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Abstract 
 

Analysis of open-access common-property natural resource (NR) has occurred under “low” 

congestion (LC) – where 𝐴𝐶 and 𝑀𝐶 increase with output 𝑄 – and has for the most part 

ignored the more important congestion categories where 𝐴𝐶 (𝑀𝐶) is backward-bending 

(negative) and welfare and NR losses are significantly greater. This paper identifies two 

such categories, “high” (HC) and “super” (SC) congestion, and examines the impact of 

open access on steady-state welfare, NR, employment, output and price in a general 

equilibrium model. Main findings are: i) Welfare and NR costs (and optimal taxes) are a 

multiple or orders of magnitude greater under HC and (especially) SC than under LC, with 

trade further – and always – reducing an open-access exporter’s NR and welfare. These 

results are robust to alternative parameter values and functional forms and greatly increase 

the importance of regulation; ii) An optimal tax raises price and reduces output under 

autarky in the case of LC and HC but reduces price and raises output under SC, with 

significantly larger gains; iii) Studies conducted under LC show trade between open-access 

developing country C1 and regulated but otherwise identical C2 reduces C1’s welfare and 

both C1’s and global NR, and though the same holds under HC, the opposite holds under 

SC; iv) Trade between two open-access countries – say, a developing and an emerging one 

– with different externality (population) levels raises global output and welfare, improves 

NR’s global efficiency, raises (does not affect) its level, and reduces international 

inequality; and v) Emigration’s welfare gain is much larger under SC than under LC, 

especially if migration results in LC after migration. Application to other issues and policy 

implications are provided. 
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1. Introduction       

Many developing countries obtain a large share of their income from the exploitation of 

open-access common-property renewable natural resources (NR), including fisheries, 

forests, arable land, grazing grounds, and water resources. Imperfect or lack of property 

rights for the NR results in the partial or non-internalization of negative externalities,1 an 

excessive use of labor and other variable inputs and NR degradation.  

 

This problem has affected many developing countries and has led to the decline or 

disappearance of communities due to rapid population growth, access to a wider market, 

and more. For instance, Brander and Taylor (1998) argue that open access to a rich resource 

base led to economic growth, population overshooting and the disappearance of Easter 

Island’s forests, with a dramatic decline in population and well-being over time.  

  

The classic case of NR depletion is that of fisheries, which has affected a large number of 

countries over time. Early studies of NR depletion focused on this issue (e.g., Gordon 1954, 

Scott 1955). This paper selects aquaculture, or fish farming, to illustrate the problem 

examined as the sector’s output has grown extremely rapidly in recent years – from about 

a third in 2005 to over 50 percent of global fish output in 2015 (FAO 2016) – and so have 

the associated negative externalities. The analysis is directly applicable to a number of 

other NR and non-NR cases (see Section 5).  

 

Given farm fishing’s recent growth, it is no surprise that most analyses to date have focused 

on wild fishing. Models designed to explain the evolution of the stock of wild fish (and 

other renewable NRs) have typically included equations for the stock’s natural and actual 

growth, i.e., natural growth minus harvest.  

 

Farmed fish requires a different model as the fish fry is produced in hatcheries and nurseries 

and its supply is essentially independent of fishing intensity, as is the size of the production 

area and water volume or NR quantity. On the other hand, NR quality declines with fishing 

intensity or density of variable inputs (e.g., pens, labor). Excessive farm fishing intensity 

 
1For instance, López (1997, 1998) finds that the share of the negative NR externalities – from the use of 

village-level common-property lands in Ghana and Côte d’Ivoire – that is internalized is around 30 percent 

and declines with village size.  
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generates two types of problems, namely low quality and hence low productivity of the NR, 

and greater volatility due to the rapid spread of a negative shock to one unit (e.g., a disease) 

to the rest of the industry. Such problems are common in many farm fishing countries. 

Examples provided here draw on the industry’s experience in Chile and the Philippines.  

 

Open access and a lack of regulations has led to an excessively high density of pens in the 

case of Chilean salmon. This resulted in a parasite and disease outbreak in 2008. The 

parasite spread rapidly across the industry and destroyed two thirds of the output through 

2009 and 2010. The episode led to a number of regulatory changes, though the sector has 

continued to be plagued by frequent problems (Anderson 2012). The excessive pen density 

has also led to high pollution levels and lower productivity in the industry. 2   

 

A similar problem has been found in various parts of the Philippines. For instance, Yambot 

(2000) examined tilapia farms in Lake Taal and found high congestion of fish cages, as 

well as high stocking density and feeding rates. These resulted in extremely high levels of 

ammonia and nitrogen and very low levels of dissolved oxygen, with high pollution levels 

and widespread waste materials, and floating dead fish abounding due to mass mortality, 

all of which have led to chronic disease of the surviving fish. Similar problems occurred in 

the coastal waters of the islands of Luzon and Mindanao. Among the most dramatic events 

were a series of mass mortalities of milkfish in Bolinao, Pangasinan in 2002, with water 

quality and habitat degraded to a degree that severely diminished the likelihood of cultured 

fish survival and growth (Talaue-McManus 2006; San Diego-McGlone et al. 2008).  

 

Another problem is toxic algae bloom. The large amounts of nutrients in the case of high 

pen and stock density result in exponential algae growth, followed by an exhaustion of 

nutrients and a mass of decaying algae. The latter depletes the water’s oxygen by blocking 

the sun, which suffocates the fish, and its toxicity pollutes the water and poisons them. This 

has had a negative impact on farm fishing productivity in both Chile and the Philippines.  

 
2 Lack of effective vaccine against the SRS bacteria in coastal waters affecting salmon has led Chile to use 

more antibiotics than Norway, Scotland and British Columbia combined, as well as a use of pesticides that 

is a high multiple of that of British Columbia (Bridsen 2014).  
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An algae bloom in Chile led to a 16 percent decline in the 2015 salmon output (Bajak 2016) 

and in a 20 percent downward revision of the 2016 salmon and trout production forecasts 

(Guardian, March 6, 2016; Financial Times, May 5, 2016), and the problem was still 

affecting the industry in 2018 (www.undercurrentnews.com, Feb. 7, 2018). Algae bloom 

has also affected fisheries in Laguna de Bay, the Philippines’ largest lake. An Asian 

Development Bank (ADB 1989) report examined the situation in Laguna de Bay in order 

to assess the impact of its support of the development of milkfish pens and tilapia cages 

and found that tilapia and milkfish output had been badly affected by it.3 

 

1.1. Congestion  

This study is, to my knowledge, the first one to introduce a taxonomy consisting of three 

economically-relevant congestion categories, namely low (LC), high (HC) and super (SC) 

congestion. The study contributes to the literature by providing, under these three 

congestion categories and for both autarky and trade, a general-equilibrium analysis of the 

steady-state levels of NR, welfare, fishing intensity (or employment) and output in the case 

of open access to a NR relative to an optimally regulated one, and examining how results 

are affected by changes in the value of parameters of the preference and production 

functions and in their functional form. The analysis conducted here is directly applicable 

to other common-property resource cases (see Section 5).  

 

The three congestion categories are defined here and are explained in more detail in Section 

2. First, LC (HC and SC) prevails on the upward-sloping (backward-bending) segment of 

the average cost or 𝐴𝐶 curve, and equivalently, on the positive (negative) segment of the 

marginal cost or 𝑀𝐶 curve. Second, HC (SC) prevails on the lower (upper) part of the 

backward-bending segment of the 𝐴𝐶 curve, with the two separated by the 𝐴𝐶 curve’s 

inflection point, which – as shown in Figure 1 – is also where the (backward-bending part 

of the) 𝐴𝐶 curve and the (positive part of the) 𝑀𝐶 curve intersect.  

 

The distinction between HC and SC is important as open-access output 𝑄 is greater 

(smaller) than optimal output 𝑄∗ – i.e., 𝑄 > (<) 𝑄∗ – under HC (SC). The distinction 

between SC and HC is also important because of the opposite implications regarding the 

 
3 A similar problem could also occur in the case of farm/land fish ponds (e.g., see Stephens 1998).  
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impact of trade policy. Moreover, SC holds over a significantly larger range of output and 

variable input (or employment) values than HC (see Section 2). 

 

As the welfare cost of open access to a NR is greater under HC than LC and is most severe 

under SC, one would have expected great interest in the HC and SC cases. Nevertheless, 

an exhaustive online search suggests the issue has not played an important role in the 

aquaculture literature where production studies have tended to focus on technical efficiency 

(e.g., Dey et al. 2000; Iliyasu et al. 2016). The backward-bending supply curve for wild 

fishing has been examined in a few partial-equilibrium studies, though some confusion 

persists regarding the analysis.4   

 

An issue that has become of increasing concern in recent years and is also examined here 

is the impact of trade on the environment. A common argument is that international trade 

has led to an increase in environmental degradation in countries with imperfect property 

rights.5 Studies dealing with this issue in the case of trade in NR-based products – e.g., 

Chichilnisky (1994) and Copeland and Taylor (1994) – have typically examined it under 

LC conditions. In this paper, I show that, while this result holds not only under LC but also 

under HC, the opposite holds under SC.  

 

The remainder of the paper is organized as follows. Section 2 sets forth a two-sector general 

equilibrium model and preference function, and solves the model under unregulated (open- 

access) and regulated NR. Section 3 considers the autarky case and examines the 

implications of open access for steady-state welfare, NR, variable inputs and output, solves 

for the optimal tax, and examines the robustness of the results. Free trade is examined in 

Section 4. Sections 3 and 4 provide both a graphical and algebraic analysis, as well as a set 

 
4 Copes’ (1970) seminal article provides a graphical analysis of the issue for a closed economy in a partial-

equilibrium setting. Clark (1990) refers to a discounted supply curve that might be backward bending in the 

case of an optimally managed fishery (see also Thuy and Flaaten (2013) who refer to these results). This is 

not possible as variable inputs’ marginal product at the optimum must be positive, i.e., the optimum must be 

on the upward-sloping segment of the 𝐴𝐶 curve. Gautam et al. (1996) find a backward-bending supply curve 

in wild fishing caused by a labor-leisure tradeoff rather than negative externalities.     

 
5 Based on their empirical analysis of sulfur dioxide concentrations from cities across the globe, Copeland 

and Taylor (2006) find that trade is good for the environment in the average country. An early survey of the 

literature is Dean (1992).  



 6 

of simulations. Section 5 examines applications of the analysis to other phenomena. 

Section 6 draws policy implications and Section 7 concludes.  

 

2. Model      

Section 2.1 presents the general equilibrium model’s supply side, including the production 

and cost functions, while Section 2.2 provides its demand side. The open-access and 

optimal solutions are presented in Section 2.3.  

 

2.1. Supply 

Assume an economy whose private sector produces two goods under perfect competition, 

a manufacturing good 𝑀 and a commodity 𝑄. The economy’s endowment of labor is 

denoted by 𝕃, and the amount employed in sector 𝑄 (𝑀) is denoted by 𝐿(𝑙), with 𝐿 + 𝑙 =

𝕃. Following Brander and Taylor (1998), I assume the manufacturing good 𝑀 is produced 

with 𝑙 under a constant-returns-to-scale technology. Thus, the marginal product in 𝑀, 𝑀𝑃𝑙, 

is constant. Units are chosen such that 𝑀𝑃𝑙 = 1, i.e., 𝑀 = 𝑙 = 𝕃 − 𝐿. Good 𝑀 is chosen as 

the numéraire, with its price normalized to one. Thus, the price of the variable factor is 

𝑤 = 𝑉𝑀𝑃𝐿 = 1.  

 

In the case of wild fishing, the natural resource (NR) or fish stock declines with fishing 

intensity, i.e., with the amount of variable inputs used. In the case of farm fishing (whether 

in coastal waters, lakes, rivers or pools), NR quantity – i.e., the area and amount of water 

available – is given, though its quality and productive impact is not.  

 

Assume for simplicity that operating a fish pen requires a fixed amount of labor, which is 

set equal to one. Fish farms may operate a single or multiple fish pens and NR quality 

declines with the number of pens or amount of labor, 𝐿, per unit of area, or with their 

density. The production function is 𝑄 = 𝐿𝑁(𝐿), 𝑁′ < 0, 𝑁′′ ≤ 0, where 𝑁 is NR quality 

(as well as 𝑄/𝐿, i.e., labor’s average product, 𝐴𝑃𝐿). Marginal product 𝑀𝑃𝐿 = 𝑁 + 𝐿𝑁′ ≷

0. Since 𝑤 = 1, 𝐴𝐶 = 1/𝐴𝑃𝐿 and 𝑀𝐶 = 1/𝑀𝑃𝐿. An open-access equilibrium where 𝑀𝐶 >

(<) 0 is located on the upward-sloping (backward-bending) part of the 𝐴𝐶 curve where 

low (high or super) congestion – i.e., LC (HC or SC) – prevails (see Figure 1).  
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It is surprising that the backward-bending segment of the supply (𝐴𝐶) curve has not been 

a central part of analyses of open access to common-property resources. Given that it is the 

locus of the largest negative externalities and the greatest welfare cost, one would have 

expected it to be of major interest to policy analysts and policymakers. Writing about the 

backward-bending supply in the case of road travel, Thomps (1998) states: “… [it] is 

usually referred to … as “unstable” and ignored as irrelevant ...”  

 

Assume 𝑁 = 𝛼 − 𝛽𝐿 (𝛼, 𝛽 > 0), where 𝛼 is the NR endowment or NR quality in the 

absence of farm fishing. Then, production functions for 𝑄 and 𝑀 are given by:  

 

𝑄 = 𝐿𝑁 = 𝐿(𝛼 − 𝛽𝐿), 𝑀 = 𝑙 = 𝕃 − 𝐿;   𝛼, 𝛽 > 0, 𝐿 𝜖 (0,
𝛼

𝛽
)    (1) 

 

where 𝛽 reflects the negative externality, and 𝐿 < 𝛼/𝛽 ⇔ 𝑁 = 𝛼 − 𝛽𝐿 > 0.  

 

Thus, labor’s average product 𝐴𝑃𝐿 =
𝑄

𝐿
= 𝑁 = 𝛼 − 𝛽𝐿 > 0. With 𝑤 = 1, average cost 

𝐴𝐶 =
1

𝐴𝑃𝐿
=

1

𝛼−𝛽𝐿
.6 Labor’s marginal product 𝑀𝑃𝐿 = 𝛼 − 2𝛽𝐿, and marginal cost 𝑀𝐶 =

1

𝑀𝑃𝐿
=

1

𝛼−2𝛽𝐿
. Denote maximum output – or 𝑁𝑅’s ‘carrying capacity’ – by �̂� (𝑄𝑀𝐴𝑋 in 

Figure 1), with �̂� =
𝛼2

4𝛽
, produced with �̂� =

𝛼

2𝛽
 where 𝑀𝑃𝐿 = 0. Also, 𝑀𝑃𝐿 and 𝑀𝐶 =

1

𝑀𝑃𝐿
 

≷ 0 for 𝐿 ≶ �̂�, with lim
𝐿−→�̂�

𝑀𝐶  ( lim
𝐿+→�̂�

𝑀𝐶) = ∞ (−∞). In other words, and as shown in 

Figure 1, 𝑀𝐶 jumps from ∞ to −∞ as 𝐿 crosses �̂� from 𝐿 < �̂� to 𝐿 > �̂� and 𝑀𝑃𝐿 changes 

from infinitesimally positive to zero to infinitesimally negative.  

 

Output 𝑄 is quadratic in 𝐿, i.e., it has two solutions, 𝐿1 and 𝐿2, with 𝑄 = 𝐿1𝑁1 = 𝐿2𝑁2. 

