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Abstract

We study the optimal tax system in a dynamic model where differences in wages induce

differences in inheritances, and the transition from parent ability to child ability is described

by a Markov chain. In accordance with empirical evidence, we assume that in any generation

more able individuals are likely to have a more able parent, which implies that in the

steady state they also tend to receive larger inheritances than less able individuals. We

show that the Atkinson-Stiglitz result on the redundancy of indirect taxes does not hold

in this framework. In particular, given an optimal income tax, a bequest tax as well as a

consumption tax are potential instruments for additional redistribution. For the bequest tax

the sign of the overall welfare effect depends on the reaction of bequests and on inequality

aversion, while for the consumption tax the sign is always positive because the distorting

effect is outweighed by the induced increase in wealth accumulation.
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1 Introduction

In developed economies each year a substantial amount of wealth is transmitted from one gen-

eration to the next (see Piketty 2011, Wolff 2002). Hence, inheritances represent an important

source of individual wealth, but their variation across individuals also creates additional in-

equality in a society, on top of differences in income. In this paper we study the implications

of this fact for the design of the tax system. In particular, we ask whether the existence of

inheritances requires specific tax instruments such as an estate tax to mitigate inequality. As

is well-know, inheritance taxation is one of the most controversial issues in tax policy.

To provide an answer to this question we formulate a dynamic optimal-taxation model of

an economy with individuals who differ in their labor productivity and who leave bequests to

their descendants. We ask how a shift from labor-income taxation to bequest or consumption

taxation affects welfare in the steady state of this economy. The starting point is the well-

known result by Atkinson and Stiglitz (1976) derived in a model without bequests: if labor

income is taxed optimally then any other - indirect - tax is redundant, given weak separability of

preferences in consumption and labor.1 As a consequence, if leaving bequests is just seen as one

form of consumption, there is no role for a tax on estates;2 neither is any kind of consumption

or capital taxation useful. In particular, an estate tax does not allow more redistribution than

what is possible through an income tax alone.3

The situation changes if one takes into account that, as the very consequence of wealth

transmission from parents to children, individuals of some generation differ not only in abilities

but also in inherited wealth. Brunner and Pech (2012ab) have shown that with exogenously

given inherited wealth a tax on wealth transfers indeed has a redistributive effect, given that

more productive individuals receive more inheritances.4

In contrast, in the present paper we analyze the welfare consequences of taxes in the steady-

1This holds in case of an optimal nonlinear income tax. If it is restricted to be linear the condition that
preferences over consumption are homothetic is needed (see Deaton 1979).

2Unless bequests are a complement to leisure, see e.g., Gale and Slemrod (2001), Kaplow (2001).
3On the contrary, one can also take the view that even a subsidy for bequests increases welfare. The reason

is the positive external effect associated with bequests, because in addition to the value they provide for the
donor, they also contribute to utility of the recipient (see Farhi and Werning (2010), among others). Recently,
Kopczuk (2013a) has presented a formula for the optimal nonlinear tax on bequests which accounts for the
positive externality as well as for the negative income effect of received inheritances on labor supply of children.

4 In a related approach, Boadway et al. (2000) and Cremer et al. (2001, 2003) show that indirect taxes as
well as a tax on capital income make sense if individuals differ in inherited wealth. They assume, however, that
bequests and inheritances are unobservable and, thus, cannot be taxed. In Saez (2002) exogenous differences in
the tastes for consumption goods make indirect taxes useful.
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state equilibrium of an economy, when inheritances are completely endogenous. More precisely,

we formulate a dynamic model where in each period a new generation consisting of n different

ability groups of individuals exists. Each individual is the parent of one child, who again

belongs to one of the n groups in the next generation. The transition probabilities from parent

ability to child ability are constant over time; the stochastic process can be described by a

Markov chain and we consider the steady-state distribution of abilities.

Each individual uses her labor income and her received inheritances for own consumption

and for leaving bequests to her single child of the next generation, and this process goes on

in the following periods. Under the assumptions of a joy-of-giving motive for bequeathing

and of affi ne-linear Engel curves for consumption and bequests in each period, we are able

to characterize the inheritances of each individual in the steady state. With a given budget

share devoted to bequests in each ability group, the transition probabilities determine how

the distribution of inheritances develops over time. Eventually, the process leads to a steady-

state distribution of inheritances, within and across ability groups. This distribution is rather

diverse, as it depends on all bequest decisions of all prior generations.

As a result, we arrive at a Mirrlees-type model with differing labor productivities, extended

by the existence of endogenously determined inheritances. We then apply this model to study

the optimal design of a tax system, determined by maximization of expected social welfare of

a generation. For this analysis, it is crucial how the distribution of labor incomes is related

to the distribution of inheritances, which in turn depends on the individuals’probabilities of

having ancestors of a certain ability. We make the assumption that in each generation the

probability distribution of a more able individual over her parent’s abilities first-order stochas-

tically dominates the probability distribution of a less able individual. We are able to show that

this property indeed implies that in the steady state the distribution of inheritances received

by a more able individual first-order stochastically dominates the distribution of inheritances

received by a less able individual. To put it differently, the property that in any generation a

more able individual is likely to have a more able parent than an individual of lower ability

entails that in the steady state the more able individual also tends to receive larger inheritances.

That this stochastic-dominance assumption conforms to reality can be concluded from a

number of empirical studies on the correlation between parent and child income. The pioneer-

ing work by Solon (1992) and Zimmerman (1992) found an intergenerational correlation in the
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long-run income (between fathers and sons) of around 0.4 for the United States (suggesting

less social mobility than previously believed). By now, there is a large set of estimates for

a range of different countries (for a recent overview see Black and Devereux 2011 and Leigh

2007). Although these studies used different estimation methods, variable definitions and sam-

ple selections (limiting their comparability), all of them estimated a positive intergenerational

correlation in earnings, ranging from 0.1 up 0.4, which corroborates the above condition.5

First, we analyze the optimal linear income tax in the extended model with endogenous

inequality of inherited wealth. We find that the redistributive effect of this tax is more pro-

nounced, compared to the purely static Mirrlees-model, because it affects not only labor income

as such, but also indirectly the steady-state inheritances financed by labor income of the an-

cestors. On the other hand, the distortion of labor supply causes an indirect negative effect on

the amount of what is left to the children, that is, on inheritances. Altogether, the desirability

of a positive marginal tax rate is guaranteed if the labor supply elasticity is not too large.6

Next, we address the main question, namely whether the introduction of indirect taxes on

bequests or consumption increases steady-state social welfare, given an optimal linear income

tax. The answer to this question is unclear a priori, because on the one hand we know for the

bequest tax that it is desirable if individuals differ in a second exogenously given characteristic,

namely inherited wealth (in addition to labor productivities). On the other hand, however,

in the steady state the differences in inheritances are in fact the consequence of the differ-

ences in labor productivities. Therefore, as the latter represent the only (exogenous) source of

heterogeneity, one might suppose that again the Atkinson-Stiglitz result applies and no other

(indirect) tax than the optimal labor income tax is desirable.

Our analysis shows that this conjecture is wrong; we find a specific role of indirect taxes

in the steady state of the economy. To determine the sign of their welfare effect requires a

deep-going analysis of how total inheritances in the steady state are affected by the imposition

5 In particular, these studies suggest that the correlation in the Nordic countries (Sweden, Finland, Denmark,
Norway), Canada and Australia is about 0.1 —0.2 and thus lower than in the U.S. and U.K. Interestingly, Jäntti
et al. (2006) find that the greatest cross-country differences arise at the tails of distribution. Moreover, these
studies estimate higher correlations between son and father than between daughter and father.
Moreover, there is a growing empirical literature that studies multigenerational persistence of socioeconomic

status (that is, over three or more generations). It provides some evidence that inequality is more persistent
than estimates from parent-child correlations would suggest (for an overview see Solon 2015 and Braun and
Stuhler 2017).

6This is in contrast to the static, one-period model where the optimal marginal tax rate is unambiguously
positive (see e.g., Hellwig 1986, Brunner 1989).
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of indirect taxes in each single period when bequest decisions are made. It turns out that an

additional property must hold in order to derive a clear-cut result. This new condition, which

is closely related but not identical to the first-order stochastic dominance mentioned above,

requires that individuals who receive higher inheritances from some specific previous period,

also tend to receive higher inheritances from their immediate parents. We argue by the use

of extensive simulations that this condition can typically be taken as being satisfied in our

framework.

Given these assumptions, the bequest tax has a redistributive effect, on top of what is

achieved by the optimal linear income tax. However, it also distorts the bequest decision

and induces, thus, lower accumulated wealth in the steady state. The overall welfare effect is

positive in case that the substitution elasticity between bequests and consumption is small or

that the degree of inequality aversion in the social welfare function is high.

Further, we find for the consumption tax, introduced in addition to an optimally chosen tax

on labor income, that under the same assumptions it has a redistributive potential in our model,

similar to the bequest tax. A closer analysis shows that both taxes, though being targeted on

some form of spending of the individuals’budgets (for bequests versus own consumption), in

fact are instruments for an equalization of received (inherited) wealth. The difference between

them is, however, that the distortion caused by the consumption tax works in favor of bequests

and induces, thus, a higher accumulation of wealth. For small tax rates, this accumulation

effect is large enough to outweigh the deadweight loss so that the overall welfare effect of a

consumption tax is positive. This result can be seen as a justification of a specific tax on

consumption which in fact exists in many countries, like the VAT in the European Union.

It should be stressed that in standard optimal-taxation models such a tax has no particular

role: if the individuals’budget consists only of labor income which is spent for the consumption

of different commodities, a uniform tax on the latter is equivalent to an income tax. In our

model, the analogous instrument is a uniform tax on bequests and consumption which we call

an expenditure tax. We show that such a tax increases social welfare, because it combines the

redistributive effect of both separate taxes and causes no distortion.

Our study establishes a role for indirect taxation as an instrument for increasing equality

of opportunity. In a related work, Piketty and Saez (2013) also consider the steady state of a

dynamic model. They assume that utility functions as well as abilities follow two stochastic
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processes and study both, the case of joy-of-giving preferences and the case of altruistic pref-

erences for bequests. Their central result is a formula for the optimal linear bequest tax in

terms of estimable parameters such as the elasticity of bequests with respect to the tax. For

the derivation, they take the amount of government transfers as given, and the formula states

to which extent, depending on the parameter constellation, these transfers should be financed

by a tax on bequests as opposed to a tax on labor income. Calibration of the model with data

from France and the US, leads to the finding that a tax rate on bequests up to 50 percent may

be optimal.

Farhi and Werning (2010) study a model with dynastic preferences and nonlinear taxes on

income and bequests in a two-period economy, which later is extended to an infinite-horizon

setting. Their main discussion refers to the case that the social planner values the future

generation separately, in addition to the value given to it through the altruistic preferences

of the present generation, whose utility is also part of the social welfare function (this is

sometimes called double-counting). As already mentioned, they find that the optimal tax rate

on bequests is negative (to correct for the positive externality associated with leaving bequests)

and progressive (the marginal tax rate decreases with income in order to reduce inequality over

generations). If for some reason marginal tax rates are restricted to be nonnegative, a rate of

zero up to a certain threshold income is optimal.

Kopczuk (2001) considers the steady-state of a dynamic economy where inequality in inher-

itances arises as a result of differences in abilities, similar to our model. However, he makes the

simplifying assumption that the ability levels within a dynasty are perfectly correlated (com-

plete immobility of abilities over generations) and derives general formulae which characterize

optimal nonlinear taxes on labour income and bequests and whose components reflect the role

of these taxes for the reduction of inequality and for the correction of externalities.

In contrast to these studies, an important feature of our contribution is that we provide a

precise model of intergenerational transfers, by formulating the parent-child relation of abilities

as a Markov process. This model allows us to consider the joint distribution of income and

inherited wealth in the steady-state, and to analyze in detail the long-run relationship between

direct and indirect taxes. To our knowledge, this has not been done before. In particular, we

are able to characterize under which conditions taxes on income and bequests indeed have a

redistributive effect in the long run. Moreover, we also study the role of the consumption tax.
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As to the issue of double counting, we should stress that our discussion of the steady-state

effects means that double counting is present in our analysis and, thus, the above-mentioned

positive external effect is fully taken into account.7 That is, if some tax change influences

bequests left by a generation, we measure the direct welfare effect on the donor (who has a

joy-of-giving motivation for net bequests), but also the indirect effect because simultaneously

we include the change of the received inheritances of this (steady-state) generation as well. As

steady-state inheritances result as the sum of all prior bequests, we thus incorporate how a tax

modifies the positive external effect caused by all prior bequests.

In the following Section 2 we present the basic model of individual decisions on labor

supply, consumption and bequests. Section 3 provides an analysis of the dynamics of wealth

transmission over generations, whose steady state is studied in Section 4. Section 5 describes

the maximization problem of the government and introduces the stochastic-dominance property

mentioned above. In Section 6 the optimal linear tax on labor income is characterized and in

Section 7 the results on the desirability of additional taxes on bequests and consumption,

respectively, are derived. Section 8 provides a discussion of these results.

