaster is better off by ignoring the interest rate.

Notwithstanding the important distinction of forecastability and predictability by Hendry

(1997), the GW approach was revolutionary, and we feel that its impact has not fully been

considered yet. For example, hitherto empirical investigations on Granger causality do not

really build on predictability of a variable Y using another variable X but on conditional

distributions, often regression t and F tests. In order to represent predictability in a finite

sample, the possibility has to be taken into account that the forecast for Y may deteriorate

if lags of X are used as additional predictors, with empirical non-causality representing a

borderline between causality and anti-causality. By construction, this approach typically

yields an even more conservative selection procedure than the DM test, thus aggravating

our original concerns.

Third, most of the literature uses simulation designs that build on Granger-causal and

bivariate ideas, with a target variable dynamically dependent on an explanatory source.

Such designs may correspond to typical macroeconomic applications, and we also take them

up in one design. Primarily, however, we start from a rigorous time-series design, with an

emphasis on the most natural and elementary univariate models, such as AR(1), MA(1),

3



ARMA(1,1). We see this as the adequate starting point for all further analysis.

Within this paper, we restrict attention to binary comparisons between a comparatively

simple time-series model and a more sophisticated rival. Main features should also be valid

for the general case of comparing a larger set of rival models, with one of them chosen as

the benchmark. Following some discussion on the background of the problem, we present

results of several simulation experiments in order to explore the effects for sample sizes

that are typical in econometrics.

The remainder of this paper is organized as follows. Section 2 reviews some of the

fundamental theoretical properties of the problem of testing for relative predictive accuracy

following a training-set comparison. Section 3 reports a basic Monte Carlo experiment

with a purely univariate nested linear time-series design. To the best of our knowledge and

somewhat surprisingly, our study is the first one that examines these competing prediction

strategies systematically in a purely univariate ARMA(1,1) design, which we see as the

natural starting point. Section 4 uses three more Monte Carlo designs: one with a non-

nested linear design, one with a SETAR design that was suggested in the literature (Tiao

and Tsay, 1994) to describe the dynamic behavior of a U.S. output series, and one with a

design based on a three-variable vector autoregression that was fitted to macroeconomic

U.K. data by Costantini and Kunst (2011). Section 5 concludes.

2 The theoretical background

Typically, the Diebold-Mariano (DM) test and comparable tests are performed on accu-

racy measures such as MSE (mean squared errors) following an out-of-sample forecasting

experiment, in which a portion of size S from a sample of size N is predicted on the basis

of expanding windows. In a notation close to DM, the null hypothesis of such tests is

Eg(e1) = Eg(e2),

where ej, j = 1, 2 denote the prediction errors for the two rival forecasts, g(.) is some

function—for example, g(x) = x2 for the MSE—and E denotes the expectation operator.

In other words, both models use the true or pseudo-true (probability limit of estimates)
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parameter θ. Alternatively, GW consider the null hypothesis

E{g(e1)|F} = E{g(e2)|F},

where F denotes some information set, for example the history of the time series. In other

words, both models use sample parameter estimates θ̂1, θ̂2. Thus, whereas DM consider

a true-model setup, with the null rejected even in the presence of an arbitrarily small

advantage for the alternative model, GW focus on the forecaster’s situation who has to

estimate all model parameters and has to take sampling variation into account.

A model-selection decision based on an out-of-sample prediction experiment (TS in the

following for training-sample evaluation) without any further check on the significance of

accuracy gains works like a decision based on an information criterion. The asymptotic

properties of this TS criterion depend on regularity assumptions on the data-generating

process, as usual, but critically on the large-sample assumptions on S/N .

If S/N converges to a constant in the open interval (0, 1), Inoue and Kilian (2006) show

that the implied TS criterion is comparable to traditional ‘efficient’ criteria such as AIC.

The wording ‘efficient’ is due to Shibata (1980) and McQuarrie and Tsai (1998) and relates

to the property of optimizing predictive performance at the cost of a slight large-sample

inconsistency in the sense that profligate (though valid) models are selected too often as

N → ∞.

If S/N → 1, Wei (1992) shows the consistency of the implied TS criterion in the sense

that it selects the true model, assuming such a one exists, with probability one as N → ∞.

Wei (1992) essentially assumes that all available observations are predicted, excluding the

sample start, where the estimation of a time-series model is not yet possible.

If a consistent model-selection procedure is flanked by a further hypothesis test that

has the traditional test-consistency property, in the sense that it achieves its nominal

significance level on its null and rejection with probability one on its alternative as N → ∞,

this clearly does not affect the asymptotic property of selection consistency if the criterion

and the flanking test are independent or tend to decide similarly. Only if the two decisions

counteract each other, one may construct cases where the application of the flanking test

destroys selection consistency. In summary, the procedure that is of interest here, a model

decision based on TS and an additional test jointly, is consistent in those cases where
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TS alone is consistent, so nothing is gained in large samples. For this reason, it is the

empirically relevant sample sizes that are of interest, and these are in the focus of our

Monte Carlo.

Like other information criteria, TS entails an implicit significance level at which a

traditional restriction test performs the same model selection as the criterion. For all

consistent information criteria, this implicit significance level depends on N and approaches

0 as N → ∞. On the other hand, efficient criteria approach a non-zero implicit significance

level. For example, the asymptotic implicit significance level for AIC is surprisingly liberal

at almost 16%. This value can be determined analytically as 2(1 − Φ(
√
2) with Φ the

normal c.d.f., following the argument of Pötscher (1991).

Thus, the suggestion to base a decision on choosing a prediction model on a sequence of

a TS comparison and a predictive-ability test makes little sense in large samples. In small

samples, it acts as a simplicity booster that puts more emphasis on the simpler model than

the simple TS evaluation. Our simulations are meant to shed some light on the benefits or

drawbacks of such boosting of simplicity in typical situations.

3 Simulations with a nested ARMA(1,1) design

This section presents the results for our basic ARMA design. We first describe its back-

ground. The optimal decision between AR(1) and ARMA(1,1)—with ‘optimal’ always

referring to the best out-of-sample prediction performance—for a given sample size can be

determined exactly by simulation. Monte Carlo can deliver the boundary curve in the (φ, θ)

space for generated ARMA trajectories with coefficients φ and θ, along which AR(1) and

ARMA(1,1) forecasts with estimated coefficients yield the same forecast accuracy. Then,

we compare the prediction strategies pairwise and close with a short summary of our general

impression.
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3.1 The background

The simplest and maybe most intuitive design for investigating model selection procedures

in time-series analysis is the ARMA(1,1) model. In the parameterization

Xt = φXt−1 + εt − θεt−1,

ARMA(1,1) models are known to be stable and uniquely defined on

ΩARMA = {(φ, θ) ∈ (−1, 1)× (−1, 1) : φ ̸= θ ∨ (φ, θ) = (0, 0)},

a sliced open square in the R
2 plane. Assumptions on the process (εt) vary somewhat

in the literature, in line with specific needs of applications or of theorems. Usually, iid

εt and a standard symmetric distribution with finite second moments are assumed (e.g.,

Lütkepohl, 2005), although some authors relax assumptions considerably. We do not study

generalizations in these directions here, and we use Gaussian iid εt throughout.

Among the simplest time-series models, ARMA(1,1) competes with the model classes

AR(1) and MA(1) as prediction tools, both with only one coefficient parameter.

