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Abstract

Competition between oligopolist electricity generators is inhibited by transmission con-
straints. I present a supply function equilibrium (SFE) model of an electricity market with
a single lossless, but constrained, transmission line. The market admits equilibria in which
generator withhold energy in order to induce congestion, which further increases their local
market power.

Under appropriate assumptions on cost and demand functions, I obtain a planar au-
tonomous system of ordinary differential equations for the SFE. Computational methods
are developed to solve the system while respecting monotonicity constraints on the supply
functions.

Using these methods I can calculate SFE in network markets that range from fully
isolated to fully integrated. I also find network markets for which the SFE is not unique.

JEL: C62, C65, D43, L13, L94
Keywords: supply function equilibrium; electricity markets; market power; locational

pricing of electricity.

1 Introduction

In this paper are developed methods to solve for supply function equilibrium (SFE) in electricity
markets with nodal pricing and transmission constraints. A network SFE models the effects of
transmission constraints on the competition among an oligopoly of electricity suppliers.

High-voltage electric transmission makes it efficient to transmit electricity over distances of
hundreds of kilometres. This technology makes available generation sources that cannot be
built near centers of demand, such as hydroelectric and geothermal power. Transmission lines
are large investments, and it is important to understand the value of transmission when making
investment decisions. Transmission’s value comes from efficiency, reliability and enabling a
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acknowledged.
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competitive market. Efficiency gains come from the ability to use distant lower-cost generation
to meet demand. Reliability gains come from the ability to access remote reserves as well as
energy. Transmission lines improve competition by increasing the number of suppliers able to
meet demand at a specific location, and by reducing the likelihood of local monopolies.

When deciding on a transmission investment, transmission operators and regulators must evalu-
ate all of these benefits against the cost of the investment. An SFE model will help us understand
the competition benefits in particular. We shall see that ownership transfers or other hedging
contract arrangements may be sufficient to mitigate the anti-competitive effects of network
congestion, without having to build new lines.

SFE in networks

The main contribution of this paper is to develop and apply numerical methods to the com-
putation of SFE in a network setting. It builds on the theoretical work of Wilson (2008) and
Holmberg and Philpott (2017a) on equilibrium conditions for SFE in a transmission network.
By restricting the marginal cost and demand functions, the first order equilibrium conditions
can be transformed into a linear autonomous ordinary differential equation in two dependent
variables.

This work goes beyond previous work on supply function and Cournot equilibria in electricity
networks in that it has both non-linear supply curves and line congestion as an endogenous
variable.

Niu (2005) calculated linear SFE over a transmission network, assuming that generators would
correctly predict the congestion state of the network before making their offers. In the SFE
model presented here, the presence of transmission congestion is both endogenous (depends on
generators’ offers) and stochastic (for given offers, the congestion state is known ex ante only
as a probability).

Borenstein, Bushnell, and Stoft (2000) showed that, even in a two-node one-line network, the
Cournot game between generators can fail to have a pure-strategy equilibrium. In certain
circumstances only a mixed-strategy equilibrium exists.

Downward, Zakeri, and Philpott (2010) characterize the pure-strategy Cournot equilibrium over
a transmission network, and extend the model to account for transmission losses. We shall see
that a pure-strategy supply function equilibrium exists in these circumstances, though it may
not be unique.

Anderson, Philpott, and Xu (2007) use market distribution functions to analyze the response
of a supplier to the opening of a new interconnection with a previously isolated market. They
solve the best-response problem in terms of this market distribution function but to not derive
a full SFE for the interconnected market. Their model distinguishes itself by taking account of
transmission losses.

Computing SFE

The first-order conditions that describe an SFE form a system of differential equations. Since
only the simplest models admit analytic solutions, several numerical methods have been em-
ployed for SFE.

Anderson and Hu (2008, 2012) approximate solutions by discretizing the demand shock to create
a large system of linear constraints. This allows them to solve for the coefficients defining the
SFE as a non-linear program.
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Figure 1: A network with two nodes and one line.

Holmberg (2009) solves the system of ODE resulting from the equilibrium conditions of an SFE
in which generators have asymmetric costs. He treats it as a boundary value problem, and uses
Runge-Kutta integration to integrate the system which is unstable in both directions. In this
paper we embed such Runge-Kutta methods in a scheme which ensures stable integration at all
stages of the computation.

Outline

The paper is laid out as follows. Section 2 presents the network, pricing rules, stochastic demand,
and the necessary and sufficient conditions for optimal supply functions. In Section 3 we restrict
the cost and demand functions in order to arrive at equilibrium conditions that give a linear
autonomous system of ordinary differential equations.

We take the approach of first solving these systems in the case where the coefficient matrix
is constant — in Section 4 — then treating more general instances — in Section 5. We give
sufficient conditions for uniqueness of equilibrium. Section 6 extends our computational methods
to systems with singularities, in which uniqueness may fail.

In a follow-on paper, Ruddell (2018), the two-node market is extended to consider generators
that own multiple plants, as well as the strategic effects of financial derivatives such as contracts
for differences and financial transmission rights.

2 A transmission network

The market uses locational marginal pricing. Pricing is uniform, in the sense that every producer
receives the local price for all of their production. The usual assumption is made of a lossless
transmission network, so that the shadow price on the transmission line obeys a complementarity
condition: the prices differ at either end of the line only if the flow constraint is binding. The
load, net of any wind and solar generation, is known to the generators only as a random variable
whose distribution is common knowledge.

This section follows Holmberg and Philpott (2017a) in modeling the demand uncertainty as a
shock at each node. These authors derive optimality conditions for SFE in a general radial
network, and the calculation of the market distribution function from a demand shock distri-
bution is due to them. Wilson (2008) takes a slightly different approach. He derives equivalent
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equilibrium conditions but the shocks in his model are for the capacities of the lines, plus an
additional random shock for the total demand. The present work extends the results of these
papers by numerically calculating SFE in which there is some breaking of symmetry among the
agents.

An electricity network consists of a set of buses or nodes N connected by circuits or lines. We
will work with loop-free or radial networks, whose underlying graphs are trees. An important
property of a tree is that there is a unique path connecting any pair of nodes. Real transmission
grids carry alternating current (except on grid interconnectors and undersea cables that use high
voltage direct current (HVDC) technology), and experience losses. In using a radial network,
we may ignore Kirchhoff’s laws for the DC load-flow model, and treat energy transmission as a
transshipment problem. Conservation of energy requires that the flow into a node, plus energy
injected, is equal to the flow out of the node, plus energy withdrawn. The nodal conservation of
energy laws sum up to the global constraint that total supply and demand in the network are
equal.

The market clearing mechanism can be formulated as an optimization problem, the optimal
dispatch problem, which is solved by the system operator (auctioneer). The system operator
minimizes total cost over all supply functions offered, to meet demand, subject to a great many
constraints. In a real electricity system many of these constraints are either non-convex, binary
or generally non-linear, and solving the market clearing problem is a non-trivial computation.
Only linear constraints on the line flows are admitted, so the feasible set is a simple polyhedron.
Integrating over this polyhedron gives the conditional probabilities of congestion that appear in
the first-order conditions.

2.1 Constrained demand distribution

To aid in the calculation, we define a conditional probability distribution that captures the effect
of the transmission constraint on distribution of a generator’s residual demand.

First, some notation: at every node m the system operator will choose a nodal price pm. Each
power plant (identified by its owner i and node m) submits an offer curve qi,m (pm) for the
amount offered as a function of the local price. The market demand at m is the sum of a
price-responsive component Dm (pm) and a stochastic shock εm. For the total offers net of
price-responsive demand at node m, write

Sm (pm) :=
∑
j∈m

qj,m (pm)−Dm (pm) ,

where qj,m (pm) is the quantity offered by generator j at node m at the local price and Dm is
the nodal demand function representing price responsive but non-strategic demand at node m.
For the total net offers of all generators, other than i, at node m write

S−i,m (p) =
∑

j∈m j 6=i

qj,m (pm)−Dm (pm) ,

where j ∈ m means that agent j is located at node m. The vector S−m consists of the net offers
at all nodes other than m.

As shown by Wilson (2008) and Holmberg and Philpott (2017a), in a lossless and loop-free
network the market distribution function ψi,n

(
qi,n, pn;S−(i,n)

)
of a generator i located at node

n will depend, besides the generator’s own offer qi,n and local price pn, only on the net offers
at the other nodes at price pn. Let S be a vector of net injections at each node of the network,
and define the constrained demand distribution φn (S) to be the probability that the quantity
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dispatched at node n is less than Sn, given that other nodes have net offers S−n at the same
local price.1 Thus

ψi,n (qi,n, p) = φn (qi,n + S−i,n (p) , S−n (p)) . (1)

So φn is the joint distribution on the net injection at each node induced by the demand shock
distribution and the transmission constraint. We can calculate φn by integrating over the space
of demand shocks. See the Appendix for an explanation of the calculation of φ.

Figure 1 shows the two-node network over which we will calculate SFE. The transmission line
has a capacity of K in either direction, and we assume there are no transmission losses. The
network has three possible congestion states. In state ω1, the line constraint is not binding but
the total demand must equal total supply, ε1 + ε2 = S1 + S2. In state ω2, the line constraint
is binding from node 1 to node 2, so there is a fixed outflow from node 1, ε1 +K = S1. In the
last state ω3, the line constraint is binding the other way, so there is a fixed inflow to node 1,
ε1 = S1 +K.

The constrained demand distribution can be written

φ1 (S1, S2) = Pr [(ε1 + ε2 < S1 + S2 and ε1 < S1 +K) or ε1 < S1 −K]

φ2 (S1, S2) = Pr [(ε1 + ε2 < S1 + S2 and ε2 < S2 +K) or ε2 < S2 −K] .

The stochastic part of demand has a bivariate normal distribution with mean

µ =

[
µ1

µ2

]
and variance-covariance matrix [

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

Assume that σ1 > 0, σ2 > 0 and ρ ∈ (−1, 1), so that the demand shock density is always
positive and smooth, and the constrained demand distribution is continuous. This rules out the
existence of multiple equilibria arising from a demand shock with bounded support, as described
by Klemperer and Meyer (1989). It also avoids the non-existence of equilibria due to jumps in
the market distribution function, as described by Holmberg and Philpott (2017a).

Now consider the market distribution function for an agent at node m. Since Sm =
∑
i∈m qi,m,

we get
∂ψn
∂qi,m

=
∂φn
∂Sm

for all i ∈ m.

We will henceforth write these partial derivatives with the subscript notation

φn,m :=
∂φn
∂Sm

.

From (1) we get generator i’s market distribution function ψi,m in terms of the constrained
demand distribution. Taking partial derivatives and applying the chain rule,

1In a network with loops, it can arise that there are congested and uncongested paths between a pair of nodes
on a loop. The supply curve of a generator at one of these nodes contributes to the residual demand function of a
generator in the other, even though their local prices differ. Thus a generator’s market distribution function will
depend on their competitors’ offers over a range of prices. In such a network the system of first-order optimality
conditions is a system of integro-differential equations, which is a rather different problem mathematically to the
ordinary differential equations we consider in this work.
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∂ψi,m
∂q

= φm,m and

∂ψi,m
∂p

= φm,m · S′−i,m (p) +
∑
n 6=m

φm,n · S′n.

Of course, in the two-node network there will only be one n 6= m.

2.2 Optimal offers

Formally we suppose that each supplier submits to the system operator a piecewise differentiable
curve

S = {(q (t) , p (t)) : t ∈ [0, T ]} ,
whose quantity and price components q and p are non-decreasing with respect to the parameter
t

q̇ =
dq

dt
≥ 0 and ṗ =

dp

dt
≥ 0. (2)

These are the monotonicity constraints. We will usually have ṗ > 0, so that the supply function
can be reparametrized as a function of price q (p). Each supplier chooses its supply curve S to
maximize an expected profit functional of the form

Π [S] =

∫
S
R (q (t) , p (t)) dψ (q (t) , p (t)) =

∫ T

0

R (q (t) , p (t)) (ψq q̇ + ψpṗ) dt, (3)

i.e. a line integral along the curve S. We suppose that R, ψq and ψp are (weakly) differentiable.

Following Anderson and Philpott (2002) we define the field

Z (q, p) =
∂R

∂q
ψp −

∂R

∂p
ψq, (4)

which we will call the first-variation derivative. It is used to define the following optimality
conditions.

Theorem 1 (Necessary conditions). If S∗ = {(q (t) , p (t)) : t ∈ [0, T ]} is a local maximum of
Π (S) with q̇ (t) > 0 and ṗ (t) > 0 for all t ∈ [0, T ], then Z (q (t) , p (t)) = 0 for all t ∈ [0, T ].
Moreover, if Z (q, p) is differentiable at (q, p) = (q (t) , p (t)), then we have ∂Z

∂p (q (t) , p (t)) ≥ 0,

and ∂Z
∂q (q (t) , p (t)) ≤ 0.

Theorem 2 (Sufficient conditions). Let S∗ = {(q (t) , p (t)) : t ∈ [0, T ]} be a continuous piece-
wise differentiable curve. If both components of S∗ are non-decreasing in t, then a sufficient
condition for S∗ to be a global maximum of Π (S) is that Z = 0 along S∗, and that at every t,
Z (q̃, p (t)) ≥ 0 for all q̃ < q (t) and Z (q̃, p (t)) ≤ 0 for all q̃ > q (t).

Under uniform pricing, the profit made by agent i at node m when dispatched quantity qi,m at
price pm is

Ri,m (qi,m, pm) = pmqi.m − Ci.m (qi,m) .