2 The Model

In each period t a population of mass one exists. It is split into n groups with different abilities

w1 < w2 < .... < wn, whose shares are f1, ..., fn. That is, f1, ..., fn are the probabilities of

an individual to belong to the respective ability group. Individuals of a generation live for

one period; they have common preferences over consumption ci, labor time li, and leaving

bequests bi, i = 1, ..., n. Preferences are described by the common utility function u(ci, bi, li) =

ϕ(ci, bi)− g(li), where ϕ is a concave function, increasing in both arguments, and g is strictly

convex and increasing. This formulation indicates that we assume bequests to be motivated

by joy of giving. Pre-tax labor income is wili and the individual receives inheritances ei.

There exists a linear tax on labor income, given by −α + σwili with −α as a uniform

negative tax and σ as the marginal tax rate on gross labor income. Moreover, the tax system

consists of a proportional tax τ b on bequests and of a proportional tax τ c on consumption. For

7 In the literature there is no unanimity whether double counting represents the correct representation of
social welfare or not (see Cremer 2003, among others).
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given taxes the maximization problem of an individual i is

maxϕ(ci, bi)− g(li), (1)

s.t. (1 + τ c)ci + (1 + τ b)bi ≤ ei + α+ (1− σ)wili, (2)

ci, bi, li ≥ 0. (3)

The first-order conditions for an interior solution with λ as the Lagrange variable associated

with (2) read as
∂ϕ

∂ci
− λ(1 + τ c) = 0, (4)

∂ϕ

∂bi
− λ(1 + τ b) = 0, (5)

−g′(li) + λ(1− σ)wi = 0. (6)

We assume that individuals need some fixed minimum consumption ca ≥ 0 and that the income-

consumption curve is linear, originating in ca. As a consequence, expenditures (1 + τ b)bi and

(1+τ c)(ci−ca) can be written as shares γ and 1−γ, with γ ∈ (0, 1), of the available budget, after

deducting the expenditures (1 + τ c)ca for minimum consumption. Hence, with γb ≡ γ/(1 + τ b)

and γc ≡ (1− γ)/(1 + τ c) the demand functions for ci and bi can be written as

ci = γc(ei + xi − (1 + τ c)ca) + ca, (7)

bi = γb(ei + xi − (1 + τ c)ca). (8)

Here xi denotes net income of the household, xi ≡ α+ (1− σ)wili. We generally assume that

the expenditures for ca are not larger than net income, that is, xi − ca(1 + τ c) > 0.

Such a type of demand functions, as described by (7) and (8), arises if ϕ can be written

as a function ϕ̃(ci − ca, bi), homogeneous in ci − ca and bi. In addition, we assume that

ϕ̃ is homogeneous of degree 1. Note that in general γ itself depends on τ b and τ c, as in

case of a properly adjusted CES utility function with the functional form ϕ̃(ci − ca, bi) =

((1− δ)1−η(ci − ca)η + δ1−ηbηi )
1
η where the parameters δ and (1− δ), respectively, express the
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weights of bi and ci − ca, while η determines the constant elasticity of substitution 1/(1− η).8

Indirect utility of an individual i is given by evaluating ϕ(ci, bi)−g(li) using (7) and (8), and

with li determined by (6). Linear homogeneity of ϕ̃ implies that ϕ̃(γc(ei+xi−(1+τ c)ca), γb(ei+

xi− (1 + τ c)ca) = λ(ei + xi− (1 + τ c)ca), where λ = ϕ̃(γc, γb) is the marginal utility of income

which is independent of wi, ei and xi but depends on τ c and τ b. Hence, indirect utility Vi is

given by

Vi(ei;α, σ, τ c, τ b) = λ(ei + xi − ca(1 + τ c))− g(li) (9)

where li is determined by (6) as li = (g′)−1(λ(1 − σ)wi), depending on the after-tax wage

rate (1 − σ)wi and on the marginal utility of income λ. Note that from (6) the relation

x1 < x2 < ... < xn follows, because λ is independent of wi.

3 Dynamics of wealth transmission and abilities

Having specified the model of the economy in any given period, including the individual decision

to bequeath part of the available budget to the descendants, we now turn to the dynamics.

We consider the transmission of wealth in detail and study the distribution of inheritances in

the steady-state of this process. We assume that potential ability levels w1 < w2 < .... < wn

remain constant over time (that is, over generations). Each individual has a single descendant

to whom she leaves all her bequests. There is a constant transition probability pij that an

individual with ability wi has a descendant with ability wj , where
∑n

j=1 pij = 1 for i = 1, ..., n.

With constant transition probabilities the dynamics of the shares of the ability groups over time

represents a Markov chain. We assume the Markov chain to be ergodic and to converge to a

steady-state distribution π = (π1, ..., πn). π is unique and independent of the initial distribution

f ≡ (f1, ..., fn); it is determined by the equation π = πP together with the normalization∑n
i=1 πi = 1, where P is the n× n transition matrix with entries pij . As is well-known, π can

be found by considering the limit W ≡ limt→∞ P t. All n rows of W are identical and equal to

π. We assume in the following that the distribution of abilities is already in the steady-state,

that is fi = πi, i = 1, ..., n. Thus, f has the property

f = fP. (10)

8Only in case of a Stone-Geary utility function (ci − ca)
1−δbδi (η converges to zero), γ = δ is a constant.
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Obviously, then also f = fP s for any s = 1, 2, ..., because fP s = fPP s−1 = fP s−1 = ... = fP.

Next we study the transmission of bequests from generation to generation. In the following

we introduce a time index −s to characterize a generation that lived s periods before some

particular generation indexed by 0. Moreover, to indicate the ability level of a member of

generation −s we use the index r−s = 1, ..., n. Hence er−s and br−s denote bequests received

and left, respectively, by an individual with ability wr−s in period −s. Similarly, xr−s denotes

net income of individual of type r−s in period −s. Now consider the generation in period 0.

Each individual i = 1, ..., n of this generation receives potential inheritances br−1 = γb(er−1 +

xr−1 − (1 + τ c)ca), where r−1 = 1, ..., n can be any type in the previous period −1. Note

that with homothetic preferences, bequests left by an individual r−1 in generation −1 can be

separated into those out of received inheritances, γber−1 , and those out of own labor income,

γb(xr−1 − (1 + τ c)ca).

In a next step, we consider inheritances er−1 of individual r−1 in period −1, which arise

as some br−2 = γb(er−2 + xr−2 − (1 + τ c)ca) and can, thus, again be split into bequests out of

received inheritances in period −2 and those out of own labor income in period −2. Plugging

in br−2 for er−1 in the formula for bequests left by individual r−1 in period −1, one gets for

inheritances ei (= br−1) of some individual i in period 0

ei = γ2ber−2 + γ2b(xr−2 − (1 + τ c)ca) + γb(xr−1 − (1 + τ c)ca). (11)

Continuing this separation further into the past until some period −t, we find the general

formula

ei = γtber−t + γtb(xr−t − (1 + τ c)ca) + γt−1b (xr−t+1 − (1 + τ c)ca) (12)

+...+ γ2b(xr−2 − (1 + τ c)ca) + γb(xr−1 − (1 + τ c)ca).

Here r−t, r−t+1, ..., r−2, r−1 denote some indices from the set {1, ..., n} . Neglecting for the mo-

ment the first term γtber−t , we find that inheritances of an individual i in period 0 result from

available labor income in the previous generations up to −t. It is important to note that what

an individual of generation 0 inherits from some particular generation −s, 1 ≤ s ≤ t, depends

only on the type r−s ∈ {1, ..., n} of the individual who originated the bequests, but not on the
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types in the in-between generations −s+ 1,−s+ 2, ...,−1: these generations just pass forward

a share γb of their inheritance. In addition, each of these in-between generations again orig-

inates bequests out of own available labor income. As a consequence, still leaving aside the

term γtber−t in (12), all possible inheritances in period 0, from the periods −1,−2, ...,−t can

be written as the sum

t∑
s=1

γsb(xr−s − (1 + τ c)ca), r−s ∈ {1, ..., n} for all s = 1, 2, ..., t. (13)

Note that these possible inheritances are the same for all ability groups i (all potential in-

heritors) in period 0. However, the probabilities of the various realizations of the inheritances

differ according to the type i of the receiving inheritor in period 0. They are determined by

the probabilities that i has a specific type r−s as her great-great-...grandparent in period −s,

s = 1, ..., t. For a closer characterization, let µij be the probability that an individual of type

i has a parent of type j. To determine µij we observe that the probability of a descendant to

belong to ability group i is
∑n

j=1 fjpji, which is equal to fi in the steady-state population.

Thus, the conditional probability of a descendant in group i to have a parent of group j is

µij = Prob(parent = j | descendant = i) =
fjpji
fi

. (14)

Obviously, µij is independent of t, given the steady-state distribution of abilities. In matrix

notation, where M denotes the n× n matrix with elements µij , we have

M =



p11
f2p21
f1

...... fnpn1
f1

f1p12
f2

p22 ...... fnpn2
f2

...... ...... ...... ......

f1p1n
fn

f2p2n
fn

...... pnn


. (15)

By definition,M is also a stochastic matrix, that is, all elements are nonnegative and
∑n

j=1 µij =

1, for all i = 1, ..., n. Going back one step further, µir−1µr−1r−2 is the probability for individual i

in period 0 of having a parent of type r−1 ∈ {1, ..., n} in period −1 together with a grandparent
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of type r−2 ∈ {1, ..., n} in period −2. Generally, we define µi(r−1, r−2, ..., r−s) as the probability

of individual i of having skill types r−1, r−2, ..., r−s as their ancestors up to generation −s and

get

µi(r−1, r−2, ..., r−s) = µir−1 · µr−1r−2 · ... · µr−s+1r−s . (16)

Moreover,
∑n

r−1=1
µir−1µr−1r−2 is the probability of individual i having a grandparent r−2 in

period −2, allowing for all possible types as the parent. One observes immediately that this

probability is just the element (i, r−2) of the Matrix M ·M = M2. Clearly, M2 is again a

stochastic matrix, that is,
∑n

r−1=1

∑n
r−2=1

µir−1µr−1r−2 = 1, for each i. The same holds for

M s with any number of periods s, thus
∑n

r−1=1

∑n
r−2=1

...
∑n

r−s=1
µi(r−1, r−2, ..., r−s) = 1. The

elements (i, r−s) of the matrix M s are denoted by µs;ir−s , that is,

µs;ir−s ≡
n∑

r−1=1

n∑
r−2=1

....
n∑

r−s+1=1
µir−1µr−1r−2 · ... · µr−s+1r−s , i = 1, ..., n, r−s = 1, ..., n. (17)

Each µs;ir−s describes the probability that an individual of type i in period 0 has an ancestor

of type r−s in period −s. Then
∑n

r−1=1
...
∑n

r−s=1
µi(r−1, ..., r−s) =

∑n
r−s=1

µs;ir−s = 1.

Let ps;ij be defined in a completely analogous way to µs;ij . Then µ2;ij =
∑n

k=1 µikµkj =∑n
k=1 fkpkifjpjk/(fifk) = (

∑n
k=1 pjkpki)fj/fi = p2;jifj/fi, and repeated application of this

argument shows that generally

µs;ij =
fjps;ji
fi

, for any s = 1, 2, ... (18)

As a consequence, lims→∞M s = W . This follows from lims→∞ P s = W , that is, for s → ∞,

ps;ji → fi which implies µs;ij → fj , j = 1, ..., n, identical for all i = 1, ..., n.

We note for later use that with respect to the constant distribution f of the ability types,

M has the same property as P :

f = fM s, for any s = 1, 2, ... (19)

To proof this, consider that fM = (f1(p11 + p12 + ... + p1n), ..., fn(p11 + p12 + ... + p1n)) = f .

Moreover, fM2 = fMM = f , and the same logic applies for any s.
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4 The steady-state

We already assumed without mentioning that the tax rates τ c and τ b on consumption and

bequests, respectively, are constant over time. Extending this assumption to the income tax

parameters α and σ implies that labor supply and net income of each type are also constant

over time. Remember that we have assumed from the beginning that the population is constant

and the distribution of abilities is in the steady-state, that is, the shares fi of all groups are

identical in each period.

We define a steady state of this economy as a situation where the realizations of inheritances

for the individuals of a generation remain constant over time. Thus, also all possible bequests

left by the individuals do not change.

In view of the constancy of each type’s net income over time, as a consequence of the

fixed tax parameters, it follows immediately from (12) that all possible inheritances ei of an

individual i of a particular steady-state generation 0 are given by all possible infinite sums

∞∑
s=1

γsb(xr−s − (1 + τ c)ca), xr−s ∈ {x1, ..., xn} for all s = 1, ... . (20)

Obviously, all these infinite sums indeed have a finite value as γb < 1 and all xr−s ≤ xn which

is a finite number.

