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Abstract 
 
Incomplete data is a common problem of survey research. Recent work on 
multiple imputation techniques has increased analysts’ awareness of the 
biasing effects of missing data and has also provided a convenient solution. 
Imputation methods replace non-response with estimates of the unobserved 
scores. In many instances, however, non-response to a stimulus does not 
result from measurement problems that inhibit accurate surveying of 
empirical reality, but from the inapplicability of the survey question. In such 
cases, existing imputation techniques replace valid non-response with 
counterfactual estimates of a situation in which the stimulus is applicable to 
all respondents. This paper suggests an alternative imputation procedure for 
incomplete data for which no true score exists: multiple complete random 
imputation, which overcomes the biasing effects of missing data and allows 
analysts to model respondents’ valid ‘I don’t know’ answers. 
 
 
Keywords:   missing data, incomplete data, non-response, 
           multiple imputation, survey methodology,  
           mixture regression models, vote choice 
 
 
JEL Classification:  C81, D72, D80 
 

 
 
 
1.  Introduction 
 
Problems of incomplete data have long been ignored by applied empirical research. In recent 
years, however, the development of advanced imputation techniques and their implementation 
in software packages has raised scholars’ awareness of these problems.1 One consequence of 
ignoring missing data can be a bias in parameter estimates, necessitating correction for such 
effects (e.g., Rubin, 1987; Little and Rubin, 1987). Multiple imputation procedures in 
particular make it possible to estimate unobserved data effectively, to include all data in the 
analysis, and thus to alleviate problems due to item non-response. 
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One of the basic assumptions about the applicability of such imputation techniques is that 
incomplete data is generated by measurement problems, which means that a true score for a 
survey question exists for all respondents but that these scores are not always observable. The 
literature on survey research provides various examples of measurement problems (for an 
overview see e.g., Tourangeau et al., 2000). These occur particularly if survey questions tap 
socially desirable behavior (e.g., voting) or illegal behavior (e.g., drug abuse), or if questions 
relate to subjects considered to be private by respondents (e.g., sexuality). Also, complex 
survey questions may increase non-response rates. For example, respondents simply may not 
know how much they contribute to their old age insurance or they may have difficulties 
recalling how many times they visited a doctor within a certain period, etc. Yet another 
example of measurement problems is the application of split-half techniques: analysts 
deliberately generate incomplete data by not observing variables for a certain subgroup or a 
random subsample of the original N. Existing imputation techniques are designed to 
compensate for measurement problems. These techniques estimate the unobserved (but 
existing) data on respondents by drawing on patterns in the observed data. 
 
Measurement problems are not the only basis for incomplete data, however. Survey questions 
often are inapplicable to parts of the sample because respondents are simply not familiar with 
the stimulus of a question. As King et al. (2001: 50) point out: 
 

“In some cases [.] ‘I don’t know’ given in response to questions about the national helium 
reserve or the job performance of the Secretary of Interior probably does not mean the 
respondent is hiding something, and it should not be treated as a legitimate answer to be 
modeled rather than a missing value to be imputed.” 

 
Asking respondents to give a statement in response to a stimulus presupposes that the stimulus 
in fact is relevant to all respondents surveyed. For some respondents, however, a true score 
may not exist. If respondents do not have adequate information with regards to the stimulus, 
an ‘I don’t know’ answer is a valid response. One may argue that in such cases one does not 
encounter item non-response in some narrow definition of the term as respondents provide the 
true answer. Yet, the consequence of a valid ‘I don’t know’ response is the same as an invalid 
refusal. Irrespective of whether measurement problems or the inapplicability of a survey 
question lead to an ‘I don’t know’ answer, such a response will generate incomplete data and 
all the associated problems. 
 