The expected payoff to a generator offering a curve S = {(q (t) , p (t)) : t ∈ [0, T ]} is (dropping
the agent and node subscripts)

ΠU (S) =

∫
S
R (q, p) dψ (q, p)

=

∫ T

0

(q (t) p (t)− C (q (t))) (ψq q̇ + ψpṗ) dt. (5)
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The partial derivatives ψq and ψp give the marginal change in dispatch probability from changing
the offer quantity and price. The first-variation derivative is obtained from (4):

ZU (q, p) =
∂

∂q

(
(qp− C (q))

)
ψp −

∂

∂p

(
(qp− C (q))

)
ψq

= (p− C ′ (q))ψp − qψq. (6)

In terms of the constrained distribution function, this is

Zi,m =
(
p− C ′i,m (qi,m)

)φm,mS′−i,m +
∑
n 6=m

φm,nS
′
n

− φm,mqi,m (7)

for generator i at node m.

We can obtain some qualitative insights into SFE by examining the optimal offer conditions. In
particular, we can deduce the strategic response of a generator to changing congestion patterns.

Suppose that a generator is offering optimally and that some change in market conditions causes
the constrained distribution function φ to change. To a first approximation, our agent supposes
that its competitor’s offers remain unchanged. How then does the optimal offer curve move in
response to a change in φ? Divide the optimal offer condition through by the local density of
demand

Zi,m
φm,m

=
(
p− C ′i,m (qi,m)

)S′−i,m (p) +
∑
n 6=m

φm,n
φm,m

S′n (p)

− qi,m = 0.

The change in the optimal supply function will come from the change in
φm,n
φm,m

near the old

supply curve. This ratio gives the conditional probability of uncongested flow between m and n,
given offers S (p).2 In general, if congestion worsens,

φm,n
φm,m

will decrease, so agent m’s residual

demand will get less elastic, so
(
p− C ′i,m (qi,m)

) (
S′−i,m (p) +

∑
n 6=m

φm,n
φm,m

S′n (p)
)

gets smaller,

so q must get smaller as well. That is, to a first order of response, agents respond to increased
congestion by offering less competitively — reducing their offer quantities or increasing their
mark-ups.

Increased congestion causes an increase in generator mark-ups. This is undesirable for a market
regulator. To counter the incentive to mark up, the regulator could seek to reduce congestion
through direct means (expanding transmission lines), or they can alter the incentive mechanisms
in the market. In Ruddell (2018), we shall see how an asset swap (real or virtual) reduces the
incentive for generators to mark up in the presence of transmission constraints.

2.3 Binding constraints

To describe the optimality conditions for supply curves with binding constraints, we introduce
the adjoint function from optimal control theory; it measures the deviation from Z = 0. The
constrained offer optimization problem is to maximize Π in (3), subject to the monotonicity
constraints (2) and the state constraints on output and price.

q ∈
[
q, q
]
, and

p ∈
[
p, p
]
. (8)

2This interpretation gives a justification for the simplification of the entire New Zealand transmission grid;
if within-island transmission constraints have zero probability of binding, and there are no transmission losses
with islands, then we can model all injections and withdrawals for each island as if they were at one node.
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These constraints arise from the physical production limits of the electricity generators, and the
market-imposed bounds on offer prices.

Definition 3 (Adjoint function). Let S = {(q (t) , p (t)) : t ∈ [0, T ]} be a supply curve and Π a
profit functional of the form (3) with first-variation derivative Z. An adjoint function to S for
the constrained offer optimization problem is a function w : [0, T ]→ R with

ẇ =
dw

dt
= Z (q (t) , p (t)) . (9)

Given a candidate curve S, we can calculate an adjoint function w from

w (t) = w0 +

∫ t

0

Z (q (τ) , p (τ)) dτ. (10)

So the adjoint function is defined up to a constant of integration w0. The following theorem
gives a necessary conditions for an optimal constrained supply function in terms of the adjoint.

Theorem 4 (Slope-constrained optimal supply curve). Let S∗ be a supply curve with quantity
and price components q (t), p (t). If the curve S∗ is a maximum for the constrained offer
optimization problem — with objective (3) and constraints (2) and (8) — then there exists an
adjoint function w such that

q̇ (t) · w (t) ≤ 0 ≤ ṗ (t) · w (t) (11)

for all t ∈ [0, T ].

Proof. See Anderson and Philpott (2002).

Usually, price is taken to be the parameter of the supply curves (i.e. t = p). This implies that
ṗ > 0 everywhere, so we can actually work with simpler complementarity conditions.

Corollary 5. Let S∗ = {(q (t) , p (t)) : t ∈ [0, T ]} be a supply curve that satisfies the constraints
(2) and (8), with ṗ > 0. If the curve S∗ is a maximum for the constrained offer optimization
problem then there exists an adjoint function w such that

q̇ (t) · w (t) = 0 and

w (t) ≥ 0 (12)

for all t ∈ [0, T ].

Proof. Theorem 4 gives us the existence of a w satisfying (11). From ṗ > 0 and ṗ · w ≥ 0 in
(11), it follows that w ≥ 0. From q̇ ≥ 0 and w ≥ 0 we have that q̇ · w ≥ 0. But (11) gives also
q̇ · w ≤ 0, so it must be that q̇ · w = 0.

From (11) it is clear that if there is a t where both q̇ (t), ṗ (t) > 0, then w (t) must be zero. This
determines w0 in (10). Moreover w = 0 at every point where q̇, ṗ > 0, and so ẇ = Z (q, p) = 0
over every interval where q̇, ṗ > 0. Thus, the necessary conditions of Theorem 1 apply locally
to the constrained problem, on segments where q̇, ṗ > 0. The sufficient conditions of Theorem 2
apply locally too. This is easy to see from the proof of that theorem, since the improving
deviations, where they exist, are local.
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Ironing

Intervals for which q̇ = 0 we shall call ironed segments, and agents who offer supply curves with
such segments are said to be ironing. When an agent is ironing, its adjoint is no longer bound to
zero, so Z can be non-zero over ironed segments. A direct consequence of Theorem 4 is Wilson’s
(1993) result that over an interval where the q̇ ≥ 0 or ṗ ≥ 0 constraint binds (but the state
constraints (8) do not), the first-order conditions Z = 0 are satisfied on average.3

Horizontal (perfectly elastic) segments of a supply function are intervals where ṗ = 0. Holmberg
(2007) showed that, in equilibrium, horizontal segments may only occur where all other suppliers
are at their output capacity bounds. However, they can occur in supply curves which are optimal
responses to certain market distribution functions.

3 Tractable equilibrium conditions

In order to focus on the strategic effect of transmission constraints, we would like the other parts
of the model to be as simple as possible. It turns out that if the demand and cost functions are
simple enough, then an SFE can be described by an autonomous linear differential equation.
For our two node network, this gives a planar system of ordinary differential equations, to which
we can apply phase plane analysis. The following assumptions will be sufficient.

Assumption 6 (Two-node linearizable market).

1. Demand is perfectly inelastic in price.

2. The demand shock has a bivariate normal distribution.

3. Generators have identical and constant marginal costs of production c.

4. There are N1 ≥ 2 of these generators located at node 1 and N2 ≥ 2 at node 2.

5. All the generators at node 1 have output capacity Q1 and all the generators at node 2 have
output capacity Q2.

Proposition 7, together with Proposition 11 below, will show that identical generators at the
same node will offer identical supply curves in SFE. Because of this symmetry, we get a reduction
in order of the Klemperer-Meyer equation Z = 0, as we only need to know one curve from each
node to know the whole SFE. Each generator at node 1 offers a curve Q1 (p) and each at node
2 offers Q2 (p). The total nodal offers are thus

S1 = N1Q1 and S2 = N2Q2.

3Suppose we have an optimal supply curve with q̇ = 0 over an interval [t1, t2], and that this interval is the
maximal such interval. Since it is the maximal such interval, we have q̇ > 0 on (t1 − δ, t1) and (t2, t2 + δ) for
some δ > 0. Hence

lim
t↗t1

w (t) = 0 and lim
t↘t2

w (t) = 0,

and so since w is continuous, w (t1) = 0 and w (t2) = 0. Using the fundamental theorem of calculus, we see that
the average of Z over the interval is zero:∫ t2

t1

Z (q (t) , p (t)) dt = w (t2) − w (t1) = 0.
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The system of first-order equilibrium conditions under Assumption 6 is derived from (7):

Z1 = (p− c) (φ1,1 (N1 − 1)Q′1 + φ1,2N2Q
′
2)− φ1,1Q1 = 0

Z2 = (p− c) (φ2,1N1Q
′
1 + φ2,2 (N2 − 1)Q′2)− φ2,2Q2 = 0. (13)

Note that the partial derivatives φm,n of the constrained demand distribution function depend
on the net nodal offers S1 = N1Q1 and S2 = N2Q2. Define the matrix

A =

[
(N1 − 1) N2

φ1,2

φ1,1

N1
φ2,1

φ2,2
(N2 − 1)

]
, (14)

so that the system (13) can be written

(p− c)AQ′ = Q.

Further, make a change of variable
aet = p− c. (15)

It follows that Q̇ = dQ
dt = dQ

dp
dp
dt = Q′aet = Q′ (p− c), so

AQ̇ = Q. (16)

Though the matrix A depends on the offer quantities Q1 and Q2, it does not depend explicitly
on either price or the parameter t. Hence the ODE (17) is autonomous, i.e the independent
variable does not appear in the equation. We can analyze it as a direction field in offer-quantity
space, the space of all possible offer quantities Q = (Q1, Q2). Autonomy gives a degree of
freedom in choosing a scalar multiple on the price variable when we change from t back to p.
Another way to express this is that we may rescale the mark-up (p− c) by any positive scalar
multiple, i.e. if r = c+ 1

a (p− c) for some scalar constant a, then

a (r − c) dQ
dr

= (p− c) dQ
dp

= A−1Q.

We define the function U (Q) = A−1Q so that the slope of the (unconstrained) trajectory Q (t)
through offer-quantity space is

Q̇ = U (Q) . (17)

In general, the matrix A is a function of Q. In order to understand the SFE that occur in the
presence of constrained transmission, we will first look at a constant-coefficient version of (16),
one in which A does not vary with Q.

The elements of A have the following interpretation: Am,n is the number of competitors that
an agent at node m faces who are at node n, times the probability that there is no transmission
congestion between m and n. Hence Am,n is the expected number of competitors at node n
that agents at node m face. This means that the components of AQ′ are the expected slopes
of residual demand for agents at the two nodes.

When integrating to find solutions to (16), we want to integrate in a direction for which the
solution remains stable. The stability of the solution is determined by the eigenvalues of the
matrix A. The Perron-Frobenius theorem (Meyer 2000), tells us that since all the entries of A
are positive, A has at least one positive eigenvalue and a corresponding eigenvector that lies
in the positive orthant. Our A is 2 × 2, so it can have either two positive eigenvalues or one
positive and one negative eigenvalue. If there are two positive eigenvalues, then the two nodes

10



behave more like independent markets. If the eigenvalues are mixed, then the market is more
integrated.

The origin is a singular point of the system (16). When solving near the origin, the eigenvalues
of A become particularly important, and force us to integrate in a particular direction to keep
the error bounded. If, on the one hand, the eigenvalues of A at the origin are mixed, then the
origin is a saddle point. Integrating towards the origin will always diverge, so it is necessary to
integrate moving away from the origin. If, on the other hand, the eigenvalues are both positive,
then the origin is a source node; in this case integrating towards the origin is the more stable
direction.

As Klemperer and Meyer (1989) showed for SFE without transmission, we now show that when
0 is in the support of the demand shocks, then all SFE with identical generators in two nodes
will have all agents in the same node making identical offers near zero output. It is sufficient to
show that any pair of generators in the same node have identical offers.

Proposition 7. Under Assumption 6, if the supply functions of both generators are strictly
monotone on some neighbourhood of c, then they are equal.

3.1 SFE with all offers identical

We proceed to solve for SFE in some special cases. In our network SFE model, if we assume
that in equilibrium every agent’s optimal offer problem is identical, then the equilibrium can be
found by solving a first-order (scalar) ODE. This will be true if there are the same number of
agents in each node and symmetrical distributions of demand in each node.

Suppose there are N agents in each node. All 2N agents will offer the same supply function
Q (p) in equilibrium. Because the offer quantities at a given price are going to be identical
between the two nodes. We require A to be symmetric when S1 = S2, i.e.

φ1,2 (NQ,NQ)

φ1,1 (NQ,NQ)
=
φ2,1 (NQ,NQ)

φ2,2 (NQ,NQ)
. (18)

We already have that
φ1,2 (NQ,NQ) = φ2,1 (NQ,NQ)

for all Q ∈
[
0, Q

]
, so for (18) to hold for all Q, we must have

φ1,1 (NQ,NQ) = φ2,2 (NQ,NQ) . (19)

This can achieved by making the shock distribution a bivariate normal with the same mean and
standard deviation in both components.

When µ1 = µ2 and σ1 = σ2, then the Gaussian density function f (ε1, ε2) is symmetric in its
arguments. And the symmetry of φm,n follows from this.

The equilibrium condition (13) then becomes

(p− c)
(

(N − 1) +N
φ1,2

φ1,1

)
Q′ −Q = 0. (20)

We interpret the term
(

(N − 1) +N
φ1,2

φ1,1

)
as the expected number of competitors reachable

along an uncongested line.4 This probability is endogenous and will change with Q, varying

4This is Nµ̃− 1 in Holmberg and Philpott’s (2017b) ‘well-behaved two-node network.’
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between N − 1 (when the line is almost-certainly congested) and 2N − 1 (when it is almost
certainly uncongested). The general solution to (20) is

log (p− c) = (N − 1) log (Q) +N

∫
φ1,2 (NQ,NQ)

φ1,1 (NQ,NQ)

1

Q
dQ.

