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Linear Time Iteration

Pontus Rendahl†

University of Cambridge, CfM, and CEPR
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Abstract

This paper proposes a simple iterative method – time iteration – to solve linear rational expec-

tation models. I prove that this method converges to the solution with the smallest eigenvalues

in absolute value, and provide the conditions under which this solution is unique. In particular,

if conditions similar to those of Blanchard and Kahn (1980) are met, the procedure converges

to the unique stable solution. Apart from its transparency and simplicity of implementation,

the method provides a straightforward approach to solving models with less standard features,

such as regime switching models. For large-scale problems the method is 10-20 times faster

than existing solution methods.

†The author would like to thank SeHyoun Ahn, Ben Moll, Wouter J. den Haan, Greg Kaplan, Tamas

Papp, and Michael Reiter for helpful comments and suggestions. The usual disclaimer applies. E-mail:

pontus.rendahl@gmail.com.



1 Introduction

Solving linear(ized) rational expectation models is a cornerstone in any macroeconomist’s toolkit.

In a seminal paper, Blanchard and Kahn (1980) provided the foundations for how to solve a certain

class of such models, and how to verify the stability and uniqueness of a solution. As their class

of models, however, was confined to deal with frameworks absent of intratemporal relationships –

such as accounting identities, or optimal static choices – a plethora of alternative solution methods

has emerged to (successfully) address this seemingly trivial problem.1 Nevertheless, while these

alternative methods are both fast and accurate, they are quite esoteric and lack in transparency.2 As

a consequence, it is common for most researchers to instead rely on pre-canned routines.

This paper takes a step forward by providing a method that improves both the simplicity and

transparency of solving linear rational expectation models, without any loss of applicability or

efficiency. In particular, I propose an iterative schedule for which the sequence of approximate

solutions converges to the solution to the problem with the smallest eigenvalues in absolute value,

and provided conditions under which the solution is unique and stable.

The logic underlying the procedure is simple enough to be described in words. Envisage an

agent having a certain amount of an asset, facing the choice between how much of this asset to

consume and how much to save. An optimal choice would trade off the marginal benefit of saving

(future consumption) with its marginal cost (forgone current consumption). The resulting optimal

decision is implied by a linear(ized) second-order difference equation.

However, while the marginal cost associated with any choice is clear – since both the current

value of the asset is known, and the choice of saving pins down current consumption – the marginal

benefit is not readily known. In particular, the future marginal benefit of saving depends on the

optimal saving choice in the future. Thus, an optimal choice today can only be determined under

the condition that the optimal choice in the future is known; thus the problem amounts to finding a

fixed point. To solve this problem, this paper proposes to guess for the optimal choice of saving in

the future as a linear function of the associated state (which is given by the optimal choice in the

present). Given such a guess, the optimal choice in the present is then trivially given by solving a

linear equation. However, the current optimal choice provides us with another suggestion regarding

future optimal behavior, and the guess is updated accordingly.

This procedure is shown to be convergent, and, as previously mentioned converges to the

solution with the smallest eigenvalues in absolute value. After having proved the papers main

1Examples include Klein (2000), Uhlig (2001), Christiano (2002), and Sims (2002). King and Watson (2002) show

that any linearized system can be recast into the original formulation of Blanchard and Kahn (1980).
2For instance, Sims (2002) writes “While these more general solution methods are themselves harder to understand,

they shift the burden of analysis from the individual economist/model-solver toward the computer, and are therefore

useful.”
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Propositions, I subsequently illustrate how the method works using four examples, including

problems in continuous-time, and regime switching models. Lastly, I compare the performance

of the algorithm to existing solution methods, and find that the proposed method is 10-20 times

faster for large-scale problems. Thus, the method may provide useful in addressing problems such

as those considered in Reiter (2009).

2 Method

The model of interest is given by

Axt−1 +Bxt +CEtxt+1 +ut = 0, (1)

where xt is an n×1 vector containing endogenous and exogenous variables, ut is an n×1 vector of

mean-zero disturbances, and A, B and C are conformable matrices.

We are interested in a recursive solution of the type xt = Fxt−1 +Qut . Inserting this rule into

equation (1) gives,

Axt−1 +Bxt +CFxt +ut = 0.

Thus, the matrix Q is given by

Q =−(B+CF)−1, (2)

and F must be the solution to the quadratic matrix equation (cf. Uhlig (2001))

A+BF +CF2 = 0. (3)

If F is known, finding Q is a trivial operation following equation (2). From hereon, the focus of this

paper is therefore on solving equation (3).

A solution to equation (3) is called a solvent.

Definition 1. A solvent S1 of (3) is a dominant solvent if λ (S1) = {λ1, . . . ,λn} and |λn|> |λn+1|

where the eigenvalues are ordered according to

|λ1| ≥ |λ2| ≥ . . .≥ |λ2n|.