The solution is 𝐿1 =
𝛼

𝛽
− 𝐿2 or 𝐿1 + 𝐿2 =

𝛼

𝛽
, 7 with two possible outcomes: i) 𝐿1 = 𝐿2 =

 
6 Labor is not the only costly input. Other ones are pens, fish fry and feed. One can reasonably assume that 

these are directly related to the amount of labor used, i.e., the per-unit cost would be 1 + 𝛾, where 𝛾 is the 

cost of pens and fish fry relative to the unitary wage rate, an element that can easily be incorporated in the 

analysis. For simplicity, and following Brander and Taylor (1998), I abstract from non-labor costs.  
7 With 𝑄 = 𝐿1𝑁1 = 𝐿2𝑁2, or 𝑄 = 𝐿1(𝛼 − 𝛽𝐿1) = 𝐿2(𝛼 − 𝛽𝐿2), we have 𝛽𝐿1

2 − 𝛼𝐿1 + 𝐿2(𝛼 − 𝛽𝐿2) = 0, 

with 𝐿1 = 
𝛼 ± √𝛼2−4𝛽𝐿2(𝛼−𝛽𝐿2)

2𝛽
=

𝛼 ± √(𝛼−2𝛽𝐿2)2

2𝛽
=

𝛼 ± (𝛼−2𝛽𝐿2)

2𝛽
. We have two solutions, one for 𝐿1 ≠ 𝐿2 and 

one for 𝐿1 = 𝐿2, namely: i) 𝐿1 ≠ 𝐿2: 𝐿1 =
𝛼 + (𝛼−2𝛽𝐿2)

2𝛽
=

𝛼

𝛽
− 𝐿2, or 𝐿1 + 𝐿2 =

𝛼

𝛽
 ; and ii) 𝐿1 =

𝛼− (𝛼−2𝛽𝐿2)

2𝛽
=

𝐿2 =
𝛼

2𝛽
= �̂�, with i) 𝑁1 = 𝛼 − 𝛽𝐿1 = 𝛽𝐿2, 𝑁2 = 𝛽𝐿1, 𝑁1 + 𝑁2 = 𝛼, 𝑁1 <

𝛼

2
 < 𝑁2; and ii) 𝑁1 = 𝑁2 =

𝛼

2
 , 

i.e., the NR level is equal to half the initial endowment, 𝛼. 
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�̂� =
𝛼

2𝛽
, 𝑁 = �̂� = 𝛼 − 𝛽�̂� =

𝛼

2
, 𝑄 = �̂�, or ii) 𝑄 < �̂�, with output produced either with a 

low 𝐿2 < �̂� and high 𝑁2 >
𝛼

2
 (in LC’s case) or with a high 𝐿1 > �̂� and low 𝑁1 <

𝛼

2
 (HC or 

SC case), with the former (latter two) located on the upward-sloping (backward-bending) 

segment of the 𝐴𝐶 curve. This is depicted by points 𝐴 (LC) and 𝐴′ (SC) in Figure 1.  

 

The distinction between the HC and SC categories is important because of their 

implications for the welfare cost of open access. SC (HC) is defined as the segment of the 

backward-bending 𝐴𝐶 curve where optimal output, 𝑄∗, is greater (smaller) than open-

access output, 𝑄. The fact that 𝑄 < 𝑄∗ under SC, i.e., that open-access output is smaller 

than optimal output, is one of the reasons why the welfare cost of open access is so high 

under SC, the other reason being the higher cost. And as we shall see, a number of opposite 

results obtain under the HC and SC congestion categories.  

 

I derive now the critical level of 𝐿, 𝐿𝐼, that separates the HC and SC categories. Denote 

variables under open access (optimal regulation) by subscript 1 (2). The point that separates 

SC from HC is where optimal output is equal to open-access output, i.e., where the 𝐴𝐶 

curve intersects the (positive segment of the) 𝑀𝐶 curve. Thus, 𝐿𝐼 is the level of 𝐿 where 

𝑄1 = 𝑄2, which occurs where 𝐴𝐶1 = 𝑀𝐶2, i.e., where 
1

𝛼−𝛽𝐿1
=

1

𝛼−2𝛽𝐿2
 or 𝐿1 = 2𝐿2. Since 

𝐿1 =
𝛼

𝛽
− 𝐿2 (see footnote 8), we have 𝐿1 =

2𝛼

3𝛽
 and 𝐿2 =

𝛼

3𝛽
. As 𝐿𝐼 separates HC and SC, 

it is located on the backward-bending segment of the 𝐴𝐶 curve, i.e., 𝐿𝐼 = 𝐿1 =
2𝛼

3𝛽
. Output 

𝑄𝐼 can be produced with 𝐿𝐼 = 2𝛼/3𝛽 (and 𝑁1 = 𝛼 − 𝛽𝐿1 = 𝛼/3) or with 𝐿2 =
𝐿𝐼

2
= 𝛼/3𝛽 

(and 𝑁2 = 2𝛼/3), i.e., it can be produced at the optimum at half the cost prevailing under 

open access, in terms of both variable inputs 𝐿 and natural resource 𝑁.  

 

Based on the solution for 𝐿 = �̂� and 𝐿 = 𝐿𝐼, the three congestion categories’ definition is: 
 

Definition 1.  LC: 0 < 𝐿 < �̂� =
𝛼

2𝛽
;  HC:  �̂� < 𝐿 < 𝐿𝐼 =

2𝛼

3𝛽
;  and SC:  𝐿𝐼 < 𝐿 <

𝛼

𝛽
.  

 

The definition of these categories in terms of output 𝑄 = 𝐿(𝛼 − 𝛽𝐿) is:  
 

Definition 2.  LC: 0 < 𝑄 < �̂� =
𝛼2

4𝛽
;  HC: 𝑄𝐼 =

2𝛼2

9𝛽
< 𝑄 < �̂�;  and SC:  0 < 𝑄 < 𝑄𝐼.  
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Thus, the range of variable input values, 𝐿, is 
𝛼

6𝛽
 under HC, 

𝛼

3𝛽
 under SC and 

𝛼

2𝛽
 under LC. 

The range of output values, 𝑄, is 
𝛼2

36𝛽
 under HC, 

2𝛼2

9𝛽
 under SC and 

𝛼2

4𝛽
 under LC. Thus, in 

terms of 𝐿 (𝑄), the range of values under SC is twice (eight times) that under HC.8 And the 

range of values of 𝐿(𝑄) under LC is three (nine) times that under HC. 

    

Note that 𝐿I, which separates HC from SC, is also the inflection point on the backward-

bending segment of the 𝐴𝐶 curve. As 𝐿 increases and 𝑄 declines, 𝐴𝐶 increases at an 

increasing (decreasing) rate under SC (HC), with 
𝜕2𝐴𝐶

𝜕𝑄2
< (>) 0. Thus, 𝐿𝐼 can also be 

obtained by solving 
𝜕2𝐴𝐶

𝜕𝑄2 = 0.9 

  

Finally, 𝑀𝐶1 < 0 is the mirror image of 𝑀𝐶2 > 0.10 This is depicted in Figure 1. 

 

2.2. Demand 

Individual preferences are represented by a Cobb-Douglas utility function: 

 

𝑈 = 𝑚1/2𝑞1/2,         (2) 

 

where 𝑚 = 𝑀/𝕃 and 𝑞 = 𝑄/𝕃.  

 

 
8 In term of 𝐿, the range of values under HC is 

2𝛼

3𝛽
−

𝛼

2𝛽
=

𝛼

6𝛽
, while the range of values under SC is 

𝛼

𝛽
−

2𝛼

3𝛽
=

𝛼

3𝛽
, or twice the range under HC. In terms of 𝑄, �̂� =

𝛼2

4𝛽
 and 𝑄𝐼 =

2𝛼2

9𝛽
=

8

9
�̂�. Thus, the range of values under 

HC is �̂� − 𝑄𝐼 =
1

9
�̂�. Under SC, the range of values is between 𝑄𝐼 =

8

9
�̂� and zero (for 𝐿 =

𝛼

𝛽
) or 

8

9
�̂�. Thus, 

the range of output values under SC is 8 times the range of values under HC. 

9 Denoting 
𝜕𝐴𝐶

𝜕𝑄
 by 𝐴𝐶′ and 

𝜕2𝐴𝐶

𝜕𝑄2  by 𝐴𝐶′′, 𝐴𝐶′ =
𝜕𝐴𝐶

𝜕𝐿
.

𝜕𝐿

𝜕𝑄
=

𝜕𝐴𝐶

𝜕𝐿
/

𝜕𝑄

𝜕𝐿
= 

𝛽

(𝛼−𝛽𝐿)2(𝛼−2𝛽𝐿)
≷ 0 ⇔ 𝛼 − 2𝛽𝐿 ≷ 0 ⇔

𝐿 ≶ �̂� =
𝛼

2𝛽
. As shown in Figure 1, the slope of the 𝐴𝐶 curve is positive (negative) in its LC (HC and SC) 

segment. The change in the slope is 𝐴𝐶′′ =
𝜕𝐴𝐶′

𝜕𝐿
/ 

𝜕𝑄

𝜕𝐿
=

2𝛽2(2𝛼−3𝛽𝐿)

(𝛼−𝛽𝐿)3(𝛼−2𝛽𝐿)3. Thus, 𝐴𝐶′′ = 0 at 𝐿 = 𝐿𝐼 =
2𝛼

3𝛽
. Also, 

as 𝑄 increases: i) 𝐴𝐶′′ > 0 under LC (𝐿 < �̂�), ii)  𝐴𝐶′′ < 0 under HC (�̂� < 𝐿 < 𝐿𝐼) and iii) 𝐴𝐶′′ > 0 under 

SC (𝐿𝐼 < 𝐿 < 𝛼/𝛽).  

 
10 𝑀𝐶 under optimal regulation is 𝑀𝐶2 =

1

𝛼−2𝛽𝐿2
> 0, 𝐿2 < �̂�. Thus, −𝑀𝐶2 =

1

2𝛽𝐿2−𝛼
< 0. 𝑀𝐶 under open 

access is 𝑀𝐶1 =
1

𝛼−2𝛽𝐿1
< 0, 𝐿1 > �̂�. At the same output, 𝐿2 =

𝛼

𝛽
− 𝐿1 (see fn. no. 8). Thus, 2𝛽𝐿2 − 𝛼 =

2𝛽 (
𝛼

𝛽
− 𝐿1) − 𝛼 = 𝛼 − 2𝛽𝐿1, i.e., 𝑀𝐶1 = −𝑀𝐶2. In other words, 𝑀𝐶1 is the mirror image of 𝑀𝐶2. 
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3. Autarky 

Section 3.1 presents a graphical analysis, Section 3.2 provides the solution to the model, 

and Section 3.3 presents various simulations. Welfare in Section 3.1 is aggregate welfare 

𝑊 = 𝕃𝑈, while welfare in Sections 3.2 and 3.3 is the representative individual’s utility 𝑈, 

a distinction that matters when examining the impact of changes in 𝕃. 

 

3.1. Graphical analysis 

Assume first that a country’s demand for 𝑄 is represented by line 𝐷 in Figure 1. Open-

access equilibrium is at point 𝐴 – which is located in the LC segment of the 𝐴𝐶 curve – 

and output is 𝑄0. The optimum is at point E where output is 𝑄1. The welfare cost under 

open access is ∆𝑊𝐿𝐶 = 𝑊𝐿𝐶
∗ − 𝑊𝐿𝐶 = 𝐴𝐸𝐵.  

 

Assume now a country whose demand is represented by line 𝐷′ because, say, of a larger 

population (or greater preference for 𝑄). Open-access equilibrium is at point 𝐴′ where 𝐴𝐶 

and 𝐷′ intersect and which is located in the SC segment of the 𝐴𝐶 curve. For simplicity, 

assume 𝐷′ is such that output is also 𝑄0 at 𝐴′. The optimum is at 𝐸′ where 𝐷′ and 𝑀𝐶 

intersect. 11 

 

There are three ways to obtain the welfare cost, ∆𝑊𝑆𝐶, of open access in this case:   
 

   1. The difference in the cost of producing 𝑄0 under demand 𝐷 and 𝐷′ is 𝑃𝐴
′𝐴′𝐴𝑃𝐴 = 

(Distance 𝐴𝐴′)∗ 𝑄0, while the increase in output from 𝑄0 to 𝑄1
′  generates the gain 𝐴′𝐸′𝐵. 

Hence, the welfare cost of open access is ∆𝑊𝑆𝐶 =  𝑃𝐴
′𝐴′𝐴𝑃𝐴 + 𝐴′𝐸′𝐵. 

 

   2. Note that there is no producer surplus under open access as 𝑝 = 𝐴𝐶. Hence, welfare 

is equal to the consumer surplus, i.e., the area between the demand curve and the price line. 

At 𝐴′, the consumer surplus is the area below the demand curve and above the 𝑃𝐴
′ 𝐴′ line.  

At 𝐸′, 𝐴𝐶 is given by point 𝐼′, so that welfare is the area between the demand curve and 

the horizontal line at the 𝐼′ level (or the line 𝑃𝐼
′𝐼′, with point 𝑃𝐼

′ on the 𝑦-axis not shown). 

Thus, the welfare cost is equal to the area between the lines 𝑃𝐴
′𝐴′, 𝑃𝐼

′𝐼′ (the horizontal line 

through point 𝐼′) and the demand curve, i.e., ∆𝑊𝑆𝐶 = 𝑃𝐴
′𝐴′𝐸′𝐼′𝑃𝐼

′.  
 

 
11 The HC segment is the area between 𝐴𝐶’s turning point where 𝑄 = 𝑄𝑀𝐴𝑋 (or �̂� in Section 2.1) and the 

point where 𝑀𝐶 and 𝐴𝐶 intersect.  
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Figure 1: Autarky under Low and High Congestion 
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   3. Consumption is 𝑄0 rather than 𝑄1
′ > 𝑄0, with a loss equal to 𝐴′𝑄0𝑄1

′ 𝐸′. Second, the 

decrease in output from 𝑄1
′  to 𝑄0 implies a higher production cost. The cost increase has 

three components: i) the cost of the increase in output from 𝑄1
′  to 𝑄𝑀𝐴𝑋, which is equal to 

the area below the 𝑀𝐶 curve, i.e., 𝐸′𝑄1
′ 𝑄𝑀𝐴𝑋∞; ii) the cost of the decrease in output from 

𝑄𝑀𝐴𝑋 to 𝑄1
′  on the backward-bending part of the 𝐴𝐶 curve, equal to 𝐾𝑄1

′ 𝑄𝑀𝐴𝑋(-∞); and 

iii) the cost of the decrease in output from 𝑄1
′  to 𝑄0, i.e., the area 𝐵′𝑄0𝑄1

′ 𝐾. Thus, the 

welfare cost, ∆𝑊𝑆𝐶, of open access in this case is ∆𝑊𝑆𝐶 = 𝐴′𝐵′𝐾𝐸′ + 𝐸′∞(−∞)𝐾.12 

 

The reasons for the difference between welfare cost under HC, ∆𝑊𝐻𝐶, and under SC, ∆𝑊𝑆𝐶, 

are: optimal output is larger (smaller) than open-access output for SC (HC) – with a welfare 

gain 𝐴′𝐵′𝐾𝐸′ under SC 13 – and the decline in cost is greater under SC.  

 

The analysis suggests that ∆𝑊𝐻𝐶 and especially ∆𝑊𝑆𝐶 is significantly larger than ∆𝑊𝐿𝐶. 

The difference between them is dampened when it comes to the representative individual’s 

utility 𝑈 = 𝑊/𝕃  rather than to aggregate welfare 𝑊 if demand 𝐷′ is larger than 𝐷 due to 

a larger population 𝕃 and not a difference in taste. Nevertheless, the utility cost under HC 

and SC is either a multiple or a greater order of magnitude than under LC (see Section 3.3).  