The last integral might not have an analytic solution, but we can estimate bounds for it as

follows. The ratio
φ1,2(NQ,NQ)
φ1,1(NQ,NQ) is the probability of uncongested flow, so is bounded by 0 and 1.

When the ratio is 0, we have local oligopolies, each with N agents, so the symmetric SFE is

Q (p) = k (p− c) 1
N−1 ,

where k is a constant of integration. The curve is a straight line for N = 2 and a hockey-stick
shape for N > 2. For a given endpoint, the supply function equilibrium is more hooked for
larger N . The more hooked curve is more competitive because the price stays closer to marginal
cost for longer.

When the ratio is 1, we have all 2N agents competing in supply functions, so the symmetric
SFE is

Q (p) = k (p− c) 1
2N−1 .

Example 8. The demand shock is normal in each node with a mean of 20MW and standard
deviation of 50MW. There is no correlation between nodal shocks. There are two generators at
each node. Each generator has a production capacity of 120MW. Costs of production are zero
and there is a price cap at $1000. The line has a capacity of 40MW.

By Holmberg (2008), there is a unique SFE in this market where the production capacities are
exhausted at the price cap.

Figure 2 shows, on the left, a plot of how the expected number of competitors varies with
Q relative to the (nodal) mean of the demand shock distribution. It varies between 1 and a
maximum of 2.26. The line is most likely to be uncongested when the offer at each node is equal
to the mean of the demand shock there. In some demand shock outcomes (28% of the time),
the total demand shock is negative, which will lead to negative prices. You could think of this
as the ‘up’ side of a balancing market.

On the right of Figure 2 is the SFE for this market. The supply curve is approximately parabolic
near zero output, which is where the probability of uncongested flow is highest, and the expected
number of competitors is roughly two. As output grows, so does the probability of congestion.
Near the production capacities the generators are expected to face only one competitor, so the
SFE curve becomes approximately linear.

3.2 Meeting capacity constraints

Under Assumption 6 each generator in node m has production capacity Qm, and write Q for
the vector [

Q1

Q2

]
.

Suppose that the support of demand shock contains all of
[
0, Q1

]
×
[
0, Q2

]
. Hence Proposition 7

applies near zero output. Suppose that offers prices are required to be below the price cap p
and above the price floor p.

If demand is so high that the market cannot clear even when one of the nodal prices reaches the
price cap, we suppose that load is shed. Similarly, if demand is so low that the market would
clear below the price floor, then supply is rationed.
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Figure 2: Symmetric SFE. On the left is the expected number of competitors for each firm,
which changes with the output. On the right is the symmetric SFE {(Q, p) ; p ∈ [0, p]}.

The production capacity constraints and price cap give us boundary conditions for the outer
(high-price) end of the SFE. When demand is totally inelastic, all generators’ production is
required in order to meet the highest levels of demand, and a price cap is imposed, Holmberg
(2008) showed there is a unique SFE. In this SFE, all generators except perhaps one hit their
production capacity exactly at the price cap. His argument for a pool market applies exactly
the same to a network market with more than one player at each node.

In our model, since the generators in each node are perfectly symmetric, there are only two
possible cases.

1. The generators at one node offer their last unit at the price cap, and those in the other
node offer their last unit at a lower price, or

2. all generators offer their last unit at the price cap.

In the first case, generators that offer their last unit at the price cap play SFE only against
each other at prices above the point where the other generators offer their last unit; this is as
in Holmberg (2008).

3.3 Monotonicity constraints

In certain parts of the offer-quantity space, the slope given by (13) has a negative component.
Further, it is not always possible to trace a trajectory from the origin to the production capacity
point that maintains positive slope everywhere, even if the capacity constraints bind. We will
need to iron the solution so that it obeys the monotonicity constraint. As Anderson and Philpott
(2002) showed, there are restrictions on the sign that the first-variation derivative of expected
profit Z can have at the ends of the interval. Formulas for Z1 and Z2 are given in (13). In
matrix form,[

Z1

Z2

]
= (p− c)

[
φ1,1 (N1 − 1) φ1,2N2

φ2,1N1 φ2,2 (N2 − 1)

]
Q′ −

[
φ1,1 0

0 φ2,2

]
Q.

13



Under the change of variables p − c = et, we get a price-independent expression for Z along a
supply curve:

Z
(
Q, Q̇

)
: =

[
(N1 − 1)φ1,1 N2φ1,2

N1φ2,1 (N2 − 1)φ2,2

] [
Q̇1

Q̇2

]
−
[
φ1,1Q1

φ2,2Q2

]
=

[
φ1,1 0

0 φ2,2

](
AQ̇−Q

)
. (21)

We will now describe the simultaneous optimization of constrained supply curves. The adjoint
for a curve through offer-space is used to define necessary conditions for ironing in SFE.

Trajectories through offer-quantity space

Segments of the supply curve where q̇ = 0 are said to be ironed. On such segments, the optimality
conditions are stated in terms of the adjoint function w. When the agents in one node iron, they
hold their offer quantities constant over some interval of prices, while the agents in the other
node will continue to offer at an increasing slope, following Z = 0. In order to find SFE by
integration in offer-space, we first define the candidate trajectory as the vector of supply curves,
together with an adjoint function for each. As we show below, in Proposition 11, all the agents
in a given node offer supply curves that are identical; on a given segment of curve, either none
of them iron or they all do.

Definition 9 (Candidate trajectory). A candidate trajectory is a (piecewise differentiable) curve
Q : [0, T ]→ R2 together with an adjoint function w : [0, T ]→ R2 such that

ẇ (t) = Z
(
Q (t) , Q̇ (t)

)
,

Q̇n (t)wn (t) = 0 for n = 1, 2,

Q̇ (t) ≥ 0, and

w (t) ≥ 0 for all t ∈ [0, T ] . (22)

We can find a candidate trajectory in t and then transform back to prices. Under the change of
variables

p− c = aet,

the parameter t varies from −∞ to T as p goes from c to p. The zero mark-up at zero output
condition becomes a limit; limt→−∞Q (t) = 0. The outer boundary condition is simply Q (p) =
Q. By the correct choice of constant a, we can meet this exactly at the price cap. If Q (T ) = Q,
then just pick

a = (p− c) e−T .

Lemma 10. Suppose we have a candidate trajectory Q (t), together with its adjoint w (t). Define
p (t) = c+ aet with a > 0. Then the set of supply curves Si,n = (Qn (t) , p (t)) for all i ∈ n, n =
1, 2 satisfies the necessary conditions of Theorem 4.

Proof. The necessary conditions are

Q̇n (t) · wn (t) ≤ 0 ≤ ṗ (t) · wn (t) .
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Since ṗ = aet > 0, we only need to show

Q̇n (t) · wn (t) = 0 and

wn (t) ≥ 0.

But these follow immediately from definition of the adjoint (22).

To show that a set of curves {Si,n}i,n is an SFE we only have to verify the second-order condi-
tions. In Theorem 16 below, we will show that when the matrix A is constant over all Q, then
the SFE candidate that follows a given trajectory is maximal. However, when A varies it will
generally be necessary to calculate Zi,n (qi,n, p) for all permitted qi,n and p in order to verify
that Z > 0 to the left of the candidate curve and Z < 0 to the right.

Ironed trajectories

On strictly monotone segments of the candidate trajectory, the adjoint w will be zero. Here we
study the adjoint when the agents in one node are ironing. Define the ironing function Ym (Q)

for node m = 1, 2 as the value of Zm

(
Q, Q̇

)
if the generators at node m were to make an offer

with Q̇m = 0, i.e. if they were to iron over the point Q, with the other node n offering so that
Q̇n = Un (Q). With all costs identical and constant, we find that Y is, like A, a function of Q
alone. To see this for Y1, first set Z2 to zero and solve for Q̇2 when Q̇1 = 0,

Z2

(
Q,

[
0

Q̇2

])
= (N2 − 1)φ2,2Q̇2 − φ2,2Q2 = 0, so

Q̇2 =
Q2

(N2 − 1)
.

Note that the assumption that N2 ≥ 2 guarantees this slope is finite. If we had N2 = 1,
then when the generators at node 2 ironed, the monopolist at node 2 would face perfectly
inelastic residual demand, so their optimal strategy would be to offer all their output at the
highest possible price. The presence of a local competitor ensures that all generators face elastic
residual demand and so precludes such degeneracy. When we substitute the above value for Q̇2

into (21) to find Z1, we get

Y1 = N2φ1,2Q̇2 − φ1,1Q1,

=
N2

N2 − 1
φ1,2Q2 − φ1,1Q1.

By a similar calculation,

Y2 =
N1

N1 − 1
φ2,1Q1 − φ2,2Q2.

Note that Y is a function of Q only, and does not depend on p or Q̇. As a matrix equation,

Y (Q) =

[
−φ1,1

N2

N2−1φ1,2
N1

N1−1φ2,1 −φ2,2

]
Q

= |A|
[
−φ1,1

N2−1 0

0
−φ2,2

N1−1

]
A−1Q

= |A|
[
−φ1,1

N2−1 0

0
−φ2,2

N1−1

]
U (Q) . (23)
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Proposition 11 completes the argument that identical generators in a two-node network will
offer identical supply curves in equilibrium.

Proposition 11. Under Assumption (6), at any given point along a candidate trajectory they
either all agents iron or none do.

The proof uses the following properties of Y and U , which later will also serve to control
integration along candidate SFE trajectories.

Lemma 12. The vector function Y : R2 → R2 has the following properties:

1. If Y (Q) = 0, then either Q = 0 or |A| = 0.

2. For n 6= m, if Qm = 0 and Qn > 0, then Ym (Q) > 0 and Yn (Q) < 0.

Lemma 13. The slope Q̇ = U (Q) has both components positive if and only if either

|A| < 0 and Y1, Y2 > 0, or

|A| > 0 and Y1, Y2 < 0.

The sign restriction on the adjoint function to an optimal slope-constrained supply curve gives
a necessary condition for the endpoints of ironed segments in terms of the signs of Z.

Lemma 14 (Corners). Suppose S∗ = {(q (t) , p (t)) : t ∈ [0, T ]} is a local maximum of Π (S),
subject to q̇, ṗ ≥ 0. Suppose that ṗ (t) > 0 for all t ∈ [0, T ]. If q̇ = 0 on some interval

(
t̂, t1

)
and

q̇ > 0 on an adjacent interval
(
t0, t̂

)
, i.e. t̂ is at the low-priced end of an ironed segment, then

there exists an ε > 0 such that Z (q (t) , p (t)) ≥ 0 for all t ∈
(
t̂, t̂+ ε

)
.

Similarly, if q̇ = 0 on some interval
(
t0, t̂

)
and q̇ > 0 on an adjacent interval

(
t̂, t1

)
, i.e. t̂ is at

the high-priced end of an ironed segment, then there exists an ε > 0 such that Z (q (t) , p (t)) ≤ 0
for all t ∈

(
t̂− ε, t̂

)
.

Proof. For t̂ at the low-priced end of an ironed segment, consider the adjoint w. Because q̇ > 0
on
(
t0, t̂

)
, it must be that w = 0 on this interval. So w = 0 at t̂. Because w ≥ 0, it must be that

Z = ẇ ≥ 0 in some neighbourhood of t̂.

The proof for t̂ at the high-priced end of an ironed segment is similar.

Lemma 14 means that ironed segments can only have their ends in certain parts of offer-quantity
space. Suppose |A| > 0. From the optimality conditions discussed in Section 2.3, the inner end
of a segment with node m ironing needs

U (Q) ≥ 0 and Ym ≥ 0. (24)

Lemma 13 implies that U (Q) ≥ 0 if and only if Ym ≤ 0, but this means that the only points
where (24) is possible are those where Ym = 0.

On the other hand, suppose now that |A| < 0. In this case Lemma 13 implies that Y ≥ 0
wherever U (Q) ≥ 0, so that ironing may begin from any point on an unconstrained segment.

At the lower priced (inner) end of an ironed segment, where node 1 is ironing, Y1 must be
positive

Y1 =
N2

N2 − 1
φ1,2Q2 − φ1,1Q1 > 0.
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Rearranging the expression for Y1, we see that Y1 > 0 if and only if

Q2
φ1,2

φ1,1
>
N2 − 1

N2
Q1.

Note that the right-hand side of this inequality is constant over the ironed interval.

Ironing will often occur at the production capacity of the generators in one of the nodes. Ironing
in the interior of an SFE curve can only occur where Ym passes from positive to negative. For
node 1 ironing, this means that Q2

φ1,2

φ1,1
must be decreasing; so the non-congestion probability

φ1,2

φ1,1
must be decreasing faster than the offers at node 2 are growing. The generators at a

particular node will withhold energy by offering an inelastic (vertical) segment when it increases
the probability of congestion in their favor; i.e. when it increases the probability they will be on
the high-price end of the line.

4 Constant-coefficient ODE

Suppose that the network congestion probabilities are exogenously given, that is, they do not
depend on the offers made by generators. Then in (16) we would have a matrix A that is
constant over all of offer-quantity space. Two situations in which this occurs are when the line
is either surely congested or surely uncongested. In a pool market, there is no congestion, and
the interaction probability

φm,n
φn,n

= 1, so |A| = 1−N1 −N2 < 0.