A solvent S2 of (3) is a minimal solvent if λ (S2) = {λn+1, . . . ,λ2n} and |λn|> |λn+1|.
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Theorem 1. (Higham and Kim (2000), Theorem 6) Suppose that the Eigenvalues that solves

(A+Bλ +Cλ 2)x = 0, (4)

satisfy the ordering and conditions of Definition 1, and that corresponding to {λi}
n
i=1 and {λi}

2n
i=n+1

there are two sets of linearly independent eigenvectors {v1, . . . ,vn} and {vn+1, . . . ,v2n}, then there

exist a dominant, S1, and a minimal solvent, S2, of (3).

Theorem 2. (Gohberg, Lancaster and Rodman (1982), Theorem 4.1) If a dominant and a minimal

solvent exist they are unique.

2.1 Time iteration

The main equation of interest is given by3

Axt−1 +Bxt +Cxt+1 = 0.

Suppose we have a candidate solvent, Fn. Then consider solving the following problem for xt

Axt−1 +Bxt +CFnxt = 0.

The solution is trivially given by

xt =−(B+CFn)
−1Axt−1.

Thus, we will therefore update our guess, Fn+1, as4

Fn+1 =−(B+CFn)
−1A.

In order to prove that this is a convergent procedure, we will need the following lemma.

Lemma 1. Let Z1 and Z2 be square matrices such that

min{|λ | : λ ∈ λ (Z1)}> max{|λ | : λ ∈ λ (Z2)}.

3Recall that it is sufficient to solve the deterministic part of the problem in order to retrieve F . The matrix Q the

follows straightforwardly from equation (2).
4Binder and Pesaran (1995), footnote 26, propose a similar iterative procedure, but do not provide any proof of

convergence, nor conditions for stability/uniqueness.
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Then Z1 is nonsingular and for any matrix norm

lim
i→∞

‖Zi
2‖‖Z−i

1 ‖= 0

Proof. Gohberg et al. (1982), Lemma 4.9

Proposition 1. Suppose a dominant, S1, and a minimal solvent, S2, exist for equation (3). Then, if

the matrix (B+CFn) is nonsingular for all n, the sequence {Fn}
∞

n=0 defined as

Fn+1 = (B+CFn)
−1(−A), F0 6= S1, (5)

converges to S2.

Proof. In Appendix A.

The proof of Proposition 1 follows Higham and Kim (2000) quite closely, with some tweaks to

fit the purposes of this paper.

The procedure is guaranteed to converge the minimal solvent, S2. If all the eigenvalues of S2

is less than one in absolute value, S2 is indeed a (stable) solution to the quadratic matrix equation.

Thus a stable solution exist. However, that does not necessarily imply that S2 is the only stable

solution. Indeed, the dominant solvent S1 – or some other solvent – may also be stable. To verify

that this is not the case, the proposition below provides an iterative procedure to find S−1
1 . Thus, if

the eigenvalues of S−1
1 are smaller than one in absolute value, the eigenvaluea of S1 is greater than

one in absolute value, and S1 is not a stable solution.

Proposition 2. Suppose a dominant, S1, and a minimal solvent, S2, exist. Then, if the matrix

(B+AF̂n) is nonsingular for all n, the sequence {F̂n}, defined by

F̂n+1 = (B+AF̂n)
−1(−C), (6)

converges to S−1
1 .

Proof. In Appendix A.

Thus, given the (inverse) of a dominant, S−1
1 , and minimal, S2, solvent to equation (3) if

(i) If max |λ (S2)|< 1, and max |λ (S−1
1 )|< 1, S2 is the unique stable solution to equation (3).

(ii) If max |λ (S2)|> 1 there exist no stable solution.

(iii) If max |λ (S−1
1 )|> 1 there are multiple stable solutions.
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2.1.1 Singular solvents

One particularly pertinent issue that arises is to which extent the above method can deal with

situations in which solvents contain eigenvalues that are zero. It is straightforward to verify that a

dominant solvent cannot have those properties, as Definition 1 would not be satisfied. Unfortunately,

this is a quite common feature of dynamic systems that contain static relationships, such as

accounting identities or the first order conditions of static optimization problems. Fortunately, there

is a straightforward workaround to this issue.

Consider the (modified) quadratic matrix equation

ÂS2 + B̂S+Ĉ = 0, (7)

with

Â =Cµ2 +Bµ +A, B̂ = B+C2µ, Ĉ =C,

where µ represents a small positive real number multiplied by a conformable identity matrix. It

is straightforward to verify that if S satisfies equation (7), then F = S−1 +µ satisfies the original

quadratic matrix equation (here repeated for exposition)

A+BF +CF2 = 0. (8)

Conversely, any F which satisfies the quadratic matrix equation (8), then S = (F −µ)−1 satisfies

equation (7). It is worth pointing out here that S is indeed nonsingular unless µ happens to contain

an eigenvalue of F . Ruling this scenario out, S is invertible and has no eigenvalues equal to zero.