 

As 𝑝 = 𝐴𝐶 under open access, the producer surplus is nil and the NR value is zero. 

However, though its private value is nil, the NR’s social value is positive as it generates a 

consumer surplus under a positive output that is partly consumed domestically.  

 

     3.1.1. Migration 

Assume a developed country allows a given number of individuals to immigrate. This 

results in a decrease in demand, from 𝐷′ to 𝐷𝐿
′  in Figure 1, and raises welfare, with the 

 
12 Given that the negative segment of the 𝑀𝐶 curve is the mirror image of its positive segment, the welfare 

cost is also ∆𝑊𝑆𝐶 = 𝐴′𝐵′𝐾𝐸′ + 2 ∗ 𝐸′𝑄1
′ 𝑄𝑀𝐴𝑋∞. 

13 Assume HC prevails, with the demand curve – denoted by 𝐷2 (not shown in Figure 1) – intersecting the 

backward-bending segment of the 𝐴𝐶 curve at an output 𝑄2 (not shown), with 𝑄𝐼 < 𝑄2 < 𝑄𝑀𝐴𝑋, where 𝑄𝐼 =

𝐿𝐼(𝛼 − 𝛽𝐿𝐼) corresponds to the output where 𝐴𝐶 and 𝑀𝐶 intersect (𝐿𝐼 =
2𝛼

3𝛽
, 𝑄𝐼 =

2𝛼2

9𝛽
). As is clear from 

Figure 1, optimal output, 𝑄2
∗, the output where 𝐷2 and 𝑀𝐶 intersect, is smaller than 𝑄𝐼 . Thus, 𝑄2

∗ < 𝑄𝐼 < 𝑄2, 

and 𝑝2
∗ > 𝑝𝐼 > 𝑝2. Thus, contrary to SC, HC’s optimal output (price) is smaller (higher) than open-access 

output.  
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increase largest if SC prevails initially and LC prevails after migration, in which case 

welfare rises from the area above 𝑃𝐴
′𝑑′ and below 𝐷𝐿

′ , to the area 𝑃𝐴
′𝑑′𝑎′𝑃𝑎

′. 

 

3.2. Solution  

This section provides the solution to the model for both an unregulated (open-access) and 

an optimally regulated NR. 

 

    3.2.1. Open Access 

Utility maximization implies that the commodity’s relative price, 𝑝, equals the ratio of 

marginal utilities, i.e., 𝑝 = 
𝑈𝑞

𝑈𝑚
= 

𝑚

𝑞
=

𝑀

𝑄
 =

𝕃−𝐿

𝐿(𝛼−𝛽𝐿)
, where 𝐴𝑃𝐿 = 𝛼 − 𝛽𝐿 > 0 or 𝐿 <

𝛼

𝛽
. 

Under open access, 𝑝 = 𝐴𝐶 =
1

𝛼−𝛽𝐿
. Thus, 

𝕃−𝐿

𝐿(𝛼−𝛽𝐿)
=

1

𝛼−𝛽𝐿
 or 𝐿 =

𝕃

2
. Consequently, the 

condition 𝐿 <
𝛼

𝛽
 is equivalent to 𝕃 <

2𝛼

𝛽
. The solution is:  

 

𝐿 =
𝕃

2
, 𝑀 =

𝕃

2
, 𝑚 =

1

2
, 𝑄 =

𝕃

2
(𝛼 −

𝛽𝕃

2
), 𝑞 =

1

2
(𝛼 −

𝛽𝕃

2
), 𝑈 =

1

2
 (𝛼 −

𝛽𝕃

2
)

1/2

.  (3)  

 

    3.2.2. Optimum 

Under optimal regulation, 𝑝 = 𝑀𝐶, or 
𝑀

𝑄
=

𝕃−𝐿

𝐿(𝛼−𝛽𝐿)
=

1

𝛼−2𝛽𝐿
, which is a quadratic 

equation, namely  3𝛽𝐿2 − 2(𝛼 + 𝛽𝕃)𝐿 + 𝛼𝕃 = 0.  The solution is: 

 

𝐿∗ =
1

3𝛽
(𝛼 + 𝛽𝕃 − √𝛼2 + 𝛽2𝕃2 − 𝛼𝛽𝕃), 𝑀∗ = 𝕃 − 𝐿∗, 14      (4)   

 

with the representative individual’s output 𝑞∗ = 𝐿∗(𝛼 − 𝛽𝐿∗)/𝕃  and 𝑚∗ = 1 − 𝐿∗/𝕃.  

 

Note that equations (3) and (4) imply 𝐿∗ < 𝐿. 15 16  

 
14 The sign in front of the square root is negative as √𝛼2 + 𝛽2𝕃2 − 𝛼𝛽𝕃 = √(𝛼 − 𝛽𝕃)2 +  𝛼𝛽𝕃  > 𝛼 − 𝛽𝕃, 

i.e., a positive sign implies 𝐿∗ > 2𝛼/3𝛽, which cannot be as 𝐿∗ must be located in the LC segment of the 𝐴𝐶 

curve where 𝑀𝑃𝐿 > 0, i.e., 𝐿∗ < �̂� = 𝛼/2𝛽. 
15 Assume the opposite, i.e., 𝐿 =

𝕃

2
≤ 𝐿∗ =

1

3𝛽
[𝛼 + 𝛽𝕃 − √𝛼2 + 𝛽2𝕃2 − 𝛼𝛽𝕃], or 

3𝛽𝕃

2
≤ 𝛼 + 𝛽𝕃 −

√𝛼2 + 𝛽2𝕃2 − 𝛼𝛽𝕃, i.e., √𝛼2 + 𝛽2𝕃2 − 𝛼𝛽𝕃 ≤ 𝛼 −
𝛽𝕃

2
= 𝐴𝑃𝐿 . With 𝐴𝑃𝐿 > 0, we have 𝛼2 + 𝛽2𝕃2 −

𝛼𝛽𝕃 ≤ 𝛼2 +
𝛽2𝕃2

4
− 𝛼𝛽𝕃, or 𝛽2𝕃2 ≤ 

𝛽2𝕃2

4
, which is false. Thus, 𝐿∗ < 𝐿.  

 

16 From (1), (2), and (4), 𝑈∗ =  
1

3𝛽𝕃
[𝛼𝛽𝕃(𝛼 + 𝛽𝕃) −  

2

3
(𝛼3 + 𝛽3𝕃3)  +  

2

3
(𝛼2 + 𝛽2𝕃2 − 𝛼𝛽𝕃)3/2]

1/2

.  
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3.3. Simulation 

Define ∇𝑥 ≡ (𝑥 − 𝑥∗)/𝑥∗, 𝑥 = 𝑈, 𝑁, 𝑄, 𝐿. This section examines the relationship between 

∇𝑥 and parameter 𝕃, for given values of NR endowment, 𝛼, and externality parameter, 𝛽. 

Robustness of the results is examined in Section 3.4 by using i) different values for the 

production and utility function parameters, and ii) different functional forms.  

 

The ‘base case’ values for 𝛼 and 𝛽 are 𝛼 = 10 and 𝛽 = 1 (other cases are examined in 

Section 3.4). Table 1 shows results for individual 𝕃-values and Table 2 does the same for 

central values of 𝕃 in each of the three congestion categories.  

 

 A. Results for individual 𝕃 values  

     i) Welfare   

Table 1 shows ∇𝑈1 = −.033 (for 𝕃 = 1), ∇𝑈4 = −.707, ∇𝑈9 = −6,07, ∇𝑈11 = −13.5, 

∇𝑈16 = −33.3, and ∇𝑈19 = −64.3 percent, with LC (HC) (SC) for the first three (fourth) 

(last two) 𝕃 values. Thus, ∇𝑈19 = 1983∇𝑈1, 91∇𝑈4 and 10.6∇𝑈9 (LC cases) and ∇𝑈19 =

 4.8∇𝑈11 (the HC case). Thus, the welfare cost of open access for 𝕃 = 19 is from one to 

three degrees of magnitude greater than under LC and is a multiple of that under HC.  
 

- For 𝕃 = 16 (which is below 𝕃’s central value of 16.67 under SC), ∇𝑈16 = 1028∇𝑈1, 

47.12∇𝑈4 and 5.62∇𝑈9, and 2.47∇𝑈11. Thus, ∇𝑈16 is between three degrees of magnitude 

greater and a multiple of welfare costs under LC and is a multiple of ∇𝑈11 under HC. 
 

- For 𝕃 = 11 (which is below 𝕃’s central value of 11.67 under HC), ∇𝑈11 = 148∇𝑈1, 

19.1∇𝑈4 and 2.28∇𝑈9. In other words, ∇𝑈11 is between two degrees of magnitude greater 

and a multiple of welfare costs under LC.  

 

      ii) Natural Resource     

- For 𝕃 = 19 (an SC case), ∇𝑁19 is −91 percent or 827∇𝑁1, 31.4∇𝑁4, and 3.7∇𝑁9 for the 

LC cases, and 2.93∇𝑁11 for the HC case. For 𝕃 = 16 (an SC case), ∇𝑁16 = −67 percent 

or 608∇𝑁1, 23.1∇𝑁4 and 2.68∇𝑁9 for the LC cases, and 2.16∇𝑁11 for the HC case.  

- Thus, ∇𝑁19 and ∇𝑁16 are both between two orders of magnitude greater and a multiple 

of ∇𝑁 under LC and a multiple of ∇𝑁 under HC.  

- The same result obtains for HC relative to LC, with ∇𝑁11 = −31 percent or 282∇𝑁1, 

10.7∇𝑁4 and 1.35∇𝑁9.  
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Table 1.  Autarky: Open Access vs. Optimum  
 

 

𝕃 

Open Access (𝑥) 

  𝐿        𝑁        𝑄          𝑈 

Optimum (𝑥∗) 

  𝐿∗      𝑁∗      𝑄∗         𝑈∗      

Difference ∇𝑥 =
𝑥−𝑥∗

𝑥∗
 (%) 

∇𝐿      ∇𝑁      ∇𝑄       ∇𝑈 

 1  .50      9.5      4.75     1.541 .49    9.51    4.63     1.542 2.7    -.11     1.06     -.033 

    4  2.0      8.0      16.0     1.414 1.8     8.2     14.5     1.424    15      -2.9    10.3     -.707 

    9  4.5      5.5      24.8     1.173 3.2     6.8     21.6     1.248     43      -25     14.6      -6.07 

 11  5.5      4.5      24.8      1.061 3.5     6.5     22.8     1.226     58      -31      9.0      -13.5   

16  8.0      2.0      16.0      .7071 4.0     6.0     24.0     1.061   100    -67      -33      -33.3 

19  9.5      .50      4.75      .3536 4.2     5.8     24.4      .991     127    -91      -81      -64.3   

 

 

      iii) Employment  

  ∇𝐿19 = 127 percent, or 47∇𝐿1, 8.5∇𝐿4 and 3.0∇𝐿9 (LC cases), and 2.2 ∇𝐿11 (HC case).  

- Thus, for the SC case, the excess employment (variable input use) is between one order 

of magnitude larger and a multiple of that under LC, and a multiple of that under HC.  
 

     iv) Output 

∇𝑄 < (>) 0 under LC and HC (SC), i.e., optimal output is smaller (larger) for LC and HC 

(SC) than open-access output. As a small tax, 𝜏, raises cost and reduces 𝐿, the output effect 

𝜕𝑄/𝜕𝜏 < (>)0 under LC (HC and SC), i.e., ∇𝑄 and 𝜕𝑄/𝜕𝜏 have opposite signs for HC.   

 

Table 2.  Open Access vs. Optimum under Autarky: Central 𝕃 Values a 
 

 

𝕃 

Open Access 

(𝑥) 
   

 𝑁          𝑈 

Optimum  

(𝑥∗) 
  

 𝑁∗       𝑈∗      

Difference (%) 

∇𝑥 =
𝑥−𝑥∗

𝑥∗
  

  ∇𝑁       ∇𝑈    

Ratio  

(∇𝑥/∇𝑥𝐿𝐶) 

 

∇𝑁/∇𝑁𝐿𝐶   ∇𝑈/∇𝑈𝐿𝐶 

   LC:  5.0   7.5     1.369  7.9     1.387  -4.9     -1.29        1                 1 

HC: 11.67   4.2     1.021  6.4     1.169   -35     -12.7      7.1              9.8     

SC: 16.67   1.7     .6455  5.9     1.046   -72     -38.3      14.7            29.7 

a:  Results are for the central values of 𝕃 in each one of the three congestion categories. 

 

   B. Results for central 𝕃 values 

Table 2 presents the welfare and NR results associated with the central value of 𝕃 in each 

the three congestion categories, namely 𝕃 = 5.0 (11.67) (16.67) for LC (HC) (SC).  
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The welfare cost ∇𝑈𝑆𝐶 = −38.3 percent, or 29.7∇𝑈𝐿𝐶 and 3.0∇𝑈𝐻𝐶, and ∇𝑈𝐻𝐶 = 9.8∇𝑈𝐿𝐶. 

The NR cost ∇𝑁𝑆𝐶 = −72 percent, or 14.7∇𝑁𝐿𝐶 and 2.1∇𝑁𝐻𝐶, and ∇𝑁𝐻𝐶 = 7.1∇𝑁𝐿𝐶.    

 

Thus, even though analyses have focused on the low-congestion (LC) category, Table 2 

shows that the central result for open access’ welfare impact under SC (HC) is of a greater 

order of magnitude (a multiple) of that under LC, with a welfare cost of about 30 (10) times 

that of the latter. Moreover, the NR impact under SC (HC) is also of a greater order of 

magnitude (a multiple) of that under LC, with a NR loss of about 15 (7) times that under 

LC. These results suggest that studies have for the most part focused on the least important 

congestion category.  

 

    3.3.1. Production tax  

Appendix 1 provides the optimal tax solution and a table (Table 1A) with optimal tax rates. 

Denote the tax rate by 𝜏, with 𝑝 = (1 +  𝜏)𝑝𝜏, where 𝑝𝜏 is the producer price. The optimal 

tax rate, 𝜏∗, as a function of 𝕃, is provided for two sets of parameter values, namely 𝛼 (𝛽) 

= 10 (1) and 𝛼 (𝛽) = 10 (2). In the case of 𝛼 = 10 and 𝛽 = 1, 𝜏∗ is (in percent) 255 for 

𝕃 = 19, 200 for 𝕃 = 16, 85.4 for 𝕃 = 9, 27.2 for 𝕃 = 4, and 5.4 for 𝕃 = 1. Thus, the 

optimal tax rate under SC, i.e., for 𝕃 = 19 (16)(9) is 47.2 (37.0) (15.8) times that for 𝕃 =

1 and is 15.8 times the 𝕃 = 1 rate in the case of 𝕃 = 9 under HC.    

 

The optimal tax increases with the externality parameter, 𝛽, and decreases with the 

endowment parameter, 𝛼. For instance, the level of 𝜏∗ for 𝛽 = 2 is double to triple the 

corresponding level for 𝛽 = 1. In the case of 𝛼 = 10, 𝜏∗ = 621 for 𝕃 = 19 (2.4 times the 

𝛽 = 1 rate), 504 for 𝕃 = 16 (2.5 times the 𝛽 = 1 rate), 236 for 𝕃 = 9 (2.8 times the 𝛽 = 1 

rate), and 11.7 for 𝕃 = 1 (2.2 times the 𝛽 = 1 rate).  

 

The increase in the optimal tax rate as 𝕃 increases helps dampen the increased pressure on 

the NR. This can be seen from Table 1 where the decline in NR and welfare as 𝕃 increases 

from 1 to 19 under the optimal tax is half that under open access.  