In more detail, the open square (−1, 1)× (−1, 1) consists of the following regions that

play a role in our simulation experiments:

1. The punctured diagonal is not part of ΩARMA. Along this diagonal, processes are

equivalent to white noise (0, 0). We simulate along the diagonal in order to see

whether reaction remains unaffected;

2. The origin (φ, θ) = (0, 0) represents white noise. ARMA(1,1) has two redundant

parameters, while AR(1) or MA(1) have one each. These simpler models are expected

to perform better;

3. The punctured x–axis θ = 0, φ ̸= 0 contains pure AR(1) models. ARMA(1,1) is

over-parameterized and is expected to perform worse than AR(1);

4. The punctured y–axis φ = 0, θ ̸= 0 contains pure MA(1) models. ARMA(1,1) is over-

parameterized and is expected to perform worse than MA(1). AR(1) is misspecified

here, so for large samples ARMA(1,1) should outperform AR(1) here;
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5. On the remainder {(φ, θ) : φ ̸= 0, θ ̸= 0, φ ̸= θ}, the ARMA(1,1) model is cor-

rectly specified, whereas the restricted AR(1) and MA(1) are incorrect. As N → ∞,

ARMA(1,1) should dominate its incorrect rivals. The ranking is uncertain for small

N and in areas close to the other four regions.

With some simplification, we consider for later reference

ΘR = {(φ, θ)|θ = 0 or θ = φ},

as the area of the open square where AR(1) is expected to outperform ARMA(1,1) in large

samples, consisting of the diagonal # 1, white noise # 2, and the AR(1) models # 3. On

ΘR, either the AR(1) is correct or a simpler white-noise structure. On the remaining part

of the open square # 4 and # 5, the AR(1) model is mis-specified, and the ARMA(1,1)

model should dominate in very large samples.

Obviously, if the coefficient values (φ, θ) ∈ Θ\ΘR were known, it would be optimal

to use this ARMA(1,1) model for prediction. The situation is less obvious if the values

of the coefficients are not known. Presumably, AR(1) models will still be preferable if θ

is close but not identical to 0, such that the true model is ARMA(1,1), with insufficient

information on θ in the sample that might permit reliable estimation. The same should be

true for MA(1) models as prediction models and a small value for φ. We note that this

distinction corresponds to the respective hypotheses considered by DM and by GW.

The so-called Greenland graphs, such as those in Figure 1, permit to make this statement

more precise. On a sizable portion of the admissible parameter space, AR(1) defeats

ARMA(1,1) as a forecasting model, even though θ is not exactly zero, i.e. parameter values

are outside ΘR. This area—we call it Greenland according to an original color version of

the graph—shrinks as the sample size grows. The sizable area of AR dominance is not

paralleled by a similar area of MA dominance. The MA(1) model is a comparatively poor

forecast tool, and we will exclude it from further simulation experiments. Although some

interesting facts about these preference areas can be determined by analytical means (see,

e.g., the rule of thumb in Hendry, 1997), for example the poor performance of the MA

forecasts is an issue of the algorithm and can be explored by simulation only.

The graph relies on 1000 replications with Gaussian errors. All trajectories were gen-

erated with burn-ins of 100 observations. From samples of size N = 50 and N = 100,
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forecasts are generated from AR(1), MA(1), and ARMA(1,1) models with estimated pa-

rameters, and the squared prediction error for X51 and, respectively, X101 is evaluated. We

generated similar graphs for smaller and slightly larger sample sizes. We certainly do not

claim that we are the first to run such simulations, but the graphs serve as a valuable ref-

erence for the remainder of the paper and there does not seem to exist an easily accessible

source for comparable graphs in the literature. It is obvious that some smoothing or higher

numbers of replications will produce clear shapes of the preference areas. We feel, however,

that its ragged appearance conveys a good impression of areas where preference for any of

the three models is not very pronounced.

−1.0 −0.5 0.0 0.5 1.0
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0.
0
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0
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Figure 1: Forecasting data generated by ARMA models with autoregressive coefficient φ on

the x–axis and moving-average coefficient θ on the y–axis. N = 50 (left) and N = 100 (right).

Comparison of MSE according to AR, ARMA, and MA models with estimated coefficients. Black

area has lowest MSE for AR models, gray area for ARMA, and light gray area for MA models.

For empirical work, the applicability of Figure 1 is limited, as it shows the optimal

selection of prediction models for given and true parameter values. For a hypothetical

researcher who observes ARMA(1,1) data, this decision is not available. If the true values

were known, it would be optimal to use them in forecasting. On the other hand, it is

not generally possible to draw a comparable figure that has on its axes values of estimates

(φ̂, θ̂) that are available to the hypothetical observer. This would require convening a prior
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distribution on the parameter space, thus adopting a Bayesian framework.

For our simulation study, however, these graphs are important benchmarks, as the

almost ideal selection procedure between AR(1) and ARMA(1,1) would select AR(1) on

the dark area and ARMA(1,1) on the remainder. An ideal procedure may be able to beat

this benchmark by varying the classification of specific trajectories over the two regions,

but it is unlikely that such improvements are practically relevant. We note explicitly that

preferring AR(1) on ΘR only does not lead to optimal forecasting decisions, in contrast to

the underlying statistical hypothesis testing problem.

In all our experiments the outcome may depend critically on the estimation procedure

used for AR as well as for ARMA models. Generally, we use the estimation routines

implemented in R. We feel that the possible dependence of our results on the specific

estimation routine need not be seen as a drawback, as we are interested in the typical

situation of a forecaster who considers given samples and popular estimation options. In

other words, even if other estimation routines perform much better, the R routines are

more likely to be relevant as forecasters may tend to use them or similar algorithms.

In detail, we consider the following five strategies and report on pairwise comparisons

between them:

1. Training-sample evaluation (TS) over 50% of the available time range. The model

with the smaller MSE over the training sample is chosen as the forecasting model;

2. Training-sample evaluation (TS-DM-N) as in # 1, but followed by a Diebold-Mariano

(DM) test. The more complex (here, the ARMA) model is only chosen if the DM

test statistic is significant at a nominal N(0,1) 5% level;

3. Training-sample evaluation (TS-DM-B) as in # 2, but the significance of the DM

statistic is evaluated against a carefully bootstrapped value;

4. Training-sample evaluation (TS-F-B) followed by an F–test evaluation according to

Clark and McCracken (2001,2005). This statistic does not follow any standard dis-

tribution even in simple cases, so this strategy is evaluated with bootstrapping only;

5. AIC evaluation over the full available sample and choosing the model with the lower

AIC value;
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6. Training-sample evaluation followed by an evaluation of the concomitant GW statistic

over moving windows (TS-GW). The more complex model is chosen only if the GW

test statistic is significant at a nominal 5% significance level.

Other predictive accuracy tests can be considered, but choosing these as alternative

selection strategies is hardly likely to affect our results. For example, Clark and McCracken

(2005) show that in nested applications encompassing tests following Harvey et al. (1998)

and DM tests are asymptotically equivalent, and the discriminatory power of their F tests

is also close to the other tests, as all of them process the same information.

Basically, all our simulations follow the same pattern with expanding windows. For

N = 100, observations t = 52, . . . , 99 are used as a test sample in the sense that models are

estimated from training samples t = 1, . . . , T and the mean squared error of one-step out-

of-sample forecasts for observations XT+1 is evaluated by averaging over T = 51, . . . , 98.

In the pure TS strategy, the model with the smaller average MSE is selected as the one

whose out-of-sample forecast for the observation at N based on the sample t = 1, . . . , N−1

is considered. In the DM strategy, the more complex ARMA model is selected only if the

DM test rejects. Otherwise, the DM strategy chooses the simpler AR(1) model to forecast

the observation at N .

3.2 The bootstrapped DM test and training

Inoue and Kilian (2006) established the result that, roughly, TS works like an information

criterion asymptotically. Depending on whether the share of the training sample in the

available sample converges to unity or not, the information criterion can be a consistent

one like the BIC by Schwarz or a prediction-optimizing efficient one like the AIC by Akaike.