Proposition 3. Suppose for some µ equation (7) has dominant, S1, and a minimal solvent, S2,

such that |λi(S1)| > 1/M and |λi(S2)| < 1/M. If µ < M − |λi(S
−1
1 )|, for i = 1, . . . ,n, then for

F = (S−1
1 +µ)

(i) F solves the quadratic matrix equation (8).

(ii) |λi(F)|< M, for i = 1, . . . ,n.

(iii) F is the unique solvent satisfying (i) and (ii).
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Proof. Part (i). Inserting F = S−1
1 +µ into the left-hand side of equation (8) gives

A+B(S−1
1 +µ)+C(S−2

1 +2S1µ +µ2)

= (A+Bµ +Cµ2)+(B+2µ)S−1
1 +CS−2

1

= (A+Bµ +Cµ2)S2
1 +(B+2µ)S1 +C

= 0.

Part (ii). Since |λi(S
−1
1 )|< M for each i = 1, . . . ,n, we have that

|λi(F)|= |λi(S
−1
1 )+µ|

≤ |λi(S
−1
1 )|+µ

< |λi(S
−1
1 )|+(M−|λi(S

−1
1 )|)

= M

Part (iii). Suppose there exist an F̂ 6= F which solves equation (8) such that |λi(F̂)| < M

for i = 1, . . . ,n. Then Ŝ = (F̂ − µ)−1 solves equation (7). In addition, for any µ > 0 such that

µ < M−|λi(F̂)| for i = 1, . . . ,n we have

|λi(Ŝ
−1)|= |λi(F̂)−µ|

≤ |λi(F̂)|+µ

< |λi(F̂)|+(M−|λi(F̂)|)

= M.

As a consequence |λi(Ŝ)|> 1/M for i = 1, . . . ,n, which contradicts that S1 is the unique dominant

solvent to equation (7). Hence, F is unique.

In practice, Proposition 3 suggests to pick a (small) value µ; solve equation (7) using Propo-

sitions 1 and 2; and then evaluate the interval M = (max |λ (S2)|,min |λ (S1)|), to obtain the

admissible values of 1/M ∈ M . In addition, it ought to be noted that, for practical purposes, there

is no harm done in setting µ equal to a very small number, as the convergence properties appear to

improve with a lower value of µ (see the example in Section 3.2.1 below).

Corollary 1. If (7) has dominant, S1, and a minimal solvent, S2, such that |λi(S1)| > 1 and

|λi(S2)|< 1, with 0 < µ < 1−|λi(S
−1
1 )|, for i = 1, . . . ,n. Then, F = S−1

1 +µ is the unique stable

solvent to equation (8).

While Proposition 3 provides useful guidance on how to find and characterize solvents that are

smaller or larger than a certain threshold in absolute value, it is far less useful to find and characterize
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solvents that are smaller or larger than a certain threshold on the real line. As stability conditions

for continuous time problem regularly require that all eigenvalues are negative, Proposition 4 below

provides a solution to this issue.

Proposition 4. Suppose for some µ < 0 equation (7) has dominant, S1, and a minimal solvent, S2.

If λi(S1)≥−1/µ and 0 ≤ λi(S2)<−1/µ , for i = 1, . . . ,n, then for F = (S−1
1 +µ)

(i) F solves the quadratic matrix equation (8).

(ii) λi(F)≤ 0, for i = 1, . . . ,n.

(iii) F is the unique solvent satisfying (i) and (ii).

Proof. Part (i). See the associated proof for Proposition 3.

Part (ii). Since λi(S
−1
1 )<−µ for each i = 1, . . . ,n, we have that

λi(F) = λi(S
−1
1 )+µ

≤−µ +µ

= 0.

Part (iii). Suppose there exist an F̂ 6= F with λi(F̂)≤ 0 for all i = 1, . . . ,n which solves equation

(8). Then S = (F̂ − µ)−1 is a solvent for equation (7), with λi(S) ∈ {λ : λ < 0, or λ ≥ −1/µ},

for all i = 1, . . . ,n. Suppose that λi(S) < 0 for some i = 1, . . . ,n, then λ (S), λ (S1), and, λ (S2)

all constitute eigenvalues to the quadratic eigenvalue problem in (4), with the total number of

eigenvalues exceeding 2n, which is an impossibility. Thus λi(S) ≥ −1/µ , for all i = 1, . . . ,n.