 

Under SC, a tax 𝜏 < 𝜏∗ results in an equilibrium at points like points 𝐴0 or 𝐴1 in Figure 1.  
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3.4. Robustness 

This section examines the robustness of the relationship between congestion levels and ∇𝑥 

by using a) different values for the utility and production function parameters, and b) 

different functional forms. Solutions and results are provided in Appendix 2.  

 

   3.4.1. Alternative parameter values  

The values of ∇𝑈 and ∇𝑁 do not depend on the value of the individual production function 

parameters 𝛼 and 𝛽 but rather depend on the value of their ratio, 𝛼/𝛽. In other words, 

results for (𝛼, 𝛽) also hold for (𝜆𝛼, 𝜆𝛽), 𝜆 > 0.17 The analysis so far assumed 𝛼/𝛽 = 10. 

The values of 𝛼/𝛽 used here are: i) 2, ii) 6, iii) 20, and iv) 100. Results for case 𝑖) ( 𝑖𝑖) ) 

are shown in Panel A (B) of Table 2A, Appendix 2.  

 

Recall that output 𝑄 > 0 requires that 𝐴𝑃𝐿 = 𝛼 − 𝛽𝕃/2 > 0 or 𝕃 < 2𝛼/𝛽.  
 

      𝑖) 𝛼/𝛽 = 2  

  For 𝕃 = 3 (under SC), ∇𝑈3 (∇𝑁3) = −27 (−59) percent or 17∇𝑈1 (12∇𝑁1). 
 

      𝑖𝑖) 𝛼/𝛽 = 6 

   For 𝕃 = 11 (under SC), ∇𝑈11 (∇𝑁11) = −55 (−86) percent, or 162∇𝑈1 (210∇𝑁1) and 

107∇𝑈2 (45∇𝑁2) for LC cases, and 8.3∇𝑈6 (3.4∇𝑁6) under HC.  
 

      iii) 𝛼/𝛽 = 20 

  ∇𝑈19 (∇𝑁19) = −7.056 (−22.3) percent, or 552∇𝑈1 (679∇𝑁1) and 21.0∇𝑈4 (24.8∇𝑁4). 
 

      iv) 𝛼/𝛽 = 100 

  ∇𝑈19 (∇𝑁19) = −.137 (−.544) percent, or 427∇𝑈1 (431∇𝑁1) and 16.2∇𝑈4 (16.5∇𝑁4).   

 

As for preferences, a general form of the utility function in equation (2) is:  

 

𝑈 = 𝑞𝛾𝑚1−𝛾, 𝛾 𝜖 (0, 1).         (5) 

  

 

17 As 𝐿∗ =
1

3𝛽
[𝛼 + 𝛽𝕃 − √𝛼2 + 𝛽2𝕃2 − 𝛼𝛽𝕃] =

1

3
[

𝛼

𝛽
+ 𝕃 − √(

𝛼

𝛽
)

2

+ 𝕃2 − (
𝛼

𝛽
) 𝕃], it is clear that 𝐿∗ only 

depends on the ratio 𝛼/𝛽 (and 𝕃). Hence, the same holds for 𝑀∗ = 𝕃 − 𝐿∗ and 𝑚∗ = 𝑀∗/𝕃, while 𝑄𝜆
∗ = 

𝐿∗(𝜆𝛼 −  𝜆𝛽𝐿∗) = 𝜆𝐿∗(𝛼 −  𝛽𝐿∗) = 𝜆𝑄∗ and 𝑞𝜆
∗ =  𝜆𝑞∗. Thus, 𝑈𝜆

∗ = 𝜆.5𝑈∗. And as 𝐿 = 𝕃/2 is independent 

of 𝛼 and 𝛽,  so is 𝑀 and 𝑚, while 𝑄𝜆 = 𝜆𝑄 and 𝑈𝜆 = 𝜆.5𝑈. Thus, ∇𝑈𝜆 = (𝑈𝜆 − 𝑈𝜆
∗)/𝑈𝜆

∗ = ∇𝑈. The same 

holds for ∇𝑁 as 𝑁𝜆
∗ = 𝜆𝑁∗ and 𝑁𝜆 = 𝜆𝑁,  so that ∇𝑁𝜆 = ∇𝑁. 
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Equation (2) assumed 𝛾 = .5. As the share of farmed fish in an individual’s budget is likely 

to be significantly below . 5, ratios ∇𝑈19/∇𝑈1 and ∇𝑁19/∇𝑁1 are examined for 𝛾 = .1 and 

𝛾 = .2.  For 𝛾 = .1, we have ∇𝑈19/∇𝑈1 = 183 and ∇𝑁19/∇𝑁1 = 204. And for 𝛾 = .2, we 

have ∇𝑈19/∇𝑈1 = 60.1 and ∇𝑁19/∇𝑁1 = 105.  

 

Thus, the findings that the welfare cost under HC and SC is a multiple or of a greater order 

of magnitude than under LC also holds for alternative values of the parameters of the 

production and utility functions. 

 

   3.4.2. Alternative functional forms 

Two alternative utility functions and two alternative production functions are examined 

below. The solutions and simulation results are provided in Appendix 3. 

 

    A. Utility functions  

       I. The first (constant-relative-risk-aversion) utility function is 𝑈(𝑥) =
𝑥1−𝜇

1−𝜇
, 𝜇 ≠ 1. 

Assuming separability and 𝜇 = 1/2, we have:  

 

𝑈(𝑚, 𝑞) = 𝑈(𝑚) + 𝑈(𝑞) =
𝑚1/2

1/2
+

𝑞1/2

1/2
.       (6)  

 
 

The solution is derived from a quadratic equation for (open-access) 𝐿 and from a cubic 

equation for (optimal) 𝐿∗. Simulation results for 𝛽 = 1 are presented in Table A2 in 

Appendix 3 and are discussed below.  

 

In Panel A, 𝛼 = 6, LC prevails for 𝕃 < 6. In percent, ∇𝑈1(∇𝑁1) = −.19 (−.93), 

∇𝑈3 (∇𝑁3) = −3.4 (−14.9) or 18∇𝑈1 (16.1∇𝑁1), ∇𝑈5 (∇𝑁5) = −9.0 (−36.4) or 

47.3∇𝑈1 (38.2∇𝑁1). Thus, ∇𝑈 and ∇𝐿 at middle and higher congestion levels within the 

LC category are an order of magnitude greater than at lower ones. SC prevails for 8 < 𝕃 <

12. For 𝕃 = 10, we have, in percent, ∇𝑈10(∇𝑁10) = −21.5 (−71.7) =

113∇𝑈1(77.2∇𝑁1). Comparing 𝕃’s central values for SC and LC, we have ∇𝑈10(∇𝑁10) =

20.6∇𝑈3 (14.6∇𝑁3). Similar results obtain for 𝛼 = 4 (as shown in panel B). 

Thus, as with the original utility function in (2), the welfare and NR losses under SC are a 

multiple of those under LC or are of a greater order of magnitude.   
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       II. The second utility function is:  
 

𝑈 = (𝑚 −
𝑚2

2
) + (𝑞 −

𝑞2

2
) , 𝑚 =

𝑀

𝕃
, 𝑞 =

𝑄

𝕃
.      (7)  

 

The solution is derived from a cubic equation for both 𝐿 and 𝐿∗. Solution and simulation 

results are in Appendix 3. For 𝛼 = 2 and 𝛽 = 1, ∇𝑈1 (∇𝑁1) = −.375 (−2.90) percent, 

∇𝑈5 (∇𝑁5) = −7.77(−77.5) percent or 20.7∇𝑈1 (26.7∇𝑁1), and ∇𝑈10 (∇𝑁10) =

−12.1 (−81) percent or  32.1∇𝑈1 (28∇𝑁1).  
 

As with the original utility function in (2) and the one in (6), the welfare losses under SC 

are a multiple of the losses under LC or are of a greater order of magnitude.   

 

    B. Production functions  
 

       I. The first production function is:  
 

𝑄 = 𝐿[𝛼 − 𝛽(log𝐿)], 𝐿 > 1.        (8) 
 

Under open access, 𝐿 = 𝕃/2, with 𝑈 =
1

2
 [𝛼 − 𝛽 (log

𝕃

2
)]

1/2

. The optimal value of 𝐿 is 

𝐿∗ =
𝕃

2
[1 −

𝛽

2𝛼−𝛽(1+2log𝐿∗)
].18       

 

As 𝐿 =
𝕃

2
> 1, we have 𝕃 > 2. And 𝐴𝑃𝐿 = 𝛼 − 𝛽(log𝐿) > 0 implies 𝐿 < 𝑒𝛼/𝛽 . Assume 

𝛼 = 10 and 𝛽 = 2. Then, 𝐿 < 𝑒5 = 148.5 or 𝕃 < 297. Thus, 2 < 𝕃 < 297. 

 

For 𝕃 = 3, 𝑈 = 1.5488, 𝑈∗ = 1.5510, and ∇𝑈3 = −.08 percent. For 𝕃 = 296, ∇𝑈296 =

−93.3 percent. Thus, in percent and absolute value, . 08 < |∇𝑈| < 93.3, with a maximum 

ratio of ∇𝑈296/∇𝑈3 = 1166.3.   

 

The welfare cost for the central value of 𝕃 under LC, HC and SC is (in percent) ∇𝑈𝐿𝐶 =

−4.30, ∇𝑈𝐻𝐶 = −17.72, and ∇𝑈𝑆𝐶 = −47.80, i.e., ∇𝑈𝑆𝐶 = 11.1∇𝑈𝐿𝐶 and ∇𝑈𝐻𝐶 =

4.1∇𝑈𝐿𝐶. Thus, the welfare cost for 𝕃’s central value under SC (HC) is of a greater order 

of magnitude (a multiple) of that under LC.  

 

 
18 As there is no closed solution for 𝐿∗ [𝐿∗ is a function of log(𝐿∗)], the solution was obtained by ‘guessing’ 

a value of 𝐿∗ (denoted by x), using the related log(𝐿∗) value in 𝐿∗ =
𝕃

2
[1 −

𝛽

2𝛼−𝛽(1+2log𝐿∗)
] and checking if 

the solution for 𝐿∗ (denoted by y) was consistent with the initial guess, i.e., whether y = x. If not, the next 

value of 𝐿∗ used was between x and y, repeating the exercise until 𝑦 and x converged.  
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       II. Substituting production function 𝑄𝜆 = 𝜆𝐿(𝛼 − 𝛽𝐿) = 𝜆𝑄, 𝜆 > 0 for 𝑄 has no 

impact on 𝐿, 𝐿∗, 𝑚, 𝑚∗ or ∇𝑥 (𝑥 = 𝐿, 𝑄, 𝑁, 𝑈), i.e., ∇𝑥(𝜆𝛼, 𝜆𝛽) = ∇𝑥(𝛼, 𝛽), 19 and hence 

is excluded in what follows. In fact, replacing the production function 𝑄 with a 

monotonically increasing function of 𝑄 has no impact on any of the ∇𝑥 solutions under 

autarky, though the same need not hold in the case of international trade.  

 

In conclusion, the results obtained in Section 3.3 that the welfare cost of open access under 

HC and especially under SC are a multiple or of a greater order of magnitude than those 

under LC are supported by the results obtained in this section.  

 

4. Trade 

This section looks at three scenarios. In order to isolate the issue of externalities associated 

with different property rights regimes, the first scenario (in Section 4.1) follows 

Chichilnisky (1994) by assuming a world with two countries, C1 and C2, that are identical 

except for their property rights (or regulatory regimes, with an open-access common-

property regime in C1 and a private property (or regulated) regime in C2. Next, Open 

access prevails in both C1 and C2 in the second scenario (Section 4.2), with C2’s 

population larger than C1’s (𝕃2 > 𝕃1). In the third scenario in , C2 does not produce the 

commodity in the third scenario (Section 4.3).  

 

4.1. Different property rights regime    

Chichilnisky (1994) states (p. 855) that “With common property regimes, more is supplied 

at any given price than is supplied with private property regimes.” This is shown in Figure 

1 of that paper (p. 857) which depicts the standard low-congestion (LC) case. Similarly, 

Proposition 1 (p. 857) states: “The common-property supply curve for the resource lies 

below the private-property supply curve, so that under common-property regimes, more is 

supplied at a given price. 20 Both supply curves are increasing functions of resource prices.”  

 
19 With 𝑈 = 𝑚1/2𝑞1/2, 𝑝 =

𝑈𝑞

𝑈𝑚
= 𝐴𝐶, or 

𝑚

𝑞
=

𝕃−𝐿

 𝜆𝐿(𝛼−𝛽𝐿)
=

1

 𝜆(𝛼−𝛽𝐿)
, i.e., 𝜆 cancels out. Thus, as in (3), 𝐿 =

𝕃

2
. 

At the optimum, 
𝕃−𝐿

 𝜆𝐿(𝛼−𝛽𝐿)
=

1

 𝜆(𝛼−2𝛽𝐿)
 and 𝐴 also cancels out, i.e., it has no impact on 𝐿∗ (see 4). Thus,  𝜆 has 

no impact on 𝑚 or 𝑚∗ either, while 𝑞 and 𝑞∗ are multiplied by  𝜆 , and 𝑈 and 𝑈∗ are multiplied by √ 𝜆. Hence, 

∇𝑥 ≡ (𝑥 − 𝑥∗)/𝑥∗ is unaffected by changes in 𝜆.  

 
20 The common (private) property supply curve is referred to here as the 𝐴𝐶 (𝑀𝐶) curve. 
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The paper’s new result relates to the impact of trade, where the author states (p. 852) that 

“… for the country with poorly defined property rights, trade with a country with well-

defined property rights increases the overuse of resources and makes the misallocation 

worse …” As the author shows, trade reduces welfare for the exporting country and 

worsens its environment as well as the global one.  

 

Similarly, Brander and Taylor (1997) examine a small open economy’s trade under LC and 

open access to a NR. They state that trade reduces steady-state utility for a diversified 

resource exporter and terms-of-trade improvements may be welfare reducing.21  

 

I obtain the same results as Chichilnisky (1994) and Brander and Taylor (1997) under both 

LC and HC. However, the opposite holds under SC, in which case trade generates a welfare 

gain for both countries and an improvement in the international allocation of environmental 

resources.  

 

Section 4.1.1 provides a graphical analysis, Section 4.1.2 solves the model, Section 4.1.3 

presents the simulations. 

 

    4.1.1. Graphical analysis  

Under LC, the demand curve is 𝐷 and equilibrium under autarky is at point 𝐴 for C1 and 

at point 𝐸 for C2 in Figure 2. With trade, the price is 𝑃𝑇, with 𝐺𝐹 = 𝐻𝐺, i.e., C1’s exports 

equal C2’s imports. C2 obtains a welfare gain ∆𝑊2 = 𝐸𝐻𝐺.  Since price equals average 

cost under open access, the producer surplus is always equal to zero and welfare is equal 

to the consumer surplus. Under autarky, price is 𝑃𝐴 and welfare is 𝑍𝐴𝑃𝐴. Under trade, price 

is 𝑃𝑇 and welfare is 𝑍𝐺𝑃𝑇. Thus, the impact of trade on welfare is ∆𝑊1 = −𝑃𝑇𝐺𝐴𝑃𝐴. 

Employment, 𝐿, is higher (and thus NR is lower) under trade (point F) than under autarky 

(point 𝐴) in C1. The opposite holds for C2 where trade reduces output. Despite the fact that 

 
21 The model provided here differs from Brander and Taylor’s (1997) in three important ways. First, I 

examine steady-state solutions while they also examine transition paths and the discounted sum of 

instantaneous utility (or ‘welfare’). Second, they assume a small open economy facing exogenously given 

terms of trade, while these are determined endogenously in this paper. Third, I also examine the results under 

HC and SC. An interesting analysis of North-South trade’s impact on the environment (pollution) – rather 

than on NR – where environmental protection depends on income is Copeland and Taylor (1994). 
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𝑀𝐶1 > 𝑀𝐶2 (and 𝑁𝑅1 < 𝑁𝑅2), output increases in C1 and declines in C2, thereby 

exacerbating the global distortion in the allocation of 𝑁𝑅. 