5 The Government Problem

Formula (20) characterizes steady-state inheritances in terms of net incomes xr−s (resulting

from labor supply lr−s), r−s = 1, ..., n, in all prior generations−s, and of the share γb of bequests

which in turn depend on the tax parameters α, σ, τ b, τ c, fixed by the government. In the

following we study how the government should choose the tax parameters in order to maximize

social welfare in the steady-state. In particular, we want to clarify the question of whether

taxes on bequests or consumption (or on both) are appropriate supplements to an optimal

linear income tax. In our model the individuals differ in labor productivities and in received

inheritances, but the latter arise endogenously as a result of the exogenous differences in labor

productivities. Therefore, it is a priori unclear whether taxes on bequests or consumption

represent desirable additional instruments or are redundant as in the Atkinson-Stiglitz case

12



(with productivity as the only dimension of heterogeneity).

The fact that individuals now differ with respect to an infinite number of potential inheri-

tances, in addition to their skill types, makes the analysis of the long-run consequences of the

taxes a rather complex task. In order to keep it tractable, we take into account only a finite,

though arbitrarily large, number of previous generations, from which a steady-state generation

actually receives inheritances. In other words, in each period those bequests which are initially

left by a generation more than t periods before are discarded. This simplification is certainly

justified by the fact that in (20) the value of inheritances declines with the distance s of earlier

generations and approaches zero for s going to infinity. Moreover, as all involved functions are

continuous, the sign of the welfare effect of a tax can never switch to the opposite when the

number of previous generations taken into account goes to infinity.

Denote in the following by the index 0 an arbitrary period of our economy in the steady

state. Let t ∈ N be arbitrarily large. Consider (20) for a finite number t of previous generations,

then each realization of inheritances in period 0 is written as some

e(r−1, ..., r−t) ≡
t∑

s=1
γsb(xr−s − (1 + τ c)ca) with r−s ∈ {1, 2, ..., n} for all s = 1, 2, ..., t. (21)

Remember that the potential realizations e(·) are the same for all skill-types i, but the as-

sociated probabilities µi(r−1, ..., r−t) differ according to the type, with µi(·) given by (16).

Let Ei[e] =
∑n

r−1=1
...
∑n

r−t=1
µi(r−1, ..., r−t)e(r−1, ..., r−t) denote expected inheritances of a

type-i individual of some steady-state generation 0, thus, fiEi[e] represents actual aggregate

inheritances of group i. Let further Vi(r−1, ..., r−t) denote indirect utility of an individual of

ability type i, as given by (9), if this individual receives an inheritance ei = e(r−1, ..., r−t).9 We

formulate the government’s problem of maximizing steady-state social welfare in the following

way: let ρ > 0 be the parameter of inequality aversion; the government maximizes the sum

(weighted by the population shares fi) of the groups’expected social utility, each written as

Ei[V
1−ρ
i /(1−ρ)] =

∑n
r−1=1

...
∑n

r−t=1
µi(r−1, ..., r−t)Vi(r−1, ..., r−t)

1−ρ/(1−ρ), given stochastic

inheritances e(r−1, ..., r−t). It has to observe the budget constraint that the revenues from the

income tax σ and the taxes on bequests (τ b) and consumption (τ c) cover the uniform subsidy

9Clearly, Vi also depends on the tax parameters α, σ, τ c, τ b, but for simplicity of notation we do not indicate
this explicitly.
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α. Thus, the government’s problem reads as

max
n∑
i=1

fiEi[V
1−ρ
i /(1− ρ)], (22)

s.t. σ
n∑
i=1

fiwili − α+ τ b
n∑
i=1

fiγb(Ei[e] + xi − (1 + τ c)ca)+

τ c
n∑
i=1

fi{γc(Ei[e] + xi − (1 + τ c)ca) + ca} ≥ 0, (23)

where the public budget constraint is formulated by use of the demand functions (8) and (7).

A crucial issue for the analysis of optimal taxes within this model is how the distribution of

inheritances, over which the expectation is computed, is related to the distribution of abilities

in each steady-state generation. Clearly, this in turn depends on the probabilities of wealth

transmission across ability types from one generation to the next. From a social-welfare point

of view, redistribution of income from high to low skill types only appears acceptable if low-able

individuals do not typically receive larger estates than high-able individuals. As mentioned in

the introduction, there is ample empirical evidence that this condition is fulfilled in reality,

that is, a positive correlation holds between the size of received inheritances and own abilities.

A natural way to account for such a positive correlation in our model is to assume that

each subsequent row of the matrix M first-order stochastically dominates the previous row,

that is, in each generation an individual of type i+ 1 is likely to have a more able parent than

an individual of type i.

Definition 1 (Row-FOSD) An n-dimensional stochastic matrix M with elements µij fulfills

first-order stochastic dominance of subsequent rows if for each i = 1, ..., n − 1, the row vec-

tor (µi+1,1, ..., µi+1,n) first-order stochastically dominates the row vector (µi1, ..., µin), that is,∑j
k=1 µik ≥

∑j
k=1 µi+1,k, for all j = 1, ..., n.

As an important result, we find that this property of ability transition from one period to

the next indeed implies for the steady state that overall received inheritances of a more-able

individual tend to be larger than those of a less-able individual.

Proposition 1 If M fulfills Row-FOSD then in the steady state the distribution of received

inheritances of a type-(i+ 1) individual first-order stochastically dominates the distribution of

inheritances of a type-i individual.
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Proof. See Appendix B.

An immediate consequence of this fundamental characterization is that expected inheri-

tances Ei[e] and utility levels Ei [Vi] increase with the abilities i = 1, ..., n. On the other hand,

the welfare weight of an individual i, that is, her expected social marginal utility of income

∂Ei[V
1−ρ
i /(1 − ρ)]/∂xi = λEi[V

−ρ
i ] = λ

∑n
r−1=1

...
∑n

r−t=1
µi(r−1, ..., r−t)Vi(r−1, ..., r−t)

−ρ is

decreasing with abilities (remember that λ = ∂Vi/∂xi is the individual marginal utility of in-

come, independent of an individual’s wage wi). These properties which are essential for the

analysis of optimal taxes in the next sections, are summarized in the following.

Corollary 1 If M fulfills Row-FOSD then for any σ < 1 the following inequalities apply:

Ei[e] < Ei+1[e], Ei [Vi] < Ei+1 [Vi+1] and Ei[V
−ρ
i ] > Ei+1[V

−ρ
i+1], i = 1, ..., n− 1.

Proof. See Appendix B.

The assumption of Row-FOSD is made throughout the upcoming analysis. As an important

property we note

Lemma 1 If M fulfills Row-FOSD, then M s fulfills Row-FOSD as well.

Proof. See Appendix B.

6 The linear income tax

As a first step towards an analysis of whether indirect taxes have a role in the steady state of

this model, we need to study the welfare effect of the (linear) income tax. That is, we ask if

and under which conditions a marginal increase of σ from zero, with a simultaneous increase of

α to satisfy the resource constraint, is desirable according to the social welfare function, setting

τ b = τ c = 0.

Let wl ≡
∑n

i=1 fiwili denote the average gross income and let, for any given s = 1, ..., t

and r−s = 1, ..., n, Ei[V
−ρ
i | r−s] =

∑n
r−1=1

...
∑n

r−s+1=1

∑n
r−s−1=1

...
∑n

r−t=1
µi(r−1, ..., r−t)·

Vi(r−1, ..., r−t)−ρ/µs;ir−s be the expected social welfare weight of individual i, conditional on

having an ancestor of type r−s in period −s.
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Proposition 2 Let τ b = τ c = 0. The welfare effect of an introduction of a linear income tax

is

λ
n∑
i=1

fiEi[V
−ρ
i ](wl − wili)+

λ
n∑
i=1

fi
t∑

s=1

n∑
r−s=1

µs;ir−sEi[V
−ρ
i | r−s]γs(wl − wr−s lr−s)+

λ
n∑
i=1

fi
t∑

s=1

n∑
r−s=1

µs;ir−sEi[V
−ρ
i | r−s]γswr−s

∂lr−s
∂σ

. (24)

The first two terms are positive and describe the immediate and the long-run welfare effect,

respectively, of income redistribution. The third term is negative and represents the long-run

distorting effect. The overall welfare effect is positive if the labor-supply reaction is not too

strong.

Proof. See Appendix C.

The first line of (24) captures the immediate welfare effect, for given inheritances, thus

ignoring the implications of income taxation in prior periods. It corresponds to the standard

welfare effect of a linear income tax in a purely static Mirrlees-model without inheritances. A

marginal increase of the tax rate σ (from zero) hits individuals according to their gross income

wili, while an identical amount α = wl (overall revenue) is returned to everyone, thus wl−wili

indicates the net income change for a specific individual with wage wi. This net income change is

clearly positive for low-able and negative for high-able individuals; the associated welfare effect

depends on the social evaluation of this redistribution, which is expressed by the social welfare

weights of the groups, that is, their expected social marginal utility of income λEi[V
−ρ
i ]. It was

stated in Corollary 1 that these weights decrease with the ability level i if M has the property

of Row-FOSD. Given increasing wili, this implies, together with
∑n

i=1 fi(wl − wili) = 0, that

the first line of (24) is unambiguously positive. (Note that the immediate distorting effect of

the tax is of second order, thus zero at σ = 0.) Clearly, the magnitude of this positive welfare

effect increases with the spread of individual incomes and with the degree of inequality aversion

ρ.

The second line of (24) describes the long-run effect of income redistribution. As with the

static part discussed above, the immediate income change for group r−s in period −s, of income
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redistribution through the linear income tax, is given by the difference wl−wr−s lr−s . However,

the social weight of this redistribution is now more complex: it consists of the consequences of

this income change in period −s (that is, of the change γs(wl−wr−s lr−s) of received inheritances

in the generation 0), for welfare of all ability groups i in the steady-state generation 0. Clearly,

the relevant welfare evaluation of each group i is µs;ir−sEi[V
−ρ
i | r−s], i.e., its probability of

having type r−s as an ancestor multiplied by the associated conditional expected social welfare.

Summing up over all i = 1, ..., n and r−s = 1, ..., n gives us the welfare consequences of income

redistribution in a single previous period −s, and the sum over s then describes the total

long-run welfare effect.

It turns out that redistribution of income in previous periods in effect means redistribution

of inheritances in the steady-state generation 0. This can formally be seen by writing the

second line of (24) in an equivalent way as (see (52) in Appendix C)

λ
n∑
i=1

fiEi[V
−ρ
i (e− e(·))], (25)

where e ≡
∑n

i=1 fi
∑n

r−1=1
...
∑n

r−t=1
µi(r−1, .., r−t)e(r−1, .., r−t) =

∑n
i=1 fiEi[e] denotes aver-

age inheritances received by generation 0. For each group i, the expectation term in (25) can

be interpreted as describing the social-welfare evaluation if received inheritances in the steady-

state are redistributed via a linear tax. This relates the analysis of the income tax to that of

the bequest tax, as will be discussed more extensively in the next section.

As we show formally in Appendix C, the long-run welfare effect of income redistribution

represented by the second line of (24) is positive. The essential idea is to split the effect of

income redistribution in previous periods into one of inheritance redistribution across ability

groups in generation 0, and an effect within groups. Intuitively, Row-FOSD of M implies

that a more able individual receives larger expected inheritances, thus income redistribution in

previous periods produces a desirable equalization of inheritances across ability groups in the

steady state. In addition, also within each group, for individuals with the same skills, a desired

equalization from those who receive large to those who receive small inheritances takes place.

Altogether, the long-run redistributive effect of the introduction of an income tax is positive.

Finally, turning to the third line of (24), this effect is clearly negative because ∂lr−s/∂σ < 0

for all s = 1, ..., t. Its structure is similar to that of the second line; it represents the long-run
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welfare loss caused by the disincentive effect of the income tax on labour supply in each period

−s, which transforms into lower steady-state inheritances. Note that this effect drops out if

redistribution within a generation alone is considered (as in the static Mirrlees model), because

for each individual the negative impact on labor supply and income is just compensated by the

welfare gain through the associated increase in leisure (the deadweight loss is zero at σ = 0);

nevertheless this disincentive effect occurs in the steady-state of our dynamic model, because

the tax affects the size of bequests left by previous generations.

In the following we take as given that a positive marginal tax rate σ is optimal, which

means that some redistribution of income is desirable. In other words, we assume that labour

supply is not too elastic, such that for an initial increase of σ the disincentive effect (line three

of (24)) is dominated by the positive effects. Obviously, with larger σ, the distorting effect on

labor supply of the marginal tax rate becomes increasingly important, and σ < 1 must hold

in the optimum; otherwise labor supply would be zero, as follows from (6) with g′(li) > 0 for

li > 0.

7 Optimal indirect taxes

For a precise analysis of whether an indirect tax can contribute to a desirable redistribution of

wealth in the steady state, on top of what is achieved by an optimal income tax, we need to

introduce a new property, in addition to Row-FOSD. Let s ∈ N, s ≤ t − 1. Remember that

µs;jk denotes the element (j, k) of M
s (thus, µ1;jk = µjk), then clearly µs+1;ik =

∑n
j=1 µijµs;jk

is the element (i, k) of MM s = M s+1.

Definition 2 An n-dimensional stochastic matrix M with elements µij fulfills the condition

of Path Dominance (abbreviated by PD) of order t, if for any s = 1, ..., t − 1, i = 1, ..., n and

k = 1, ..., n − 1, the probability vector with elements µijµs;j,k+1/µs+1;i,k+1 , j = 1, ..., n, first-

order stochastically dominates the probability vector with elements µijµs;jk/µs+1;ik , j = 1, ..., n.