In small samples, it is now widely recognized that the AIC tends to be too ‘liberal’ in

the sense that it leans toward over-parameterization (see McQuarrie and Tsai, 1998), which

issue will be evaluated in the next subsection. Thus, the strategy not to accept the more

general ARMA(1,1) model as a prediction model unless the DM test additionally rejects

its null may benefit prediction.

The TS strategy has been considered, for example, by Inoue and Kilian (2006), who

were interested in the question whether it be outperformed by BIC selection. There are
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arguments in favor of both TS and BIC. BIC uses the whole sample, while TS restricts

attention to the portion that is used for the training evaluation. On the other hand,

the property of BIC consistency is asymptotic and need not imply optimality in a small

sample. Inoue and Kilian find that BIC dominates TS over large portions of the admissible

parameter space. We note that their simulations differ from ours by the non-nested nature

of decisions on single realizations: some trajectories may be classified as ARMA by one

strategy but as AR by the other, while other trajectories experience the reverse discrepancy.

We do not consider BIC selection in our experiments.

It is well known that the normal significance points of the DM test are invalid if nested

models are compared (see Clark and McCracken, 2001, 2012). For our experiment, we

obtained correct critical values using the bootstrap-in-bootstrap procedure suggested by

Kilian (1998). The known estimation bias for AR models is bootstrapped out in a first

run, and another bootstrap with reduced bias is then conducted to deliver significance

points. Unfortunately, the bootstrap is time-consuming, thus only 100 bootstrap iterations

can be performed for this experiment. Nonetheless, correspondence to the targeted size of

5% is satisfactory.

The left graph in Figure 2 shows the result of our Monte Carlo atN = 50. It corresponds

to expectations at least with regard to the behavior around the horizontal axis, where the

AR model is true. Here, DM testing changes the implicit significance level of the TS

procedure of around 20% to 5%. Less AR trajectories are classified incorrectly as ARMA,

and forecasting precision improves. At some distance from the axis, TS dominates due to

its larger implicit ‘power’ that attains 100% at θ = 0.8. In the graph, the size of the filled

circles is used to indicate the intensity of the discrepancy in mean-squared errors. The

maximum tilt in favor of DM testing is achieved at (φ, θ) = (−0.4,−0.2), the maximum in

favor of pure TS occurs along the margins of the square, for extreme values of φ and of θ.

An unexpected feature of Figure 2 is the asymmetry of the preference areas: the north-

west area with negative φ and negative correlation among residuals after a preliminary AR

fit appears to be more promising for the DM test than the southeast area with positive φ

and negative residual correlation after AR fitting. This effect is not easily explained. The

Greenland graph at N = 50 is approximately symmetric. Support for the pure AR model
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Figure 2: AR/ARMA model selected by MSE miminization over a training sample (TS) versus

selection based on a Diebold-Mariano test (TS-DM-B) with bootstrapped significance points. Left

graph for N = 50, right graph for N = 100. Gray dots express a preference for TS, black dots

one for DM. 1000 replications.
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is slightly stronger in the northwest than in the southeast, according to TS and to DM,

with a difference of around 10 percentage points.

The right graph of Figure 2 shows the results for N = 100. For most parts of the

scheme, the version without DM appears to be the preferred strategy. DM dominance has

receded to an area approximately matching ΘR, with even two perverse spots along the

x–axis. Like the isolated area in the southeast at (0.4,−0.8) and (0.6,−0.8), we interpret

them as artifacts. In these areas, the difference in performance between TS and DM is so

small that a larger number of replications would be required to bring them out clearly.

We also ran some unreported exploratory experiments with larger N . The preference

area for DM versus TS shrinks faster than Greenland as the sample size increases. The DM

test yields a reliable decision procedure for AR within ARMA for those who are interested

in theoretical data-generating processes, but it does not help in selecting prediction models.

In summary, a tendency is palpable that for even larger N any support for the DM version

tends to disappear. The change from an implicit 15-20% test to a 5% test does not benefit

forecasting properties.

Generally, we note some typical features of our graphical visualization of the simulations.

A conservative procedure, i.e. one that tends to stay with the simpler AR model, will

dominate on the dark area in the Greenland plot, as there it is beneficial to use the AR

model as a forecasting tool. A rather liberal procedure, i.e. one that tends to prefer the

ARMA model and has ‘high power’ in the traditional sense of hypothesis testing, will

dominate on the outer light area of the Greenland plot. In this interpretation, a strategy

that dominates on the outer area and on a portion of the inner area can be seen as liberal

and relatively promising, while a strategy that inhabits a narrow outer margin is too liberal,

and one that lives on a narrow band around ΘR is too conservative to be efficient.

3.3 The bootstrapped F test and training

If a parallel experiment to the previous one is run on the basis of the F test due to Clark

and McCracken (2001,2005) that replaces the DM statistic by

N

2
×

∑N−1

t=N/2(e
2
1,t − e22,t)

∑N−1

t=N/2 e
2
2,t

,
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with prediction errors from the two models ej,t, j = 1, 2, this yields the outcome shown in

Figure 3. For N = 50, the additional testing step boosts forecasting accuracy on ΘR and

in some areas that may be artifacts. For N = 100, the procedures with and without the

testing step become so close that the picture fades. In summary, the additional testing step

helps in small samples if the generating model is AR(1) or at least very close to AR(1),

which is not surprising, whereas it does not help at all in larger samples.
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Figure 3: AR/ARMA model selected by MSE minimization over a training sample (TS) versus

selection based on an F test (TS-F-B) with bootstrapped significance points. Left graph for

N = 50, right graph for N = 100. Gray dots express a preference for TS, black dots one for the

F test. 1000 replications.

3.4 Nested models and naive normal distribution

As we mentioned above, the (normal) DM test is known to suffer from severe distortions

in nested model situations, see Clark and McCracken (2001, 2012). Nevertheless, it has

been used repeatedly in the empirical forecasting literature, and the typical handling of

stochastic properties may be somewhere in between the correct bootstrap used in the

previous subsection and the naive N(0,1) distribution suggested in the original DM paper.
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Again, we simulate ARMA(1,1) series of length N = 50, 100, with Gaussian N(0,1)

noise (εt) and the identical design as above. Out-of-sample forecasts for the latter half of

the sample are generated on the basis of AR(1) and ARMA(1,1) models with estimated

parameters, and the model with the lower MSE is used to predict the observation at

position N + 1. Significance of the DM test statistic, however, is now checked against the

theoretically incorrect N(0, 1) distribution instead of the carefully bootstrapped correct

null distribution.

The relative performance of the pure TS strategy and of the DM–test strategy is eval-

uated graphically in Figure 4. The area of preference for the DM strategy appears to be a

subset of the inner Greenland area, which implies that the selection strategy based on the

DM test with normal quantiles is suboptimal.
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Figure 4: AR/ARMA model selected by MSE minimization over a training sample (TS) versus

selection based on a Diebold-Mariano test (TS-DM-N) with ‘naive’ 5% N(0, 1) significance points.

Left graph for N = 50, right graph for N = 100. Gray dots express a preference for TS, black

dots one for DM. 1000 replications.
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3.5 AIC and training

According to Inoue and Kilian (2006), TS and AIC will be equivalent in large samples if

the training sample grows linearly with the sample size. In our experiments, we set the

training sample at 50% of the complete sample, i.e. slightly more than economic forecasters

tend to use although less than would be suggested by an asymptotic approximation to BIC.

The arguments considered by Inoue and Kilian (2006) again apply here. Information

criteria tend to exploit the information in the entire sample, while TS concentrates on

the part that is used as a training sample. As GW argue, this latter property constitutes

an advantage if the generating mechanism changes slowly over time, but our generating

models are exclusively time-homogeneous. Rather, TS focuses on the specific aim of the

forecasting exercise, while AIC has been derived on grounds of asymptotic properties and

is known to perform poorly in small samples (see McQuarrie and Tsai, 1998).