 

The finding that trade leads to a commodity exporter’s welfare loss and worsens the 

distortion in the global NR allocation confirms Chichilnisky’s (1994) and Brander and 

Taylor’s (1997) findings. The same result holds in the HC case as C2’s (optimal) price is 

also higher than C1’s (open-access) price under autarky. However, in contrast to the LC 

situation, C1’s output declines as employment rises in this case, further raising C1’s 

welfare cost and the international misallocation of NR (as output falls in both countries).  

 

In the SC case, with demand given by 𝐷′, equilibrium is at 𝐴′ for C1 and at 𝐸′ for C2. The 

autarkic price is higher in open-access C1 than in regulated C2. Hence, C2 exports the 

commodity to C1, i.e., the direction of trade is reversed, which raises C1’s NR. Output 

expands (contracts) in the country with lower (higher) 𝑀𝐶 (since 𝑀𝐶 < 0 in C1) and lower 

(higher) 𝐴𝐶 – represented by point 𝐼′ (𝐴′) – and whose NR quality is higher (lower). This 

improves both the open-access country’s and the global NR quality or global environment.  

 

Consumption is at point 𝑆 where the (horizontal) distance between 𝑆 and the 𝑀𝐶 curve is 

equal to the distance between the 𝐴𝐶 curve and 𝑆. The new equilibrium price corresponding 

to point 𝑆 is 𝑃𝑆 (not shown). Denoting the intersection of the horizontal line from 𝑆 to the 

𝑀𝐶 curve by 𝑋, the welfare gain from trade for C2 is ∆𝑊2 = 𝑆𝑋𝐸′ > 0 and the welfare 

gain for C1 is ∆𝑊1 = 𝑃𝐴
′𝐴′𝑆𝑃𝑆 > 0. Thus, trade improves the global environment and 

raises global welfare (∆𝑊 = ∆𝑊1 + ∆𝑊2 > 0) in this case.  

 

    4.1.2. Solution 

Under trade, price equals average cost in C1 and marginal cost in C2, i.e., 𝑝𝑇 =
1

𝛼−𝛽𝐿1𝑇
 =

1

𝛼−2𝛽𝐿2𝑇
∗ , implying that 𝐿1𝑇 = 2𝐿2𝑇

∗ . The solution for 𝐿1𝑇 and 𝐿2𝑇
∗  is:  

 

 

 

 

Figure 2. Trade under Low and High Congestion 
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𝐿1𝑇 =
2

5𝛽
(1.5𝛼 + 𝛽𝕃 − √2.25𝛼2 + 𝛽2𝕃2 − 2𝛼𝛽𝕃), 22  𝐿2𝑇

∗ =
𝐿1𝑇

2
.    (7) 

 

Export of 𝑄 from C1 is 𝑄1𝑋  = . 375𝛽𝐿1𝑇(𝐿𝐼 − 𝐿1𝑇) ≷ 0 ⇔ 𝐿1𝑇 ≶ 𝐿𝐼,
23 where 𝐿𝐼 is the 

point where 𝐴𝐶 intersects 𝑀𝐶, i.e., the point that separates SC from HC (and where 𝐴𝐶 

exhibits an inflection point).  
 

These results confirm the graphical analysis in the previous section that C1 exports 𝑄 under 

both LC and HC (𝐿1𝑇 < 𝐿𝐼) and imports 𝑀, and it imports 𝑄 under SC (𝐿1𝑇 > 𝐿𝐼) and 

exports 𝑀. In other words, the direction of trade between C1 and C2 is reversed as 𝐿1𝑇 =

𝐿𝐼. The reason is that the inefficiency associated with the negative congestion externality 

is so large under SC that open-access production costs are larger in C1 than in C2.  

 

    4.1.3. Simulation    

Table 3 shows the impact of opening up to trade on NR and welfare, where ∆′𝑈(∆′𝑁) 

represents the difference between the value of 𝑈 (𝑁) under trade and under autarky. Panel 

A (B) shows results for 𝛼 = 10 (2) and 𝛽 = 1. Under autarky, 𝐿1 ≶ 𝐿𝐼 =
2𝛼

3
⟺ 𝑄1𝑆 ≷ 

𝑄2𝑆
∗ ⟺ 𝑝1 ≶ 𝑝2

∗ (see Section 3). Thus, as long as 𝐿1 < 2𝛼/3, 𝑄1𝑆 > 𝑄2𝑆
∗  and 𝑝1 < 𝑝𝑇 <

𝑝2
∗. Once trade occurs, C1 raises its output and exports 𝑄, with an increase in the open-

access distortion, and a decline in welfare (as terms-of-trade improvements reduce welfare 

for an open-access exporting country) and in NR. In Panel A, trade reduces C1’s welfare if 

𝐿1 < 𝐿𝐼 = 
2𝛼

3
= 6.67 or 𝕃 = 2𝐿1 < 𝕃I = 13.33. It shows that ∆′𝑈1 (∆′𝑁1) ranges from 

−1.47 (−1.68) to −8.39 (−9.6) percent between 𝕃 = 1 and 𝕃 = 11. 

 

 
22 From 𝐿2𝑇 =

𝐿1𝑇

2
, we have 𝑄𝑆 = 𝑄1𝑆  +  𝑄2𝑆 = 𝐿1𝑇(𝛼 − 𝛽𝐿1𝑇)  +  

𝐿1𝑇

2
(𝛼 −

𝛽𝐿1𝑇

2
) = 𝐿1𝑇(1.5𝛼 −

1.25𝛽𝐿1𝑇). Also, 𝑀1𝐷 + 𝑝𝑇𝑄1𝐷 =  𝑀2𝐷 + 𝑝𝑇𝑄2𝐷 = 𝕃. Given the same relative price 𝑝𝑇  and preferences, we 

have 𝑀1𝐷 = 𝑀2𝐷 and 𝑄1𝐷 = 𝑄2𝐷 . Thus, 𝑄1𝐷 =
𝑄𝑆

2
= (. 75𝛼 − .625𝛽𝐿1𝑇)𝐿1𝑇 . Also, 

𝑚1𝐷

𝑞1𝐷
=

𝑀1𝐷

𝑄1𝐷
= 𝑝𝑇  or 

𝑀1𝐷 = 𝑝𝑇𝑄1𝐷. As 𝑀1𝐷 + 𝑝𝑇𝑄1𝐷 =  𝕃, we have 𝑝𝑇𝑄1𝐷 = 𝑀1𝐷 =
𝕃

2
. Thus, 𝑄1𝐷 = 𝐿1𝑇(. 75𝛼 − .625𝛽𝐿1𝑇) =

𝑀1𝐷

𝑝𝑇
=

𝕃

2
(𝛼 − 𝛽𝐿1𝑇), i.e., 1.25𝛽𝐿1𝑇

2 − (1.5𝛼 + 𝛽𝕃)𝐿1𝑇 + 𝛼𝕃 = 0, which implies (7).  

 
23

Exports of 𝑄 from country C1 is 𝑄1𝑋 = 𝑄1𝑆 − 𝑄1𝐷 = 𝐿1𝑇(𝛼 − 𝛽𝐿1𝑇) − (. 75𝛼 − .625𝛽𝐿1𝑇)𝐿1𝑇 =

.25𝛼𝐿1𝑇 − .375𝛽𝐿1𝑇
2 =. 375𝛽𝐿1𝑇 (

2𝛼

3𝛽
− 𝐿1𝑇) =. 375𝛽𝐿1𝑇(𝐿𝐼 − 𝐿1𝑇), where 𝐿𝐼 =

2𝛼

3𝛽
. 
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The opposite occurs for 𝕃 > 𝕃I = 13.33 where 𝑄1𝑆 < 𝑄2𝑆 and 𝑝2 < 𝑝𝑇 < 𝑝1 (compare 

points 𝐸′, 𝑆 and 𝐴′ in Figure 2), with trade reducing 𝑄’s relative price in C1. This leads C1 

to reduce its output and to import 𝑄, resulting in an increase in its welfare. This is shown 

in Panel A for 𝕃 = 16 (19), with welfare 20.5 (140) percent higher than under autarky. 

The negative figures are relatively small because they occur at low 𝕃-values, i.e., under LC 

where the distortion is small. The positive figures occur at high 𝕃-values where distortions 

are large under autarky, and C1’s trade-induced decrease in price reduces employment in 

𝑄, raising output and consumption, both of which raise welfare.  

 

Table 3. Trade vs. Autarky (∆′) for Open Access (C1) and at Optimum (C2) 

Panel A: 𝛼 = 10, 𝛽 = 1 

 

𝕃 

Country C1 (Open Access) 

 𝑁1𝑇     𝑈1𝑇        ∆′𝑁1    ∆′𝑈1  

                            (in %) 

Country C2 (Optimum) 

 𝑁2𝑇     𝑈2𝑇      ∆′𝑁2
∗   ∆′𝑈2

∗  

                          (in %) 

C1 + C2 

𝑁𝑇       𝑈𝑇       ∆′𝑁     ∆′𝑈  

                         (in %) 

 1  9.34   1.52     -1.68    -1.47 9.67   1.54     1.65     .41  19.0   3.06    -.01     -.52 

   6  6.35   1.26      -9.3    -4.75 8.18   1.36     7.97     .74 14.5   2.62     .42     -1.9 

 11  4.09   .972      -9.1    -8.39  7.05   1.24     8.44     1.0 11.1   2.21     2.0     -3.1   

16  2.68   .852      33.8     20.5 6.34   1.11     5.66     4.9 9.02   1.96    14.0    11.7 

19  2.14   .849      328      140                                  6.07   1.05     4.66     5.1  8.21   1.90    88.9    65.4   
 

 

Panel B: 𝛼 = 2, 𝛽 = 1 
 

 

𝕃 

Country C1 (Open Access) 

𝑁1𝑇     𝑈1𝑇    ∆′𝑁1    ∆′𝑈1  

                          (in %) 

Country C2 (Optimum) 

 𝑁2𝑇    𝑈2𝑇  ∆′𝑁2
∗    ∆′𝑈2

∗  

                          (in %) 

C1 + C2 

𝑁𝑇       𝑈𝑇        ∆′𝑁    ∆′𝑈  

                        (in %) 

   1 1.38   .587    -8.01    -4.15 1.69   .627    5.62    1.06  3.07   1.21    -.51    -1.46 

   3 .580   .381     16.0      7.75 1.29   .488     7.5     .615 1.87    .87     10.1     3.74 

 

C2 always gains from trade, though the welfare gains are small relative to either the losses 

or gains of C1, so that the impact on global welfare (a weighted average of the impacts in 

C1 and C2) has the same sign as the impact on C1’s welfare (despite C2’s larger weight 

since welfare is larger at the optimum than under open access). 

 



 26 

Panel B shows that trade reduces (raises) C1’s welfare for 𝕃 = 1 (𝕃 = 3) where LC (SC) 

prevails as 𝕃 = 1 < �̂� = 2  (𝕃 = 3 > 𝕃I = 2.67). Thus, the result is the same as in Panel 

A, i.e., trade’s welfare impact for C1 is negative under LC and positive under SC. Also, 

whether positive or negative, the impact on C1 is greater than that on C2, so that the sign 

of the impact on global welfare is the same as that on C1’s welfare in this case as well.   

 

Lack of effective vaccine against the SRS bacteria in Chile’s coastal waters has led Chile 

to use antibiotics and pesticides at levels that are multiples of those used by Norway, 

Scotland and British Columbia (Bridsen 2014). Its NR endowment quality – i.e., parameter 

𝛼’s level – is thus lower that in these countries. Thus, other things equal, open access’ 

negative impact due to excessive use of variable inputs and loss of output, NR and welfare, 

would be expected to be worse in Chile than in these other countries,  as would the impact 

of trade, a presumption that is supported by the simulation results. For instance, Section 

3.4.1 shows that the cost of open access under autarky is (in percent) ∇𝑈19 (∇𝑁19) =

−.137 (−.544)  for 𝛼 = 100 and −7.056 (−22.3) for 𝛼 = 20. Similarly, trade’s impact 

on C1’s welfare cost of open access shown in Panels A and B of Table 3 (in percent) in the 

case of 𝕃 = 1 is −1.47 for 𝛼 = 10 and −4.15 for 𝛼 = 2.  

 

Thus, other things equal, optimal regulation and management of the aquaculture industry 

would be expected to provided larger gains in the case of Chile. In fact, a debate is ongoing 

about this issue at this point, with meetings between the government and the private sector  

 

4.2. Exporting under SC  

The analysis shows that, under SC, an open-access country imports the commodity when 

trading with a regulated but otherwise identical country. The SC case might thus appear to 

have little relevance for commodity exporting countries. However, countries differ in a 

number of ways, with C1 exporting 𝑄 to C2 under SC conditions. Assume open access 

prevails in C1 and that SC prevails under autarky. Then, C1 exports commodity 𝑄 in the 

cases presented below. These are: 
 

i) C2 is more productive than C1 in the production of good 𝑀, with 𝑀𝑃𝑙 = 𝑤2 > 𝑤1 = 1, 

thereby raising C2’s cost of producing 𝑄 (which is common for commodity exports from 

open-access South to regulated North), with autarkic 𝑝2 = 𝑀𝐶2 > 𝑝1 = 𝐴𝐶1;  
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ii) 𝕃2 > 𝕃1, with C2’s demand greater than C1’s and autarkic 𝑝2 = 𝑀𝐶2 > 𝑝1 = 𝐴𝐶1;  

iii) Open access prevails in both countries and C2’s demand is larger than C1’s (and 

intersects the 𝐴𝐶 curve at a point above A′ in Figure 2), with 𝑝2 = 𝐴𝐶2 > 𝑝1 = 𝐴𝐶1; 

iv) C2’s endowment of the NR is nil (its waters are polluted or otherwise inadequate for 

aquaculture, or it lacks the type of soil needed for a specific crop), with 𝑄2 = 0; 

v) C1 is a small open economy and takes as given the world price, 𝑝∗, which intersects the 

𝐴𝐶 curve above C1’s autarkic price (above 𝑃𝐴
′  in Figure 2), i.e., 𝑝∗ > 𝑝1; and  

vi) Open access prevails in both countries and C2’s externality parameter 𝛽2 > 𝛽1, with 

𝑄2𝑇 < 𝑄1𝑇 and 𝑝2 = 𝐴𝐶2 > 𝑝1 = 𝐴𝐶1 

    

Four of the six cases above are examined below.  

 

    4.2.1. Open access in C1 and C2, with 𝕃2 > 𝕃1  

As depicted in Figure 2, demand is given by 𝐷 in C1 and 𝐷′ in C2. Under autarky, 

equilibrium is at point 𝐴 in C1 and 𝐴′ in C2. Under trade, price is 𝑃𝑇
′ , and C1’s excess 

supply equals C2’s excess demand (𝐿𝑅̅̅̅̅ = 𝑅𝑇̅̅ ̅̅ ). C1’s welfare declines with trade, from 

𝑍𝐴𝑃𝐴 to 𝑍𝐿𝑃𝑇
′  or by 𝑃𝑇

′ 𝐿𝐴𝑃𝐴 (as does its NR), and C2’s welfare increases by 𝑃𝐴
′𝐴′𝑇𝑃𝑇

′ .24 

Thus, under open access, trade reduces (raises) a commodity exporter’s (importer’s) 

welfare. Also, though 𝑁2 < 𝑁1 and 𝑈2 < 𝑈1 under autarky, both are equalized under trade 

(𝑁2𝑇 = 𝑁1𝑇, 𝑈2𝑇 = 𝑈1𝑇). Also, 𝑁1 + 𝑁2 = 𝑁1𝑇 + 𝑁2𝑇, i.e., global NR is unchanged and 

𝑈2𝑇 = 𝑈1𝑇, with trade resulting in a larger global output (𝑄𝑇
𝑆 > 𝑄𝑆) and higher global 

(population-weighted) welfare (𝑈𝑇 > 𝑈).25 In the case where C1’s demand, 𝐷, intersects 

the 𝐴𝐶 curve above point 𝑉, with the solution in the SC segment of the 𝐴𝐶 curve. 