By definition,
∑n

j=1 µijµs;j,k+1/µs+1;i,k+1 = 1 =
∑n

j=1 µijµs;jk/(
∑n

j=1 µijµs;jk), for any i

and k. As discussed above, the elements µs+1;ik of M
s+1 describe the probability that an

individual of skill type i has a type-k great-, great-,... grandparent, s+ 1 periods before. Thus,

the µijµs;jk/µs+1;ik, j = 1, ..., n describe the probability that an individual of skill type i and
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with a type-k great-, great-,... grandparent, s + 1 periods before, has an immediate parent of

type-j, in period −1. Intuitively then, condition PD requires that if we consider two individuals

of the same type i in the steady-state generation 0 with different great-, great-,... grandparents

of type k and type k + 1, respectively, s + 1 periods before, the one with a type-k + 1 great-,

great-, ... grandparent tends to have a more-able immediate parent than the other. For a

two-type economy we find:

Lemma 2 If n = 2, then PD is implied by Row-FOSD of M.

Proof. We have to check that µi1µs;11/(µi1µs;11 + µi2µs;21) ≥ µi1µs;12/(µi1µs;12 + µi2µs;22)

which reduces to µs;11µs;22 ≥ µs;12µs;21. This inequality holds because Row-FOSD of M
s (see

Lemma 1) for n = 2 implies µs;11 ≥ µs;21 as well as µs;12 ≤ µs;22.

Though PD is related to Row-FOSD, it represents a separate condition. Indeed, for n > 3

one can find matrices for which PD is not implied by Row-FOSD. On the other hand, Path

Dominance is automatically fulfilled for large s (as is Row-FOSD), which follows immediately

from the fact that lims→∞M s = W (mentioned in Section 3), together with the property that

all rows of W are identical and equal to the steady-state distribution f . The relation between

Row-FOSD and Path Dominance of M is discussed in more detail below and in Appendix D.

7.1 The bequest tax

We begin with the analysis of the welfare effect of a proportional bequest tax and ask whether

the latter can play a role as a complement to an optimally chosen labor income tax. Let for

any s = 1, ..., t−1, e−s(r−s−1, ..., r−t) ≡
∑t

ŝ=s+1 γ
ŝ−s
b (xr−ŝ−(1+τ c)ca) denote what generation

−s receives as inheritances from some series r−s−1, ..., r−t of ancestors up to period −t, with

average e−s ≡
∑n

r−s=1
fr−s

∑n
r−s−1=1

...
∑n

r−t=1
µr−s(r−s−1, .., r−t)e−s(r−s−1, .., r−t). With ε

as the elasticity of substitution between bequests and consumption, Ω as defined in (74) in

Appendix C and S(τ b, τ c) as the optimal value function of the maximization problem (22) -

(23), we find for the bequest tax:

Proposition 3 Let τ c = 0. The welfare effect of an introduction of a tax τ b on bequests, given
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that the linear income tax is chosen optimally, is

∂S

∂τ b

∣∣∣∣
τb=0

=λ
n∑
i=1

fiEi[V
−ρ
i (·)γ(e− e(·))]

+
n∑
i=1

fi
t−1∑
s=1

Ei[V
−ρ
i (·)γsγ(e−s − e−s(·))] + γΩ−

−
n∑
i=1

fiEi[V
−ρ
i (·)ε(1− γ)(e(·) +

t−1∑
s=1

γse−s(·))]. (26)

The first line describes the immediate redistributive effect; it is positive. The second line de-

scribes the long-run redistributive effect; it is positive, given Path Dominance. The third line

captures the long-run distortive effect and is negative (or zero).

The overall effect of τ b on social welfare is positive (i) if Path Dominance holds and the elas-

ticity of substitution between bequests and consumption is small, or (ii) if inequality aversion

is large and inheritances at the lower end of the inheritance distribution are small.

Proof. See Appendix C.

As with the linear income tax, two separate effects can be distinguished as a consequence

of the introduction of the bequest tax: the welfare effect when inheritances are held fixed,

which is the term in the first line of the above formula, and the welfare effect due to changes

in steady-state inheritances (as a result of changes in bequests left by previous generations),

which is described by the second and the third lines of (26).

The immediate redistributive effect. This effect represents the main role of the bequest

tax: it allows additional redistribution of γe(·), i. e., of that particular part of bequests left by

the steady-state generation 0, which is financed out of received inheritances. The important

point is that in fact the bequest tax is an instrument for equalization of received inheritances,

because these indeed represent a second characteristic of the individuals, in addition to abilities.

This redistribution of received inheritances is performed indirectly, via the share γ which is

used for bequests left to own heirs. Note that γ(e− e(·)) is clearly positive for individuals who

inherit little while it is negative for those who inherit much. This effect also occurs in the static

model with exogenous inheritances (Brunner and Pech 2012b). Clearly, the bequest tax is also

imposed on the other part of bequests, γxi, which is financed out of net labor income. But for

this part no effect shows up in the first line of (26) because - as the Atkinson-Stiglitz result tells
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us - no further redistribution is possible in addition to that performed by the optimal income

tax.

One observes that the immediate redistributive effect in line one of (26) is very similar to

the long-run redistributive effect of the income tax, as already mentioned above (see (25)); it

differs only by the factor γ. This relates to the common view that inheritance taxation may

represent an undesirable double-taxation, because it affects the bequeathed part of income, and

the later was already subjected to the income tax. Note, however, that this is clearly true for

any indirect tax, thus also for a consumption tax (see below). More importantly, in the present

context the essential point is that the bequest tax allows additional redistribution, above what

is performed by the optimal income tax. The intuitive reason is that, compared to the latter,

it causes a smaller distortion of the labor supply decision, as can immediately be seen from the

relation ∂li/∂τ b = γ(1− σ)∂li/∂σ (see (59) in Appendix C), where γ(1− σ) < 1. On the other

hand, in the longer run the bequest tax has a distorting effect on capital accumulation, as is

discussed in the following.

Redistribution in previous periods. The first term in the line two of (26) comes from the

fact that in each period−s the bequest tax redistributes that particular part γe−s(r−s−1, ..., r−t)

of bequests which is financed out of received inheritances from ancestors up to −t.10 This is

completely analogous to the mechanism discussed above for the redistribution of bequests fi-

nanced out of inheritances in the steady state (described by the first line of (26)). Of this

redistribution in −s, finally γsγ(e−s − e−s(r−s−1, ..., r−t)) arrives at the generation 0. What

matters for the social evaluation is how aggregate welfare of all groups i = 1, ..., n in this

steady-state generation 0 is affected by the total of this redistribution taking place in all pre-

vious periods −s, −1 ≥ −s > −t, and this is described by the first term in the second line of

(26).

To determine the sign of this term turns out to be a complex task. For a two-type economy,

the Row-FOSD condition implies a clear positive effect, while for n > 2 the Path-Dominance

condition on M is needed to guarantee that redistribution of bequests in any previous period

−s improves period-0 welfare. PD requires, essentially, that for an individual who receives

10Remember our assumption that only bequests from generations up to −t arrive at generation 0. Therefore
inheritances of generation −s originating from ancestors prior to −t do not occur in the formula.
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higher inheritances from a specific generation −s, total inheritances from all previous periods

together are higher as well. It must be stressed, however, that this condition is by no means

necessary; the first term in the second line of (26) is quite likely to be positive, even if the

first-order stochastic dominance, required in PD, is violated in some components. In fact, a

number of simulation results which we present in Appendix D, corroborate this claim. These

simulations show that for randomly chosen matrices M which fulfill Row-FOSD and whose

rows are unimodal with the maximum being the diagonal element, 90 percent of them either

fulfill PD or violate PD in less than 8 percent of all relevant comparisons. Moreover, the

extent by which the required inequalities are not fulfilled when the comparisons fail, is small.

As a consequence, these results indeed allow the conclusion that redistribution of bequests in

previous periods has a positive impact on steady-state welfare.

As to the second term γΩ in the second line of (26), we show in Appendix C that it is

positive and goes to zero for t going to infinity, that is, the larger the number of generations

whose bequests we actually take into account.

The distortion of the bequest decision and the overall effect. The third line of (26)

describes the social evaluation of the substitution effect associated with the introduction of

the bequest tax in previous periods. It is negative or zero because of ε ≥ 0. Given that

redistribution in previous periods has a positive effect (line two of (26)), the overall effect

is clearly positive for ε = 0. Intuitively, a zero substitution elasticity means that the ratio

bi/(ci − ca) does not change with the tax τ b; the latter only redistributes the available budget

but does not distort the accumulation process. In other words, it only causes an income effect

but no substitution effect. By continuity, we can extend this conclusion and state that a bequest

tax increases social welfare if the share of bequests does not react too much, that is if ε is small.

For a larger value of the elasticity of substitution a positive welfare effect of the bequest tax

arises if ρ, the parameter of inequality aversion, is large and inheritances at the lower end of the

distribution are small. The reason is that for large ρ only the individuals with lowest incomes

and lowest inheritances count in the social welfare function. If their inheritances are close to

zero (all their ancestors in the periods −s = −1, ...,−t had net incomes just suffi cient to cover

necessary consumption ca) then obviously the inheritances of their ancestors are also close to

zero and, thus, the third line of (26) is close to zero for any ε. As an illustration consider the
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limit case when the social welfare function is maximin (ρ goes to infinity), then in the formula

(26) of Proposition 3 only the expressions for i = 1 and r−s = 1, for all s = 1, ..., t, occur, and the

first two lines are obviously positive, because e > e(1, ..., 1) and e−s > e−s(1, ..., 1). Moreover

assume that x1 − ca is zero then the steady-state inheritance e(1, ..., 1) =
∑t

s=1 γ
s(x1 − ca)

in period 0 is zero, as is the inheritance e−s(1, ..., 1) =
∑t

ŝ=s+1 γ
ŝ−s(x1 − ca) in any previous

period −s. This implies that the third line of (26) is zero as well, and the overall effect is

positive.

7.2 The consumption and the expenditure tax

Next we turn to the welfare effect of a tax on consumption, and we follow the same procedure

and use the same notation as in the above analysis of the bequest tax.

Proposition 4 Let τ b = 0. The welfare effect of an introduction of a tax τ c on consumption,

given that the linear income tax is chosen optimally, is

∂S

∂τ c

∣∣∣∣
τc=0

=λ
n∑
i=1

fiEi[V
−ρ
i (·)(1− γ)(e− e(·))]

+
n∑
i=1

fi
t−1∑
s=1

Ei[V
−ρ
i (·)γs(1− γ)(e−s − e−s(·))] + (1− γ)Ω+

+
n∑
i=1

fiEi[V
−ρ
i (·)ε(1− γ)(e(·) +

t−1∑
s=1

γse−s(·))]. (27)

The first line describes the immediate redistributive effect; it is positive. The second line rep-

resents the long-run redistributive effect; it is positive given Path Dominance. The third line

describes the long-run distortive effect and is positive (or zero).

Given Path Dominance, the overall effect of τ c on social welfare is positive for any ε ≥ 0.

Proof. See Appendix C.

There is obviously a close similarity between the formulae in the Propositions 3 and 4. In

the first and second lines of the latter, only γ is replaced by (1−γ), while line three is identical

but with the opposite sign. As in the case of the bequest tax, the welfare effect of introducing

a tax τ c on consumption can again be split into two separate effects: the first line of (27)

shows that the consumption tax allows additional redistribution of that part of consumption,

(1− γ)e, which is financed out of given inheritances. This effect is positive for the same reason

23



as stated for τ b; the consumption tax effectively is an instrument for equalization of received

inheritances.

The second line describes the welfare implication for generation 0 of this redistribution

taking place in previous periods, as a consequence of the introduction of the consumption

tax τ c. (1 − γ)Ω is positive, and for the first term exactly the same considerations apply as

mentioned above for the bequest tax: a positive sign is guaranteed by the Path-Dominance

condition, but our numerical simulations show that it is very likely to hold for any matrix

M fulling Row-FOSD, even if Path Dominance is not strictly fulfilled. Finally, the distorting

effect (the substitution term in line three of (27)) now favors the accumulation process, hence

its welfare consequence is positive.11

To complete the analysis we also report the effect of a common proportional tax on all

expenditures, for consumption as well as for bequests. Let τ = τ b = τ c denote such a tax rate.

Corollary 2 The welfare effect of an introduction of a tax τ on expenditures for consumption

and bequests, given that the linear income tax is chosen optimally, is

∂S

∂τ

∣∣∣∣
τ=0

= λ
n∑
i=1

fiEi[V
−ρ
i (·)(e− e(·))]

+
n∑
i=1

fi
t−1∑
s=1

Ei[V
−ρ
i (·)γs(e−s − e−s(·))] + Ω. (28)

The immediate redistributive effect (described by the first line) is positive and the long-run

redistributive effect (described by the second line) is positive, given Path Dominance.

Proof. Combine (26) and (27), as the welfare effect of a uniform tax rate τ = τ b = τ c on both,

bequests and consumption, is simply the sum of the welfare effects of τ b and τ c.