However, if λi(S)≥−1/µ for all i = 1, . . . ,n this contradicts that S1 is unique. Hence, there can

not exist an F̂ 6= F with λi(F̂)≤ 0 for all i = 1, . . . ,n.

The ideas underlying Proposition 3 and 4 are similar but operate in opposite directions. Proposi-

tion 3 requires a perturbation of the system by a sufficiently small amount to ensure that a dominant

solvent exists, while at the same time leaving the system sufficiently unperturbed to allow for infer-

ence. Conversely, Proposition 4 suggests to perturb the system sufficiently to shift all eigenvalues

that were negative in the original system to be the smallest positive roots of the modified system.

3 Examples

This section provides five examples of how to use the proposed method. The first is intended to

show the convergence properties of both S2 and S−1
1 in the simplest possible case. The second, to

illustrate how to deal with singular solvents using Proposition 3. The third illustrates a model set in
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continuous time using Proposition 4. The fourth considers a regime switching model. And the fifth

is intended to show the large-scale properties of the method.

Convergence is assumed to be obtained once the absolute maximum error of the quadratic matrix

equation is smaller than 1e(−12), which is close to double-precision machine epsilon.

3.1 A second-order difference equation.

Consider the following second-order difference equation

0.75xt−1 −2xt + xt+1 = 0.

The associated quadratic equation is

0.75−2F +F2 = 0,

with dominant, S1, and minimal solvent, S2, equal to 1.5 and 0.5, respectively.

F
n

0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
(Inverse of) Dominant solvent

F
n+1

=-(B+AF
n
)-1C

45o line

F
n

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

F
n+

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Minimal solvent

F
n+1

=-(B+CF
n
)-1A

45o line

Figure 1: Mapping of Fn to Fn+1.

Figure 1 illustrates the mappings of the iterations Fn+1 =−0.75/(−2+Fn) (left graph) and Fn+1 =

−1/(−2+ 0.75Fn) (right graph). From the left graph it is clear that for any guess F0 such that

F0 < 1.5, the sequence Fn converges to the minimal solvent 0.5. What is less obvious is that for any

Fn > 1.5 the resulting sequence also converges to 0.5.5 The reason is that for any Fn > 2 it follows

that Fn+1 < 0, which guarantees convergence. Numerically, even at the singularity that arises at

Fn = 2 is not a problem either, since most numerical programs interpret 1/0 as infinity and 1/∞

as zero. Thus, even for an initial guess of F0 = 2, the procedure converges to the minimal solvent.

5Notice that lim|F |→∞−0.75/(−2+F) = 0.
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The only initial guess for which convergence (towards the minimal solvent) does not occur is if

F0 = 1.5; that is, if the initial guess for the minimal solvent is equal to the dominant solvent.

The right graph illustrates the convergence properties of the inverse of the dominant solvent.

For any F0 < 2, the sequence Fn converges to the inverse of the dominant solvent, F = 2/3. In

addition, for any Fn > 2.67, Fn+1 < 0 and convergence follows. Again, the only initial guess for

which convergence (towards the inverse of the dominant solvent) does not occur is if F0 = 2; that

is, if the initial guess for the inverse of the dominant solvent is equal to the inverse of the minimal

solvent.

3.2 Singular solvents

Consider a variation of the previous problem

0.75yt −0.5yt+1 = 0,

−2xt + xt−1 − yt = 0,

or,

AXt−1 +BXt +CXt+1 = 0,

with Xt = (yt ,xt)
′, and

A =

(

0 0

0 1

)

, B =

(

0.75 0

−1 −2

)

, C =

(

−0.5 0

0 0

)

.

There are three solvents to this problem

S1 =

(

0 −2

0 1.5

)

, S2 =

(

0 0

0 0.5

)

, S3 =

(

1.5 0

−0.75 0.5

)

,

with eigenvalues of (0,1.5), (0,0.5), and (0.5,1.5), respectively. Thus, S1 and S3 represent the

unstable solutions, and S2 the (unique) stable solution.

It would be tempting to refer to S1 as the dominant solvent and S2 as the minimal solvent, but

this would be incorrect; both the dominant and minimal solvent have a zero eigenvalue, and do

therefore not satisfy Definition 1. Hence, neither Proposition 1 nor 2 are valid. However, it may still

be interesting to conduct the iterations suggested in Proposition 1 and 2 in order to explore what

they may deliver.
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The resulting “inverse” of the “dominant” solvent, S−1
1 and, “minimal” solvent, S2 are

S−1
1 =

(

0.667 0

−0.5 0

)

, S2 =

(

0 0

0 0.5

)

,

with nonzero eigenvalues of 0.667 and 0.5, respectively. Thus, the nonzero eigenvalue of the inverse

of the “dominant” solvent corresponds exactly with the inverse of the nonzero eigenvalue of the

unstable solution S1 above; and the nonzero eigenvalue of the “minimal” solvent corresponds exactly

with the nonzero eigenvalue of the stable solution – indeed, the procedure correctly identifies the

stable solution S2 and also suggests that there exist another solution which is unstable. Furthermore,

inspecting S−1
1 suggests that the unstable solution satisfies

yt−1 = 0.667yt

xt−1 =−0.5yt .