This paper focuses on this kind of incomplete data: valid ‘I don’t know’ answers given in 
response to survey questions that are not applicable to some part of the sample. A procedure is 
proposed for modeling the information provided by respondents’ valid ‘I don’t know answer’ 
using multiple complete random imputation. The paper is structured in four sections. The first 
section very briefly reviews arguments as to why missing data are problematic for statistical 
inferences drawn from surveys and what statistical tools supposedly compensate for such 
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problems. The second section develops the idea of a multiple complete random imputation of 
incomplete data as an alternative to existing imputation procedures. The third section formally 
and empirically demonstrates the consequences of the technique for a simple linear model. 
The empirical example (vote choice in the 1994 Dutch parliamentary election) illustrates the 
consequences of different missing data treatments. The empirical example also focuses 
attention on the issue of mixed effects in samples consisting of observed and imputed data. 
The final section discusses the circumstances under which alternative treatments of 
incomplete data are most appropriate. 
 
 
2.  Missing data and how to handle it 
 
Missing data is a widespread phenomenon in survey research. On the basis of empirical 
articles published in American political science journals, King et al. (2001) estimate that on 
average about a third of the original sample used in these papers is excluded from the analyses 
due to item non-response in any one of the underlying variables. The most common way to 
handle incomplete data is the listwise deletion of such cases. Deleting in the event of missing 
data confronts analysts with a trade-off: either they lose numerous cases, or they exclude 
covariates of interest when those share of item non-response appear too high. Both 
alternatives are unsatisfactory as they invalidate costly information and, more importantly, 
limit the statistical inferences that can be drawn from survey data. Yet the listwise deletion of 
missing data may not only obstruct practical restrictions on the number of analyzable units 
and variables; it may also generate selection bias in the models estimated. The biasing effect 
of incomplete data depends on the marginal distribution of non-response. 
 
There are three basic types of incomplete data: data missing completely at random (MCAR), 
data missing at random (MAR) and data not missing at random (NMAR) (e.g., Rubin, 1987; 
Little and Rubin, 1987; Schafer, 1997; King et al., 2001; Allison, 2002). In the first case, 
MCAR, the occurrence of missing data is uncorrelated with values on any other variable in the 
dataset. The listwise deletion of incomplete data will produce an approximately random 
subsample of the original N. Statistical analyses on the basis of the original N and a random 
sub-sample will yield approximately the same, unbiased estimates. Nevertheless, the smaller 
sample size makes the estimation less efficient. To the extent that incomplete data are 
correlated with observed values on other variables in the dataset, i.e. if data are MAR, a 
listwise deletion of observations with missing data will lead to a biased subsample.2 The third 
form of incomplete data, NMAR, describes a situation in which the missing data mechanism 
depends on the true values that are unobserved.3 This paper omits the category of data missing 
completely at random (MCAR) as well as the category of data not missing at random (NMAR) 
and focuses on solutions to the problems of data missing at random (MAR) only. 
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The second type of incomplete data, data missing at random (MAR), is central for the further 
discussion in this paper. There is general agreement among scholars that imputation 
techniques are able to solve the problems related to MAR (e.g., Allison, 2002). Such methods 
estimate the true scores underlying item non-response based on patterns of relationships in the 
observed data. The literature suggests that of the host of parametric as well as non-parametric 
methods, multiple multivariate normal specifications and related methods approximate 
incomplete data most effectively (Schafer, 1997; King et al., 2001). A detailed discussion of 
these methods and their differences is beyond the scope of this paper (see e.g., Allison, 
2002).4 Nevertheless, it is crucial for the proceeding argumentation to note that these methods 
all belong to the same group of solutions. Applying these methods means replacing 
incomplete data by a reasonable guess. In terms of a linear model, some sort of  is 
substituted for missing scores on y. 

ŷ

 
 
3.  Imputing valid ‘I don’t knows’? 
 
What are possible solutions to the incomplete data problem if the likelihood of missing data is 
related to other variables in the analysis, i.e. when data is MAR and the cause of incomplete 
data is not measurement problems but the inapplicability of a stimulus? Of the host of 
solutions to this problem, this section briefly discusses the adequacy of existing (multiple) 
imputation techniques when modeling valid ‘don’t knows’.5 Thereafter, an alternative 
approach is presented, a multiple complete random imputation of incomplete data. 
 