 
24 Though Figure 2 shows aggregate welfare 𝑊2𝑇 > 𝑊1𝑇, our interest is in the representative individual’s 

welfare, and with 𝕃2 > 𝕃1, we have 𝑈2 < 𝑈1 and 𝑈2𝑇 = 𝑈1𝑇. This is shown in footnote 25.  

25 Utility is 𝑈𝑖 =
1

2
𝑁𝑖

1/2 =
1

2
(𝛼 − 𝛽

𝕃i

2
)

1/2

 under autarky (i = 1, 2), with 𝑁1 > 𝑁2 and 𝑈1 > 𝑈2 as 𝕃2 > 𝕃1. 

Under trade, 𝑝𝑇 =
1

𝛼−𝛽𝐿1𝑇
=

1

𝛼−𝛽𝐿2𝑇
, i.e., 𝐿1𝑇 = 𝐿2𝑇, and 𝑄𝑇

𝑆 = 𝑄1𝑇
𝑆 + 𝑄2𝑇

𝑆 = 2𝐿1𝑇(𝛼 − 𝛽𝐿1𝑇), 𝑝𝑇 =
𝑀𝑖𝑇

𝐷

𝑄𝑖𝑇
𝐷 , 

i.e., 𝑝𝑇𝑄𝑖𝑇
𝐷 = 𝑀𝑖𝑇

𝐷 , and 𝑝𝑇𝑄𝑖𝑇
𝐷 + 𝑀𝑖𝑇

𝐷 = 𝕃i. Thus, 𝑝𝑇𝑄𝑖𝑇
𝐷 = 𝑀𝑖𝑇

𝐷 = 𝕃i/2. With 𝑄𝑇
𝐷 = 𝑄1𝑇

𝐷 + 𝑄2𝑇
𝐷 = 𝑄𝑇

𝑆, we have 

𝑝𝑇𝑄𝑇
𝐷 = 𝑝𝑇𝑄𝑇

𝑆 =
𝑄𝑇

𝑆

𝛼−𝛽𝐿1𝑇
= 2𝐿1𝑇 . Given that  𝑝𝑇𝑄𝑇

𝐷 = 𝑝𝑇(𝑄1𝑇
𝐷 + 𝑄2𝑇

𝐷 ) =
𝕃1

2
+

 𝕃2

2
≡ �̅�, we have 2𝐿1𝑇 = �̅�, or 

𝐿𝑖𝑇 =
�̅� 

2
, i.e., 𝑄𝑖𝑇

𝑆 =
�̅� 

2
(𝛼 − 𝛽

�̅� 

2
). As 𝑄𝑖𝑇

𝐷 =
𝑀𝑖𝑇

𝐷

𝑝𝑇
=

𝕃i

2
(𝛼 − 𝛽𝐿1𝑇), we have 𝑄𝑖𝑇

𝐷 = 
𝕃i

2
(𝛼 − 𝛽

�̅� 

2
). Thus, 𝑄𝑖𝑇

𝑋 ≡

𝑄𝑖𝑇
𝑆 − 𝑄𝑖𝑇

𝐷 = (
�̅� 

2
−

𝕃i

2
) (𝛼 − 𝛽

�̅� 

2
). As 𝕃2 > 𝕃1, we have 𝕃1 < �̅� < 𝕃2 and 𝑄2𝑇

𝑋 < 0 < 𝑄1𝑇
𝑋 , so C1 (C2) exports 

𝑄 (𝑀). As 𝑚𝑖
𝐷 = .5 and 𝑞𝑖𝑇

𝐷 = 
1

2
(𝛼 − 𝛽

�̅� 

2
), we have 𝑈1𝑇 = 𝑈2𝑇 =

1

2
(𝛼 − 𝛽

�̅�

2
)

.5

< 𝑈1 and 𝑁1𝑇 = 𝑁2𝑇 = 𝛼 −
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A necessary (sufficient) condition for a SC equilibrium under trade is that it prevails at 

least in C2 (in both C1 and C2) under autarky. In the latter case, demand 𝐷 in C1 intersects 

the 𝐴𝐶 curve above point 𝑉. Trade raises global welfare, reduces (raises) NR in C1 (C2), 

and improves NR’s international allocation.  

 

    4.2.2. C1 is open access and C2 is regulated, with 𝕃2 > 𝕃1  

Under trade,  𝑝𝑇 =
1

𝛼−𝛽𝐿1𝑇
=

1

𝛼−2𝛽𝐿2𝑇
, i.e., 𝐿1𝑇 = 2𝐿2𝑇. The solution for 𝐿1𝑇 is  

 

𝐿1𝑇 =
1

5𝛽
[3𝛼 + 𝛽(𝕃1 + 𝕃2) − √9𝛼2 + 𝛽2(𝕃1 + 𝕃2)2 − 4𝛼𝛽(𝕃1 + 𝕃2)],26 (8)  

 

a special case of which is equation (7).  

 

Super congestion occurs for 𝕃1 > 13.33. Then, ∆′𝑈1𝑇 = −22.0 percent for 𝕃1 = 14 and 

∆′𝑈1𝑇 = −11.6 percent for 𝕃1 = 16. In both cases, 𝐴𝐶1 < 𝑀𝐶2 under autarky, so that C1 

exports 𝑄. C2 exports 𝑀 and gains from trade.      

 

    4.2.3. C2 specializes in the production of 𝑀    

In this case, C1 exports 𝑄 and imports 𝑀. Trade raises 𝑄’s relative price – or C1’s terms 

of trade, resulting in a reduction in its welfare and NR, and an increase in C2’s welfare. 

Interestingly, the fact that C2 specializes in the production of 𝑀 leads C1 to specialize in 

the production of 𝑄, with 𝑀2
𝑆 = 𝕃 and 𝐿1𝑇 = 𝕃. 27   

 

𝛽
�̅� 

2
< 𝑁1. Also, 𝑈2𝑇 > 𝑈2 and 𝑁2𝑇 > 𝑁2, with 𝑁1𝑇 + 𝑁2𝑇 = 𝑁1 + 𝑁2 = 2𝛼 − 𝛽�̅�: global NR is identical 

under autarky and trade. With 𝑠𝑖 ≡
𝕃i

𝕃1+𝕃2
, 𝑠1 + 𝑠2 = 1, 𝑠2 > 𝑠1, we have 𝑁𝑖𝑇 > 𝑠1𝑁1 + 𝑠2𝑁2. Thus, 𝑈𝑇 =

𝑠1𝑈1𝑇 + 𝑠2𝑈2𝑇 =
1

2
(𝛼 − 𝛽

�̅�

2
)

.5

> 𝑈 = 𝑠1𝑈1 + 𝑠2𝑈2 =
𝑠1

2
𝑁1

1/2 +
𝑠2

2
𝑁2

1/2 =
𝑠1

2
(𝛼 − 𝛽

𝕃1

2
)

1/2

+
𝑠2

2
(𝛼 −

𝛽
𝕃2

2
)

1/2

, with the result due to concavity and to 𝑁𝑖𝑇 > 𝑠1𝑁1 + 𝑠2𝑁2 [as 𝑁𝑖𝑇 = (𝑁1 + 𝑁2)/2 while 𝑠1 < 𝑠2 

and 𝑁1 > 𝑁2, i.e., the larger (smaller) weight multiplies the smaller (larger) NR stock]. Thus, trade raises 

global welfare and equalizes it internationally. 

 
26 Under trade, 𝑝𝑇 =

1

𝛼−𝛽𝐿1𝑇
=

1

𝛼−2𝛽𝐿2𝑇
, i.e., 𝐿1𝑇 = 2𝐿2𝑇. Thus, 𝑄𝑇

𝑆 = 𝑄1𝑇
𝑆 + 𝑄2𝑇

𝑆 = 𝐿1𝑇(𝛼 − 𝛽𝐿1𝑇) +

𝐿1𝑇

2
(𝛼 − 𝛽

𝐿1𝑇

2
) = 𝐿1𝑇(1.5𝛼 − 1.25𝛽𝐿1𝑇). From footnote 25, we have 𝑝𝑇𝑄𝑖𝑇

𝐷 =
𝕃i

2
. As 𝑝𝑇𝑄𝐷 = 𝑝𝑇𝑄𝑇

𝑆, we 

have 
𝕃1+𝕃2

2
=

𝐿1𝑇(1.5𝛼−1.25𝛽𝐿1𝑇)

𝛼−𝛽𝐿1𝑇
, from which we obtain equation (8).   

27 Total output 𝑄𝑆𝑇 = 𝑄1𝑆 = 𝐿1𝑇 . As in fn. 22 and 25, 
𝑚𝑖𝐷

𝑞𝑖𝐷
=

𝑀𝑖𝐷

𝑄𝑖𝐷
= 𝑝𝑇  (𝑖 = 1, 2), 𝑀𝑖𝐷 = 𝑝𝑇𝑄𝑖𝐷, 𝑀𝑖𝐷 +

𝑝𝑇𝑄𝑖𝐷 = 𝕃, 𝑀𝑖𝐷 = 𝑝𝑇𝑄𝑖𝐷 =
𝕃

2
 and 𝑚𝑖𝐷 =

1

2
. Thus, 𝑄𝑖𝐷 = 

𝕃

2𝑝𝑇
= 

𝕃

2
(𝛼 −  𝛽𝐿1𝑇). Also 𝑄1𝐷 = 𝑄2𝐷 =

𝑄𝑆𝑇

2
, so 

𝑄𝑖𝐷 =
𝐿1𝑇

2
(𝛼 −  𝛽𝐿1𝑇), i.e., 𝐿1𝑇 = 𝕃. Thus, C1 specializes in the production of 𝑄, with 𝑄1𝑆 = 𝕃(𝛼 −  𝛽𝕃), 
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    4.2.4. Open access in C1 and C2, with greater negative externality in C2  

In this case, 𝛽2 > 𝛽1, with 𝑁1 > 𝑁2, 𝑄1 > 𝑄2, and 𝑈1 > 𝑈2 under autarky, and 𝑁1𝑇 =

𝑁2𝑇 ,  𝑄1𝑇 = 𝑄2𝑇 and 𝑈1𝑇 = 𝑈2𝑇 under trade, and global 𝑁 > 𝑁𝑇, 𝑄 > 𝑄𝑇, and 𝑈 > 𝑈𝑇.28  

Thus, trade raises global NR, output and welfare, and equalizes them internationally, with 

C1 (C2) exporting 𝑄(𝑀) to C2 (C1), with a decline (rise) in NR and welfare in C1 (C2), 

and C1’s greatest NR and welfare loss occurring under SC. 

 

5. Application to other issues              
 

The model developed in this paper is relevant to other cases of congestion of natural 

resources, man-made resources, or other. One case is urban road transport (e.g., Vickery 

1969, Small and Verhoef 2007). As Wolshon and Pande (2016) state, there are three 

fundamental variables in traffic engineering: the number of trips per unit of time or output, 

𝑄; the number of cars per unit of distance or car density at a given moment in time, 𝐿; and 

car speed, 𝑁(𝐿), 𝑁′ < 0. The quality or productivity of the resource, i.e., the road, is the 

speed individuals are able to travel on it.  

 

 

𝑞1𝑆 = 𝛼 –  𝛽𝕃, and 𝑞𝑖𝐷 =
1

2
(𝛼 −  𝛽𝕃). Thus, 𝑈𝑖𝑇 = 𝑚𝑖𝐷

1/2𝑞𝑖𝐷
1/2 =

1

2
(𝛼 −  𝛽𝕃)1/2. Under autarky, 𝑈1 =

1

2
(𝛼 − 

𝛽𝕃

2
)

1/2

, i.e., C1’s welfare declines because NR falls from 𝑁1 = 𝛼 −  
𝛽𝕃

2
  to 𝑁1𝑇 = 𝛼 −  𝛽𝕃. And C2 

gains from trade, with 𝑈2 = 0 under autarky (as 𝑞2𝐷 = 𝑞2𝑆 = 0) and 𝑈2𝑇 =
1

2
(𝛼 −  𝛽𝕃)1/2 under trade. 

 
28 Assume 𝛽2 = 𝜆𝛽1, 𝜆 > 1. With open access for C1 and C2, 𝑝𝑇 =

1

𝛼−𝛽1𝐿1𝑇
=

1

𝛼−𝛽2𝐿2𝑇
, i.e., 𝛽1𝐿1𝑇 = 𝛽2𝐿2𝑇 

= 𝜆𝛽1𝐿1𝑇 . Thus, 𝐿1𝑇 = 𝜆𝐿2𝑇, and 𝑄𝑇
𝑆 = 𝑄1𝑇

𝑆 + 𝑄2𝑇
𝑆 = 𝐿1𝑇(𝛼 − 𝛽1𝐿1𝑇) + 𝐿2𝑇(𝛼 − 𝛽2𝐿2𝑇) = (1 + 𝜆)𝑄2𝑇

𝑆 =

(1 + 𝜆)𝐿2𝑇(𝛼 − 𝛽2𝐿2𝑇). As in fn. 27, 𝑀𝑖𝑇
𝐷 + 𝑝𝑇𝑄𝑖𝑇

𝐷 = 𝕃, 𝑀𝑖𝑇
𝐷 = 𝑝𝑇𝑄𝑖𝑇

𝐷 =
𝕃

2
, and 𝑚𝑖𝑇

𝐷 =
1

2
, 𝑖 = 1, 2. Also, 

𝑄𝑇
𝐷 = 𝑄1𝑇

𝐷 + 𝑄2𝑇
𝐷 = 2𝑄1𝑇

𝐷 = 𝑄𝑇
𝑆, and 2𝑝𝑇𝑄1𝑇

𝐷 = 𝑝𝑇𝑄𝑇
𝑆 = (1 + 𝜆)𝐿2𝑇. Since 2𝑝𝑇𝑄1𝐷 = 𝕃, we have 𝐿2𝑇 =

𝕃

1+ 𝜆
 

and 𝐿1𝑇 =
𝜆𝕃

1+ 𝜆
. Thus, 𝑄𝑇

𝑆 = 𝕃(𝛼 − 𝛽2𝐿2𝑇) and 𝑄𝑖𝑇
𝐷 =

𝑄𝑇
𝑆

2
=

𝕃

2
(𝛼 − 𝛽2𝐿2𝑇) =

𝕃

2
(𝛼 − 𝛽1𝐿1𝑇). C1 exports 

commodity 𝑄 since 𝑄1𝑇
𝑋 = 𝑄1𝑇

𝑆 − 𝑄1𝑇
𝐷 = (

𝜆𝕃

1+ 𝜆
−

𝕃

2
) (𝛼 − 𝛽1𝐿1𝑇) > 0 as 

𝜆

1+ 𝜆
−

1

2
=

𝜆 −1

2(1+ 𝜆)
> 0. Under 

autarky, 𝑈1 = 
1

2
(𝛼 −  

𝛽1𝕃

2
)

1/2

> 𝑈2 = 
1

2
(𝛼 −  

𝜆𝛽1𝕃

2
)

1/2

, with 𝑈𝑖𝑇 = 
1

2
(𝛼 −  

𝜆𝛽1𝕃

1+ 𝜆
)