Whereas in 3.1, we obtained a scalar ODE, with constant A, (16) becomes a linear system of
ODE with constant coefficients that can be solved analytically.

Let there be two generators at each node: N1 = N2 = 2. Then in the surely congested case we
have

A =

[
1 0
0 1

]
,

which has positive determinant and two positive eigenvectors. In the surely uncongested case
we have

A =

[
1 2
2 1

]
,

which has negative determinant and one eigenvalue of each sign. These two cases correspond to
different types of market behavior.

Fences

To guide our integration across offer-quantity space, we apply the concepts of fences from pla-
nar dynamics (see Hubbard and West 1995). By Lemma 13, strictly monotone segments of a
candidate trajectory will be found only in the region where U (Q) > 0. The boundaries of this
region are the loci Ym = 0 for m = 1, 2. The shape of these loci can tell us a lot about the
strictly monotone segments.

Definition 15. A right-hand fence for the differential equation Q̇ = U (Q) is a curve Q =

h (s) =

[
h1

h2

]
(s) , s ∈ [0, 1] whose right-hand normal

N (s) =
1√
2

[
0 1
−1 0

] [
Q1

Q2

]
(s)
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satisfies
N (s) · U (Q (s)) > 0 ∀s.

A solution to Q̇ = U (Q) can cross a right-hand fence from left to right, but never the other

way. A left-hand fence is a curve Q = h (s) =

[
h1

h2

]
(s) , s ∈ [0, 1] whose right-hand normal

N (s) =
1√
2

[
0 1
−1 0

] [
Q1

Q2

]
(s)

satisfies
N (s) · U (Q (s)) < 0 ∀s.

With some help from the implicit function theorem, it is possible to parametrize the Ym = 0
loci as curves. When these curves are monotone in both components they form fences. These
fences are bounds on the solution to Q̇ = U (Q) when integrating in the stable direction.

Positive determinant

When the matrix A has positive determinant, the local markets at either end of the congested
line behave more independently of each other, and there are many monotone trajectories of
Q̇ = A−1Q through the origin.

The matrix A will have two positive eigenvalues λ1 and λ2, with eigenvectors v1 and v2. Then
A−1 has the same eigenvectors with eigenvalues 1

λ1
and 1

λ2
. Solutions to AQ̇ = Q will have the

form
Q = a1e

t
λ1 v1 + a2e

t
λ2 v2, (25)

with constants of integration a1 and a2. For any a1 there will be a range of a2 that gives

lim
t→−∞

Q̇ (t) ≥ 0.

Figure 3 shows, on the left, a candidate trajectory for positive |A|, together with the Y1 = 0
and Y2 = 0 loci. If they are parametrized away from the origin, then Y1 = 0 forms a left-hand
fence and Y2 = 0 a right-hand fence. The trajectory is solved ‘backwards’, in the decreasing t
direction, so the fences force the trajectory towards the origin.

Negative determinant

When the matrix A has negative determinant, the markets at either end of the line behave more
like a pool market.

There will be two eigenvalues λ1 > 0 > λ2, with eigenvectors v1 and v2. Local solutions to

AQ̇ = Q will still have the form (25) but now, since t → −∞ as p → c, the exponent on e
t
λ2

goes to infinity and this term blows up as price approaches marginal cost, so a2 = 0.

There is only one monotone trajectory through the origin, the one along v1. This is the same
argument used by Klemperer and Meyer (1989) to show the uniqueness of a symmetric SFE
passing through zero output at marginal cost.

Figure 3 shows, on the right, a candidate trajectory for negative |A|, together with the Y1 = 0
and Y2 = 0 loci. As before, if they are parametrized away from the origin, then Y1 = 0 forms a
left-hand fence and Y2 = 0 a right-hand fence. However, they now act as a funnel in the opposite
direction. Solving in the ‘forwards’, increasing t, direction, the trajectory is forced towards the
dominant eigenvector of A.
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Algorithm 1 Constant-coefficient algorithm.

• Calculate |A|.

– If |A| > 0, start from the output capacities Q and work in the decreasing t direction.
If either entry of U

(
Q
)

is negative, agents in that node iron inwards at their output

capacity until U
(
Q
(
t̂
))
≥ 0. Integrate AQ̇ = Q to connect that point to the origin

by a monotone trajectory.

– If |A| < 0, start from the origin and work in the increasing t direction. Integrate
AQ̇ = Q so that Qm

(
t̂
)

= Qm for one of the nodes m. Generators in that node then

iron outwards at their output capacity until Qn
(
t
)

= Qn for n 6= m.

• Choose T so that Q (T ) = Q and then choose a to solve p − c = aeT . Then define
p (t) = c+ aet.

An algorithm to solve for SFE under constant coefficients

These solutions we can now put together with the ironing rules above to give an algorithm for
computing SFE trajectories. The Constant-coefficient Algorithm 1 will find analytic solutions
for SFE when the matrix A is constant. It tells us in what direction to integrate and in which
mode to integrate — not-ironing or ironing — to find an SFE.

There are two sorts of integration involved. When the capacity constraints are not binding, we
integrate AQ̇ = Q, and when they are we integrate the local N -opoly in the node that is not
constrained. With constant A, we find that the monotonicity constraints only ever bind when
the capacity constraints bind.

To integrate AQ̇ = Q with constant coefficients A, use the general solution (25). When both
eigenvalues of A are positive (|A| > 0), then both eigenvectors are admissible in a non-decreasing
solution, and a1 and a2 should be chosen so that Q

(
t̂
)

has the required value. When the smaller

eigenvalue λ2 < 0 — the |A| < 0 case — then a2 = 0, and a1 can be chosen so that Q
(
t̂
)

has
the required value.

To integrate for generators at node m ironing at their output capacity, hold Qm = Qm constant,
and for the other node n solve the differential equation

Q̇n =
Qn

Nn − 1

[
Q̇m = 0

]
(26)

on an interval
[
t̂, t
]
. The solution to (26) will have the form

Qn (t) = ae
t

Nn−1 .

and we can choose a and t̂ to satisfy the boundary conditions. Set t = log p and solve Qn
(
t
)

=

ae
t

Nn−1 = Qn to find the constant of integration a. The inner boundary conditions will determine
the inner endpoint of the ironed interval t̂; these depend on the direction. If ironing outwards, we
set Um

(
Q
(
t̂
))

= 0 for the ironing node m. If ironing inwards, we instead set Qm
(
t̂
)

= Qm
(
t̂
)

and Q
(
t̂
)

= κv1 for some κ ∈ R, i.e. Q
(
t̂
)

lies on the leading eigenvector v1 and has its mth

component at the upper bound Qm.

Theorem 16. The Constant Coefficient Algorithm 1 will always find a candidate trajectory that
is an SFE. Moreover, this SFE is unique.
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Figure 3: Constant-coefficient algorithm, outward (|A| > 0) and inward (|A| < 0) cases.
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Figure 4: Output capacities for generators in Example 17.

Example 17 (Network SFE with constant integration probabilities). Suppose there are two
generators at each end of the transmission line, as shown in Figure 4. The generators at node
1 have 100MWh of generation capacity, while those at node 2 each have 150MWh, i.e.

Q =

[
100
150

]
.

The price cap is $1000 and the cost of production is zero. We calculate SFE trajectories for
three different integration matrices A.

First, in a completely integrated market we have
φm,n
φn,n

= 1 for m 6= n, so

A =

[
1 2
2 1

]
.

Taking the determinant, we see |A| = −3 < 0. The positive eigenvalue is λ = 3, with eigenvector[
1
1

]
. The trajectory through the origin is thus

Q (t) = a1e
t
3 ·
[

1
1

]
.

This trajectory hits a production capacity constraint at Q̂ =

[
100
100

]
, so agents at node 1 must

iron while agents at node 2 play as a duopoly out to their production capacity, so

Q2 (t) = a2e
t.
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Figure 5: Fully integrated market.

When we change variables to p = c+ et, we get the piecewise SFE

Q (p) =


a1 (p− c) 1

3 ·
[

1

1

]
p < p̂[

100

a2 (p− c)

]
p > p̂.

We now choose the scale constants a1, a2 so that the supply functions are continuous and reach
the output capacity point Q at the price cap p. It is simple to calculate

p̂ = 0.0015

a1 = 11.4471 and

a2 = 0.15.

The SFE and trajectory are plotted in Figure 5.

Second, in a fully separated market we have
φm,n
φn,n

= 0 for m 6= n, so

A =

[
1 0
0 1

]
.

The determinant of A is 1, which is positive. At the production capacity point

U
(
Q
)

= A−1Q =

[
100
150

]
> 0,

so there is no need of ironing. To integrate inwards, we can solve two independent ODEs to
obtain

Q (p) = a1 (p− c)
[

1
0

]
+ a2 (p− c)

[
0
1

]
.

To meet the production capacities at the price cap Q (p) = Q, we set

a1 = 0.1 and

a2 = 0.15.

The SFE and trajectory are plotted in Figure 6.
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Figure 6: Fully separated markets.

Third and finally, consider a partially integrated market. In general a partially integrated market
will not have constant A, so this final example is rather artificial, however it demonstrates how
Algorithm 1 will generalize to variable A. Let

φm,n
φn,n

= 0.45 for m 6= n, so

A =

[
1 0.9

0.9 1

]
.

The determinant |A| = 0.09 > 0. The slope at the production capacity point is given by

U
(
Q
)

= A−1Q =

[
1 0.9

0.9 1

]−1 [
100
150

]
=

[
−184.2
315.8

]
,

which has a negative component, so we must iron at node 1’s production capacity. The ironing

stops when Y1 = 0.9Q2−Q1 = 0. Solving for Q2 gives

[
100

111.1

]
as the point where U becomes

non-negative. From this point we can solve Q̇ = U (Q) to the origin by the eigenvector method.

The eigenvectors of A are [
1
1

]
and

[
−1
1

]
,

with eigenvalues 1.9 and 0.1 respectively. Thus the general solution to Q̇ = U (Q) = A−1Q is

Q = a1e
t

1.9

[
1
1

]
+ a2e

t
0.1

[
−1
1

]

for constants of integration a1 and a2. For the solution to pass through

[
100

111.1

]
at t̂, we must

have
a1e

t̂
1.9 = 105.55 and a2e

t̂
0.1 = 5.55.

When node 1 is ironing, node 2 generators offer a curve

Q2 = a3e
t

and the boundary condition Q2 (log 1000) = 150 gives a3 = 0.15. We can then find t̂ by solving

100 = 0.15et̂, for t̂ = log 666.66. Knowing t̂, we can solve for a1 and a2. Putting it all together,
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Figure 7: Partially integrated markets

the piecewise SFE is

Q (p) =


a1 (p− c) 1

1.9 ·
[

1

1

]
+ a2 (p− c)10 ·

[
−1

1

]
p < p̂[

100

a3 (p− c)

]
p > p̂

with

a1 = 3.4452

a2 = 3.2036 · 10−28

a3 = 0.15 and

p̂ = 666.66.

The SFE and trajectory are plotted in Figure 7. Because the a2 component is so small, the gap
between the supply curves is imperceptible at prices below $500/MW.

5 Varying coefficients: ironing within SFE

The analysis of the ODE (16) with constant coefficients will inform the solution methods for
the general problem, in which the matrix A varies with the offer quantities Q. We shall extend
Algorithm 1 to find candidate trajectories first in markets where |A| has the same sign every-
where, then in markets where A becomes singular along the candidate trajectory. Here is an
example of the difficulties we can expect.

Example 18 (Bad behavior). Suppose there are two players in each node, and independent
normal demand shocks in the two nodes with means (120, 120) and standard deviations (60, 50).
The two nodes are connected by a line with a capacity of 45MW. There are two generators at
each node.

Figure 8 shows, on the left, the zero-contours of Ym and |A|. The determinant |A| is negative
inside an elliptical region centered on the mean of the demand shock distribution. This shows
that the transmission constraint is least likely to bind when the total offers at each node are
exactly equal to the mean of the demand shock distribution, since in a sense this is when the
demand for transmission is the least.
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Figure 8: The signs of |A| and Ym for the two node model, and the slope field U (Q), with bad
behavior.

On the right of Figure 8 is the slope field U (Q) = A−1Q with the regions where U (Q) has a
negative component shaded. This is a poorly-behaved instance of our two-node model. We have
a very asymmetric demand shock distribution, and a line whose transmission capacity is not
quite large enough to integrate the two nodal markets in all demand outcomes. It is clear that
there are points that can only be reached by a candidate trajectory with an ironed segment in
its interior.

Under constant A, the rays Q = A

[
1
0

]
and Q = A

[
0
1

]
are the boundaries between positive

and negative Ym. These rays are fences so will be crossed at most once by a non-decreasing tra-
jectory from the origin, even counting ironed segments. With varying coefficients, the boundary
Ym = 0 can have other shapes, even something like that shown in Figure 8.

With constant A, the differential equations can be solved analytically. In what follows, we will
turn to numerical methods, in particular the ode23t initial-value solver in MATLAB Gladwell
et al. (2003). It is a Runge-Kutta method with trapezoid rule, which works like the Euler
method, but is better suited to stiff ODEs. It takes in a function f (t, Q) and an initial point
Q (t0) = Q0 and keeps extending an approximate solution to Q̇ = f (t, Q) until some stopping
condition is met. Because of the existence of singular points (in particular the origin) in our
ODE, we are concerned with numerical stability. Depending on the sign of |A|, numerical
solutions can diverge very rapidly if we integrate in the wrong direction.