Is it sensible to use advanced multiple imputation techniques, which are known to produce 
unbiased estimates of unobserved data, when the data is missing because survey questions are 
inapplicable? Are these methods robust against violations of the assumption that unobserved 
scores underlie the incomplete data? While it makes sense to estimate such true scores in the 
event of measurement problems, it makes less sense when survey questions are inapplicable. 
Generally, scores that do not exist should not be estimated if one is interested in a description 
of empirical reality, because such methods estimate counterfactual data. For instance, if all 
respondents hold a particular opinion on issue x, what impact would this opinion have on 
other variables analyzed? As this often is not the kind of information analysts are interested 
in,6 existing imputation techniques do not provide an adequate solution to the problem of 
incomplete data generated by the inapplicability of survey items. The method is indeed not 
robust to violations of its assumptions. 
If one nonetheless regards estimated results on the basis of imputed data as a reflection of the 
real world, it is a biased reflection. Less-informed respondents are ‘transformed’ into 
knowledgeable respondents and are therefore under-represented in the sample. The selection 
bias of listwise deletion is replaced by the selective misspecification bias of the imputation of 
incomplete data, the latter usually resulting in exaggerated effects. If, for instance, opinions 
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on issue x affect party choice among informed respondents, this relationship will also be 
replicated for respondents who are unfamiliar with issue x. But this result is, in my opinion, 
artificial. How can an opinion on x have a positive/negative effect on the choice of some party 
in the group of respondents who are unfamiliar with issue x or are unable to form an opinion? 
But if existing imputation techniques do not provide an adequate tool for handling this 
particular type of missing data, what else to do? What information is contained in a valid ‘I 
don’t know’ response that can enable the analyst to relate this answer to the metric of a 
response scale and thus analyze all the cases in the statistical analysis? 
 
A valid ‘I don’t know’ answer to an inapplicable survey question is, in my opinion, best 
represented by a random answer on the response scale. If interviewers forced respondents who 
are unfamiliar with issue x to report an opinion anyway, one would usually expect a random 
answer. Thus, what is in fact unobserved by a valid ‘I don’t know’ answer is an arbitrary 
answer on the survey question. It is therefore assumed that a substitution of random values for 
incomplete data is what comes closest to the information provided by ‘I don’t know’ answers 
that originate from the inapplicability of survey questions. 
 
But how are these random responses most likely distributed? First, it seems plausible to retain 
the metric of the answer scale. If respondents had been forced to give an answer, they would 
have done so by using the answer categories offered. Second, the likelihood with which they 
would have chosen certain answer categories is unknown. Different distributions of the 
random variable are possible and reasonable.7 I propose the empirical univariate distribution 
in the complete cases. The randomly imputed values thereby are a random draw from the 
observed answers on a response scale. As an alternative to the univariate distribution, one 
could select the multivariate distribution in the observed cases for the random draw, that is, 
take into account the response distribution for ‘related’ cases in the substitution process of 
missing information.8 Even if it is practical to use such multivariate distributions for the 
imputation of incomplete data by arbitrary scores, it is problematic from a conceptual point of 
view. If incomplete data results from the inapplicability of a stimulus, estimating different 
variances for the imputed data in different groups of the sample again means generating 
counterfactual information. The use of multivariate distributions presumes that respondents 
would have shown a certain response pattern if they had been familiar with the stimulus. 
Hence, it appears from a conceptual point of view more warranted to rely on less information 
in the complete cases (univariate distribution) when generating random values for incomplete 
data than to draw on observable patterns in the complete data (multivariate distribution). I 
therefore consider the complete random draw from the univariate distribution of the complete 
data as a reasonable approximation of the unknown distribution of ‘forced’ answers on a 
response scale in the group of respondents who provide a valid ‘I don’t know’ answer. 
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The proposed complete random imputation of missing scores dmis draws values from the 
univariate observed distribution dobs with estimated mean µ)  and estimated variance 2σ) , 
 

                       
2~ ( | , )mis obsd f d µ σ) ) .                        (1) 