1/2

; 𝑁1 = 𝛼 − 
𝛽1𝕃

2
>

𝑁1𝑇 = 𝛼 −  
𝜆𝛽1𝕃

1 + 𝜆
; 𝑁2 = 𝛼 − 

𝜆𝛽1𝕃

2
< 𝑁2𝑇 =  𝛼 −

𝜆𝛽1𝕃

1+ 𝜆
; 𝑁 =  𝑁1 + 𝑁2 = 2𝛼 − (1 + 𝜆)

𝛽1𝕃

2
< 𝑁𝑇 =  𝑁1𝑇 +

𝑁2𝑇  =  2𝛼 −
2𝜆𝛽1𝕃

1+𝜆
 because 

1+𝜆

2
−

2𝜆

1+𝜆
=

(𝜆−1)2

2(1+𝜆)
> 0. Also, 𝑄𝑆 =

𝕃

2
(𝛼 − 𝛽1

𝕃

2
) + 

𝕃

2
(𝛼 − 𝜆𝛽1

𝕃

2
) =

𝕃

2
[2𝛼 −

(1 + 𝜆)𝛽1
𝕃

2
]. Thus, 𝑄𝑇

𝑆 − 𝑄𝑆 =
1+𝜆

4
𝛽1𝕃2 −

𝜆

1+𝜆
𝛽1𝕃2 > 0, as 

1+𝜆

4
−

𝜆

1+𝜆
=

(𝜆−1)2

4(1+𝜆)
> 0. Finally, with 𝑈𝑖 = 

1

2
𝑁𝑖

1/2 and  𝑈𝑖𝑇 = 
1

2
𝑁𝑖𝑇

1/2, it follows that 𝑈𝑇 = 𝑈1𝑇 + 𝑈2𝑇 > 𝑈 = 𝑈1 + 𝑈2 because 𝑁𝑇 > 𝑁 and because of 

the concavity of the utility function. Thus, trade under SC (as well as under LC and HC) raises global NR 

and welfare, and equalizes NR and welfare across the two countries.   

http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Brian+Wolshon
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Though Thomps (1998) states that “… the backward-sloping part of the supply curve … is 

usually referred to in the literature as ‘unstable’ and ignored as irrelevant ...,” the fact is 

that, as with aquaculture, car density may reach a point where a one percent increase in the 

number of cars on the road at a moment in time, 𝐿, reduces speed by one percent, with 

output unchanged and equal to its maximum level 𝑄 = �̂�, with 𝐿 = �̂� (see Section 2.1). 

Then, a further increase in density – e.g., to the level at peak demand time – would reduce 

output.  

 

A fire in a closed environment is another case of negative congestion externality. As more 

people try to escape from a fire, the time needed to do so increases and may reach a point 

where the number of people who manage to escape per unit of time declines, especially if 

panic erupts. No tax system exists that will ameliorate a problem that is (perceived to be) 

one of life or death. On the other hand, optimal regulation, including regular fire drills 

where people practice exiting a building in an orderly manner, is likely to be useful. This 

is applicable to other emergency situations where congestion externalities are present (e.g., 

evacuating a sinking ship).  

 

A similar situation relates to shopping in a limited space, say, a supermarket or department 

store. An increase in the number of shoppers has two opposite effects on sales: it raises 

total sales for a given level of sales per shopper, but the greater congestion reduces 

shoppers’ purchases per unit of time. Thus, a congestion level exists – below the level 

where nobody can move – in which total sales per unit of time fall as the number of 

shoppers increases, with optimal intervention raising (reducing) output under SC (HC). 

 

The analysis is also relevant for countries with monopoly power on the world commodity 

market. The negative externality of open access consists of the negative impact of these 

countries’ exports on the world price, their ‘natural resource’ consists of their international 

monopoly power, with small-scale growers’ marginal revenue 𝑀𝑅 equal to price 𝑝 and the 

countries’ 𝑀𝑅 < 𝑝. The monopoly’s value is equal to the (present value of the) difference 

between welfare under optimal intervention (e.g., an export tax) and in its absence. The 

backward-bending segment of the exports’ foreign exchange revenue is reached at the point 

where 𝑀𝑅 < 0. Absence of optimal intervention would drive the value of the country’s 

monopoly resource to zero. This issue is also related to the literature on immiserizing 
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growth (Bhagwati 1958, 1969) though the latter does not hinge on 𝑀𝑅 being necessarily 

negative.  

 

6. Policy Implications  

Given the significantly greater welfare cost of open access under high congestion (HC) and 

especially under super congestion (SC), it follows that in countries where HC or SC 

prevails, regulating the use of the NR would generate gains that are massively larger than 

found in standard analyses which have dealt with the low-congestion (LC) case.   

 

Such a tax may be hard to levy because of administrative, logistical, enforcement and/or 

other reasons, more so in developing countries, and especially in remote areas where it is 

difficult to ascertain the importance of these externalities and/or collect the tax, particularly 

in the case of small fish farms. Other regulations – as found in developed countries such as 

Norway and Scotland – designed to minimize these externalities are also likely to be 

needed, including those regarding the number of licenses allocated, their geographic 

distribution, selection of qualified applications in accordance with prioritization criteria, 

etc.29 Assuming most of the output is exported, it may be optimal to tax exports as the latter 

is much easier to collect as export points (ports, roads, airports) are limited in number and 

more easily accessible.   

 

Producers are likely to favor a rise in the sector’s terms of trade and so are the authorities, 

given the increase in employment – often in remote areas where alternatives are limited – 

and in foreign exchange revenues. However, the country’s welfare will decline following 

a terms of trade increase in the absence of regulation. Thus, an increase in demand raises 

the importance of a sound, enforceable regulatory framework in order to ensure that the 

country benefits from the higher prices.  

 
29 Among other regulations, Norwegian authorities must provide a risk assessment of disease spread in an 

aquaculture facility and the surrounding environment, including the distance to watercourses and other 

aquaculture facilities; the type of species to be produced; the farming system and production volume, before 

giving a license. Also, any license proposal must be made public by the local authorities in the municipality 

where the farm is to be located and must be published in two local newspapers, allowing the local population 

to react to the proposal. And an applicant must also obtain a waste discharge permit in order to obtain a 

license and must provide monthly reports on various aspects of the farm’s operation and impact. 
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7. Concluding Comments    

This paper examined the potential impact on output, variable input use, natural resource 

and welfare of an industry – such as aquaculture – that is based on the exploitation of a 

natural or other resource where negative congestion externalities play a dominant role. The 

analysis was conducted under both autarky and trade, and compared outcomes in the case 

of a common-property resource whose access is open, with the case where it is optimally 

regulated. This issue is of great importance in a number of developing countries, 

particularly those characterized by high congestion due to low endowment, high demand 

or both.  

 

The paper showed that 

- The welfare cost of open access under high (HC) and especially under super 

congestion (SC) is a multiple or orders of magnitude larger than under low 

congestion (LC) – the case typically examined – and results in a massive waste of 

resources;  

- An optimal tax raises price and reduces output under autarky in the case of LC and 

HC but reduces price and raises output under SC, 

- A terms-of-trade improvement reduces welfare in an open-access exporting country 

C1 and reduces its natural resource, NR; 

- Trade between open-access C1 and regulated but otherwise identical C2 reduces 

welfare and NR in C1 under LC or HC and raises welfare and NR under SC;  

- Trade between open-access C1 and a non-producing C2 always reduces C1’s 

welfare and NR; 

- A reduction in NR endowment reduces welfare and worsens trade’s impact for an 

exporting country;  

- C1’s welfare falls with the variable input (labor) level;  

- Output and welfare rise with a production tax in an open-access country under SC, 

and vice versa in the case of a production subsidy. 

 

The possibility of being on the HC or SC segment of the supply curve raises the importance 

of the optimal management of aquaculture or other industries that are based on the 

exploitation of an open-access common-property renewable natural resource.  
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Moreover, producers favor an increase in the price of their product and so does the 

government, given the positive impact on employment and foreign exchange revenue. 

However, the government should be aware that the need for a sound, enforceable regulatory 

framework increases with price because an increase in price in the case of open access 

results in a decline in welfare, particularly under SC.  
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Appendix  

I. Production tax  

Denote the tax rate by 𝜏, with 𝑝 = (1 +  𝜏)𝑝𝜏, where 𝑝𝜏 is the producer price. The solution 

for 𝐿𝜏 is 𝐿𝜏 =
𝕃

2 + 𝜏
< 𝐿 =

𝕃

2
,30 i.e., the tax reduces 𝐿𝜏. This raises (reduces) output and 

reduces (raises) price 𝑝 under SC (LC). The tax raises 𝐴𝐶. Under SC, it intersects demand 

curve 𝐷′ in Figure 1 at a point such as 𝐴1 or 𝐴0, i.e., at a higher output. The impact of 𝜏 

under HC is more complicated. For instance, an infinitesimal increase in 𝜏 raises output. 

However, the opposite occurs under the optimal tax, as shown below.   

 

The optimal production tax, 𝜏∗, is 𝜏∗ = 𝑀𝐶−𝐴𝐶

𝐴𝐶
. Thus:  

 

𝜏∗ =
1

𝛼
[√(𝛼 − 𝛽𝕃)2 + 𝛼𝛽𝕃 −  (𝛼 − 𝛽𝕃)] = √(1 −

𝛽𝕃

𝛼
)

2

+
𝛽𝕃

𝛼
 −  (1 −

𝛽𝕃

𝛼
).31  (1A) 

 

The optimal tax 𝜏∗ raises average cost from 𝐴𝐶 =
1

𝛼−𝛽𝐿
 to  𝐴𝐶𝜏 = 

1 + 𝜏∗

𝛼−𝛽𝐿
. Under SC, the tax 

results in an 𝐴𝐶 curve (in Figure 1) that intersects the demand curve 𝐷′ at point 𝐸′, i.e., it 

raises output. The optimal tax, 𝜏∗ = 𝐸′𝐼′/𝐼′𝑄1
′ , raises output from 𝑄0 to 𝑄1

′  (and a smaller 

tax results in an equilibrium at points such as 𝐴0 or 𝐴1 in Figure 1). On the other hand, 𝜏∗ 

reduces output under LC and HC. The optimum is characterized by 𝑀𝑃𝐿 = 𝛼 − 2𝛽𝐿∗ > 0, 

or 𝐿∗ <
𝛼

2𝛽
= �̂�, ∀𝕃, i.e., the optimum is always in the LC segment of the 𝐴𝐶 curve. With 

𝛼 = 10 and 𝛽 = 1, 𝐿∗ <
𝛼

2𝛽
= 5, ∀𝕃, which implies 𝑁∗ = 𝛼 − 𝛽𝐿∗ > 5.   

 

Values of 𝕃 and corresponding values for 𝜏∗ are presented in Table 1A. LC prevails for 𝕃 

= 1 (4) (9), with 𝜏∗ = .054 (.272)(. 854). HC prevails for 𝕃 =11 (𝜏∗ = 1.154) and SC for 

𝕃 = 16 (𝜏∗ = 2) and 19 (𝜏∗ = 2.55). Thus, for 𝕃 = 19 (16), 𝜏∗ is 47.2 (37) times that for 

 
30 The consumer price 𝑝 =

𝑈𝑞

𝑈𝑚
= 

𝑚

𝑞
= 

𝑀

𝑄
=

𝕃−𝐿𝜏

𝐿𝜏(𝛼−𝛽𝐿𝜏)
. With a producer price 𝑝𝜏 and tax rate 𝜏, the consumer 

price 𝑝 = (1 +  𝜏)𝑝𝜏. Under open access, 𝑝𝜏 = 𝐴𝐶 =
1

𝛼−𝛽𝐿𝜏
. Thus, 𝑝 = 

1 + 𝜏

𝛼−𝛽𝐿𝜏
=

𝕃−𝐿𝜏

𝐿𝜏(𝛼−𝛽𝐿𝜏)
, or 𝐿𝜏 =

𝕃

2 + 𝜏
.  

 

31 The optimal tax 𝜏∗ =
𝑀𝐶

𝐴𝐶
− 1 =

𝛼−𝛽𝐿∗

𝛼−2𝛽𝐿∗ − 1 =
𝛽𝐿∗

𝛼−2𝛽𝐿∗. With 𝐿∗ = 𝕃

2 + 𝜏∗ 
, we have 𝜏∗ = 

𝛽𝕃

(2 +𝜏∗)𝛼 − 2𝛽𝕃
, or 

𝛼𝜏∗2
+ 2(𝛼 − 𝛽𝕃)𝜏∗ − 𝛽𝕃 = 0, whose solution is equation (1A).  
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𝕃 = 1,  9.4 (7.4) times that for 𝕃 = 4, and 3 (2.3) times that for 𝕃 = 9. For 𝕃 = 11, 𝜏∗ is 

21.4 times that for 𝕃 = 1 and 4.2 times that for 𝕃 = 4.   
 

Table 1A. Optimal Tax Rate 𝝉∗(in %) 

𝕃     𝐀.   𝝉∗(𝛼 = 10, 𝛽 = 1) 

B.  𝝉∗(𝛼 = 5, 𝛽 = 1) = 𝝉∗(𝛼 = 10, 𝛽 = 2) 

A.                                   B. 

𝝉∗(𝕃)/𝝉∗(1) 

 

A.                     B. 

1        5.40                               11.7       1                        1 

4       27.2                               71.7                           5.0                      6.1 

9       85.4                               236     15.8                    20.2 

11      115.4                                   21.4                      

16       200                                   37.0                       

19       255                                   47.2                      

 

Under LC (SC), the central value of 𝕃 is 5 (16.667), and that of 𝜏∗ = 36.6 (212) percent. 

Thus, the average value of 𝜏∗ under SC is 5.8 times the value under LC.  

 

As shown in equation (1A), 𝜏∗ can be written as a function of 𝛽/𝛼.  Hence, the optimal tax 

for 𝛼 = 5, 𝛽 = 1 is the same as for 𝛼 = 10, 𝛽 = 2. Not surprisingly, as shown in column 

B, 𝜏∗ is larger under a smaller endowment or a greater externality, with 𝜏∗ between two 

and three times the level in column A. Moreover, 𝜏∗ rises more rapidly as 𝕃 increases. 

 

II. Robustness simulations  

This section provides derivations, tables and detailed descriptions of the results provided 

in Section 3.4 which examines the robustness of the results obtained in Section 3.3 by using 

different values for the parameters of the production and utility functions, as well as 

different functional forms for them.  
 

1. Parameter values for 𝛼 and 𝛽 

The case of 𝛼 = 6, 𝛽 = 1 is examined in Panel A (where 𝕃 < 12) and 𝛼 = 2, 𝛽 =

1 (where 𝕃 < 4) in Panel B. In Panel A, the welfare (NR) loss ∇𝑈11 (∇𝑁11) for 𝕃 = 11 is 

equal to 55 (86) percent or 162 (210) times ∇𝑈1 (∇𝑁1) for 𝕃 = 1, 107 (45) times 
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∇𝑈2 (∇𝑁2), 53 (18) times ∇𝑈3 (∇𝑁3), 8.3 (3.4) times ∇𝑈6 (∇𝑁6) and 2 (1.5) times 

∇𝑈9 (∇𝑁9). 