The interpretation of the terms is analogous to the corresponding terms in the previous

propositions. The welfare effect is clearly just the sum of the effects of the two single taxes

presented in the above Propositions. Most importantly, this means - in accordance with the

findings for the single taxes - that by being imposed on all expenditures this tax actually

captures all inherited wealth and allows its redistribution (when combined with an optimally

11Let us note as an illustration that in case of complete mobility of abilities over generations (identical
inheritances of all individuals) the just-mentioned mechanism inducing increased accumulation would imply a
positive welfare effect of the consumption tax, though there is clearly no redistributive effect.
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chosen income). The first line in (28) shows the welfare consequences of this redistribution

in period 0, while the second line refers to the consequences from redistribution in previous

periods −s, s = 1, ..., t − 1. Again, the second line is guaranteed to be positive under the

Path-Dominance assumption, but is very likely to be positive otherwise. The respective third

lines in (26) and (27) cancel out. Obviously, the welfare effect of τ is larger than that of the

consumption tax alone if the bequest tax is welfare increasing.

The above formulas describing the welfare effects of the introduction of indirect taxes showed

us the mechanisms at work. No important further insights can be derived from the conditions

characterizing optimal tax rates τ b and τ c. Formally, one arrives at these conditions by setting

the first derivatives of the Lagrangian function to zero. Intuitively, with tax rates τ b and τ c

being larger than zero, their further increase causes increasingly negative effects on the respec-

tive tax basis, and in the optimum these are large enough to balance the positive redistributive

effects.

8 Discussion and concluding remarks

What do we learn from these findings for the design of an optimal tax system? First of all, we

have seen that the Aktinson-Stiglitz result on the redundancy of other taxes, in addition to an

optimal income tax, does not hold any more if the process of wealth accumulation via saving and

bequests is taken into account. It was already found in earlier studies (Saez 2002, Brunner and

Pech 2012ab) that a case for indirect taxes or capital taxes arises in a model where individuals

differ in a second characteristic, not only in labor productivities.12 However, in the present

model such taxes were shown to be useful although the only source of heterogeneity is again

labor productivity. The reason are differences in inherited wealth which arise endogenously as

a consequence of differing labor incomes. A basic assumption for our results is that the wealth

transfer is characterized by the property that more able individuals tend to have more able

parents, thus they inherit more than less able individuals.

In our model the additional instruments are taxation of consumption and bequests, and we

have established their social-welfare consequences, which involves weighing the redistributive

12A positve tax rate on capital income was also shown to be optimal in a model with infinitely
lived individuals, incomplete insurance marekts and borrowing constraints (Aiyagari 1995 as
well as in the New Dynamic Public Finance framework with stochastic skills and intertemporal
incentive constraints (Golosov et al. 2003, Diamond and Mirrlees 1978).
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potential against the utility loss from a distortion of individual decisions. It turned out that

from this perspective a tax on consumption is a suitable instrument. It performs redistribution,

and its distortive effect favors leaving bequests. Note that the increase in bequests is amplified

as we consider the long-run consequences: the increase in steady-state inheritances can be

interpreted as the sum of all gains if the favorable effect occurs each period again. This

amplification of inheritances (and consumption) outweighs the distortion.

In contrast, the bequest tax can be a useful instrument because of its redistributive poten-

tial. Its distortive effect penalizes bequests and the just described accumulation effect amplifies

the decrease of steady-state inheritances. Therefore the bequest tax increases social welfare, if

this reaction of bequests is suffi ciently small. More generally, the bequest tax is desirable

the more society wants to promote equality and the less the amount of inheritances

going to low income groups.

Note that the marginal propensity to save (for bequests) determines the redistributive

potential of the bequest tax vis-a-vis the consumption tax. The larger this propensity, the

larger the redistributive effect of the bequest tax. In our model, in order to derive a tractable

formulation of steady-state inheritances, the marginal propensity to save is assumed to be

the same for all households, while a propensity which increases with income is more likely to

conform to reality. Presumably, such an assumption would lead to a more unequal distribution

of inheritances and would, thus, strengthen the redistributive potential of the bequest tax

and weaken redistribution by the consumption tax, especially in the case of inheritances being

concentrated on high-income individuals. Moreover, again for the sake of tractability we

have abstracted away from income effects on the labor supply which implies that

there is no effect of receiving inheritances on the labor supply of the recepients.

However with the probably more plausible assumption of leisure being a normal

good, a bequest tax increases labor supply of the next generation, and we speculate

that the corresponding increase in the labor incomes should mitigate (counteract?)

to some extent the negative effect of the bequest tax on wealth accumulation found

in our model (see Kopczuk 2013a??).

It should be stressed again that for both taxes the ultimate cause for redistribution are

differences in received steady-state inheritances of the groups. As can clearly be seen from the

formulas of Propositions 3 and 4, what these taxes effectively redistribute is only that fraction
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of bequests (or consumption, respectively), which is financed out of (received) inheritances.

It follows that an expenditure tax, imposed on both consumption and bequests at a uniform

rate, effectively redistributes total steady-state inheritances while leaving wealth accumulation

undistorted.

Our results indicate that in an optimal tax system the income tax should be supplemented

by a consumption tax and - particularly when a society emphasizes redistribution - by a bequest

tax. This fits well to the structure of actual tax systems in OECD countries (OECD 2016, p.

103) which indeed rely heavily on consumption taxation (such as the VAT in the European

Union), in addition to the income tax (and to income-dependent social security contributions).

Taxation of property or the transfer of property plays a minor role, though a bequest or

inheritance tax exists in many countries (see OECD 2010, p. 32f). To our knowledge, prior

contributions to optimal taxation theory did not provide an explanation why consumption

taxation - in addition to income taxation - is so dominant.

In the last decades there has been an ongoing discussion of the merits of replacing income

taxation by consumption taxation. This was advocated for instance by Kaldor (1955) and

Meade (1978), with the main argument being the distortion of the savings decision caused by

a comprehensive income tax whose base includes capital income. Our analysis has a different

focus, namely the consequences of unequal inheritances, and it comes to a different conclusion

as it provides a reason for taxing consumption in addition to labor income. Moreover, in our

model the bequest tax can be interpreted as a kind of capital taxation, and it was shown

to be a potential instrument for redistribution. One may argue that this role would be even

more pronounced if the proportional tax were combined with a tax allowance or if progressive

rates were applied. Such a schedule could indeed be implemented because typically the overall

amount of the estate is reported to the tax authority. In contrast, consumption is usually

taxed at each single purchase of a good or service which is incompatible with a progressive

schedule; the latter would require households to report total consumption as the difference

between household income and savings (as suggested by Meade 1978).

Modeling bequests as being motivated by joy of giving allows us to consider social welfare

of each generation separately and to ask how it is affected by redistributive taxes. With

the alternative approach of an altruistic motive, redistribution refers to whole dynasties and

essentially affects the first generation which anticipates taxes and transfers of the descendants.
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It is diffi cult to see how in such a perfect-foresight framework the idea of wealth transmission

across ability groups and the role of taxes can be adequately modeled.13 Furthermore, empirical

studies do not suggest that the altruistic model is more in accordance with actual behavior

(see Kopczuk 2013b, among others).

In our model individuals live for one period only. Therefore, the taxation of bequests or

inheritances is equivalent to a tax on wealth. Moreover, as a consequence of our assumption of

unproductive capital, a tax on income from capital is not included in this study. A discussion of

the specific roles of these taxes and their relation to the bequest tax requires a more elaborated

model and represents a task for future research.

Appendix A. Lemmas 3 - 5

Four useful results needed later on are proved in the following.

Lemma 3 Let M fulfill Row-FOSD and let δ1, ..., δn ∈ R, δ1 ≥ δ2 ≥ .... ≥ δn. Then∑n
k=1 µjkδk ≥

∑n
k=1 µj+1,kδk, j = 1, ..., n− 1.

Proof. Interpret −δ1 ≤ −δ2 ≤ .... ≤ −δn as realizations of a discrete random variable for which

µj1,..., µjn and µj+1,1,..., µj+1,n are two probability distributions. The above inequality in "≤"-

form follows immediately from the well-known result that the expected value of −δ1, ...,−δn is

larger with the second distribution than with the first, if the second distribution first-order

dominates the first. Multiplication by −1 gives the required inequality.

Lemma 4 Let M fulfill Row-FOSD and let Ak, Bk, k = 1, ..., n be nonnegative real numbers

with the properties: Ak > Ak+1, Bk > Bk+1 for k = 1, ..., n− 1, and Ak > Bk for k = 1, ..., n.

Then
∑n

k=1 µjkAk >
∑n

k=1 µj+1,kBk, j = 1, ..., n− 1.

Proof. Lemma 3 with Bk = δk gives us
∑n

k=1 µjkBk ≥
∑n

k=1 µj+1,kBk. Replacing the Bk by

larger numbers Ak increases the LHS.

13Piketty and Saez (2013) also develop their main formula in a model with a joy-of-giving motive motive for
leaving bequests. Their analysis of a model with dynastic preferences draws on their assumption of stochastic
utility functions which we do not employ.
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Lemma 5 Given Path Dominance of M , in addition to Row-FOSD of M and P , then

G(r−s) ≡
1

fr−s

n∑
i=1

fi
n∑

r−1=1
...

n∑
r−s+1=1

n∑
r−s−1=1

...
n∑

r−t=1
µi(·)Vi(·)−ρ. (29)

is decreasing r−s for any s = 2, ..., t.

Proof. We introduce, for s < t and fixed r−s, as well as for a given series r−1, r−2, ..., r−s+1,

the expected social welfare weight, where the expectation is computed over over the remaining

possible paths r−s−1, ..., r−t and the positive constant λ is neglected:

Ei[V
−ρ
i | r−1, r−2, ..., r−s+1, r−s] ≡
n∑

r−s−1=1

...
n∑

r−t=1

µci (r−s−1, ..., r−t | r−1, r−2, ..., r−s+1, r−s)Vi(r−1, ..., r−s+1, r−s, r−s−1, ..., r−t)−ρ.

Here the conditional probabilities are given as µci (r−s−1, ..., r−t | r−1, r−2, ..., r−s+1, r−s) =

µir−1 ...µr−s+1r−sµr−sr−s−1...µr−t+1r−t/(µir−1 ...µr−s+1r−s) = µr−sr−s−1 · ... · µr−t+1r−t . Then (29)

can be written as

G(r−s) =
1

fr−s

n∑
i=1

fi
n∑

r−1=1
µir−1

n∑
r−2=1

µr−1r−2 ... (30)

n∑
r−s+1=1

µr−s+2r−s+1µr−s+1r−sEi[V
−ρ
i | r−1, r−2, ..., r−s+1, r−s].

Note that on the RHS of (30), r−s is fixed, the sums are computed over the remaining indices

r−1, ..., r−s+1. Obviously, for s = t, the expected value is just equal to Vi(·)−ρ. To prove that

G(r−s) > G(r−s + 1), we first show that this inequality holds for the conditional expectation,

i.e., we show, for any i = 1, ..., n, and fixed r−1, r−2, ..., r−s+1:

Ei[V
−ρ
i | r−1, r−2, ..., r−s+1, r−s] > Ei[V

−ρ
i | r−1, r−2, ..., r−s+1, r−s + 1]. (31)

That is, if type i has an ancestor of type r−s+1 in period −s, her welfare weight is lower (utility

is higher) than if the ancestor is of type r−s. To see that this holds, we write inheritances of
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type i in the two cases as

e| r−1, ..., r−s+1, r−s = e(r−1, ..., r−s+1) + γs(xr−s − (1− τ c)ca) + e−s(r−s−1, ..., r−t)

e| r−1, ..., r−s+1, r−s + 1 = e(r−1, ..., r−s+1) + γs(xr−s+1 − (1− τ c)ca) + e−s(r−s−1, ..., r−t)

The first term on the RHS is identical, the second term is clearly larger for r−s + 1, and

for the third term we know from Proposition 1 that the probability distribution Fr−s+1(e−s)

first-order stochastically dominates the probability distribution Fr−s(e−s). Altogether, as

V −ρi | r−1, r−2, ..., r−s+1, r−s is a decreasing function of e | r−1, ..., r−s+1, r−s, the inequality

(31) follows. We also note that Ei[V
−ρ
i | r−1, r−2, ..., r−s+1, r−s] is obviously decreasing in i as

well as in any r−ŝ, ŝ = 1, ..., s− 1.