Thus, “inverting” these policy functions gives

yt =−2xt−1

xt = 1.5xt−1,

which exactly replicates the unstable solution S1 above.

Is this a coincidence that is particular to this example? My experience tells me that it is not; for

a wide range of models and calibrations the procedure delivers a stable solvent, together with a

matrix, S−1
1 , containing the coefficients of the inverse of the unstable policy function.6 However,

acknowledging that not every reader may be as convinced by “my experience” as I am, we can

invoke Proposition 3 to address this issue.

3.2.1 Using Proposition 3

In order to exploit the results in Proposition 3, we need to pick a value for µ . Setting µ , conserva-

tively, equal to 0.1 gives rise to

Â =

(

0.07 0

−0.1 0.8

)

, B̂ =

(

0.65 0

−1 −2

)

, Ĉ =

(

−0.5 0

0 0

)

,

6Provided, of course, that a stable and unstable solution exist. If there is no stable solution – or if both solvents

are stable – the procedure still delivers a solvent with the smallest nonzero eigenvalues in absolute value, and a

matrix containing the inverse of a solvent with larger eigenvalues in absolute value, provided that the smallest nonzero

eigenvalues of the latter strictly exceeds the largest nonzero eigenvalue of the former. Only if these eigenvalues happen

to coincide have I run into convergence issues.
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and Proposition 3 delivers the solvents

S−1
1 =

(

−0.1 0

0 0.4

)

, S2 =

(

0.71 0

−0.54 0

)

,

with associated eigenvalues

|λ (S1)|=

(

10

2.5

)

, |λ (S2)|=

(

0.71

0

)

.

Thus S1 is indeed the dominant solvent and S2 is the minimal solvent. Since µ < 1−1/2.5, all the

conditions of Proposition 3 are met, and F = S−1
1 +µ is the unique stable solution.
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Figure 2: The relationship between µ and eigenvalues.

Notes. (Left panel) The black solid line shows the smallest eigenvalue in absolute value of the resulting dominant

solvent, S1; the grey solid line the largest eigenvalue in absolute value of the resulting minimal solvent, S2; the black

dashed line the maximum eigenvalue of the solvent F = S−1
1 +µ ; the fine dotted line the largest eigenvalue in absolute

value of the (true) unique stable solution; the black dots marks the eigenvalues of the solvent (S3 +µ)−1. The shaded

area illustrates the set of admissible (µ,1/M)-pairs such that the conditions of Proposition 3 are met.

Can µ be set at an arbitrarily large value? The answer is no. Following Proposition 3, µ <

M−|λi(S
−1
1 )|, for i = 1,2. That is, µ must be sufficiently small. The reason is that µ perturbs the

original system in order to ensure invertibility of Â and S1. If the system is perturbed to far away

from its original formulation, the procedure may pick up a solvent which is not equal to the unique

stable solution (if such a solution exist). Figure 2 illustrates the consequences of setting µ ∈ (0,1.5].

The black solid line shows the smallest eigenvalue in absolute value of the resulting dominant

solvent, S1; the grey solid line shows the largest eigenvalue in absolute value of the resulting minimal
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solvent, S2; the black dashed line illustrates the maximum eigenvalue of the solvent F = S−1
1 +µ;

the finely dotted line the largest eigenvalue in absolute value of the (true) unique stable solution;

and the black dots marks the eigenvalues of the solvent (S3 +µ)−1, with S3 defined in section 3.2.

Lastly, the shaded area illustrates the set of admissible (µ,1/M)-pairs such that |λi(S1)| > 1/M,

|λi(S2)|< 1/M, and µ < M−|λi(S
−1
1 )| , for i = 1,2; i.e. such that the sufficient conditions stated

in Proposition 3 are satisfied.

Obviously, for each admissible (µ,1/M)-pair the solution S−1
1 +µ coincides with the unique

stable solution. In addition, for any value of µ < 0.75 the solution still coincides with the unique

stable solution. However, for µ > 0.75, the solution S−1
1 +µ instead corresponds to the solvent S3

in section 3.2. The reason is straightforward: the eigenvalues to the solvents are given by

|λ (S1)|=

(

1
µ
1

|0.5−µ|

)

, |λ (S2)|=

(

1
µ
1

|1.5−µ|

)

, |λ (S3)|=

(

1
|0.5−µ|

1
|1.5−µ|

)

.