Figure 5 shows the regions where TS and AIC dominate. Among the strategies, AIC

is the exception, as it is the only procedure that tends to be more liberal than TS. For

this reason, the colors are turned on their heads, and TS dominates around ΘR, whereas

AIC dominates in the corners, where it classifies considerably more trajectories into the

ARMA(1,1) class. For the larger samples N = 100, AIC gains ground, maybe due to

its more efficient processing of the sample information. For the smaller samples N = 50,

TS dominance around ΘR is quite pronounced. On the whole, AIC–based forecast model

selection evolves as the most serious rival strategy to pure TS.

3.6 Giacomini-White and training

GW considered forecasts based on moving windows of fixed size m. In a sample of size N ,

N −m−2 such one-step forecasts are available, if the last observation XN is to be reserved

for a final evaluation. GW call their test statistic ‘Wald-type’ and define it formally as

Tm,n = n

[

n−1

N−2
∑

t=m

ht {g(e1,t+1)− g(e2,t+1)}
]′

Ω̂−1

n

[

n−1

N−2
∑

t=m

ht {(g(e1,t+1)− g(e2,t+1)}
]

,

with n = N−m−2 and g(x) = x2 in our case and ht a 2–vector of ‘test functions’, typically

specified as a constant 1 in the first position and the lagged discrepancy g(e1,t) − g(e2,t)
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Figure 5: Smaller MSE if either TS or AIC are used to select between ARMA(1,1) and AR(1) as

prediction models. Left graph for N = 50, right graph for N = 100. Light spots prefer TS, dark

spots prefer AIC.

in its second position. Denoting the summand terms by Zm,t+1, the 2 × 2–matrix Ω̂n is

defined as

Ω̂n = n−1

N−2
∑

t=m

Zm,t+1Z
′

m,t+1.

GW show that under their null this statistic Tm,n will be distributed as χ2
2. We note that

the construction of this test statistic is not symmetric, and we typically are interested in

the alternative of method 2 outperforming method 1, such that the discrepancies tend to

be positive.

We consider the efficiency of this test as a simplicity booster in the following sense. The

AR(1) and the ARMA(1,1) forecast are evaluated comparatively on expanding subsamples

as before. If the AR(1) forecast wins, it is selected. If the ARMA(1,1) forecast wins, it is

selected only in those cases where the GW test rejects at 5%. In line with the simulations

presented by GW, we specify m = N/3 for the window width.

Figure 6 shows that advantages for the GW step are restricted to the Greenland area

at N = 50 and weaken for N = 100. It may be argued that running the GW test at risk
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Figure 6: Smaller MSE if either pure TS or TS jointly with the Giacomini-White test at 5% are

used to select between ARMA(1,1) and AR(1) as prediction models. Left graph for N = 50, right

graph for N = 100. Light spots prefer pure TS, dark spots prefer TS with GW.

levels around 50% may benefit forecasting. We would like, however, to keep to the way

that the procedures are used in current practice, and a conventional risk level is part of the

TS-GW procedure in our design.

3.7 Summary of the nested experiment

Overall, it appears that the pure TS strategy that decides on the model to be eventually

used for prediction on the basis of a straightforward training-sample evaluation is hard to

beat. Any significance test decision on top of it in the sense of simplicity boosting tends

to worsen the results over a sizable portion of the parameter space. The least attractive

ideas appear to be DM testing based on the incorrect normal distribution and GW. The

most competitive idea appears to be the direct usage of information criteria.

In detail, if we compare the MSE values for TS with the bootstrapped DM and for AIC in

a graph that is comparable to the hitherto shown figures, no recognizable pattern emerges.

The difference among the two strategies appears to be dominated by the sampling variation
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in the Monte Carlo, and the two procedures have comparable quality. TS without any

further test does slightly worse but still comes pretty close to the two graphically analyzed

strategies. The other suggestions, TS-DM-N and GW, perform considerably worse.

In search of the reasons for the differences in performance among the strategies, one

may surmise that these are rooted in the frequency at which either of the two models is

selected. Figure 7 shows that this cannot be the complete explanation. For a reasonable

visualization, we restrict attention to a vertical slice through our maps, i.e. we show how

the strategies behave in the presence of pure MA generating models. For low θ, an AR(1)

may be a reasonable approximation for MA(1) behavior, and the implied forecasts may be

rather accurate. Thus, TS–based strategies may find it difficult to discriminate among the

two models. The primary impression, however, is dominated by a strong three-way classi-

fication among strategies: TS and AIC are ‘liberal’ procedures that are locally equivalent

to hypothesis tests at significance levels of around 20%; the two test-based strategies with

bootstrap approximately match the targeted 5% rate; the naive DM and the GW test are

extremely conservative and opt for AR models even in the presence of sizeable MA coef-

ficients. Within the three classes, differences are only slight: the F test performs ‘better’

than DM for negative θ and ‘worse’ for θ > 0; AIC appears to dominate TS; and GW is

even more conservative than naive DM.

Naive normal DM and Giacomini-White suffer from similar problems. The attempt of

the GW test to attain 5% significance at the Greenland boundary instead of the population

null hypothesis ΘR implies that the GW–based strategy has a much too strong preference

for simplicity. On the other hand, TS and AIC have a comparable tendency toward the more

complex model. AIC tends to dominate TS, however, as it selects the better trajectories

while the selection frequency is similar. This may be rooted in a more efficient processing

of sample information by taking the entire sample into account instead of concentrating

on the latter half. Quite successful strategies are TS-DM-B and TS-F. In particular for

small parameter values, these strategies boost simplicity efficiently and thus succeed in

overcoming the tendency of pure TS to classify trajectories with only weak evidence against

AR(1) as ARMA(1,1). Even if the generating models definitely are not AR(1), it remains

efficient to see them as AR(1), to estimate just an autoregressive coefficient, and to evaluate
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the concomitant forecast. Selection based on the bootstrapped tests and on AIC dominates,

and, as AIC is much faster and easier to calculate, the bottom line may be some preference

for traditional AIC.

−0.5 0.0 0.5

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

θ

fr
e

q
u

e
n

c
y

−0.5 0.0 0.5

0
20

0
40

0
60

0
80

0
10

00

θ

fr
eq

ue
nc

y

Figure 7: Frequency of choosing the AR(1) model rather than ARMA(1,1) if generating model

is MA with given coefficient θ. Curves stand for bootstrapped Diebold-Mariano (bold solid),

bootstrapped F (bold dash-dotted), AIC (bold dashed), Giacomini-White (dotted), unconstrained

TS (dashed), naive normal Diebold-Mariano (dash-dotted). Left graph for N = 50, right graph

for N = 100.

4 Other designs

4.1 A non-nested ARMA design

In this experiment, data are generated from ARMA(2,2) processes. There are twelve pairs

of AR coefficients. The left graph in Figure 8 shows their distribution across the stability

region. Eight pairs yield complex conjugates in the roots of the characteristic AR polyno-

mial and hence cyclical behavior in the generated processes. Three pairs imply real roots,

and one case is the origin in order to cover pure MA structures. We feel that this design
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exhausts the interesting cases in the stability region, avoiding near-nonstationary cases that

may impair the estimation step.

These autoregressive designs are combined with the moving-average specifications given

in the right graph of Figure 8: a benchmark case without MA component, a first-order MA

model, and an MA(2) model with θ1 = 0. Like in our other experiments, errors are

generated as Gaussian white noise.

This design is plausible. Second-order models are often considered for economics vari-

ables, as they are the simplest linear models that generate cycles. Thus, AR(2) models

are not unlikely empirical candidates for data generated from ARMA(2,2): the dependence

structure rejects white noise, autoregressive models can be fitted by simple least squares.