Next, we proceed in two steps (the following applies for s > 2; if s = 2, (34) and (35) in

step 2 below are defined immediately):

Step 1 : We now take the expected value also over the possible r−s+1, that is, we define, for

given r−1, ..., r−s+2 (and, still, for fixed r−s),

Ei[V
−ρ
i | r−1, ..., r−s+2, r−s] ≡

n∑
r−s+1=1

µr−s+2r−s+1µr−s+1r−s

µ2;r−s+2r−s
Ei[V

−ρ
i | r−1, ..., r−s+1, r−s]

and in the same way, by replacing r−s by r−s + 1, we define Ei[V
−ρ
i | r−1, r−2, ..., r−s+2, r−s +

1]. From above we know that (31) holds and that both Ei[V
−ρ
i | r−1, r−2, ..., r−s+1, r−s] and

Ei[V
−ρ
i | r−1, r−2, ..., r−s+1, r−s + 1] are decreasing in i as well as in any r−ŝ, ŝ = 1, ..., s − 1,

hence in particular, in r−s+1. Therefore, in view of PD which implies the following first-order

stochastic dominance

j∑
r−s+1=1

µr−s+2r−s+1µr−s+1r−s

µ2;r−s+2r−s
≥

j∑
r−s+1=1

µr−s+2r−s+1µr−s+1r−s+1

µ2;r−s+2r−s+1
, for all j = 1, ..., n,

we find by means of Lemma 4 (with Ak = Ei[V
−ρ
i | r−1, ..., r−s+2, k, r−s], Bk = Ei[V

−ρ
i |

r−1, ...r−s+2, k, r−s + 1]) that

Ei[V
−ρ
i | r−1, r−2, ..., r−s+2, r−s] > Ei[V

−ρ
i | r−1, r−2, ..., r−s+2, r−s + 1]. (32)
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Both, Ei[V
−ρ
i | r−1, r−2, ..., r−s+2, r−s] and Ei[V −ρi | r−1, r−2, ..., r−s+2, r−s + 1] are obviously

decreasing in i as well as in any r−ŝ, ŝ = 1, ..., s− 2.

By the definition of Ei[V
−ρ
i | r−1, r−2, ..., r−s+2, r−s], we can write (30) in the form

G(r−s) =
1

fr−s

n∑
i=1

fi
n∑

r−1=1
µir−1

n∑
r−2=1

µr−1r−2 ...

n∑
r−s+2=1

µr−s+3r−s+2µ2;r−s+2r−sEi[V
−ρ
i | r−1, r−2, ..., r−s+2, r−s]

and replacing r−s by r−s + 1, G(r−s + 1) reads analogously. If s− 2 = 1, we proceed with step

2 and derive (34) and (35).

If s − 2 > 1 we follow the same logic as above and take the expected value also over the

possible r−s+2. That is, we define, for given r−1, ..., r−s+3 (and r−s)

Ei[V
−ρ
i | r−1, r−2, ..., r−s+3, r−s] ≡

n∑
r−s+2=1

µr−s+3r−s+2µ2;r−s+2r−s

µ3;r−s+3r−s
Ei[V

−ρ
i | r−1, r−2, ..., r−s+2, r−s]

as well as Ei[V
−ρ
i | r−1, r−2, ..., r−s+3, r−s + 1]. Again, we know that (32) holds and that these

expected values are decreasing in i as well as in any r−ŝ, ŝ = 1, ..., s − 2, hence in particular,

in r−s+2, and PD together with Lemma 4 gives us

Ei[V
−ρ
i | r−1, r−2, ..., r−s+3, r−s] > Ei[V

−ρ
i | r−1, r−2, ..., r−s+3, r−s + 1]. (33)

As before, these expected values are decreasing in i as well as in any r−ŝ, ŝ = 1, ..., s− 3. (30)

can be written in the form

G(r−s) =
1

fr−s

n∑
i=1

fi
n∑

r−1=1
µir−1

n∑
r−2=1

µr−1r−2 ...

n∑
r−s+3=1

µr−s+4r−s+3µ3;r−s+3r−sEi[V
−ρ
i | r−1, r−2, ..., r−s+3, r−s]

and the analogous form applies for G(r−s + 1). If s− 3 > 1 we go through the same transfor-

mations until after s− 1 repetitions we arrive at
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Step 2, where we define

Ei[V
−ρ
i | r−s] ≡

n∑
r−1=1

µir−1µs−1;r−1r−s

µs;ir−s
Ei[V

−ρ
i | r−1, r−s] (34)

and

G(r−s) =
1

fr−s

n∑
i=1

fiµs;ir−sEi[V
−ρ
i | r−s], (35)

where the Ei[V
−ρ
i | r−s] are decreasing in r−s and i, in view of PD. Noting that fiµs;ir−s/fr−s =

ps;r−si (see (18)), G(r−s) =
∑n

i=1 ps;r−siEi[V
−ρ
i | r−s]. First-order stochastic dominance of row

r−s+1 over row r−s of P and Lemma 4 with Ai = Ei[V
−ρ
i | r−s], Bi = Ei[V

−ρ
i | r−s+1] indeed

imply that the G(r−s) are decreasing in r−s.

Lemma 6 The average inheritances of the steady-state generation 0 and of any prior genera-

tion −s = −1, ...,−t+ 1 can be expressed as

e =
t∑

s=1
γsb(x− (1 + τ c)ca) (36)

and

e−s =
t∑

ŝ=s+1

γ ŝ−sb (x− (1 + τ c)ca), (37)

respectively, with x ≡
∑n

i=1 fixi =
∑n

r−s=1
fr−sxr−s denoting the average net income of gener-

ation 0 and of any prior generation −s = −1, ...,−t.

Proof. We use (21) to rewrite e ≡
∑n

i=1 fi
∑n

r−1=1
...
∑n

r−t=1
µi(r−1, .., r−t)e(r−1, .., r−t) as

e =
t∑

s=1
γsb(

n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(r−1, ..., r−t)xr−s − (1 + τ c)ca). (38)

We consider
∑n

i=1 fi
∑n

r−1=1
...
∑n

r−t=1
µi(r−1, ..., r−t)xr−s for some s ∈ {1, ..., t}, and rearrange

it by use of (16) to

n∑
i=1

fi
n∑

r−1=1
...

n∑
r−s=1

µir−1 · ... · µr−s+1r−sxr−s
n∑

r−s−1=1
...

n∑
r−t=1

µr−sr−s−1 · ... · µr−t+1r−t

which reduces to
∑n

i=1 fi
∑n

r−s=1
µs;ir−sxr−s by use of (17) and

∑n
r−s−1=1

...
∑n

r−t=1
µr−sr−s−1 ·

...·µr−t+1r−t = 1. Further we know from Section 3 that fM s = f (see (19)), thus
∑n

i=1 fiµs;ir−s =
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fr−s , and we can write

n∑
i=1

fi
n∑

r−s=1
µs;ir−sxr−s =

n∑
r−s=1

n∑
i=1

fiµs;ir−sxr−s =
n∑

r−s=1
fr−sx−s = x.

Hence,
∑n

i=1 fi
∑n

r−1=1
...
∑n

r−t=1
µi(r−1, ..., r−t)xr−s = x for any s = 1, ..., t. Using this result

in (38) gives us (36).

Analogously, we use e−s(r−s−1, ..., r−t), defined as
∑t

ŝ=s+1 γ
ŝ−s
b (xr−ŝ − (1 + τ c)ca), s =

1, ..., t − 1, in e−s ≡
∑n

r−s=1
fr−s

∑n
r−s−1=1

...
∑n

r−t=1
µr−s(r−s−1, ..., r−t)e−s(r−s−1, ..., r−t), to

obtain

e−s =
t∑

ŝ=s+1

γ ŝ−sb (
n∑

r−s=1
fr−s

n∑
r−s−1=1

...
n∑

r−t=1
µr−s(r−s−1, .., r−t)xr−ŝ − (1 + τ c)ca). (39)

We consider
∑n

r−s=1
fr−s

∑n
r−s−1=1

...
∑n

r−t=1
µr−s(r−s−1, .., r−t)xr−ŝ for some ŝ > s and re-

arrange it to, by similar considerations as above,

n∑
r−s=1

fr−s
n∑

r−ŝ=1
µŝ−s;r−sr−ŝxr−ŝ =

n∑
r−ŝ=1

n∑
r−s=1

fr−sµŝ−s;r−sr−ŝxr−ŝ =
n∑

r−ŝ=1
fr−ŝxr−ŝ = x.

By use of this result in (39) we obtain (37).

Appendix B. Proofs of Proposition 1, Corollary 1 and Lemma 1

Proof of Proposition 1. Let ê(r̂−1, .., r̂−t) be some particular realization of inheritances

in period 0, determined by the abilities of parents, grandparents, ... . Define for any series

(r−1, r−2, ..., r−t+1) the number R(r−1, r−2, ..., r−t+1) ≡ max{r−t ∈ {1, ..., n} |
∑t−1

s=1 γ
s
b(xr−s −

(1 + τ c)ca) + γtb(xr−t − (1 + τ c)ca) ≤ ê}. (If the set in this definition is empty, then let

R(r−1, r−2, ..., r−t+1) ≡ 0.) That is, for any series of types (r−1, r−2, ..., r−t+1) in the prior

generations up to −t+ 1, R(r−1, r−2, ..., r−t+1) denotes the highest skill type in generation −t

such that total inheritances do not exceed ê. Therefore, with Fi(ê) denoting the probability

distribution of inheritances received by individual i, we have

Fi(ê) =
n∑

r−1=1
µir−1

n∑
r−2=1

µr−1r−2

n∑
r−3=1

µr−2r−3 · ... ·
n∑

r−t+1=1
µr−t+2r−t+1

R(r−1,r−2,...,r−t+1)∑
r−t=1

µr−t+1r−t

(40)
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Note that the last sum term in (40) is zero if R(·) = 0. Now consider this last term for two

consecutive indices (ability types) r−t+1 and r−t+1+1, corresponding to two ancestors with net

incomes xr−t+1 < xr−t+1+1 in the last but one period −t+ 1. FOSD of row r−t+1 + 1 of M over

the row r−t+1 means
∑j

r−t=1 µr−t+1r−t ≥
∑j

r−t=1 µr−t+1+1,r−t for all j = 1, ..., n. Moreover,

by definition, R(r−1, r−2, ..., r−t+1) ≥ R(r−1, r−2, ..., r−t+1 + 1), because individual r−t+1 + 1

leaves a higher estate than individual r−t+1 and, thus, the set of ancestors r−t such that total

inheritances do not exceed ê, is smaller for the former (or equal). As a consequence,

R(r−1,r−2,...,r−t+1)∑
r−t=1

µr−t+1r−t ≥
R(r−1,r−2,...,r−t+1+1)∑

r−t=1
µr−t+1+1,r−t . (41)

(41) tells us that the last sum term in (40) is nonincreasing with r−t+1 = 1, ..., n. Thus,

denoting this sum term (for any given series r−1, r−2, ..., r−t+2) by δr−t+1(r−1, r−2, ..., r−t+2) ≡∑R(r−1,r−2,...,r−t+1)
r−t=1 µr−t+1r−t , we have δr−t+1(·) ≥ δr−t+1+1(·) and we can apply Lemma 3 (see

Appendix A) to derive for the last two sum terms in (40) that for any two consecutive indices

(ability types) r−t+2 and r−t+2 + 1 in period −t + 2 (note that the µr−t+2+1,r−t+1 first-order

stochastically dominate the µr−t+2r−t+1 , where r−t+1 = 1, ..., n):

n∑
r−t+1=1

µr−t+2r−t+1

R(r−1,r−2,...,r−t+1)∑
r−t=1

µr−t+1r−t ≥
n∑

r−t+1=1
µr−t+2+1,r−t+1

R(r−1,r−2,...,r−t+1)∑
r−t=1

µr−t+1r−t .

Hence, the last two sum terms in (40) are nonincreasing with r−t+2. Denoting again these two

sum terms (for any given series r−1, r−2, ..., r−t+3) by δr−t+2(r−1, r−2, ..., r−t+3) ≡∑n
r−t+1=1

µr−t+2r−t+1
∑R(r−1,r−2,...,r−t+1)

r−t=1 µr−t+1r−t , we can again apply Lemma 3 to see that

the last three terms in (40) are nonincreasing with r−t+3. Repeated application of the same

argument tells us finally that the RHS in (40) is nonincreasing in i, that is,

n∑
r−1=1

µir−1

n∑
r−2=1

µr−1r−2

n∑
r−3=1

µr−2r−3 · ... ·
n∑

r−t+1=1
µr−t+2r−t+1

R(r−1,r−2,...,r−t+1)∑
r−t=1

µr−t+1r−t ≥

n∑
r−1=1

µi+1,r−1

n∑
r−2=1

µr−1r−2

n∑
r−3=1

µr−2r−3 · ... ·
n∑

r−t+1=1
µr−t+2r−t+1

R(r−1,r−2,...,r−t+1)∑
r−t=1

µr−t+1r−t ,

which means Fi(ê) ≥ Fi+1(ê).

Proof of Corollary 1. Obviously, the number of potential (different) realizations of e is larger
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than 1, because with σ < 1, more-able individuals have higher net incomes and leave higher

bequests. Then Proposition 1 immediately implies Ei[e] < Ei+1[e], as a general consequence of

first-order stochastic dominance of the distribution Fi+1 over Fi.

From (9), Ei[Vi] can be written as λEi[e] +λ(xi− ca(1 + τ c))− g(li).We know that Ei[e] <

Ei+1[e]. Moreover, λ(xi− ca(1+ τ c))−g(li), which describes utility in case of zero inheritances,

clearly increases with the ability type i, given a marginal tax rate σ < 1. This proves Ei[Vi] <

Ei+1[Vi+1].