Thus, for any µ < 0.75, |λi(S1)|> |λi(S2)|, but for µ > 0.75, |λi(S3)|> |λi(S1)|. That is, the large

value of µ has perturbed the system such that S3 is picked up as the dominant solvent, and S1 as

the minimal solvent. Thus, this example serves as a cautionary tale of ensuring that the sufficient

conditions of Proposition 3 are met.

3.3 Continuous time models

Consider the continuous time problem

1.19xt + yt − ẏt = 0,

−1.4xt − yt − ẋt = 0,

or,

AXt +BẊt +CẌt = 0,

with Ẋt = (yt , ẋt)
′, and

A =

(

0 1.19

0 −1.4

)

, B =

(

1 0

−1 −1

)

, C =

(

−1 0

0 0

)

.
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There are three solvents to this problem

S1 =

(

0 −1.7

0 0.3

)

, S2 =

(

0 −0.7

0 −0.7

)

, S3 =

(

0.15 −0.85

−0.15 −0.55

)

,

with eigenvalues of (0,0.3), (0,−0.7), and (0.3,−0.7), respectively. Thus, S1 and S3 represent the

unstable solutions, and S2 the (unique) stable solution. Since the eigenvalues of S1 are smaller in

absolute value than both S2 and S3, there is no hope that Propositions 1 and 2 will successfully

identify the unique stable solution. Thus, to solve this problem it is useful to invoke Proposition 4.

Figure 3 illustrates the results for values of µ ∈ [−1.5,0).
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Figure 3: The relationship between µ and eigenvalues.

Notes. (Left panel) The black solid line shows the smallest eigenvalue of the dominant solvent, S1, such that λ (S1)≥

−1/µ; the grey solid line the largest eigenvalue of the minimal solvent, S2, such that 0 < λ (S1)<−1/µ; the black

dashed line the eigenvalues of the solvent F = S−1
1 +µ . The shaded area illustrates the set of admissible values of µ

such that the conditions of Proposition 4 are met.

The black solid line in the left graph illustrates the smallest eigenvalue of the resulting dominant

solvent, S1, provided that λi(S1)≥−1/µ for i = 1, . . . ,n. Similarly, the grey solid line illustrates

the largest eigenvalue of the minimal solvent, S2. The dashed line shows both eigenvalues of

F = S−1
1 + µ . For values of µ ∈ [−1.5,−0.7) the conditions of Proposition 4 are met, and the

procedure indeed identifies the unique stable solution.

Can µ be set too low? No, the lower the value of µ is, the more likely it is that the results align

with the conditions of Proposition 4. However, as can be seen from Figure 3, a lower value of µ also

implies that the eigenvalues of both S1 and S2 are closer together, which slows down the procedure

and increases the required number of iterations. Thus, while a low value of µ increases the chance
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of Proposition 4 being valid, it comes at the cost of slowing down the procedure. This is a drawback

of the method proposed in this paper.

3.4 Regime switching models.

Eggertsson (2011) considers a model which in “normal times” satisfies the system

yt = yt+1 −σ(it −πt+1),

πt = κyt +βπt+1,

it = φππt +φyyt ,

but in “crises times” is instead characterized by

yt = E[yt+1]+σ(E[πt+1])+(gt −E[gt+1]),

πt = κyt +κψ(−σ−1gt)+βE[πt+1],

it = 0.

Eggertsson (2011) assumes that in some period, s, the economy (unexpectedly) enters a crisis, and is

therefore described by the latter system. With probability (1−q), however, the economy recovers in

the subsequent period, and becomes characterised by the first system. If not, the economy remains

in the crisis in period s+1, and with (conditional) probability (1−q) instead recovers in period

s+2, and so on. Once the economy has recovered, it will remain in the normal state for perpetuity.

Thus, in period s the economy enters a crisis with expected duration 1/(1− q). Furthermore,

Eggertsson (2011) assumes – in the benchmark exploration – that government spending increases

simultaneously with the crisis, with an identical (stochastic) duration. Thus, in period s, gs increases

by some amount, and remains high for the duration of the liquidity trap.

Thus, the above equations can represented as the regime switching system

AcXc
t−1 +BcXc

t +qCcXc
t+1 +(1−q)CXt+1 = 0, (9)

AXt−1 +BXt +CXt+1 = 0, (10)

with with Xt = (yt ,πt , it ,gt)
′, and

Ac =













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1













, Bc =













−1 0 0 1

κ −1 0 −κψσ−1

0 0 −1 0

0 0 0 −1













, Cc =













1 σ 0 −1

0 β 0 0

0 0 0 0

0 0 0 0













,
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A =













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













, B =













−1 0 −σ 0

κ −1 0 −κψσ−1

φy φπ −1 0

0 0 0 −1













, C =













1 σ 0 0

0 β 0 0

0 0 0 0

0 0 0 0













,

To solve system (9)-(10), we begin by solving (10) using Proposition 3 to find F such that7

A+BF +CF2 = 0.