Table 2A.  Autarky: Open Access vs. Optimum 
 

A: 𝛼 = 6, 𝛽 = 1 
 

 

𝕃 

Open Access 

  𝐿         𝑁         𝑄           𝑈 

Optimum 

  𝐿∗        𝑁∗       𝑄∗       𝑈∗ 

Difference: 
𝑥−𝑥∗

𝑥∗  (in %) 

∇𝐿      ∇𝑁     ∇𝑄         ∇𝑈 

  1  .50      5.5       2.8       1.173 .49       5.5       2.6      1.177  2.7    -.41      2.5       -.339 

  2  1.0      5.0       5.0       1.118 .90      5.1     4.6     1.124 11     -1.9      8.7       -.516 

  3  1.5      4.5       6.8       1.061 1.3       4.7       6.0      1.072 19     -4.9     13.3      -1.04 

  6  3.0      3.0       9.0        .866 2.0      4.0     8.0       .928 50      -25     12.5      -6.65   

 9  4.5      1.5       6.8        .612 2.4      3.6     8.6       .839 91      -59    -21.4      -27.0 

11  5.5      .50       2.8        .350 2.5      3.5     8.8       .784 112    -86     -69        -54.9 

 
 

  B: 𝛼 = 2, 𝛽 = 1 
 

 

𝕃 

Open Access 

  𝐿         𝑁        𝑄        𝑈 

Optimum 

  𝐿∗        𝑁∗      𝑄∗      𝑈∗ 

Difference: 
𝑥−𝑥∗

𝑥∗  (in %) 

∇𝐿      ∇𝑁     ∇𝑄      ∇𝑈 

  1 .50      1.5      .75      .6124 .42      1.6     .67      .6204   18     -4.9     13      -1.6 

  3 1.5      .50      .75      .3536 .78      1.2     .95      .4845  91     -59     -21      -27 

 

For the average value of ∇𝑈 by congestion category, we have ∇𝑈𝑆𝐶 (∇𝑈𝐻𝐶) =

−41 (−7.2), or 66.5  (11.7) times ∇𝑈𝐿𝐶 = −.617.  

 

Similarly, for the average NR, ∇𝑁𝑆𝐶  (∇𝑁𝐻𝐶) = −71 (−28) or 29.6 (11.7)∇𝑁𝐿𝐶 = −2.4.   

 

3. Alternative utility functions 

The robustness of the results is examined here under two alternative utility functions.  

 

   𝐴. The first utility function specified is (a constant-relative-risk-aversion utility function) 

𝑈(𝑥) =
𝑥1−𝜇

1−𝜇
, 𝜇 ≠ 1 (with 𝑈(𝑥) = log(𝑥) for 𝜇 = 1). Assuming separability and 𝜇 ≠ 1, 

𝑈(𝑚, 𝑞) = 𝑈(𝑚) + 𝑈(𝑞) =
𝑚1−𝜇

1−𝜇
+

𝑞1−𝜇

1−𝜇
. With 𝜇 = 1/2, we have:  



 38 

𝑈 =
𝑚1/2

1/2
+

𝑞1/2

1/2
.          (2A)  

Maximizing utility implies that the ratio of marginal utilities equals the commodity’s 

relative price, i.e., (
𝑚

𝑞
)

1/2

= (
𝑀

𝑄
)

1/2

= [
𝕃−𝐿

𝐿(𝛼−𝛽𝐿)
]

1/2

= 𝑝. Under open access, 𝑝 = 𝐴𝐶 =

1

𝛼−𝛽𝐿
. The equation is rewritten as 𝛽𝐿2 − (1 + 𝛼 + 𝛽𝕃)𝐿 +𝛼𝕃 = 0.32 The solution is: 

  

𝐿 =
1

2𝛽
(1 + 𝛼 + 𝛽𝕃 − √(1 + 𝛼 + 𝛽𝕃)2 − 4𝛼𝛽𝕃).     (3A)    

 

At the optimum, 𝑝 = [
𝕃−𝐿

𝐿(𝛼−𝛽𝐿)
]

1/2

= 𝑀𝐶 =
1

𝛼−2𝛽𝐿
, or 

𝕃−𝐿

𝐿(𝛼−𝛽𝐿)
=

1

(𝛼−2𝛽𝐿)2,  a cubic equation 

that is rewritten as: 

 

4𝛽2𝐿3 − 𝛽(1 + 4𝛼 + 4𝛽𝕃)𝐿2 + 𝛼(1 + 𝛼 + 4𝛽𝕃)𝐿 − 𝛼2𝕃 = 0.    (4A)  

 

Simulation results for 𝛽 = 1 are presented in Table 3A, with 𝛼 = 6 in Panel A and 𝛼 = 4 

in Panel B.  

 

In Panel A, 𝛼 = 6. LC prevails for 𝕃 = 1 and 𝕃 = 3. For 𝕃 = 1, the welfare impact of open 

access is ∇𝑈𝐿𝐶 ≡
𝑈𝐿𝐶−𝑈𝐿𝐶

∗

𝑈𝐿𝐶
∗  = −.19 percent, and the NR impact is ∇𝑁𝐿𝐶 =

𝑁𝐿−𝑁𝐿
∗

𝑁𝐿
∗ = −.93. 

For 𝕃 = 3, the welfare impact of open access is ∇𝑈𝐿2 = −3.4 = 18∇𝑈𝐿𝐶, the NR impact 

is ∇𝑁𝐿2 = −14.9 = 16.1∇𝑁𝐿𝐶. The average for 𝕃 = 1 and 𝕃 = 3 is ∇𝑈𝐿𝐶2 = −1.8 and 

∇𝑁𝐿𝐶2 = −7.9. 

 

HC prevails for 𝕃 = 5. In percent, ∇𝑈𝐻𝐶 = −9.0 = 47∇𝑈𝐿𝑐 = 5∇𝑈𝐿𝐶2, and ∇𝑁𝐻𝐶 =

−36.4 = 39∇𝑁𝐿𝐶 =5∇𝑁𝐿𝐶2. 

SC prevails for 𝕃 = 10 and 𝕃 = 50. For 𝕃 = 10, ∇𝑈𝑆𝐶 = −21.5 = 113∇𝑈𝐿𝐶 = 12∇𝑈𝐿𝐶2, 

and ∇𝑁𝑆𝐶 = −71.7 = 77∇𝑁𝐿𝐶 = 9.1∇𝑁𝐿𝐶2. For 𝕃 = 50, ∇𝑈𝑆2 = −23.7 = 125∇𝑈𝐿𝐶 =

13.2∇𝑈𝐿𝐶2 and ∇𝑁𝑆2 = −95.9 = 103∇𝑁𝐿𝐶 = 12.1∇𝑁𝐿𝐶2.  

 

 

32 Thus, [
𝕃−𝐿

𝐿(𝛼−𝛽𝐿)
]

1/2

=
1

𝛼−𝛽𝐿
 ⇒

𝕃−𝐿

𝐿(𝛼−𝛽𝐿)
=

1

(𝛼−𝛽𝐿)2 ⇒
𝕃−𝐿

𝐿
= 

1

𝛼−𝛽𝐿
 ⇒ 𝛽𝐿2 − (1 + 𝛼 + 𝛽𝕃)𝐿 +𝛼𝕃 = 0. 
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With 𝕃 = 5 (10) (50), 𝐿 is 71 percent above (twice) (2.1 times) the optimum, with an 

impact on output of −5(−43)(−91) percent and an impact on NR of −51(−77)(−96) 

percent, amounting to a massive waste of resources. 

 

Table 3A. Autarky: Open Access vs. Optimum 
 

Panel A: 𝛼 = 6, 𝛽 = 1 

 

𝕃 

Open Access 

  𝐿        𝑁         𝑄        𝑈 

Optimum 

  𝐿∗       𝑁∗       𝑄∗       𝑈∗ 

Difference: 
𝑥−𝑥∗

𝑥∗  (in %) 

∇𝐿      ∇𝑁     ∇𝑄     ∇𝑈 

 1  .84      5.2      4.3      5.0 .79     5.2       4.1     5.01  6.1     -.93     5.1    -.19 

   3  2.4      3.6      8.6      4.3 1.8     4.2       7.5     4.45 33      -15      15     -3.4 

 5  3.6      2.4      8.6      3.7 2.1     3.9       8.3     4.1 71      -36     -5.1    -9.0   

10  5.0      1.0      5.0      2.8 2.5     3.5       8.7     3.6 103    -71     -43     -21 

50  5.9      .13      .78      2.1 2.8     3.2       9.0     2.8  111    -96     -91     -24   

 

 

Panel B: 𝛼 = 4, 𝛽 = 1 
 

 

𝕃 

Open Access 

  𝐿         𝑁        𝑄         𝑈 

Optimum 

  𝐿∗        𝑁∗       𝑄∗       𝑈∗ 

Difference: 
𝑥−𝑥∗

𝑥∗  (in %) 

∇𝐿      ∇𝑁     ∇𝑄       ∇𝑈 

   1  .76      3.2      2.5       4.1 .68      3.3      2.3       4.1  13      -2.6     9.8     -.46 

   3  2.0      2.0      4.0       3.5 1.3      2.7      3.5       3.7 55      -26      14      -5.6 

 5  2.8      1.2      3.4       3.0 1.5      2.5      3.7       3.7 86      -51     -8.5     -12   

10  3.5      .53      1.8       2.5 1.7      2.3      3.9       3.1 109    -77     -53      -19 

50  3.9      .08      .33       2.1 1.9      2.1      4.0       2.6 112    -96     -92      -20 

 

 

In panel B, 𝛼 = 4 and 𝛽 = 1, with LC (HC) (SC) prevailing for 𝕃 < 4 (4 < 𝕃 < 5.33) 

(𝕃 > 5.33). In percent, at 𝕃 = 1, ∇𝑈𝐿𝐶 = −.46 and ∇𝑁𝐿𝐶 = −2.6. At 𝕃 = 3, ∇𝑈𝐿2 =

−5.6 = 12.2∇𝑈𝐿𝐶 and ∇𝑁𝐿2 = −26.2 = 19∇𝑁𝐿𝐶 . At 𝕃 = 5 (HC), ∇𝑈𝐻𝐶 = −12.3 =

25.5∇𝑈𝐿𝐶  and ∇𝑁𝐻𝐶 = −50.9 = 19.6∇𝑁𝐿𝐶. At 𝕃 = 10 (SC), ∇𝑈𝑆𝐶 = −19.3 = 42∇𝑈𝐿𝐶   

and ∇𝑁𝑆𝐶 = 78.0 = 30∇𝑁𝐿𝐶. At 𝕃 = 50, ∇𝑈𝑆2 = −20.2 = 44∇𝑈𝐿𝐶  and ∇𝑁𝑆2 = −96.8 =

37∇𝑁𝐿𝐶.  
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As with the original utility function in (2), the welfare losses under SC are a multiple of 

those under LC or are of a greater order of magnitude.   

 

   𝐵. A second utility function used here as a second check on the results is:  
 

𝑈 = (𝑚 −
𝑚2

2
) + (𝑞 −

𝑞2

2
) , 𝑚 =

𝑀

𝕃
, 𝑞 =

𝑄

𝕃
.      (5A)  

 

Utility maximization implies that 𝑝 =
𝑈𝑞

𝑈𝑚
=

1−𝑞

1−𝑚
. With 𝑀 = 𝑙 = 𝕃 − 𝐿, 𝑚 = 1 −

𝐿

𝕃
, 

and 1 − 𝑚 =
𝐿

𝕃
. Thus, 𝑝 = 

1−𝑞

𝐿/𝕃
=

(𝕃−𝑄)

𝐿
= 

𝕃

𝐿
− (𝛼 − 𝛽𝐿).  

 

Open Access: 

Competitive producers using an open-access NR as input select output where 𝑝 = 𝐴𝐶, i.e., 

𝑝 =
1

𝛼−𝐿
. Thus, 𝕃 − 𝐿(𝛼 − 𝛽𝐿) =

𝐿

𝛼−𝛽𝐿
, a cubic equation in 𝐿, namely:  

 

𝛽2𝐿3 − 2𝛼𝛽𝐿2 + (1 + 𝛼2 + 𝛽𝕃)𝐿 − 𝛼𝕃 = 0.     (6A) 

 

Optimum: 

At the optimum, price 𝑝 = 𝑀𝐶, i.e., 
𝕃

𝐿
− (𝛼 − 𝛽𝐿) =

1

𝛼−2𝛽𝐿
. Thus, we have:  

 

𝛽2𝐿3 −
3𝛼𝛽

2
𝐿2 +

1

2
(1 + 𝛼2 + 2𝛽𝕃)𝐿 −

𝛼𝕃

2
= 0.     (7A) 

 

Under open access, for 𝛼 = 2 and 𝛽 = 1, we have 𝐿3 − 4𝐿2 + (5 + 𝕃)𝐿 − 𝛼𝕃 = 0. For 

𝕃 = 1, an LC case, the solution is 𝐿𝐿 = .4563, 𝑁𝐿 = 1.544, 𝑚𝐿 = .544, and 𝑚𝐿 −
𝑚𝐿

2

2
=

.396. Also, 𝑞𝐿 = .704 and 𝑞𝐿 −
𝑞𝐿

2

2
= .456. Thus, 𝑈𝐿 = .8522.  

 

For the optimum, we have 𝐿3 − 3𝐿2 + (5 + 2𝕃)𝐿 − 𝕃 = 0, with 𝐿𝐿𝐶
∗ = .410, 𝑁𝐿𝐶

∗ =

1.590, 𝑞𝐿𝐶
∗ = .652, 𝑞𝐿𝐶

∗ −
(𝑞𝐿

∗)2

2
= .440; 𝑀𝐿𝐶

∗ = 𝑚𝐿𝐶
∗ = .590, 𝑚𝐿𝐶

∗ −
(𝑚𝐿

∗ )2

2
= .416 and 

𝑈𝐿𝐶
∗ = .8555 = 𝑈𝐿𝐶 + .0033. Thus, the welfare impact of open access is ∇𝑈𝐿𝐶 = −

.0033

.8555
=

−.00375 or a loss of .375 percent. The impact on NR quality is ∇𝑁𝐿𝐶 = −2.90 percent.    

 

For 𝕃 = 5, a SC case, 𝐿3 − 4𝐿2 + 10𝐿 − 10 = 0. Under open access, 𝐿𝑆𝐶 = 1.629, 𝑁𝑆𝐶 =

.371, 𝑄𝑆𝐶 = .604, 𝑞𝑆𝐶 = .121, 𝑀𝑆𝐶 = 3.371, 𝑚𝑆𝐶 = .674, and 𝑈𝑆𝐶 = .560. At the 
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optimum, 𝐿3 − 3𝐿2 + 15𝐿 − 5 = 0, 𝐿𝑆𝐶
∗ = .356, 𝑁𝑆𝐶

∗ = 1.644, 𝑄𝑆𝐶
∗ = .585, 𝑀𝑆𝐶

∗ = 4.644, 

and 𝑈𝑆𝐶
∗ = .608 = 𝑈𝑆𝐶 + .048, with ∇𝑈𝑆𝐶 = −7.77 percent, or 20.7∇𝑈𝐿𝐶, and ∇𝑁𝑆𝐶 =

−77.5 percent, or 26.7∇𝑁𝐿𝐶. Thus, the welfare (NR) cost under 𝕃 = 5 is over 20 (26) times 

that under 𝕃 = 1.  

 

For 𝕃 = 10, also a SC case, 𝐿𝑆2 = 1.8, 𝑁𝑆2 = .2, 𝑈𝑆2 = .519, 𝐿𝑆2
∗ = .95, 𝑁𝑆2

∗ = 1.05, 

𝑈𝑆2
∗ = .590 and, in percent, ∇𝑈𝑆𝐶2 = −12.1 = 32.1∇𝑈𝐿𝐶, and ∇𝑁𝑆𝐶2 = −81 = 28∇𝑁𝐿𝐶. 

Thus, the welfare (NR) cost under 𝕃 = 10 is 32 (28) times that under 𝕃 = 1. 

 

As with the original utility function in (2), the welfare losses under SC are a multiple of 

the losses under LC or are of a greater order of magnitude.   

 

 

 

 