Next, note that (λe(·)+Z)−ρ is a decreasing function of e(·) for any constant Z. Therefore,

an elementary result for FOSD tells us that Ei[(λe(·) + Z)−ρ] > Ei+1[(λe(·) + Z)−ρ]. Finally,

using again that λ(xi−ca(1+τ c))−g(li) < λ(xi+1−ca(1+τ c))−g(li+1), the inequality remains

true if Z is replaced by these two terms, which gives Ei[(λ(e(·) + xi − ca(1 + τ c))− g(li))
−ρ] >

Ei+1 [(λ(e(·) + xi+1 − ca(1 + τ c))− g(li+1))
−ρ].

Proof of Lemma 1. Consider any matrix R = AB, where both n × n matrices A and B,

with elements aij and bij fulfill Row-FOSD. The required inequality
∑l

j=1 rij ≥
∑l

j=1 ri+1,j ,

for any i = 1, ..., n − 1 and l = 1, ..., n is written as
∑l

j=1

∑n
k=1 aikbkj ≥

∑l
j=1

∑n
k=1 ai+1,kbkj

which is equivalent to
∑n

k=1 aik
∑l

j=1 bkj ≥
∑n

k=1 ai+1,k
∑l

j=1 bkj . Set δk ≡
∑l

j=1 bkj , then

δk ≥ δk+1, because of Row-FOSD of B. Lemma 3 (see Appendix A) together with Row-FOSD

of A imply the required inequality.

Appendix C. Proofs of Propositions 2 - 4

Proof of Proposition 2. Let τ b = τ c = 0. The first derivatives with respect to α and σ of

the Lagrangian L to the problem (22), (23) (with ν as the Lagrange multiplier to (23)) are:

∂L
∂α

=
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(r−1, ..., r−t)Vi(r−1, ..., r−t)
−ρ∂Vi(·)

∂α
+ ν(σ

n∑
i=1

fiwi
∂li
∂α
− 1), (42)

∂L
∂σ

=
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ
∂Vi(·)
∂σ

+ ν
n∑
i=1

fi(wili + σwi
∂li
∂σ

). (43)

By application of the Envelope Theorem for (1) - (3) we have

∂Vi(·)
∂α

= λ(
∂e(·)
∂α

+ 1), (44)
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∂Vi(·)
∂σ

= λ(
∂e(·)
∂σ
− wili). (45)

Using (44), together with ∂li/∂α = 0 in (42) and setting it equal to zero, gives the first-order

condition for α as

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ(
∂e(·)
∂α

+ 1)− ν = 0. (46)

Substituting (45) into (43) we obtain

∂L
∂σ

= λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ(
∂e(·)
∂σ
− wili) + ν

n∑
i=1

fi(wili + σwi
∂li
∂σ

). (47)

To determine the welfare effect of introducing a linear income tax (increase of σ with α adapted

appropriately), we substitute for ν from the condition (46) for optimal α in ∂L/∂σ and evaluate

at σ = 0. After some transformations we obtain

∂L
∂σ

∣∣∣∣
σ=0

= λ
n∑
i=1

fiEi[V
−ρ
i ](wl − wili) +

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ(
∂e(·)
∂α

wl +
∂e(·)
∂σ

). (48)

In addition, we use the steady-state equation (21) for e(r−1, ..., r−t) to determine

∂e(r−1, ..., r−t)

∂α
=

t∑
s=1

γsb, (49)

∂e(r−1, ..., r−t)

∂σ
=

t∑
s=1

γsb(−wr−s lr−s + (1− σ)wr−s
∂lr−s
∂σ

). (50)

From (49) and (50) we get, at σ = 0 (and τ b = τ c = 0),

∂e(·)
∂α

wl +
∂e(·)
∂σ

=
t∑

s=1
γs(wl − wr−s lr−s + wr−s

∂lr−s
∂σ

).
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Substituting this expression into (48), we obtain

∂L
∂σ

∣∣∣∣
σ=0

= λ
n∑
i=1

fiEi[V
−ρ
i ](wl − wili) +

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ
t∑

s=1
γs(wl − wr−s lr−s) +

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ
t∑

s=1
γswr−s

∂lr−s
∂σ

, (51)

which after changing the order of the sum terms and using the expression for Ei[V
−ρ
i | r−s]

gives us the formula (24) in the text.

Next, we determine the signs of each of the three terms of (24). As to the first term,

λ
∑n

i=1Ei[V
−ρ
i ]fi(wl−wili), remember that

∑n
i=1 fiwili = wl, therefore

∑n
i=1 fi(wl−wili) = 0.

In view of wl − w1l1 > wl − w2l2 > · · · > wl − wnln, the first term in (24) is positive because

Ei[V
−ρ
i ] is decreasing in the ability type i, as is shown in Corollary 1.

To show that the second line of (24) is positive too, note first that at τ b = τ c = 0 and

σ = 0 (and thus also α = 0), (21) reads as e(·) =
∑t

s=1 γ
s(wr−s lr−s − ca) and (36) reads as

e =
∑t

s=1 γ
s(wl − ca). Thus, the second term of (24) (used in the form of the second line of

(51)) can be rewritten as

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ(e− e(·)). (52)

We split e − e(·) into variations of expected inheritances of the groups and variations within

the groups and get

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ(e− Ei[e])+

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ(Ei[e]− e(·)) (53)

where we note that e =
∑n

i=1 fiEi[e]. The first line of (53) can be written as λ
∑n

i=1Ei[V
−ρ
i ]fi(e−

Ei[e]). From Lemma 2 it follows that Ei[e] < Ei+1[e]. Moreover,
∑n

i=1 fi(e− Ei[e]) = 0, hence

decreasing weights Ei[V
−ρ
i ] (Corollary 1) imply that the first line in (53) is positive. As to

the second line in (53) we have
∑n

r−1=1
...
∑n

r−t=1
µi(·)(Ei[e] − e(·)) = 0, for any i = 1, ..., n.

In addition, V −ρi (r−1, ..., r−t) > V −ρi (r̃−1, ..., r̃−t) if e(r−1, ..., r−t) < e(r̃−1, ..., r̃−t). Thus the
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welfare weights are decreasing in e(r−1, ..., r−t), that is, in the second line of (53), positive

terms have larger weights than negative terms for each i = 1, ...n. Therefore, the second line is

positive.

Finally, the third term (24) is negative as ∂lr−s/∂σ < 0. It follows immediately that the

overall welfare effect is positive given that this third negative term is dominated by the positive

terms in the first two lines.

Proof of Proposition 3. Derivation of formula (26). Using the Envelope Theorem, we get

for the optimal value function S(τ b, τ c) of the maximization problem (22) and (23)

∂S

∂τ b
=

n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(r−1, ..., r−t)Vi(r−1, ..., r−t)
−ρ∂Vi(·)

∂τ b

+ν
n∑
i=1

fi{σwi
∂li
∂τ b

+ (γb + τ b
∂γb
∂τ b

)(Ei[e] + xi − (1 + τ c)ca)

+(τ bγb + τ cγc)(Ei[
∂e(·)
∂τ b

] + (1− σ)wi
∂li
∂τ b

)}. (54)

Applying the Envelope Theorem for (1) - (3) and using demand function (8) (with ei being

replaced by e(·)) gives us

∂Vi(·)
∂τ b

= λ(−bi +
∂e(·)
∂τ b

) = λ(−γb(e(·) + xi − (1 + τ c)ca) +
∂e(·)
∂τ b

). (55)

Substituting (55) and xi = α+ (1− σ)wili into (54), we get, at τ c = τ b = 0,

∂S

∂τ b

∣∣∣∣
τb=0

=λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ{−γ(e(·) + α+ (1− σ)wili − ca) +
∂e(·)
∂τ b
}

+ ν
n∑
i=1

fi{σwi
∂li
∂τ b

+ γ(Ei[e] + α+ (1− σ)wili − ca)}. (56)

Setting (47) equal to zero, gives us the first-order condition for optimal σ at τ c = τ b = 0 :

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ(
∂e(·)
∂σ
− wili) + ν

n∑
i=1

fi(wili + σwi
∂li
∂σ

) = 0. (57)

Implicit differentiation of (6) with respect to σ and τ b, respectively, gives the relation ∂li/∂τ b =

−(∂li/∂σ)(∂λ/∂τ b)(1 − σ)/λ and from Section 2 we know that λ = ϕ̃(γc, γb). Thus, we have

∂λ/∂τ b = (∂ϕ̃/∂(ci−ca))(∂γc/∂τ b)+(∂ϕ̃/∂bi)(∂γb/∂τ b). Writing the objective function (1) in
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terms of ϕ̃(ci−ca, bi) and using the f.o.c.’s (4) and (5) we obtain ∂λ/∂τ b = λ(1+τ c)(∂γc/∂τ b)+

λ(1 + τ b)(∂γb/∂τ b), which can be transformed further to ∂λ/∂τ b = −λγb by use of ∂γc/∂τ b =

−(∂γ/∂τ b)/(1 + τ c), and of

∂γb
∂τ b

=
∂γ/∂τ b
1 + τ b

− γ

(1 + τ b)2
=
∂γ/∂τ b − γb

1 + τ b
; (58)

hence we have
∂li
∂τ b

= γb(1− σ)
∂li
∂σ

. (59)

Using this relation at τ b = 0 as well as (57) multiplied by γ(1 − σ), we can write (56) as

(remember that e =
∑n

i=1 fiEi[e])

∂S

∂τ b

∣∣∣∣
τb=0

=− λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ργ(e(·) + α− ca) + νγ(e+ α− ca)

+ λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ{
∂e(·)
∂τ b

− γ(1− σ)
∂e(·)
∂σ
}, (60)

which, after substitution for ν by use of the condition (46) for optimal α, is further transformed

to
∂S

∂τ b

∣∣∣∣
τb=0

= λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ{γ(e− e(·)) +Q}, (61)

with Q defined as

Q ≡ ∂e(·)
∂τ b

− γ(1− σ)
∂e(·)
∂σ

+ γ(e+ α− ca)
∂e(·)
∂α

. (62)

Next, we use (21) to compute ∂e(·)/∂τ b at τ c = 0 :

∂e(·)
∂τ b

=
t∑

s=1
(sγs−1b

∂γb
∂τ b

(xr−s − ca) + γsb(1− σ)wr−s
∂lr−s
∂τ b

). (63)

With (63) at τ b = 0, (49) and (50), as well as using (59) and xr−s = α + (1 − σ)wr−s lr−s , Q

becomes

Q = γ
t∑

s=1
γs(e+ xr−s − ca) +

t∑
s=1

sγs−1
∂γb
∂τ b

(xr−s − ca), (64)

where ∂γb/∂τ b is given by (58). Next, we introduce the elasticity of substitution between
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bequests and consumption (above minimum consumption ca), defined as

ε = −∂[bi/(ci − ca)]
∂[pb/pc]

pb/pc
bi/(ci − ca)

≥ 0 (65)

with pb = 1 + τ b and pc = 1 + τ c. By use of (7) and (8) bi/(ci− ca) reduces to (γpc)/((1−γ)pb).

Moreover, at τ c = 0, pb/pc = pb. Hence, ε is given by

ε = −∂[γ/((1− γ)pb)]

∂pb

(1− γ)p2b
γ

=
−(∂γ/∂pb)pb + γ(1− γ)

γ(1− γ)
. (66)

Solving (66) explicitly for ∂γ/∂pb and observing that ∂pb/∂τ b = 1, we arrive at

∂γ

∂τ b

∣∣∣∣
τb=0

= (1− ε)γ(1− γ) (67)

which further gives us (see (58))

∂γb
∂τ b

∣∣∣∣
τb=0

= −γ(γ + ε(1− γ)). (68)

By use of (36) and (68), we write (64) as

Q = γ(
t∑

s=1
γs)2(x− ca)− γ

t∑
s=1

(s− 1)γs(xr−s − ca)− ε(1− γ)
t∑

s=1
sγs(xr−s − ca). (69)

(
∑t

s=1 γ
s)2 can be decomposed into

∑t
s=1(s − 1)γs +

∑t
s=1(t− s + 1)γt+s,14 which we use to

transform (69) to

Q = γ
t∑

s=1
(s− 1)γs(x− xr−s) + γ1+t

t∑
s=1

(t− s+ 1)γs(x− ca)− ε(1− γ)
t∑

s=1
sγs(xr−s − ca). (70)

Next, for s < t and for some series r−s−1, ..., r−t, we use the definition of e−s(r−s−1, ..., r−t) at

τ b = τ c = 0 to compute γse−s(·) =
∑t

ŝ=s+1 γ
ŝ(xr−ŝ − ca) and further

t−1∑
s=1

γse−s(·) =
t−1∑
s=1

t∑
ŝ=s+1

γ ŝ(xr−ŝ − ca) (71)

=
t∑

s=1
(s− 1)γs(xr−s − ca).