Subsequently, define

Âc = Ac +Bcµ +qCcµ2 +(1−q)CFµ, B̂c = Bc +qCc2µ +(1−q)CF, Ĉc = qCc,

and again invoke Proposition 3 to find the dominant solvent, Sc, of

ÂcS2
c + B̂cSc +Ĉc = 0,

and uncover the solvent of (9) as Fc = S−1
c +µ . Using the calibrated values of the parameters from

Eggertsson (2011) reveals that Fc is the unique dominant solvent and given by8

Fc =













0 0 0 2.29

0 0 0 0.16

0 0 0 0

0 0 0 1













,

which suggests a fiscal multiplier of 2.29.

Figure 4 illustrates how the fiscal multiplier relates to the expected duration of the crisis,

1/(1−q). As can be seen from the figure, the fiscal multiplier is moderate at short duration, and

reaches arbitrarily large values as the duration approaches (approximately) 12 quarters. For values

of q > 0.919 no solution can be found.

7Notice that in this particular example, the stable solution F is simply a 4×4 matrix of zeros.
8The values are: σ = 1/1.16, β = 0.997, ψ = 0.3664, and κ = 0.0086. Stability is verified slightly differently in

regime switching models, but in this particular case the eigenvalues of the “explosive solvent” multiplied by q must be

greater than one (see Farmer, Waggoner and Zha (2009)).
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Figure 4: The relationship between q and the fiscal multiplier.

Notes. The multiplier increases exponentially in q and eventually reaches infinity. The analytical solution is obtained by

evaluating equation (30) in Eggertsson (2011).

3.5 A large-scale problem

To explore the potential virtues of the proposed method for large-scale problems, I follow Higham

and Kim (2000) and Tisseur (2000) and consider the n×n quadratic matrix equation with

A =

























15 −5

−5 15 −5

−5
. . .

. . .
. . .

. . . −5

−5 15

























, B =

























20 −10

−10 30 −10

−10 30 −10

. . .
. . .

. . .

. . . 30 −10

−10 20

























,

and with C equal to the conformable identity matrix.

I then compare the execution time for using the iterations in both Propositions 1 and 2, and

compare them with two popular alternative approaches by Klein (2000) and Sims (2002). The

results are summarized in Table 1 below.

As can be seen from the table, the proposed method significantly outperforms both Klein’s

(2000) and Sims’s (2002) methods for n ≥ 100. In fact, the method is about 20 times faster for

very large-scale problems, such as n = 2,000. Given that computing time falls from around 20

minutes to 1 minute for such problems, the proposed method appears to dominate existing methods

for problems as those in Reiter (2009).
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Table 1: Speed comparison of algorithms.

Method n = 10 100 500 1,000 2,000

Klein (2000) 0.7 8.89 13.81 8.45 20.71

Sims (2002) 1.13 10.56 17.23 8.9 21.05

Time (seconds) 0.0007 0.0104 0.8423 15.0439 64.4173

Notes. The reported numbers in the two first rows represent the computational speed of the indicated algorithm relative

to that of time iteration. To make the comparison as fair as possible, I use the authors’ own codes. Computational speed

is measured by the “timeit” function in Matlab, which evaluates a function several times and reports the median results.

The last line reports the time in seconds solving the problem using time iteration.

4 Concluding remarks

This paper has proposed a new approach to solve linear rational expectation models, and provided

conditions under which a stable solution can be ascertained to be unique. The main advantages of the

proposed method relative to existing methods is its transparency and ease of implementation without

relying on pre-canned routines, in addition to significant efficiency advantages for large-scale

problems.
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A Proofs

A.1 Proof of Proposition 1

The recursion in (5) can be rewritten as

A+BFn+1 +CFnFn+1 = 0.

Conjecture that Fn is given by

Fn = (S
−(n−1)
1 ΩSn

2 +S2)(S
−n
1 ΩSn

2 + I)−1.

Then,

FnFn+1 = (S
−(n−1)
1 ΩSn

2 +S2)(S
−n
1 ΩSn

2 + I)−1(S−n
1 ΩSn+1

2 +S2)(S
−(n+1)
1 ΩSn+1

2 + I)−1

= (S
−(n−1)
1 ΩSn

2 +S2)(S
−n
1 ΩSn

2 + I)−1(S−n
1 ΩSn

2 + I)S2(S
−(n+1)
1 ΩSn+1

2 + I)−1

= (S
−(n−1)
1 ΩSn+1

2 +S2
2)(S

−(n+1)
1 ΩSn+1

2 + I)−1.