Similarly, ARMA(1,1) may be good candidates if a reliable ARMA estimator is available:

often, ARMA models are found to provide a more parsimonious fit than pure autoregres-

sions.
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Figure 8: Parameter values for the autoregressive part of the generated ARMA models within

the triangular region of stable AR models and values for the MA part within the invertibility

region for MA(2) models.

The columns headed ARMA and AR in Tables 1 and 2 show the MSE for predictions

using the ARMA(1,1) and the AR(2) models, respectively, if the data-generating process

is ARMA(2,2). We note that the prediction models are misspecified for most though not
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all parameter values. The first twelve lines correspond to the design (θ1, θ2) = (0, 0), when

the AR(2) model is correctly specified.

The prevailing impression is that the AR(2) model dominates at most parameter values.

This dominance is partly caused by the comparatively simpler MA part of the generating

processes, but it may also indicate greater robustness in the estimation of autoregressive

models as compared to mixed models. The relative performance of the two rival models,

measured by the ratio of MSE(AR) and MSE(ARMA), remains almost constant as N

increases from 100 to 200, which indicates that the large-sample ratios may already have

been attained. The absolute performance, however, improves perceptibly as the sample

size increases.

The columns headed TS and DM-N report the MSE based on the direct evaluation

of a training sample and on the additional DM step on the basis of Gaussian significance

points in line with the non-nested design. In pure AR(2) designs, there are mostly gains

for imposing the DM step. The null model of the test is the true model, and the extra

step helps in supporting it. For strong MA effects, the DM step tends to incur some

deterioration.

Another column (DM-B) refers to the DM-based selection using bootstrapped sig-

nificance points. This bootstrapped version classifies substantially more trajectories as

ARMA(1,1) than DM-N or TS, which incurs a deterioration in performance. Note that

bootstrapping has been conducted for the test null model, i.e. the AR(2) model, which

is not the data-generating mechanism that is presumed unknown to the forecaster. This

situation may be representative for empirical situations where the data-generating mecha-

nism is also unknown and the null distribution used for the bootstrap is unreliable. It is of

some interest that DM-B does not even perform satisfactorily when AR(2) is the generat-

ing model. For most parameter constellations, DM-B performs worst among all competing

procedures.

The column AIC selects the forecasting model based on the likelihood, as both rival

models have two free parameters. In most cases, AR(2) incurs the better likelihood than

ARMA(1,1), the forecasts remain close to the AR forecasts, and AIC wins in approximately

one third of all cases, on a par with DM-N and with GW.
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Table 1: Results of the simulation for N = 100.

design parameter values mean squared errors

φ1 φ2 θ1 θ2 ARMA AR TS DM-N DM-B AIC GW F-B

0 0.5 0 0 1.145 0.981 0.983 0.981 1.055 0.981 0.982 1.000

-0.5 0 0 0 0.989 0.995 0.995 0.995 1.048 0.993 0.995 0.995

0 0 0 0 0.995 0.991 0.998 0.994 1.052 0.998 0.992 0.990

0.5 0 0 0 0.983 0.984 0.981 0.984 1.047 0.983 0.984 0.985

-0.5 -0.5 0 0 1.158 1.002 1.014 1.004 1.066 1.010 1.002 0.991

0 -0.5 0 0 1.345 1.011 1.014 1.011 1.185 1.011 1.011 1.029

0.5 -0.5 0 0 1.161 1.006 1.020 1.006 1.103 1.010 1.006 1.025

-1 -0.75 0 0 1.544 0.997 1.003 0.997 1.047 1.001 0.994 0.996

-0.5 -0.75 0 0 1.752 1.006 1.009 1.006 1.491 1.006 1.006 0.984

0 -0.75 0 0 2.242 1.018 1.019 1.018 1.487 1.018 1.018 1.057

0.5 -0.75 0 0 1.738 1.019 1.026 1.019 1.155 1.019 1.019 1.037

1 -0.75 0 0 1.483 0.991 0.996 0.992 1.064 0.991 0.991 1.031

0 0.5 0 0.75 2.651 1.318 1.318 1.318 1.527 1.318 1.318 1.318

-0.5 0 0 0.75 1.336 1.279 1.284 1.279 1.386 1.279 1.279 1.280

0 0 0 0.75 1.380 1.167 1.166 1.166 1.258 1.167 1.167 1.181

0.5 0 0 0.75 1.370 1.286 1.293 1.286 1.395 1.286 1.289 1.293

-0.5 -0.5 0 0.75 1.169 1.178 1.171 1.176 1.278 1.178 1.176 1.181

0 -0.5 0 0.75 1.169 1.018 1.024 1.017 1.102 1.016 1.019 1.020

0.5 -0.5 0 0.75 1.171 1.167 1.165 1.167 1.266 1.167 1.167 1.163

-1 -0.75 0 0.75 1.845 1.365 1.366 1.366 2.171 1.365 1.363 1.364

-0.5 -0.75 0 0.75 1.248 1.177 1.184 1.182 1.262 1.179 1.177 1.173

0 -0.75 0 0.75 0.995 0.991 0.998 0.994 1.046 0.998 0.993 0.991

0.5 -0.75 0 0.75 1.264 1.185 1.193 1.184 1.306 1.185 1.185 1.209

1 -0.75 0 0.75 1.867 1.323 1.325 1.323 1.477 1.323 1.323 1.330
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design parameter values mean squared errors

φ1 φ2 θ1 θ2 ARMA AR TS DM-N DM-B AIC GW F-B

0 0.5 0.75 0 0.980 0.984 0.982 0.985 1.053 0.982 0.984 0.983

-0.5 0 0.75 0 1.010 1.009 1.012 1.006 1.080 1.012 1.016 1.008

0 0 0.75 0 1.006 1.086 1.020 1.063 1.047 1.012 1.083 1.040

0.5 0 0.75 0 0.995 1.147 1.017 1.048 1.092 1.003 1.120 1.039

-0.5 -0.5 0.75 0 1.565 1.212 1.220 1.211 1.410 1.218 1.212 1.234

0 -0.5 0.75 0 1.316 1.304 1.278 1.294 1.337 1.275 1.302 1.316

0.5 -0.5 0.75 0 1.260 1.317 1.281 1.264 1.331 1.297 1.303 1.294

-1 -0.75 0.75 0 1.829 1.270 1.280 1.270 1.389 1.274 1.270 1.271

-0.5 -0.75 0.75 0 2.553 1.360 1.371 1.360 2.189 1.360 1.360 1.370

0 -0.75 0.75 0 2.284 1.436 1.475 1.438 2.019 1.444 1.434 1.704

0.5 -0.75 0.75 0 2.047 1.435 1.496 1.443 2.028 1.450 1.437 1.626

1 -0.75 0.75 0 2.000 1.413 1.441 1.410 1.961 1.425 1.402 1.639

0 0.5 0.75 0.75 1.856 1.635 1.657 1.639 1.758 1.635 1.636 1.653

-0.5 0 0.75 0.75 1.443 1.277 1.283 1.280 1.353 1.277 1.277 1.296

0 0 0.75 0.75 1.300 1.293 1.290 1.294 1.383 1.293 1.292 1.303

0.5 0 0.75 0.75 1.386 1.272 1.281 1.275 1.361 1.272 1.272 1.271

-0.5 -0.5 0.75 0.75 1.067 1.069 1.066 1.068 1.120 1.072 1.069 1.070

0 -0.5 0.75 0.75 1.288 1.179 1.189 1.183 1.264 1.179 1.178 1.214

0.5 -0.5 0.75 0.75 1.618 1.305 1.329 1.306 1.377 1.305 1.310 1.337

-1 -0.75 0.75 0.75 1.051 1.054 1.051 1.053 1.141 1.054 1.054 1.054

-0.5 -0.75 0.75 0.75 1.117 1.067 1.073 1.067 1.123 1.068 1.069 1.067

0 -0.75 0.75 0.75 1.680 1.326 1.353 1.324 1.413 1.327 1.327 1.360

0.5 -0.75 0.75 0.75 2.366 1.515 1.535 1.520 1.826 1.515 1.526 1.836

1 -0.75 0.75 0.75 3.058 1.630 1.636 1.629 2.631 1.630 1.632 1.727
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Table 2: Results of the simulation for N = 200.