Not all instances of the two-node model are as complicated as the one in Figure 8. If the region
where U (Q) ≥ 0 is sufficiently cone-like, then Algorithm 1 can be applied, using numerical
integration instead of taking eigenvalues of A to follow Q̇ = U (Q). If |A| keeps the same
sign across a neighbourhood of the valid trajectory, then the algorithm needs only a little
modification.

Our improved algorithm for finding the SFE will work when the coefficient matrix A is allowed
to vary, provided that the determinant of A does not change sign along the candidate curve.
In order for it to work, we need to make some technical assumptions on the behavior of the
problem, in addition to Assumption 6.

Assumption 19. [Conditions for ironing]We make the following three assumptions about
the ironing functions Ym.
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1. For m = 1, 2, there are only a finite number of points where

Ym = 0, and

∂

∂Qm
Ym = 0.

2. For any two pointsQ, Q̃ withQ1 = Q̃1 andQ2 < Q̃2, if Y1

(
Q̃1, Q̃2

)
< 0 and Y1

(
Q̃1, Q2

)
>

0 then Y2

(
Q̃1, Q̃2

)
< 0. Similarly, for any two points Q, Q̃ with Q1 < Q̃1 and Q2 = Q̃2,

if Y2

(
Q̃1, Q̃2

)
< 0 and Y2

(
Q1, Q̃2

)
> 0, then Y1

(
Q̃1, Q̃2

)
< 0.

3. Regions where Ym > 0 are simply connected (connected and without holes).

These assumptions are sufficient to ensure that the solution algorithm terminates after finitely
many iterations and that the resulting trajectory is unique.

The first part of Assumption 19 means that the curves defined by Ym = 0 for m = 1, 2 change
between upward and downward sloping only a finite number of times. The functions Ym are
continuous functions of two variables, so generically the loci Ym = 0 will be curves. At any point
where Ym = 0 we can see whether the direction Q̇ = U (Q) points into the Ym > 0 region or
out of it. We assume there are only a finite number of points where the direction changes from
in to out. At each such change, a curve along Ym = 0 changes between a left-hand fence and a
right-hand fence. This part of the assumption is true for any reasonable choice of network and
shock distribution (i.e. the shock density is continuous with a finite number of local maxima).

The second part of Assumption 19 means that there is no point at which we can turn a hard
corner from one node ironing to the other node ironing, without a strictly increasing segment in
between. Note that the ironing functions in Figure 8 violate condition 2 of Assumption 19. Take,
for instance Q = (90, 80) and Q̃ = (90, 110). We shall see in Example 29 that this configuration
leads to multiple equilibrium trajectories, since it allows one node to iron and then the other in
adjoining segments of the trajectory.

The third part is more for convenience, it cuts down the number of different cases that must
be considered in the proofs of uniqueness. For both the second and third parts it is possible to
construct counterexamples with a bivariate normal shock distribution.

As in the constant-coefficient problem above, the direction of integration depends on the deter-
minant of A. We will define algorithms for computing candidate trajectories in the positive and
negative determinant cases, and then use them to calculate some example SFEs.

5.1 Varying coefficients and positive determinant

The key idea of the Inward Algorithm 2 is to get closer to the origin with every round of the
main loop. After each iteration, the number of changes in handedness of the fences Ym = 0
between the end of the partial trajectory and the origin decreases. Hence the algorithm will
eventually terminate. After some initial ironing, we begin and end each round of the main loop
at a point t̂ with

w
(
t̂
)

= 0 and U
(
Q
(
t̂
))
≥ 0.

Upon exit from the loop we will have t→ −∞, so p→ c.

The algorithm drives a Runge-Kutta integrator in the stable direction of the slope field. We
integrate either the unconstrained differential equation Q̇ = U (Q), or a specially modified
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Algorithm 2 Inward Algorithm

Initialization: Initial trajectory is defined at the single point Q (T ) = Q. The adjoint w will be
initialized after the first ironed segment.
Initial ironing: Calculate Y

(
Q
)
; either A) Ym > 0 for m = 1 or 2 or B) Y ≥ 0.

A) Node m irons inwards until Ym = 0. Set t̂ to be the parameter at the inner end

of this ironed segment. Set w
(
t̂
)

= 0, and wm (t) =
∫ t
t̂
Ym dt and wn (t) = 0 for

t ∈
[
t̂, t
]
, n 6= m.

B) There is no ironing. Set w
(
t
)

= 0 and t̂ = t.

Main loop:
Integrate inwards (in the direction of decreasing t) from Q

(
t̂
)

along Q̇ = U (Q) until either: C)
Q (t)→ 0 or D) Ym = 0 for m = 1 or 2.

C) We are DONE, exit the loop

D) Apply the Inward Interval Search Algorithm 3 with node m ironing to obtain a
trajectory and its adjoint on an interval (t∗, t

∗). Update t̂ to t∗. We now have
w
(
t̂
)

= 0 and U
(
Q
(
t̂
))
≥ 0, and can go round the loop again.

Algorithm 3 Inward Interval Search

Until tolerance satisfied:
Choose an initial t∗ in the interval

(
t̂, t
]
.

Node m irons inwards from a point Q (t∗) that is on the partial trajectory with w (t∗) = 0.
Stop integration when A) Qn → 0 for n 6= m or B) wm = 0.

A) Decrease t∗.

B) Increase t∗.

Repeat until the inner endpoint of the ironed segment, at parameter t∗, has wm (Q (t∗)) = 0
and Ym (Q (t∗)) = 0, to within desired tolerance.
Output: An ironed trajectory on the interval (t∗, t

∗), with wm (t∗) = 0 and Ym (Q (t∗)) = 0.

ordinary differential equation if the agents in one node are ironing. Both types of differential
equation will be integrated in the decreasing t direction.

When node m is ironing, we integrate the differential equation system

Q̇m = 0, Q̇n = Un (Q) , ẇm = Ym (Q) , ẇn = 0.

This has four scalar functions but is essentially a two-dimensional system as the Qm and wn
terms remain constant. It derives from the optimality conditions of Lemma 10.

The interval search Algorithm 3 is implemented as a bisection method search. It is illustrated
in Figure 9. Above is a plot of trajectory space. The thin black line is the zero contour of Y1,
with coloured shading showing it is positive on the left and negative on the right. The initial
segment of trajectory starts from the production capacity point (red dot) and continues down
until it meets the Y1 = 0 contour. Four trajectory segments with node 1 agents ironing run
down from this to meet the lower bound Q2 ≥ 0. Below are plots of the adjoint values as a
function of price w1 (p), for these four ironed curves.

The goal of the interval search is to find an ironed segment of trajectory where the top end is
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Figure 9: Typical interval search problem in case D) of the Inward Algorithm. In the top plot,
the initial trajectory is the thick solid curve, found by integrating down from the production
capacity point (red dot). Four ironed trajectory segments come down from this trajectory
segment (coloured lines). In the bottom plot are the adjoint values w1 for the four ironed
trajectories. The blue curve is the solution we seek, with its gentle frôlement of zero.
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on the existing partial trajectory, and the bottom end has wm = 0 and Ym = 0 simultaneously.
This means that the adjoint function reaches zero with a slope of zero, as does the blue curve
in Figure 9. If node 1 starts ironing from the point t, the purple segment, then at no point on
the ironed segment is w1 = 0, so Q2 will reach zero. This is case A), and we must then decrease
the starting parameter for the ironing. If on the other hand w1 reaches zero, it must be that
Y1 ≥ 0, and we will want to increase the ironing start point so that Y1 is closer to zero at the
end of the ironed segment.

Proposition 20 (Inward Algorithm finds a unique trajectory). Suppose that |A| > 0 within
the offer region

[
0, Q1

]
×
[
0, Q2

]
, and that the regularity assumptions 19 are satisfied. Then

the Inward Algorithm will find a candidate trajectory from the origin to Q. Moreover, if every
interval search subproblem has a unique solution, then this trajectory is the unique candidate
trajectory from the origin to Q.

5.2 Varying Coefficients and negative determinant

The key idea of the Outward Algorithm 4 is that on each round of the main loop the trajectory is
extended out through one swerve of the fence loci. Integration cannot begin from p = c, Q = 0,
as our ODE is singular there. At this point, however, |A| < 0 implies A has one positive and one
negative eigenvalue. We use the eigenvector associated with the positive eigenvalue as an initial
direction to integrate along. At the end of each round, either we have reached the production
capacity point Q

(
t̂
)

= Q, or we have a partial trajectory on
[
0, t̂
]

with

w
(
t̂
)

= 0 and U
(
Q
(
t̂
))
≥ 0

The ODEs that are integrated in the Outward Algorithm are exactly the same as in the Inward
Algorithm above. The difference is in the direction of integration; the Outward Algorithm
always integrates in the increasing t direction.

The goal of the Outward Interval Search Algorithm 5 is to find an segment with agents at
node m ironing on an interval (t∗, t

∗) where Q (t∗) lies on the existing partial trajectory, with
w (t∗) = 0, while at the other end we have either Ym (Q (t∗)) = 0, or Qn (t∗) = Qn for m 6= n.
In Figure 10, we obtain this second case; node m = 1 is ironing and the blue trajectory reaches
Q2 (t) = Q2 and w1 (t) = 0 at the same parameter value t. The algorithm is essentially the same
as the Inward Interval Search Algorithm 3. The differences are that the integration goes in the
opposite direction and that instead of Qn → 0, we stop when Qn reaches an upper bound. There
are two ways to get into the interval search now: either agents at node m reach wm = 0 while
ironing at their output capacity, or the slope component m reaches zero when the trajectory
crosses the locus Ym = 0.

Proposition 21 (Outward Algorithm finds a unique trajectory). Suppose that the regularity
assumptions 19 are satisfied within the rectangle

[
0, Q1

]
×
[
0, Q2

]
. If the Outward Algorithm

maintains a negative determinant |A (Q (t))| < 0 at every point on its partial trajectory, then
it will find a candidate trajectory from the origin to Q. Moreover, if every interval search
subproblem has a unique solution, then this trajectory is the unique candidate trajectory from
the origin to Q.

Theorems 20 and 21 take us most of the way to showing existence and uniqueness of SFE for
specific market models. We just have to check, in the specific instance we are modeling, that
the line searches do not admit multiple solutions (there will usually only be one interval search
to check), and that the second-order conditions for SFE are met.
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Algorithm 4 Outward Algorithm

Initialization: Initial trajectory is defined on a single point. Let v1 > 0 be the leading eigenvector
of A at 0. Choose a δ > 0 so that δv1 is small enough to be within some tolerance bound of the
origin. Set t = 0, Q (0) = δv1, and w (0) = 0. Begin integrating from this point in the direction
of increasing t, following Q̇ = U (Q).
Main loop:
Integrate outwards, following Q̇ = U (Q), until either: A) Qm

(
t̂
)

= Qm for some m or B)

Ym
(
Q
(
t̂
))

= 0 for some m.

A) Node m irons outwards until either: C) Qn = Qn for n 6= m and wm > 0 or D)
wm = 0.

C) We are DONE, exit the loop.

D) Apply the Outward Interval Search Algorithm 5 with node m ironing to
obtain a trajectory and its adjoint on an interval (t∗, t

∗). Update t̂ to t∗.
We have either E) wm

(
t̂
)

= 0 and Ym
(
Q
(
t̂
))

= 0 or F) wm
(
t̂
)

= 0 and

Qn
(
t̂
)

= Qn
(
t̂
)
.

E) Since we have w
(
t̂
)

= 0, Um
(
Q
(
t̂
))

= 0, and Un
(
Q
(
t̂
))
> 0,

we can begin a new round of the main loop.

F) Node n irons outwards until Qm = Qm. We are DONE, exit
the loop.

B) Apply the Outward Interval Search Algorithm 5 with node m ironing to obtain a
trajectory and its adjoint on an interval (t∗, t

∗). Update t̂ to t∗. We have either E)
wm

(
t̂
)

= 0 and Ym
(
Q
(
t̂
))

= 0 or F) wm
(
t̂
)

= 0 and Qn
(
t̂
)

= Qn
(
t̂
)
.

E) Since we have w
(
t̂
)

= 0, Um
(
Q
(
t̂
))

= 0, and Un
(
Q
(
t̂
))

> 0, we can
begin a new round of the main loop.

F) Node n irons outwards until Qm = Qm. We are DONE, exit the loop.

End of main loop.

Algorithm 5 Outward Interval Search

Until tolerance satisfied:
Choose an initial t∗ in the interval

(
0, t̂
)
.

Node m irons outwards from a point Q (t∗) that is on the partial trajectory with w (t∗) = 0.
Stop integrating when either A) Qn = Qn for n 6= m or B) wm = 0

A) Decrease t∗.

B) Increase t∗.

Repeat until the outer endpoint of the ironed segment, at parameter t∗, has wm (t∗) = 0 and
Ym (Q (t∗)) = 0 to within desired tolerance.
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Figure 10: Typical interval search problem in case B) of the Outward Algorithm. In the top
plot, the partial trajectory is the solid thick curve entering from the bottom right, found by
integrating outwards from the origin. Four ironed trajectories shoot up to the node 2 production
capacity at Q2 = 45, from this partial trajectory. In the bottom plot are shown the adjoint
functions w1 for these four trajectory segments. The blue curve is the solution we seek; it reaches
Q2 = Q2 at the same point that w1 hits 0.
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Figure 11: Fully integrated market

Examples

We now present two examples of SFE in the two-node network with two generators at each
node. The first example is one where the line is rarely congested, so |A| is always negative along
the candidate trajectory.