Inserting this expression into the recursion gives

A+B(S−n
1 ΩSn+1

2 +S2)(S
−(n+1)
1 ΩSn+1

2 + I)−1 +C(S
−(n−1)
1 ΩSn+1

2 +S2
2)(S

−(n+1)
1 ΩSn+1

2 + I)−1 = Xn,

where Xn is an unknown. The left hand side of the above equation can alternatively be rewritten as

A(S
−(n+1)
1 ΩSn+1

2 + I)+B(S−n
1 ΩSn+1

2 +S2)+C(S
−(n−1)
1 ΩSn+1

2 +S2
2) = Xn(S

−(n+1)
1 ΩSn+1

2 + I).

Since S2 is a solvent it follows that

A(S
−(n+1)
1 ΩSn+1

2 + I)+B(S−n
1 ΩSn+1

2 +S2)+C(S
−(n−1)
1 ΩSn+1

2 +S2
2)

= AS
−(n+1)
1 ΩSn+1

2 +BS−n
1 ΩSn+1

2 +CS
−(n−1)
1 ΩSn+1

2

= (A+BS1 +CS2
1)S

−(n+1)
1 ΩSn+1

2

= 0,

where the second to last equality follows from S1 being a solvent. Thus Xn = 0 for all n. This confirms the conjecture.

By Lemma 1 we have that

lim
n→∞

‖S−n
1 ‖‖Sn

2‖= 0.

Thus,

lim
n→∞

Fn = lim
n→∞

(S
−(n−1)
1 ΩSn

2 +S2)(S
−n
1 ΩSn

2 + I)−1 = S2,

Lastly, the initial value F0 is given by

F0 = (S1Ω+S2)(Ω+ I)−1.
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Setting Ω 6= (S1 + I)−1 −S−1
1 S2 is necessary and sufficient to guarantee that F0 6= S1, which completes the proof.

A.2 Proof of Proposition 2

The recursion in (6) can be rewritten as

AF̂nF̂n+1 +BF̂n+1 +C = 0.

Conjecture that F̂n is given by

F̂n = (Sn
2ΩS−n

1 + I)(Sn+1
2 ΩS−n

1 +S1)
−1.

Then,

F̂nF̂n+1 = (Sn
2ΩS−n

1 + I)(Sn+1
2 ΩS−n

1 +S1)
−1(Sn+1

2 ΩS
−(n+1)
1 + I)(Sn+2

2 ΩS
−(n+1)
1 +S1)

−1

= (Sn
2ΩS−n

1 + I)(Sn+1
2 ΩS−n

1 +S1)
−1(Sn+1

2 ΩS−n
1 +S1)S

−1
1 (Sn+2

2 ΩS
−(n+1)
1 +S1)

−1

= (Sn
2ΩS−n

1 + I)S−1
1 (Sn+2

2 ΩS
−(n+1)
1 +S1)

−1.

Inserting this expression into the recursion gives

A(Sn
2ΩS−n

1 + I)S−1
1 (Sn+2

2 ΩS
−(n+1)
1 +S1)

−1 +B(Sn+1
2 ΩS

−(n+1)
1 + I)(Sn+2

2 ΩS
−(n+1)
1 +S1)

−1 +C = Xn,

where Xn is an unknown. The left hand side of the above equation can alternatively be rewritten as

A(Sn
2ΩS−n

1 + I)S−1
1 +B(Sn+1

2 ΩS
−(n+1)
1 + I)+C(Sn+2

2 ΩS
−(n+1)
1 +S1) = Xn(S

n+2
2 ΩS

−(n+1)
1 +S1)

−1.

Since S1 is a solvent it follows that

AS−1
1 +B+CS1 = (A+BS1 +CS2

1)S
−1
1 = 0.

Thus,

ASn
2ΩS−n

1 S−1
1 +BSn+1

2 ΩS
−(n+1)
1 +CSn+2

2 ΩS
−(n+1)
1 = Xn(S

n+2
2 ΩS

−(n+1)
1 +S1)

−1.

or

(A+BS2 +CS2
2)S

n
2ΩS

−(n+1)
1 = Xn(S

n+2
2 ΩS

−(n+1)
1 +S1)

−1

= 0,

which confirms the conjecture. By Lemma 1 we have that

lim
n→∞

F̂n = lim
n→∞

(Sn
2ΩS−n

1 + I)(Sn+1
2 ΩS−n

1 +S1)
−1 = S−1

1 .
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Lastly the initial value of F̂0 is given by

F̂0 = (Ω+ I)(S2Ω+S1)
−1.

Setting Ω = I, gives F̂0 = 0, which completes the proof.
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