design parameter values mean squared errors

φ1 φ2 θ1 θ2 ARMA AR TS DM-N DM-B AIC GW F-B

0 0.5 0 0 1.180 0.978 0.981 0.978 0.984 0.978 0.978 0.977

-0.5 0 0 0 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.986

0 0 0 0 0.988 0.983 0.986 0.983 1.136 0.986 0.983 1.142

0.5 0 0 0 0.984 0.982 0.984 0.983 0.981 0.984 0.982 0.982

-0.5 -0.5 0 0 1.143 0.990 0.985 0.991 0.997 0.989 0.990 1.006

0 -0.5 0 0 1.278 0.995 0.995 0.995 1.194 0.995 0.995 1.002

0.5 -0.5 0 0 1.135 0.991 0.992 0.991 1.100 0.991 0.991 1.006

-1 -0.75 0 0 1.517 0.985 0.990 0.985 0.985 0.985 0.985 1.019

-0.5 -0.75 0 0 1.700 0.993 0.993 0.993 1.684 0.993 0.993 1.013

0 -0.75 0 0 2.053 0.994 0.994 0.994 1.813 0.994 0.994 1.047

0.5 -0.75 0 0 1.704 0.993 0.993 0.993 1.214 0.993 0.993 1.014

1 -0.75 0 0 1.466 0.993 0.991 0.993 1.040 0.993 0.993 1.022

0 0.5 0 0.75 2.480 1.344 1.344 1.344 1.711 1.344 1.344 1.342

-0.5 0 0 0.75 1.384 1.278 1.281 1.278 1.258 1.278 1.278 1.262

0 0 0 0.75 1.426 1.163 1.164 1.163 1.170 1.163 1.163 1.167

0.5 0 0 0.75 1.409 1.332 1.331 1.332 1.330 1.332 1.332 1.324

-0.5 -0.5 0 0.75 1.179 1.181 1.181 1.180 1.177 1.181 1.181 1.182

0 -0.5 0 0.75 1.039 1.009 1.011 1.009 1.013 1.011 1.010 1.013

0.5 -0.5 0 0.75 1.183 1.180 1.180 1.179 1.175 1.180 1.181 1.188

-1 -0.75 0 0.75 1.931 1.409 1.408 1.408 1.412 1.409 1.409 1.412

-0.5 -0.75 0 0.75 1.233 1.171 1.173 1.169 1.179 1.171 1.171 1.177

0 -0.75 0 0.75 0.988 0.983 0.987 0.982 1.023 0.986 0.983 1.019

0.5 -0.75 0 0.75 1.277 1.193 1.197 1.192 1.262 1.193 1.193 1.186

1 -0.75 0 0.75 1.915 1.370 1.376 1.370 1.391 1.370 1.370 1.386
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design parameter values mean squared errors

φ1 φ2 θ1 θ2 ARMA AR TS DM-N DM-B AIC GW F-B

0 0.5 0.75 0 0.985 0.987 0.987 0.987 0.984 0.987 0.987 0.987

-0.5 0 0.75 0 0.989 1.008 0.993 0.999 0.989 0.989 1.007 1.009

0 0 0.75 0 0.990 1.097 0.993 1.029 0.991 0.988 1.076 1.035

0.5 0 0.75 0 0.982 1.164 0.986 1.040 0.983 0.982 1.089 0.985

-0.5 -0.5 0.75 0 1.497 1.220 1.233 1.219 1.477 1.214 1.220 1.204

0 -0.5 0.75 0 1.271 1.307 1.266 1.290 1.277 1.254 1.308 1.288

0.5 -0.5 0.75 0 1.269 1.353 1.276 1.332 1.253 1.241 1.347 1.349

-1 -0.75 0.75 0 1.736 1.309 1.309 1.309 1.309 1.309 1.309 1.309

-0.5 -0.75 0.75 0 2.445 1.362 1.362 1.362 2.304 1.362 1.362 1.362

0 -0.75 0.75 0 2.080 1.447 1.446 1.447 2.083 1.446 1.446 1.749

0.5 -0.75 0.75 0 2.094 1.472 1.496 1.469 2.095 1.475 1.473 1.799

1 -0.75 0.75 0 2.038 1.481 1.512 1.484 2.035 1.493 1.477 1.765

0 0.5 0.75 0.75 1.931 1.730 1.728 1.730 1.746 1.730 1.723 1.723

-0.5 0 0.75 0.75 1.491 1.294 1.299 1.294 1.335 1.295 1.294 1.307

0 0 0.75 0.75 1.323 1.317 1.320 1.318 1.324 1.317 1.318 1.285

0.5 0 0.75 0.75 1.428 1.293 1.290 1.293 1.296 1.293 1.293 1.294

-0.5 -0.5 0.75 0.75 1.060 1.055 1.055 1.056 1.057 1.056 1.055 1.056

0 -0.5 0.75 0.75 1.289 1.177 1.179 1.177 1.242 1.177 1.177 1.175

0.5 -0.5 0.75 0.75 1.663 1.344 1.351 1.344 1.352 1.344 1.346 1.356

-1 -0.75 0.75 0.75 1.088 1.079 1.085 1.079 1.092 1.079 1.078 1.071

-0.5 -0.75 0.75 0.75 1.082 1.054 1.059 1.055 1.065 1.057 1.054 1.060

0 -0.75 0.75 0.75 1.656 1.349 1.352 1.349 1.443 1.349 1.350 1.409

0.5 -0.75 0.75 0.75 2.440 1.590 1.599 1.592 2.213 1.590 1.591 1.746

1 -0.75 0.75 0.75 3.214 1.697 1.695 1.695 3.198 1.697 1.697 1.827
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The information conveyed in Tables 1 and 2 can be summarized as follows. ForN = 100,

the procedures DM-N, AIC, and GW are approximately equivalent, and they dominate the

simple TS comparison. The bootstrapped DM-B is not competitive, and this includes

those designs where actually AR(2) is the correctly specified model. For N = 200, the

simple TS comparison comes closer to the dominant procedures DM-N, AIC, GW, whereas

DM-B still fails to convince. In summary, TS is not optimal as a decision guideline, and

it pays to boost simplicity by making the selection procedure more conservative. Among

the three conservative tests, GW is the most conservative one, and it approximates the

pure AR(2) strategy at least for N = 200. DM-B does not fail because it is too liberal,

but rather because it chooses the wrong trajectories. In other words, ARMA is selected

in those cases where AR would have generated the better forecast even though it is not

the generating model. We also note that by optimizing the selection among trajectories,

the pure strategies can be improved upon, and that similarly a bad selection strategy can

perform worse than the worse pure strategy. For example, white noise for N = 200 is

predicted better by AR(2) than by ARMA(1,1), and GW comes close to AR(2) by almost

never rejecting its null, whereas DM-B performs much worse than the pure ARMA(1,1)

strategy.

4.2 A nonlinear generation mechanism

In this experiment, the data are generated by a nonlinear time-series process that has been

suggested by Tiao and Tsay (1994) for the growth rate of U.S. gross national output. Their

self-exciting threshold autoregressive (SETAR) model defines four regimes that correspond

to whether an economy is in a recession or in an expansion and on whether the recessive

or expansive tendencies are accelerating or decelerating.