Example 22 (SFE over a rarely-congested line). The demand shock distribution is an inde-
pendent bivariate normal with mean (100, 50), and standard deviations (60, 40). The line has a
transmission capacity of 60MW. There are two generators in each node and each generator has
a production capacity of 50MW and zero cost of production.

Figure 11 shows the SFE on the left and the trajectory through the slope field on the right. This
is similar to the four-player pool market. The node 2 generators offer slightly more competitively
than the node 1 generators, so they exhaust their output capacity at a price of about $950
(slightly below the price cap). The node 2 generators iron over the highest prices while the node
1 generators compete as a duopoly.

In a second example we see that when the line is congested often enough for |A| to be always
positive, there can be strategic withholding by generators in the downstream node.

Example 23 (SFE over an oft-congested line, with strategic withholding). Consider a two-node
network with an independent normal demand shock distribution with mean (100, 100), standard
deviations (60, 40), and zero correlation. The line has a transmission capacity of only 25MW.
There are two generators in each node, and each generator has a production capacity of 120MW
and zero cost.

Figure 12 shows the SFE on the left and the trajectory through the slope field on the right.
Notice that the supply curve of the node 1 generators is very inelastic at around 50MW output.
This is because withholding energy from the market increases the probability of constraining the
line so node 1’s price exceeds that of node 2. The advantage of greater market power through
congestion is almost enough to overwhelm the gain from selling more energy.

We can check the second-order conditions by plotting Zi,m (qi,m, p) for one agent at each node.
The field Z is evaluated taking every other agent’s offer to be either Q1 or Q2 depending on
which node they are in. In Figure 13 we plot heat maps of the Z values for an agent in node
1 (left) and in node 2 (right). The SFE curves are plotted in black. It is easy to see that the
sufficient conditions of Theorem 2 are met; the black SFE curves lie on the Z = 0 contour and
Z > 0 everywhere to the left of the SFE and Z < 0 everywhere to the right.
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Figure 12: Highly congested market

Figure 13: Z values around the SFE
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Figure 14: Highly congested market

Figure 15: Z values around the SFE

Example 24. Figure 14 shows the SFE and trajectories for the network and demand of Example
23 when the node 1 generators have their production capacity reduced to 80MW each. They
now find an equilibrium where they iron at output values below capacity. This has the effect
of pushing the outer end of the SFE into a regime where congestion into node 1 is much more
likely, so the node 1 generators exploit this by withholding.

Figure 15 shows the verification of the second-order conditions for this SFE with an ironed
segment.5 On the left is plotted Z for a generator at node 1. On the unironed segments of the
supply curve, we have Z > 0 to the left and Z < 0 to the right as before, with Z = 0 along the
curve. On the ironed segment, Z > 0 on the inner half of the curve and Z > 0 on the outer
half. This is consistent with Lemma 14. The level of Q1 where ironing occurs is chosen so that
the average of Z over this segment is zero. On the right is plotted Z for a generator at node
2. This generator has a strictly monotone supply curve in the SFE with Z = 0 along the entire
length with Z > 0 to the left and Z < 0 to the right.

6 Singularities in SFE

We will now relax the assumption that A is everywhere non-singular, to allow the sign of
|A| to change once along the trajectory of an SFE. The techniques used in the Inward and
Outward Algorithms to form partial equilibrium trajectories can be adapted to this situation.

5For the remaining examples we omit the plots for the second-order conditions because they are satisfied in
all of them.
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The SFE trajectory will transition from a region with positive determinant to one with negative
determinant. There will be no proof of existence and uniqueness of solutions in this section, but
the example SFE can still be verified by plotting the first-variation derivative for agents at each
node and using this to check the first- and second-order equilibrium conditions.

Assume that there exists a candidate trajectory between the origin and the production capacity
point which crosses the line |A| = 0 exactly once. There are two cases to consider, either:

1. At the origin |A (0)| > 0, and at the production capacity point
∣∣A (Q)∣∣ < 0, or

2. At the origin |A (0)| < 0, and at the production capacity point
∣∣A (Q)∣∣ > 0.

We will analyze first one, then the other.

Origin positive

If |A| > 0 at the origin, then there are ironed and non-ironed ways to cross the |A| = 0 line.

If we are to cross without ironing, we need to find a critical point, one where |A| , Y1, and Y2 are
all zero. We can integrate away from this critical point; in towards the origin and out towards
the production capacities. Each of these subproblems reduces to the case where A is everywhere
non-singular.

No interior ironing: There is a region where |A| < 0 and Y1, Y2 > 0. Then there must be a
critical point where |A| , Y1, and Y2 are all zero. In the phase portrait classification, this point
is a saddle point. Starting at the critical point, the solution is found by integrating outwards
until one of the production capacities is reached, and integrate inwards towards the origin.

Ironing across the boundary: If there is no region where |A| < 0 and Y1, Y2 > 0, then at
the production capacities, Y1 or Y2 must be negative, say Y2. In this case the other node, node
1, should iron at its production cap, integrating down from the price cap. Eventually Y2 will
reach zero, at which point we can integrate along Z = 0 to the origin.

Example 25. Two examples, again with two generators at each node.

Figure 16 shows the SFE and trajectory for the case where there is a repelling node in the
interior of the offer region. It is located at (17.46, 19, 75).

The SFE is solved piecewise in three pieces. One from the interior node to the origin, another
from the interior node to the capacity constraint of node 2, and the third with node 2 ironing
at their production capacity up to node 1’s production capacity.

Figure 17 shows the SFE and trajectory for the case where there is no intersection between
|A| < 0 and Y2 > 0. Node 1 irons from their production capacity down until Y1 = 0. Then
there is a monotone trajectory of AQ̇ = Q down to the origin. Note that node 1’s SFE curve has
continuous derivative at the point where they reach their production capacity; this is because
the generators at node 1 begin ironing on the locus Y1 = 0.

Origin negative

If |A (0)| < 0, then a candidate trajectory is found as follows. We integrate inwards from the
production capacity point using the Inward Algorithm and outwards from the origin using the
Outward Algorithm. These two segments of trajectory will each reach the line |A| = 0. Several
cases are possible, but we will consider three:
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Figure 16: Interior singular point
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Figure 17: Ironing across boundary
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Figure 18: |A (0)| < 0: SFE and trajectory on slope field where inward and outward parts meet
without ironing.

1. Both inward and outward parts meet|A| = 0 on a non-ironing segment.

2. Both inward and outward parts reach |A| = 0 while ironing, with the same node ironing.

3. Both inward and outward parts reach |A| = 0 while ironing, with different nodes node
ironing.

In the first case, the two parts will generally meet |A| = 0 at the same point, so it is a simple
matter of piecing them together into a candidate trajectory. In the second case, an interval
search procedure is applied to iron between the two parts of the trajectory. In the third case
we find that the regularity Assumption 19.2 is violated, whereby we may obtain a candidate
trajectory with two ironed segments one after the other. We also lose uniqueness of the candidate
trajectory in this last case, as we shall see in Example 29.

To solve all three cases we integrate inwards from the production capacity point and outwards
from the origin. We calculate two partial trajectories Q (t) and Q̃ (u), in parameters t and u
defined on intervals

t ∈ (−∞, t1] u ∈ [u0, u1] .

We will have Q (t) → 0 as t → −∞, Q̃ (u1) = Q, and Q (t1) = Q̃ (u0). To make a single
continuous trajectory, we just have to rescale u. Set u (t) = u0 − t1 + t and T = t1 + u1 − u0,
and define Q (t) = Q̃ (u (t)) on [t1, T ]. Then

u (t1) = u0 − t1 + t1 = u0,

so Q is extended to be continuous on (−∞, T ] and connect the origin to Q.

Example 26 (Monotone trajectory across singularity). The demand shock distribution is an
independent bivariate normal with mean (20, 30) and standard deviations (50, 42). The line has
a transmission capacity of 32MW. There are two generators in each node and each generator
has a production capacity of 40MW.

Figure 18 shows an SFE and trajectory where the solution to Q̇ = U (Q) crosses the line |A| = 0
at the point (33.94, 30.54) with a positive slope on both sides. The candidate trajectory is just
the concatenation of these two segments.

Example 27 (Ironing across singularity). The demand shock distribution is an independent
bivariate normal with mean (80, 80), standard deviations (60, 40). The line has a transmission
capacity of 60MW. There are two generators in each node and each generator in node 1 has a
production capacity of 50MW while those in node 2 have 150MW each.
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Figure 19: |A (0)| < 0: SFE and trajectory on slope field where node 1 irons across |A| = 0
boundary
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Figure 20: The outer ends of the multiple SFE, and their trajectories through the slope field
U (Q).

Figure 19 shows an SFE and trajectory where the node 1 generators must iron over the singu-
larity |A| = 0. The quantity at which they should iron is found by an interval search similar
to that in the Inward and Outward Algorithms. The difference is that here the ironed section
should join the partial trajectories determined by the origin and the production capacity point
and have the mean of Y1 be zero over the whole segment.

6.1 Trajectories are not always unique

The following two examples are counterexamples to the conjecture that all two-node networks
with ‘well-behaved’ demand shock distributions give rise to unique equilibrium trajectories. The
non-uniqueness is different in kind to that identified by Klemperer and Meyer (1989), in that
even with fixed boundary conditions on the equilibrium curves there can be multiple SFE.

Example 28. Non-unique trajectories in the two-node normal model

We calculate three equilibrium trajectories for a two node network in a market that violates
condition 2 of Assumption 19. To see this, take Q = (80, 60) and Q̃ = (80, 100). We have

Y1 (Q) > 0 and Y2 (Q) < 0, but Y2

(
Q̃
)
> 0.

The demand shocks are independently normally distributed with mean 80MW and standard
deviation 50MW. The line has a transmission capacity of 50MW. There are two generators in
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Figure 21: SFE and slopes for same market, but with node 1 generators each having an extra
1MW capacity.

each node and each of these has a production capacity of 100MW.

In Figure 20 are plotted the outer ends of the SFE and their trajectories through the slope field.
The three SFE have different ways of reaching the production capacity point from the unique
trajectory through the origin:

1. The perfectly symmetric monotone trajectory passing clean through the critical point at
approximately (91, 91) (thin lines).

2. Node 1 iron until node 2 hit their cap, then node 2 iron at the cap (dashed lines).

3. Node 2 iron until node 1 hit their cap, then node 1 iron at the cap (thick lines).

Example 29. To show that the non-uniqueness of the candidate trajectories is not just due to
the symmetry of the market between the two nodes, we give each of the node 1 generators an
extra 1MW of production capacity. We find there are also three equilibrium trajectories to the
new production capacity point of (101, 100)MW .

In Figure 21 are plotted the outer ends of the SFE and their trajectories through the slope field.
The three SFE have different ways of reaching the production capacity point from the unique
trajectory through the origin:

1. Node 1 iron, then node 2 iron, to end on a strictly increasing segment (thin lines).

2. Node 1 iron until node 2 hit their cap, then node 2 iron at the cap (dashed lines).

3. Node 2 iron until node 1 hit their cap, then node 1 iron at the cap (thick lines).

This second example suggests that the set of parameters for which such multiple trajectories
exist is non-null.

6.2 Correlated shocks

The correlation between demand shocks in a two node network can have a significant influence
on how the transmission constraints affect competition. All the examples so far have used
independent bivariate normal distributions on the demand shocks, but it is no more difficult to
compute SFE when the shocks are correlated.
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Figure 22: An SFE for positively correlated nodal demand shocks, and its trajectory through
the slope field U (Q).
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Figure 23: An SFE for independent nodal demand shocks, and its trajectory through the slope
field U(Q).

Example 30. The demand shock distribution is a bivariate normal with mean (40, 40) and
standard deviations (60, 50). The line has a transmission capacity of 36MW. There are two
generators in each node; the node 1 generators each have a production capacity of 60MW, while
those in node 2 have 80MW.

The correlation of the demand shock distribution takes three values: 0.3, 0, and −0.3. SFE
for these three values are plotted in Figures 22-24. The most important effect of correlation
is to shift the |A| = 0 boundary, where offer strategy switches from very competitive to more
monopolistic. When shocks are positively correlated, the SFE stays in the competitive regime
up to higher output levels than when the correlation is negative.

6.3 Multiple singularities

It can happen that a candidate trajectory will require two or more crossings of |A| = 0. If this
happens, we can find the interior singular points, and use those to subdivide the problem of
finding a trajectory into subproblems where there is negative |A| on the inner part and positive
|A| on the outer part.

In the examples we have studied, the region where |A| < 0 is convex. The worst cases that
we see are like Figure 8, where the Y1 = 0 and Y2 = 0 loci cross four times in the positive

39



0 10 20 30 40 50 60 70 80

MWh

0

100

200

300

400

500

600

700

800

900

1000

$/
M
W

h

SFE with negatively correlated shocks

Node 1

Node 2

Slope field

-10 0 10 20 30 40 50 60 70

Node 1 (MWh)

-10

0

10

20

30

40

50

60

70

80

90

N
o
d
e
2
(M

W
h
)

Figure 24: An SFE for negatively correlated nodal demand shocks, and its trajectory through
the slope field U (Q).
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Figure 25: The outer ends of the multiple SFE, and their trajectories through the slope field
U (Q).

quadrant, to give three singular points plus the origin. Although our numerical techniques can
be extended to handle such cases, there will be issues with non-uniqueness of the solution, as
we see in example 28.