14 (
∑t
s=1 γ

s)2 = (γ + γ2 + ...+ γt−1 + γt)(γ + γ2 + ...+ γt−1 + γt) = γ2 + 2γ3 + 3γ4...+ (t− 1)γt + tγt+1

+(t− 1)γt+2 + (t− 2)γt+3 + ...+ 3γ2t−2 + 2γ2t−1 + γ2t =
∑t
s=1(s− 1)γ

s +
∑t
s=1(t+ 1− s)γt+s.
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Analogously, by use of (37) we find that

t−1∑
s=1

γse−s =
t∑

s=1
(s− 1)γs(x− ca). (72)

(71) and (72), together with (21), allows us to write (70) as

Q = γ
t−1∑
s=1

γs(e−s − e−s(·)) + γ1+t
t∑

s=1
(t− s+ 1)γs(x− ca)− ε(1− γ)(e(·) +

t−1∑
s=1

γse−s(·)). (73)

Writing Q in (61) in the form (73) and defining

Ω ≡ λ
n∑
i=1

fiEi[V
−ρ
i ]γt

t∑
s=1

(t− s+ 1)γs(x− ca) (74)

we obtain formula (26) in Proposition 3.

Determination of the signs of the terms in (26). Note that the first line of (26) is equal to

(52), multiplied by γ, and is, thus, positive as shown in the Proof of Proposition 1. Line three

of (26) is negative (or zero) because of ε ≥ 0.

In the second line, Ω defined in (74) is immediately seen to be positive; it goes to zero with

increasing t. It remains to show that the first term, the long-run redistributive effect of τ b is

positive in case that the condition of Path Dominance is satisfied. We go back to (61) and write

Q in the version (70) which is equivalent to (73). This allows us to rewrite the first term in

the second line of (26) as

λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ργ
t∑

s=1
(s− 1)γs(x− xr−s). (75)

We consider (75) separately for each s > 1. (Note that for s = 1 the corresponding term is

zero.) By reordering we obtain

λγ(s−1)γs
n∑

r−s=1
(x−xr−s)

n∑
i=1

fi
n∑

r−1=1
...

n∑
r−s+1=1

n∑
r−s−1=1

...
n∑

r−t=1
µi(·)Vi(·)−ρ, s = 2, ..., t, (76)

and further, by use of G(r−s), defined in (29),

λγ(s− 1)γs
n∑

r−s=1
(x− xr−s)fr−sG(r−s), s = 2, ..., t. (77)
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By definition,
∑n

r−s=1
(x − xr−s)fr−s = 0, and x − xr−s decreases in r−s for any s = 2, ..., t.

Moreover, it is shown in Lemma 5 (see Appendix A) that the weights G(r−s) of x− xr−s also

decrease in r−s for any s = 2, ..., t, if Path Dominance of M holds, in addition to Row-FOSD

of M and P . As a consequence, (77) is positive for any s = 2, ..., t and, thus, also (75). Note

that, though we use Row-FOSD of P as a separate condition, it is in fact implied by our

general assumption of Row-FOSD of M together with Path Dominance of M , as our extensive

simulations with randomly chosen matrices show, see Appendix D.

The overall effect. (i) Given PD, the first two lines of (26) are known to be positive,

therefore the overall welfare effect of τ b is positive as well, for suffi ciently small values of ε.

(ii) Next consider the limiting case ρ→∞, where the social welfare function (22) approaches

the maximin form. Then the objective function of the maximization problem (22) - (23) is

indirect utility V1(1, ..., 1) of the group with the lowest ability w1 and the lowest inheritances

e(1, ..., 1) =
∑t

s=1 γ
s(x1− ca); and all the sums in (61), with Q written in the form (70) reduce

to i = 1, r−s = 1 for all s = 1, ..., t which yields15

∂S

∂τ b

∣∣∣∣
τb=0

= λγ(e− e(1, ..., 1)) + λγ
t∑

s=1
(s− 1)γs(x− x1) +

λγ1+t
t∑

s=1
(t− s+ 1)γs(x− ca)− λε(1− γ)

t∑
s=1

sγs(x1 − ca). (78)

The first term is positive because e > e(1, ..., 1), the second term is positive, because x > x1,

and, obviously, the third term is positive as well. Moreover, let e(1, .., 1) be arbitrarily small,

which means that x1− ca is close to zero. Then the fourth term in (78) is also close to zero for

any ε > 0, and the overall welfare effect is positive. By continuity, the overall welfare effect is

also positive for large but finite values of ρ and for small values of e(·) at the lower end of the

inheritance distribution.

Proof of Proposition 4. We proceed as in the proof of Proposition 3 and determine the

15Note that the optimal linear income tax is derived by maximizing indirect utility V1(1, .., 1) of the group
with the lowest ability w1 and the lowest inheritances e(1, .., 1) subject to (23). As also in this case the optimal
marginal tax rate σ on labor income is smaller than 1, net incomes increase with ability i. Consequently,
V1(1, .., 1) continues to be the lowest utility in the economy and the welfare effect of introducing τ b is derived
by differentiating the Lagrangian with V1(1, .., 1) as the objective function.
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derivative of the optimal value function S(τ b, τ c) with respect to τ c

∂S

∂τ c
=

n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(r−1, .., r−t)Vi(r−1, .., r−t)
−ρ∂Vi(·)

∂τ c

+ν
n∑
i=1

fi{σwi
∂li
∂τ c

+ (γc + τ c
∂γc
∂τ c

)(Ei[e] + xi − (1 + τ c)ca)

+ca + (τ bγb + τ cγc)(Ei[
∂e(·)
∂τ c

] + (1− σ)wi
∂li
∂τ c
− ca)], (79)

where we obtain ∂Vi(·)/∂τ c by applying the Envelope Theorem as

∂Vi(·)
∂τ c

= λ(−ci +
∂e(·)
∂τ c

) = λ(−γc(e(·) + xi − (1 + τ c)ca)− ca +
∂e(·)
∂τ c

), (80)

and we have inserted (7). By use of (80) and of the definitions of xi, wl and e, we write (79),

evaluated at τ b = τ c = 0

∂S

∂τ c

∣∣∣∣
τc=0

=λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ{−(1− γ)(e(·) + α+ (1− σ)wili − ca)− ca

+
∂e(·)
∂τ c
}+ ν

n∑
i=1

fiσwi
∂li
∂τ c

+ ν{(1− γ)(e+ α+ (1− σ)wl − ca) + ca}. (81)

Using (57), multiplied by (1−γ)(1−σ), and observing that ∂li/∂τ c|τc=0 = (1−γ)(1−σ)∂li/∂σ
16,

(81) becomes

∂S

∂τ c

∣∣∣∣
τc=0

=λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ{
∂e(·)
∂τ c

− (1− γ)(1− σ)
∂e(·)
∂σ

− (1− γ)(e(·) + α− ca)− ca}+ ν{(1− γ)(e+ α− ca) + ca}, (82)

and, further, by substituting for ν from (46)

∂S

∂τ c

∣∣∣∣
τc=0

= λ
n∑
i=1

fi
n∑

r−1=1
...

n∑
r−t=1

µi(·)Vi(·)−ρ{(1− γ)(e− e(·)) +D}, (83)

16We proceed analogously as in the derivation of (59) in the Proof of Proposition 3: Implicit differentiation
of (6) with respect to τ c and σ gives ∂li/∂τ c = −(∂li/∂σ)(1 − σ)(∂λ/∂τ c)/λ. By use of λ = ϕ̃(γc, γb) we have
∂λ/∂τ c = (∂ϕ̃/∂(ci−ca))(∂γc/∂τ c)+(∂ϕ̃/∂bi)(∂γb/∂τ c) = −λγc (use (4), (5) with ϕ̃(ci−ca, bi) in the objective
function (1), ∂γc/∂τ c = −∂γ/∂τ c/(1 + τ c)− (1− γ)/(1 + τ c)

2 and ∂γb/∂τ c = (∂γ/∂τ c)/(1 + τ b)).
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where D is defined as

D ≡ ∂e(·)
∂τ c

− (1− γ)(1− σ)
∂e(·)
∂σ

+ ((1− γ)(e+ α− ca) + ca)
∂e(·)
∂α

(84)

From the equation (21) for e(r−1, .., r−t) one gets at τ b = 0

∂e(·)
∂τ c

=
t∑

s=1
(sγs−1

∂γ

∂τ c
(xr−s − (1 + τ c)ca) + γs((1− σ)wr−s

∂lr−s
∂τ c

− ca). (85)

Inserting (85) at τ c = 0, (49), (50), together with ∂li/∂τ c|τc=0 = (1 − γ)(1 − σ)∂li/∂σ and

xr−s = α+ (1− σ)wr−s lr−s , (84) can be transformed to

D = (1− γ)
t∑

s=1
γs(e+ xr−s − ca) +

t∑
s=1

sγs−1
∂γ

∂τ c
(xr−s − ca). (86)

As in the Proof of Proposition 3 we express ∂γ/∂τ c in terms of the elasticity ε of substitution,

defined by (66). Affi ne-linear Engel curves imply that proportional price changes do not alter

the demand ratio between bequests and consumption (above minimum consumption ca), which

in our case (where τ b = τ c = 0) means ∂γ/∂τ b + ∂γ/∂τ c = 0 or ∂γ/∂τ c = −∂γ/∂τ b =

(ε− 1)γ(1− γ), by use of (67). We substitute this term, together with (36) and (
∑t

s=1 γ
s)2 =∑t

s=1(s− 1)γs +
∑t

s=1(t+ 1− s)γt+s (see footnote 15) into (86), which yields

D = (1−γ)
t∑

s=1
(s−1)γs(x−xr−s)+(1−γ)γt

t∑
s=1

(t+1−s)γs(x−ca)+ε(1−γ)
t∑

s=1
sγs(xr−s−ca),

which we transform further by use of (71), (72) and (21) to

D = (1−γ)
t−1∑
s=1

γs(e−s−e−s(·))+(1−γ)γt
t∑

s=1
(t−s+1)γs(x−ca)+ε(1−γ)(e(·)+

t−1∑
s=1

γse−s(·)).

(87)

Substituting (87) into (83) and using (74) gives us formula (27) in Proposition 4. The first

term of (27) is equal to (52), multiplied by (1− γ), and is, thus, positive as shown in the Proof

of Proposition 2. The second line in (27) is the same as the second line of (26) with (1 − γ)

instead of γ, and thus positive, given PD as shown in the Proof of Proposition 3. Finally, line

three of (27) is nonnegative for any ε > 0. This completes the proof that ∂S/∂τ c|τc=0 > 0

given PD.
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Appendix D. Simulations on the Path-Dominance condition

To our knowledge, there exists no precise analytical characterization of this condition and its

relation to Row-FOSD of the stochastic matrix M . Instead, in order to get a deeper insight

into this property, we ran a large number of simulations. We randomly created stochastic

matricesM with unimodal rows (their maximal element being in the diagonal), and chose those

matrices which fulfilled Row-FOSD. For these matrices we checked whether they fulfilled Path

Dominance and, if not, to which degree they deviate from it. Remember that Path Dominance

requires that first-order stochastic dominance holds in a number of pairwise comparisons of

probability vectors, and we examined how many of these comparisons did not hold. The

following table presents the results of these computations.
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Table 1

dimension of matrix

2 3 4 5 6 7 8 9 10

90th percentile of negative
PD checks for s = 1

0 0.056 0.083 0.070 0.067 0.065 0.058 0.051 0.047

Ratio of negative PD checks
for s = 1

0 0.020 0.013 0.010 0.010 0.007 0.006 0.006 0.005

90th percentile of negative
PD checks for s = 2

0 0.056 0.021 0.020 0.006 0 0 0 0

90th percentile of negative
PD checks for s = 3

0 0 0 0 0 0 0 0 0

90th percentile of negative
Row-FOSD checks of P

0 0 0.111 0.063 0.080 0.056 0.061 0.047 0.037

Negative Row-FOSD checks
of P given PD

0 0 0 0 0 0 0 0 0

Number of randomly chosen
matrices

2000 2000 2000 2000 2000 1000 500 100

The first row of this table shows that ninety percent of all randomly chosen matrices, as

described above, either fulfill the Path-Dominance check for s = 1 or fail in at most 8 percent

of the checks required in the definition. The second row only refers to those cases where at

least one of these checks fails, that is, where the difference between two respective terms is

negative but should be positive. The numbers in this row tell us that in these cases the sum

(in absolute value) of all these negative differences relative to the total sum of the differences

of all required checks is 2 percent or less.

The next two rows present the same values for Path Dominance as the first row, when the

required comparisons are performed for s = 2 and s = 3 instead of s = 1 (remember that in

the definition of PD, the comparisons have to be fulfilled up to the order t). It turns out that

the share of failed checks goes down quite rapidly, as expected from the fact that for s → ∞

they are automatically fulfilled. Thus, the first four rows confirm that even if Path Dominance

is not fulfilled in the strict sense, the extent of the violations is rather small. For matrices of

dimension two these properties are all always satisfied, as was shown in Lemma 2.

The fifth row shows that for ninety percent of the randomly chosen matrices M the associ-

ated Markov transition matrix P either fulfills Row-FOSD or fails in at most 11 percent of all

checks. More importantly, the simulation results presented in row six provide clear evidence
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that for all chosen matrices M which also fulfill Path Dominance, the associated matrix P

fulfills Row-FOSD, as claimed in the Proof of Proposition 3.

These simulation results make us quite confident that the respective terms describing the

long-run effect of redistribution via indirect taxes is indeed positive.
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