Define Xt as the growth rate of U.S. output. With parameter values directly taken from

the model fitted by Tiao and Tsay (1994), the model reads

Xt =



























−0.015− 1.076Xt−1 + ε1,t, Xt−1 ≤ Xt−2 ≤ 0,

−0.006 + 0.630Xt−1 − 0.756Xt−2 + ε2,t, Xt−1 > Xt−2, Xt−2 ≤ 0,

0.006 + 0.438Xt−1 + ε3,t, Xt−1 ≤ Xt−2, Xt−2 > 0,

0.004 + 0.443Xt−1 + ε4,t, Xt−1 > Xt−2 > 0.
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Errors εj,t are Gaussian white noise. Their standard deviations σj =
√

Eε2j,t, σ1 = 0.0062,

σ2 = 0.0132, σ3 = 0.0094, and σ4 = 0.0082, are an important part of the parametric

structure. In contrast to linear models, threshold models may behave quite differently if

the relative scales of the error processes change.

For a more recent summary of known results on the statistical properties of this model

class, see Fan and Yao (2005). Some further characteristics are revealed easily by some

simulation and inspection. Within regime 1, which corresponds to a deepening economic

recession, the model is ‘locally unstable’, as the coefficient is less than −1. Nevertheless,

the model is ‘globally stable’. In fact, it is the large negative coefficient in regime 1, where

lagged growth rates are by definition negative, which pushes the economy quickly out of

a recession. Xt tends to remain in regimes 3 and 4 for much longer time spans than in

regime 2, and it spends the shortest episodes in the deepening recession of regime 1. Thus,

the exercise of fitting linear time-series models to simulated trajectories often leads to

coefficient estimates that are close to those for regimes 3 and 4.

For our prediction experiment, we use samples drawn from the SETAR process with

N = 100, 200. Burn-in samples of 1000 observations are generated and discarded, as the

distribution of the nonlinear generating process may be affected by starting conditions. 1000

replications are performed. The hypothetical forecaster is supposed to be unaware of the

nonlinear nature of the DGP, and she fits AR(p) and ARMA(p, p) models to the time series.

In analogy to the other experimental designs, the models deliver out-of-sample forecasts

for the latter half of the observation range, excepting the very last time point. Either

the model with better performance in the training sample or the one that is ‘significantly’

better according to a test is used to forecast this last time point. We also compare the

accuracy of the strategies to the forecasts that always use the autoregressive or the ARMA

model.

A main difference to the former experiments is that, rather than imposing a fixed lag

order p on the time-series models, we determine an optimal p̂ by minimizing AIC over the

range 1, . . . , p∗. The ARMA model uses twice as many parameters as the AR model, so

maximum lag orders are set at the popular rules of thumb 2
√
N/3 for the AR and at

√
N/3

for the ARMA model. This choice is not very influential, as AIC minimization typically
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implies low lag orders in most replications.

Although it is of little relevance for our focus, we conjecture that the null hypothesis of

the DM test may hold. The model is stationary and thus admits a Wold representation that

in turn may be approximated to an arbitrary precision by ARMA models and, provided

the Wold representation does not come ‘close’ to moving-average unit roots, also by AR

models. Thus, in population both models entail the same predictive accuracy, assuming

the mentioned condition is fulfilled, which is difficult to check but is insinuated by the

construction of the data-generating process. By contrast, the null of the GW test does

not hold, as we demonstrate in our simulations that show a small but quite persistent

advantage for the AR model. If we view the GW test as one-sided, however, ARMA can

definitely not outperform AR significantly in the sense of the GW test. Of course, these

features are of little interest if we focus on the prediction properties of the strategies.

Table 3 gives the resulting values for the mean squared errors. For N = 100, the pure

AR appears to approximate better than the ARMA model. Choosing the better model

on the basis of a pure comparison of performance over the training sample (TS) yields an

MSE that is slightly better than forecasting by always using the AR model. This average

hides some specific features in single replications. For example, the AR model is preferred

on the basis of the training sample in 697 out of 1000 replications, while in the remaining

303 cases the ARMA model can be substantially better. Applying the DM test in order to

revise the comparison reduces the cases of selecting ARMA from 303 to 58. This TS-DM-N

strategy incurs a further slight improvement in accuracy.

Other strategies deserve being mentioned. For example, always staying with the AR

model dominates always choosing the ARMA model in a mere 52% of the cases, in line

with the only moderate improvement by the TS–based choice. Using the Giacomini-White

test on top of the TS choice turns out to be nearly equivalent to the pure AR strategy,

as the ARMA forecast is significantly better than the AR forecast in only 3 out of 1000

replications. In these 3 cases, ARMA forecasting is a lot better than AR forecasting, thus

the GW–based choice improves upon the pure AR forecast. With N = 200 observations,

GW rejection becomes more frequent, but curiously enough GW–based forecasting improves

upon pure AR for single-step predictions only.
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Table 3: Results of the SETAR experiment: one-step forecasts.

MSE×10−4 frequency ≻
N = 100 N = 200 N = 100 N = 200

AR 1.115 1.037 0.518 0.479

ARMA 1.133 1.044 0.482 0.521

TS 1.113 1.041 0.123 0.118

TS-DM-N 1.112 1.038 0.122 0.106

TS-DM-B 1.123 1.040

TS-F-B 1.124 1.038

AIC 1.131 1.041

GW 1.114 1.040

Notes: ‘frequency ≻’ gives the empirical frequency of the model yielding the better predic-

tion for the observation at t = N .

Determining the DM significance points by time-consuming bootstrap yields a classi-

fication comparable to pure TS, with some 35% of the replications choosing the ARMA

model. Performance is also close to TS. Also AIC generates a comparable probability of

preference among rival models, but it tends to select trajectories less efficiently, such that

the MSE increases relative to TS or TS-DM. AIC is no panacea, and it may be dominated

by smarter selection methods, if none of the rivals is based on correct specification. Modi-

fications of AIC in the presence of misspecification were considered, e.g., by Reschenhofer

(1999).

Note that Table 3 provides ‘percentage better’ for pairwise comparisons only. AR and

ARMA forecasts can be compared by frequencies, and so can TS and TS-DM-N, where

results are identical for around 75% of all trajectories. The remaining procedures TS-DM-

B, AIC, and GW are also defeated in such pairwise comparisons with TS.

When the sample size increases to N = 200, the effect in favor of DM testing weakens.

Both test-based approaches are beaten by the pure AR model. There is still a slight ad-

vantage for the DM–based search. The frequency of significant rejections decreases slightly
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to 3.5%. Even in these cases do the ARMA models offer no systematic improvement of

forecasting accuracy. This result is in keeping with the previous experiment, where the

beneficial effect of a flanking test weakens in larger samples.

For distributions with high variance, MSE may not be the most reliable evaluation

criterion. When the cases of improvement among the replications are counted, even the

slight advantage for test-based selection is turned on its head. At N = 200, in 118 cases

is the pure training-sample comparison better, while there are only 106 cases with the

opposite ranking. By construction, the forecasts are identical for the remaining 776 cases.

At N = 100, wins and losses are fairly identical: the test-based procedure wins 123 times,

and the comparison without flanking test 122 times. Application of the DM test helps as

much as tossing a coin.

It is interesting that a similar remark holds, however, with respect to the ranking among

the AR and ARMA forecasts. For N = 200, the ARMA model forecasts better in 521 out

of 1000 cases, even though it yields the larger MSE. Note that the strong preference for the

AR model by the training samples is based on an MSE comparison. Counting cases would

yield a different selection. With the smaller sample of N = 100, support for the AR model

is more unanimous. It yields the smaller MSE as well as the better head count, though

with a comparatively small preponderance of 518 cases.