Example 31 (Multiple singularities). The demand shock distribution is an independent bivari-
ate normal with mean (40, 40) and standard deviations (60, 50). The line has a transmission
capacity of 36MW. There are two generators in each node; the node 1 generators each have a
production capacity of 120MW, while those in node 2 have 150MW. The results are plotted
in Figure 25. There are critical points at (4.31, 4.17) and (36.99, 35.42), and the candidate
trajectory goes smoothly through both of them.

7 Conclusion

In this paper, we apply the optimality conditions for a supply function equilibrium in a loss-
less and loop-free (radial) transmission network derived by Wilson (2008) and adapted to the
market distribution function approach by Holmberg and Philpott (2017a). We consider a very
simple transmission network, with two nodes connected by a single constrained line. Under
Assumption 6, we obtain equilibrium conditions that transform into a planar linear autonomous
system of ordinary differential equations. Solutions to this system are not always monotone,
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so we define another system of ODEs which the equilibrium trajectories must follow when the
monotonicity constraints bind.

The constant-coefficient version of this ODE reveals some important qualitative features of the
general system. It also allows us to compute the limit cases of a line with zero or infinite
capacity. We then extend these computational techniques to markets where the probability of
congestion varies with the quantities offered. Under some strict sufficient conditions, we show
that the extended algorithms will compute a unique candidate trajectory. We may check the
second-order conditions to ensure that such a trajectory corresponds to an SFE. When the
probability of congestion becomes sufficiently high, we find SFE in which all players at some
node will offer a vertical segment in the interior of their supply curves. This can be viewed as
a strategic withholding of energy from the market in order to bring about a more favourable
congestion state in high-price outcomes.

An important contribution of the present work is to show non-uniqueness of SFE in a network
setting. Uniqueness of equilibrium is a desirable property in market models. In Example 29 there
are multiple trajectories at high prices in markets where the system of differential equations has
singularities. In these cases, boundary conditions are not sufficient to select a unique equilibrium.
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Appendix

Proof of Theorem 1. See Anderson and Philpott (2002) for a proof using Green’s Theorem. The
condition Z = 0 can also be derived from the Euler-Lagrange condition from the calculus of
variations.

Given a functional

Π =

∫ T

0

Λ (q, p, q̇, ṗ) dt,

the Euler-Lagrange condition is

∂Λ

∂q
− d

dt

∂Λ

∂q̇
= 0 and

∂Λ

∂p
− d

dt

∂Λ

∂ṗ
= 0,

where d
dt is the total derivative.6 This condition must hold for any stationary curve, in particular

for a local maximum. To apply the Euler-Lagrange condition to (3), note that the integrand
has the linear (in q̇ and ṗ) form

Λ (q, p, q̇, ṗ) = u (q, p) q̇ + v (q, p) ṗ, (27)

with

u (q, p) = R (q, p)ψq and

v (q, p) = R (q, p)ψp (28)

and take the appropriate derivatives:

∂Λ

∂q
=
∂u

∂q
q̇ +

∂v

∂q
ṗ,

∂Λ

∂q̇
= u (q (t) , p (t)) , and

d

dt

∂Λ

∂q̇
=
∂u

∂q
q̇ +

∂u

∂p
ṗ.

6see, for instance, Seierstad and Sydsaeter 1987
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So
∂Λ

∂q
− d

dt

∂Λ

∂q̇
= ṗ

(
∂v

∂q
− ∂u

∂p

)
. (29)

By similar working
∂Λ

∂p
− d

dt

∂Λ

∂ṗ
= q̇

(
∂u

∂p
− ∂v

∂q

)
. (30)

For both (29) and (30) to vanish, either q̇ and ṗ both vanish (which we rule out by assumption)
or

Z =
∂v

∂q
− ∂u

∂p
= 0.

Substituting in the values for u and v from (28), we obtain

Z =
∂v

∂q
− ∂u

∂p

=
∂R

∂q
ψp +R · ψpq −

∂R

∂p
ψq −R · ψqp

=
∂R

∂q
ψp −

∂R

∂p
ψq.

Proof of Theorem 2. By assumption, the field Z is continuous. By Green’s theorem, the integral
of

Λ = u (q, p) q̇ + v (q, p) ṗ

around any simple closed curve (q(t), p(t)) in the anticlockwise direction is equal to the integral
of Z over the area enclosed by the curve. If Z = 0 along S∗, then there can be an improving
deviation to the left only if Z < 0 somewhere in that region. Similarly, there can be an improving
deviation to the right only if Z > 0 somewhere in that region. Thus the conditions guarantee
that there are no improving deviations, therefore S∗ is maximal.

Calculating constrained distribution function

Each congestion state ω has different constraints on the demand shock and supply. The demand
shocks satisfying the constraints define the sets Γn,ω (S), of ε for which the market clears in
congestion state ω and the total offers at all nodes at the price p = pn is the vector S. For node
n = 1 in the two-node network, we have

Γ1,ω1
(S) = {ε : ε1 + ε2 = S1 + S2 ∧ −K ≤ S1 − ε1 ≤ K}

Γ1,ω2
(S) = {ε : ε1 = S1 −K ∧ ε2 − S2 ≥ K}

Γ1,ω3
(S) = {ε : ε1 = S1 +K ∧ ε2 − S2 ≤ −K} .

For node n = 2 we have

Γ2,ω1 (S) = {ε : ε1 + ε2 = S1 + S2 ∧ −K ≤ S1 − ε1 ≤ K}
Γ2,ω2 (S) = {ε : ε2 = S2 +K ∧ ε1 − S1 ≤ −K}
Γ2,ω3 (S) = {ε : ε2 = S2 −K ∧ ε1 − S1 ≥ K} .

The sets Γn,ω (S) are traced out by dashed lines in Figure 26: blue for node 1 and red for node
2. The constraints on ε2 in states ω2 and ω3 ensure consistency with S2 being offered at the
same price as S1; the price must be higher at the upstream end of the transmission constraint.
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Figure 26: Calculating constrained demand distribution in two-node network

A demand shock ε can be satisfied at n if and only if it is Pareto dominated by an ε̃ ∈ ∪ωΓn,ω,
i.e. εm ≤ ε̃m for all m.

The constrained demand distributions are

φ1 (S1, S2) = Pr

[
ε ≤

⋃
ω

Γ1,ω (S1, S2)

]

φ2 (S1, S2) = Pr

[
ε ≤

⋃
ω

Γ2,ω (S1, S2)

]
.

Writing this out explicitly as conditions on ε1 and ε2 gives

φ1 (S1, S2) = Pr [(ε1 + ε2 < S1 + S2 and ε1 < S1 +K) or ε1 < S1 −K]

φ2 (S1, S2) = Pr [(ε1 + ε2 < S1 + S2 and ε2 < S2 +K) or ε2 < S2 −K] .

The areas in ε-space dominated by the Γn are the hatched regions in Figure 26. The probability
φ1 is the probability mass that falls on the blue area to the left of the blue dashed line, and φ2

is the probability mass that falls in the red hatched area below the dotted red line.

In the two-node network we calculate the partial derivatives of φ1, φ2 as follows: the boundaries
of the event regions in shock space, Γ1 and Γ2, move with S1 and S2, so the partial derivatives
of φ1, φ2 are the line integrals of the shock density f (ε1, ε2) along Γ1 and Γ2. Define Pn (S, ω)
as the density of the shock density on the set Γn,ω:

Pn (S, ω) =

∫
Γn,ω

df (ε) . (31)
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The calculation for φ1 is as follows. The three relevant line integrals are

P1 (S, ω1) =
∫

Γ1,ω1
f =

∫ K

−K
f (S1 − t, S2 + t) dt

P1 (S, ω2) =
∫

Γ1,ω2
f =

∫ ∞
S2+K

f (S1 −K, t) dt

P1 (S, ω3) =
∫

Γ1,ω3
f =

∫ S2−K

−∞
f (S1 +K, t) dt. (32)

In each case P1 (S, ω) is the joint density function of residual demand S1 and congestion state
ω, given the other node’s offer S2. The joint densities for node 2 are

P2 (S, ω1) =
∫

Γ2,ω1
f =

∫ K

−K
f (S1 − t, S2 + t) dt

P2 (S, ω2) =
∫

Γ2,ω2
f =

∫ S1−K

−∞
f (t, S2 +K) dt

P2 (S, ω3) =
∫

Γ2,ω3
f =

∫ ∞
S1+K

f (t, S2 −K) dt. (33)

From these we can calculate the partial derivatives of φ1. Under a small change in S1, both the
dashed and solid lines move to the right. So

∂φ1

∂S1
= P1 (S, ω1) + P1 (S, ω2) + P1 (S, ω3) .

For the cross-derivative (off-diagonal), ∂φ1

∂S2
, only the sloping (solid) part of the boundary moves

with changing S2. It shifts upwards when S2 increases. So

∂φ1

∂S2
= P1 (S, ω1) .

The partial derivatives of φ2 are similarly

∂φ2

∂S2
= P2 (S, ω1) + P2 (S, ω2) + P2 (S, ω3) and

∂φ2

∂S1
= P2 (S, ω1) .

With a bivariate normal shock distribution, the line integrals in (32) and (33) are simple to
calculate. Each will be the product of a marginal density, which is constant over the whole line,
and a conditional probability, which is the integral of the density of a uni-variate normal over
the interval. There are three different angles of line, so three different sorts of marginal and
conditional distribution:

• For integrands of the form f (ε1, t), the marginal distribution has mean µ1 and stan-
dard deviation σ1 and the conditional has mean µ1 + σ1

σ2
ρ (t− µ2)and standard deviation

σ1

√
1− ρ2.

• For integrands of the form f (t, ε2), the marginal distribution has mean µ2 and stan-
dard deviation σ2 and the conditional has mean µ2 + σ2

σ1
ρ (t− µ1)and standard deviation

σ2

√
1− ρ2.
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• For integrands of the form f (S1 − t, S2 + t) the marginal distribution has mean µ1 − µ2

and standard deviation σ2
1+σ2

1−2ρσ1σ1 and the conditional has mean µ1+µ2 and standard
deviation σ2

1 + σ2
1 + 2ρσ1σ1

In the numerical examples we use MATLAB’s built-in normpdf and normcdf functions to com-
pute the line integrals.

Note that since the demand shock density f is everywhere non-negative, all of the Pm (S, ω)
are positive. The partial derivatives φm,n are sums over the Pm (S, ω), so they are all positive.
Observe furthermore that the diagonal terms φm,m are greater than the off-diagonal terms
φm,n, m 6= n. Also, the terms P1 (S, ω1) and P2 (S, ω1) are equal, so φ1,2 = φ2,1. All this implies

that the Jacobian matrix ∂φ
∂S has all positive entries and is positive-definite.

Example 32 (Plotting φm). Suppose the demand shock has a bivariate normal distribution with
means (µ1, µ2) = (180, 150), standard deviations (σ1, σ2) = (60, 40), and correlation coefficient
ρ = 0. The density of this distribution is plotted in Figure 27. Suppose the transmission line has
a capacity of K = 60MW. Then we can use (32) and (33) to calculate the values of Pm (S, ω)
for m = 1, 2 and ω = ω1, ω2, ω3, which are shown in Figure 28. Then we can sum up the
Pm (S, ω) by congestion states to obtain the partial derivatives φm,n of the constrained demand
distribution, shown in Figure 29. Finally, we divide φm,n for m 6= n by φm,m to obtain the

conditional probability of uncongested flow P̂m. The regions of least congested flow occur in
different shock realizations depending on where you are located.

It is clear in Figure 28 that the density functions Pm (S, ω) are the convolution of the normal
density function f (ε), plotted in Figure 27 with the sets Γn,ω (more precisely, with their indicator
functions), plotted in Figure 26.

Proof of Lemma 12. 1: Suppose Y (Q) = 0. Then

N2

N2 − 1
φ1,2Q2 − φ1,1Q1 = 0 and

N1

N1 − 1
φ2,1Q1 − φ2,2Q2 = 0.

This implies that if one of Q1, Q2 is zero, the other is too. Suppose both are non-zero. Then

N2

N2 − 1

φ1,2

φ1,1
Q2 = Q1 =

φ2,2

φ2,1

N1 − 1

N1
Q2

N2

N2 − 1

φ1,2

φ1,1
=
φ2,2

φ2,1

N1 − 1

N1

(N1 − 1) (N2 − 1)−N1N2
φ1,2

φ1,1

φ2,1

φ2,2
= 0,

but the left-hand side of the last line is just the determinant |A|.
2: Since all the φm,n, N1

N1−1 , and N2

N2−1 are positive, this follows immediately from the definition
of Ym.

Proof of Lemma 13. Write out U (Q) as

U (Q) =
1

|A|

[
(N2 − 1) −N2

φ1,2

φ1,1

−N1
φ2,1

φ2,2
(N1 − 1)

] [
Q1

Q2

]

|A| · U (Q) =

[
−N2−1

φ1,1
Y1 (Q)

−N1−1
φ2,2

Y2 (Q)

]
.
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Figure 27: The demand shock density.

Figure 28: The Pm (S, ω) from the shock density and a line capacity of K = 60MW. Regions of
concentrated density in congestion states ω2 and ω3 continue off the edges of these plots out to
infinity.
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Figure 29: The φm,n matrix, found by summing up the Pm (S, ω) shock density.

Thus it is clear that U > 0 if and only if both Y1, Y2 have the opposite sign to |A|.

Proof of Proposition 7. This proposition is similar to Proposition 3 of Klemperer and Meyer
(1989), but because we have C ′′ = 0 we must alter the argument to allow for q′i,m (c) =∞.