Particularly in this experiment, we also considered different specifications for the relative

length of training and test sets. The empirical literature often uses shorter test sets, and we

accordingly reduced them from 50% to 25% of the data. For N = 100, this indeed induces

a slight improvement in predictive accuracy, with a stronger effect on the method without

additional DM test. For N = 200, this variant entails no change in MSE. Again, selection

without DM testing wins with regard to the count of cases. These rather ambiguous

effects of shortening the test sample are a bit surprising, as the simulation design involves

switches among regimes with locally linear behavior, such that a shorter test set increases

the chance that the whole set remains within a regime, which may benefit prediction. Our

general impression is that there is little motivation for working with short test sets. This

impression is confirmed by some unreported simulation variants for the other experimental

designs.
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Table 4: Results of the SETAR experiment: two-step forecasts.

MSE×10−4 frequency ≻
N = 100 N = 200 N = 100 N = 200

AR 1.248 1.191 0.513 0.478

ARMA 1.285 1.198 0.487 0.522

TS 1.258 1.189 0.131 0.115

TS-DM-N 1.247 1.192 0.122 0.108

TS-DM-B 1.259 1.193

TS-F-B 1.263 1.197

AIC 1.291 1.195

GW 1.247 1.191

Notes: ‘frequency ≻’ gives the empirical frequency of the model yielding the better predic-

tion for the observation at t = N .

Similarly, we also considered changing the significance level for the DM test to 10%.

This implies that more cases of improved MSE become significant and that the procedure

approaches pure selection. Indeed, this helps in improving average MSE for N = 100, while

there is no change for N = 200 relative to the 5% procedure.

In particular for nonlinear models, larger forecast horizons may also be of interest. Table

4 displays the results for two-step forecasts. The DM-based procedure shows some merits

for the smaller sample N = 100, while it fails to improve the results for N = 200. For

N = 200, the pure comparison yields a slightly lower MSE than the AR forecast, which

indicates that it successfully singles out trajectories that benefit from using the ARMA

model. The count of cases favors skipping the DM–testing step in all variants.

Again, we re-ran this experiment with significance levels other than 5%, though we do

not report detailed results. Tuning the DM decision to a looser significance level implies a

slight deterioration for N = 200.
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4.3 A variable in a macroeconomic core VAR

Our first two experiments target an exhaustive exploration of the admissible parameter

space. There is no indication which designs are close to empirical economic situations. By

contrast, the SETAR experiment and this last experiment are inspired by dynamic patterns

that appear in actual economic data. In this last design, data are generated from a small

vector autoregression. VAR models typically imply univariate ARMA models for their

components (e.g., see Lütkepohl, 2005). To these ARMA data, AR and ARMA models

are fitted using information criteria. This results in the situation of incomplete nesting or

overlapping in the terminology of Vuong (1989). In order to attain a good representativeness

of economic data, we adopt a design from an empirical forecasting project by Costantini

and Kunst (2011).

Costantini and Kunst (2011) fit vector autoregressions (VAR) to three-variable macroe-

conomic core sets for the French and U.K. economies. From their sets, we select the

British VAR as a generating mechanism and focus on the rate of price inflation among its

components. Our choice has been guided by the dynamic dependence structures of the

components, which turned out to be strongest and thus most interesting for the inflation

series.

Table 5 shows that the AR forecasts are better than the ARMA forecasts at both

N = 100 and N = 200. We note that the ARMA forecasts are not necessarily based on

the true model, as the AIC lag selection tends to find lower orders than the theoretically

correct ARMA model class. If the pure training-sample comparison is used, approximately

two out of three replications favor the simpler AR model at N = 200, and on average the

MSE is in between the smaller AR and the larger ARMA numbers. Subjecting this decision

to a DM test on the basis of normal 95% quantiles leads to a very conservative procedure

that chooses AR in 93% (N = 100) to 99% (N = 200) of all cases. This implies a small

gain in precision for N = 100, where the procedure is too conservative, while for N = 200

it implies a value close to the AR minimum. Using the Giacomini-White test instead yields

an even more conservative decision (98% for N = 100 and 95% for N = 200) that turns out

to be optimal here, as always using the AR model would be the dominant strategy. Basing

the choice between AR and ARMA on AIC instead implies good performance for N = 100
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Table 5: Results of the core VAR experiment.

MSE frequency ≻
N = 100 N = 200 N = 100 N = 200

AR 0.174 0.183 0.55 0.55

ARMA 0.197 0.206 0.45 0.45

TS 0.183 0.191

TS-F 0.182

DM-N 0.181 0.183 0.25:0.22 0.18:0.15

GW 0.175 0.183 0.34:0.34 0.27:0.24

AIC 0.177 0.190 0.27:0.25 0.18:0.17

Notes: ‘frequency ≻’ gives the empirical frequency of the model yielding a better prediction

versus TS for the observation at t = N .

but a not quite so strong showing for N = 200. AIC selects the simpler AR model in 83%

(N = 100) to 88% (N = 200) of all cases.

This experiment was also conducted for larger prediction horizons. The results are

generally in line with the reported case of one-step forecasts.

5 Summary and conclusion

Our work was inspired by concerns that the widespread usage of predictive-ability tests

may entail an unhealthy preference toward simple prediction models that are dominated

by better models though not significantly according to test results. Our simulations have

confirmed that such concerns may be well-founded if forecasters actually base their selection

on test outcomes.

We view our first design as the most important one, although literally correct spec-

ifications may not be common in forecasting applications. If the generating model is

ARMA(1,1), it is indeed profitable to use AR(1) for prediction if the coefficient param-

eters are unknown, at least for a sizable portion of the parameter space. Nonetheless,

flanking a training-sample comparison by a Diebold-Mariano test results in an excessively
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conservative selection, as long as the incorrect N(0,1) significance points are used. If the

distribution is bootstrapped, selection improves, but a simple AIC evaluation serves the

same purpose and is much less time-consuming. The Giacomini-White test, although we

concede that it addresses the main issue of interest, is too conservative in this and in all

other experiments.

In our second design, data are generated from an ARMA(2,2) model, and AR(2) and

ARMA(1,1) are considered as forecasting devices. This situation of underspecification by all

rivals may be relevant in applications. Here, it evolves that indeed does the DM test often

help in boosting the more resilient AR(2) model in many specifications, but bootstrapping

the DM distribution becomes counter-productive. We note that in practice it is never

known whether models are correctly specified, thus the observation that bootstrapping an

incorrect model implies bad model selection may also be relevant.

The third design uses a mildly nonlinear generation process that may be quite realistic,

and considers AIC–fitted AR and ARMA models as prediction tools. There is actually not

much to choose between the two classes, although there is some preference for AR prediction

in smaller samples. Model selection based on a training sample hardly improves by DM

testing with normal significance points, and deteriorates by bootstrapped DM testing,

which again points to the danger of bootstrapping misspecified models. AIC performs

poorly, suggesting that it is no panacea if none of the rivals is optimally specified.

In a fourth design, we use a VAR with coefficients fitted to macroeconomic data for

the United Kingdom and we focus on predicting the component with the strongest time

dependence structure, the rate of inflation. In a VAR(2), components follow ‘marginal’

univariate ARMA models, so the design resembles the second experiment. However, in this

experiment we entertained AR and ARMA prediction models guided by an AIC search.

Then, the DM step implies a deterioration of prediction accuracy in all considered variants.

Our general impression from the prediction experiments is that adding a significance

test to a selection of prediction models guided by a training sample fails to systematically

improve predictive accuracy. The evaluation of prediction accuracy of rival models over a

substantial part of the available sample is a strong selection tool in itself that hardly needs

another significance test to additionally support the simpler model.
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