Consider two generators, labeled 1 and 2, located at node 1. The node 2 generators offer supply
functions qi,2 (p) whose total is

∑
i qi,2 (p) = S2 (p). The other node 1 generators offer supply

functions whose total is Ŝ1 (p); i.e.

S1 (p) = q1,1 (p) + q2,1 (p) + Ŝ1 (p) . (34)

The first-order optimality conditions for the two agents are

Z1,1 = (p− c)
(
φ1,1

(
q′2,1 + Ŝ′1

)
+ φ1,2S

′
2

)
− φ1,1q1,1 = 0

Z2,1 = (p− c)
(
φ1,1

(
q′1,1 + Ŝ′1

)
+ φ1,2S

′
2

)
− φ1,1q2,1 = 0.

The slopes of the two generators’ supply functions are therefore

q′2,1 =
q1,1

p− c −
φ1,2

φ1,1
S′2 − Ŝ′1

q′1,1 =
q2,1

p− c −
φ1,2

φ1,1
S′2 − Ŝ′1. (35)

We treat the S−{1,2} (p) and S2 (p) as fixed functions, so this is a second-order system of dif-
ferential equations in q1,1 and q2,2. The common residual demand faced by the two agents
is

φ1,2

φ1,1
S′2 − Ŝ′1.
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Consider G = q2,1 − q1,1. We can use (35) to write an ODE for G (p), in which this common
residual demand cancels out;

G′ = q′2,1 − q′1,1
=
q1,1 − q2,1

p− c

= − G

p− c .

Solutions to this ODE are
G =

a

p− c ,

but these diverge at c unless a = 0, in which case G ≡ 0. Therefore the only solutions to (35)
that have limp→c q1,1 (p) = limp→c q2,1 (p) = 0 must have q1,1 ≡ q2,1.

Proof of Proposition 11. Suppose that k < N1 agents in node 1 begin to iron at t̂: i.e. their sup-
ply curves are strictly monotone (and equal to all the other node 1 supply curves) on

(
−∞, t̂

)
,

and are constant on
(
t̂, t∗

)
. Over the interval

(
t̂, t∗

)
, we have N1 − k agents offering the con-

tinuation Q1 (t), and k offering r (t) = Q1

(
t̂
)
. The N1 − k agents who are not ironing will each

offer a curve Q1 which satisfies

Z1,1 =
(
φ1,1 (N1 − k − 1) Q̇1 + φ1,2Ṡ2

)
− φ1,1Q1 = 0.

Meanwhile, the k agents that iron will each have adjoint wr that satisfies

ẇr =
(
φ1,1 (N1 − k) Q̇1 + φ1,2Ṡ2

)
− φ1,1r

wr
(
t̂
)

= 0.

Now Q̇1 ≥ 0, so Q1 > r on
(
t̂, t∗

)
, and N1 − k − 1 < N1 − k. Hence ẇr > Z1,1 = 0 over

(
t̂, t∗

)
.

Even if the Q1 agents start ironing, we still have Zr,1 > Z1,1 = Y1 ≥ 0, so wr > w1 ≥ 0 on all of(
t̂, t∗

)
. In particular wr (t∗) > 0, so by Corollary 5, the ironed segment is only admissible if the

node 1 agents are at their (common) production capacity. But if this is the case then all node
1 agents must necessarily iron.

Proof of Theorem 16. The first part of the proof is by cases on the sign of |A|. In each case we
show that the constant-coefficient algorithm will compute a unique candidate trajectory. The
second part shows that this candidate trajectory gives a unique SFE.

Case |A| < 0

[Existence] If Q lies on the ray through the positive eigenvector of A, then the algorithm will
connect it to the origin by a straight line trajectory that has w = 0 and Q′ ≥ 0 everywhere.
This is a candidate trajectory.

If Q lies off that ray, then a second segment is added. At the inner end of this segment we have
w = 0. For node m which is ironing we have Ym > 0 and Qn increasing, n 6= m. Since Ym is
the product of the a positive function φm,m and the function

Nn
Nn − 1

φm,n
φm,m

Qn −Qm

which is increasing in Qn, we will have Ym > 0 along the whole ironed segment. Hence wm ≥ 0
along the whole ironed segment too. Since Zn = 0 when m is ironing, we have wn = 0 along the
whole ironed segment. Thus S and w form a candidate trajectory.
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[Uniqueness] By a similar argument to how Klemperer and Meyer (1989) show that the slope
of all pool SFE through the origin is the same, it is clear that there is only one monotone and
un-ironed trajectory through the origin.

A candidate trajectory can only start or stop ironing where w = 0. If we start ironing at any
other point than where one of the production capacity constraints begins to bind, then w will
never reach 0 to allow the trajectory to turn a corner to iron in a different direction, or to
integrate along Q̇ = U (Q). Suppose that on a candidate trajectory, agents at some node m
start ironing from some point Q̂ on the positive eigenvector ray, where Q̂ < Q. When node m
stops ironing, we will have Q̇m > 0. The complementarity condition on the candidate trajectory
requires that at this corner point, wm = 0. However, as argued in the existence part of this proof,
if node m starts ironing then wm is non-negative and strictly increasing. It cannot reach zero,
and so there cannot be a second corner. Thus the two-part trajectory consisting of the positive
eigenvector ray and the ironed segment from where the first production capacity constraint binds
is the unique candidate trajectory.

Case |A| > 0

[Existence] The equation Q̇ = A−1Q is a linear ODE, so solutions exist. If there is only one
segment of the trajectory the algorithm will find this solution. The loci Y1 = 0 and Y2 = 0 are
fences that form a cone-shaped anti-funnel with its point at the origin. So from any point Q
with U (Q) ≥ 0, there is a curve connecting Q to the origin along the direction field Q̇ = U (Q).
Moreover this curve is monotone.

If there are two segments, then w = 0, Q′ > 0 is clearly true on the inner part. On the ironed
part, the ironing node m has wm (t) ≥ 0, since w = 0 at the inner end of the ironed segment
and Ym ≥ 0 along the ironed segment. The non-ironing node n has wn = 0 everywhere. Hence
the Q and w form a candidate trajectory.

[Uniqueness] The direction field Q̇ = U (Q) is Lipschitz-continuous, so the non-ironed segment
is the unique trajectory connecting its end points (by the Picard-Lindelöf Theorem).

To rule out multiple ironed segments, look to the corner conditions. By Lemma 14, the only
points where node m can begin to iron are where Ym = 0. Moreover, as Ym > 0 at every point
further out along the ironed trajectory, w > 0 no matter how far we iron. In other words, once
agents start ironing, they will never be able to stop and turn a corner. So there is at most
one ironed segment in a candidate trajectory. The algorithm finds the only way to iron from
a production capacity point Q with Um

(
Q
)
< 0 to the feasible cone U ≥ 0. Therefore the

trajectory produced by the algorithm is unique.

[Trajectory is an SFE] We now show that the supply function for each agent is a maximum of
their expected profit. An agent in node 1 maximizes ΠU . Their first-variation derivative is

Zi,1 = φ1,1

(
(p− c)

(
(N1 − 1)Q′1 +N2

φ1,2

φ1,1
Q′2

)
− qi,1

)
.

This is the product of φ1,1, which is everywhere positive, and

Ẑi,1 = (p− c)
(

(N1 − 1)Q′1 +N2
φ1,2

φ1,1
Q′2

)
− qi,1,

which has ∂Ẑ
∂qi,1

= −1 < 0 everywhere (by assumption, ∂
∂S1

φ1,2

φ1,1
= 0). Therefore the curve

(Q1 (t) , p (t)) and the first-variation derivative Zi,1 satisfy the conditions of Theorem 2, and the
curve is a maximum for ΠU . A similar argument holds for any agent at node 2. Therefore the
set of supply curves is an SFE. As A

(
Q
)
6= 0, there must be some probability of lost load, and

so by Holmberg’s (2008) argument, the SFE is unique.
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Proof of Proposition 20. The proof of existence is by showing that the Inward Algorithm 2 will
reach the origin from any given production capacity point Q. The uniqueness proof is by partial
trajectories; we show that the extension in each round of the main loop is unique.

Existence. On initial ironing it cannot be that both Y1 and Y2 are positive, as then we would
be in the |A| < 0 case, by Lemma 12. Whenever node m is ironing inwards, the ironed segment
meets Ym = 0 before Qn reaches zero because of Lemma 12. After the initial ironing, we will
have Y

(
Q
(
t̂
))
≤ 0, by assumption 19. Thus, by Lemma 13, we find that U

(
Q
(
t̂
))
≥ 0.

The same lemma also ensures that the integration along Q̇ = U (Q) in the main loop will either
reach the origin (case C) or cross Ym = 0 (case D). For case C there is nothing to show. For
case D, we must show that a solution to the interval search problem exists. Ironing starts
from a point t∗ with Y ≤ 0, U ≥ 0, and w = 0 and ends at t∗ with either Qn (t∗) = 0 or
w (t∗) = 0. Consider the inner endpoint t∗ as function of the outer endpoint t∗. As the initial
ironing point t∗ approaches the end of the partial trajectory t̂, t∗ (t∗) approaches t̂ too, since
Ym < 0 immediately above t̂ and Ym > 0 immediately below t̂ (by the continuity of Ym and part
1 of Assumption 19). As the initial ironing point t∗ moves outwards, the inner endpoint t∗ (t∗)
decreases until eventually it meets Ym = 0.

Uniqueness. Suppose that the line searches in cases D have unique solutions. Then every time
the algorithm stops integrating along its current segment, is because it cannot continue without
violating one of the optimality conditions (22). Furthermore, in every place it does start or stop
ironing, it is the unique point from which the ironed segment will reach either the production
capacity point Q or a point with U (Q) > 0 and w = 0. Therefore the candidate trajectory that
it finds is unique.

It remains only to verify that the trajectory conditions (22) are met by every segment of the
trajectory. On the un-ironed segments we set ẇ = Z (Q,U (Q)) = 0, so w = 0 everywhere there

is no ironing. On the ironed segments, if node m is ironing then ẇn = Zn

(
Q, Q̇

)
= 0, so wn = 0

along the entire segment. Since Q̇n = (Nn − 1)Qn > 0, the adjoint conditions (22) are satisfied

in the n components. For node m, we have ẇm = Ym (Q) = Zm

(
Q, Q̇

)
. Since we always stop

ironing at or before wm reaches zero, we end up with wm ≥ 0 along the entire segment. Of
course Q̇m = 0, so (22) is satisfied in the m component..

Proof of Theorem 21. The proof of existence is by showing that the Outward Algorithm 4 can
reach any given production capacity point Q. The uniqueness proof is by partial trajectories;
we show that the extension in each round of the main loop is unique.

By the Perron-Frobenius theorem, any matrix with all positive entries has an eigenvector with
all positive values. Thus the eigenvector v1 that initializes the algorithm exists.

We need to show that each case terminates in one of the specified conditions.

A) We start ironing with Qm = Qm, w = 0, and Y > 0. The quantity offered by node
n, Qn is increasing, so will eventually surpass Qn, unless it reaches wm = 0 first.

B) Ironing starts from a point t∗ with Y ≥ 0, U ≥ 0, and w = 0, and ends at t∗ with
either wm (t∗) = 0 or Qn (t∗) = Qn. Consider the outer endpoint t∗ as a function
of the inner endpoint t∗. As the initial ironing point t∗ approaches t̂, this t∗ (t∗)
approaches t̂ too, since Ym > 0 immediately below t̂ and Ym < 0 immediately above
t̂ (by the continuity of Ym and part 1 of Assumption 19). As the initial ironing
point t∗ moves inwards, the outer endpoint t∗ (t∗) increases until eventually it either
meets Ym (Q (t∗)) = 0 as it curves back up (where it is an outward fence) or meets
Qn = Qn.
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C) Nothing to show.

D) Very similar to case B, except here ironing out from t̂ gives an outer endpoint t∗
(
t̂
)

with wm (t∗) = 0 and Ym (Q (t∗)) < 0.

E) Nothing to show.

F) Part 2 of Assumption 19 gives wn > 0 along this entire ironed segment. Node n
ironing means that Qm increases, eventually it will reach Qm.

Existence. Assumption 19 implies that the algorithm will eventually terminate. It is clear that
after each round, Q increases. After each round there are two changes in sign of one of the Ym.
Thus after each round of the main loop, the rectangle

[
0, Q1

(
t̂
)]
×
[
0, Q2

(
t̂
)]

contains at least
one additional swerve of the Ym = 0.

It remains only to verify that the trajectory conditions (22) are met by every segment of the
trajectory. On the un-ironed segments we set ẇ = Z (Q,U (Q)) = 0, so w = 0 everywhere there

is no ironing. On the ironed segments, if node m is ironing then ẇn = Zn

(
Q, Q̇

)
= 0, so wn = 0

along the entire segment. Since Q̇n = (Nn − 1)Qn > 0, (22) is satisfied in the n components.

For node m, we have ẇm = Ym (Q) = Zm

(
Q, Q̇

)
. Since we always stop ironing at or before

wm reaches zero, we end up with wm ≥ 0 along the entire segment. Of course Q̇m = 0, so (22)
is satisfied in the m components.

Uniqueness. Suppose that the line searches in Cases B and D have unique solutions. Then every
time the algorithm stops integrating along its current segment, it is because it cannot continue
without violating one of the optimality conditions (22). Furthermore, in every place it does
start or stop ironing, it is the unique point from which the ironed segment will reach either the
production capacity point Q or a point with U (Q) > 0 and w = 0. Therefore the candidate
trajectory that it finds is unique.

The trajectory conditions (22) are met by every segment of the trajectory, as for the Inward
Algorithm.
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