 
If one substitutes values for incomplete data that are the result of a single random draw, 
computed standard errors are underestimated (Rubin, 1987). Randomly imputed scores are 
treated as if they are observed ones. One thereby disregards that a random draw retrieves the 
distributional properties of a population with sampling error only (e.g., Greene, 2000: 97ff). 
The possibility of falsely relying on an outlier-draw introduces uncertainty in statistical 
models based on randomly imputed data. To take account of this uncertainty and to estimate 
more adequate standard errors, Rubin (1987) suggests the creation of multiple imputed 
datasets. This procedure is often applied in existing imputation techniques that rely on a 
random component (Schafer, 1997; King et al., 2001). 
In each of these m generated multiple datasets, the observed data are identical, as is the 
algorithm that leads to random draws. However, each random draw generates parameters 
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To the extent that these results vary over m datasets (between imputation variance), a 
correction for small numbers of m is introduced so that the total variance is 
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Although there is, of course, no limit to the number of datasets generated, five replications 
have proven to be sufficient in many applications (Allison, 2002). 
 
 
4.  Consequences of a multiple complete random imputation 
 
What are the consequences of a complete random imputation of item non-response for 
statistical analyses that are based on a dataset of observed and imputed data? This section 
takes a formal and an empirical approach to illustrate this point. The empirical example is 
based on Dutch politics and demonstrates how three procedures of handling the incomplete 
data problem – listwise deletion, multiple importance weighted Expectation Maximization 
(EMis) imputation, multiple complete random imputation – affect the analysis of a substantive 
research question. 
 
 
4.1 Formal illustration: multiple complete random imputation and regression models  
 
Starting with the formal argument, suppose the simple example of explaining variable y (party 
preference) by variable x (opinion on issue x) by means of an ordinary least squares 

regression. One of the main interests will usually be the parameter estimate b
)

 in this 
regression, 
 

                         
1[ ] [b x x x y−′ ′= ]

)
.                          (6) 

 
Suppose furthermore that respondents often are not sufficiently familiar with the stimulus of x 
(opinion on issue x), which leads to many ‘I don’t know’ answers. Let xobs denote observed 
values and xmis missing values on x. Splitting between complete and missing scores details the 
slope estimate, 
 

                  

1

|

|

obs

mis

obs xobs obs obs
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Item non-response on x, i.e. xmis, is imputed as suggested in Equation 1 by randomly drawing 
from the observed data on x, i.e. xobs. Hence, a complete random imputation substitutes 
incomplete data xmis by scores dmis from these random draws, so that 
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Note that dmis is a random variable. The covariance between dmis and y is therefore zero. Note 
also that the distributional properties of dmis follow the univariate distribution in xobs (since dmis 
draws randomly from xobs). Hence, the variance of dmis equals the variance of xobs. Equation 8 
can thus be reduced to 
 

                      [ ] 1
| obsobs obs xb x x x y−  ′ ′=                          (9) 

 
Consecutive equations 6 to 9 point out two important implications of a complete random 
imputation of incomplete data. First, imputing random values as proposed results in parameter 
estimates that are approximately zero for respondents who are not sufficiently familiar with 

the survey question underlying variable x. The parameter estimate b
)

 of the effect of the issue 
position on x on party choice is approximately zero for respondents who do not hold an 
opinion on x. This seems a reasonable implication from what is known about this kind of 
incomplete data. Respondents’ opinions on x cannot have affected party choice if respondents 

did not hold opinions on x. The second implication regards estimate b
)

 in the whole sample. 

Equation 9 illustrates that the estimation of b
)

 rests solely on the covariance in the complete 

cases but the variance in all cases. Hence, the size of b
)

 in the whole sample is reduced 
according to the proportion of incomplete data. Incomplete data is in fact replaced by random 
error or white noise. As a consequence, fit statistics are also reduced according to the 
proportion of missing scores. 
 
 
4.2  Empirical illustration: vote choice in 1994 Dutch parliamentary election  
 
An empirical example of Dutch politics illustrates the consequences of a multiple complete 
random imputation as described above. Moreover, it contrasts these findings against a 
complete case analysis, i.e. results based on listwise deleted missing data, and multiple 
imputed data using an importance-weighted Expectation Maximization (EMis) algorithm 
(King et al., 2001). The analysis draws on data from the easily accessible (ICPSR or 
Steinmetz Archive) and well-documented (Anker and Oppenhuis, 1997) Dutch parliamentary 
election study of 1994 (DPES’94). In the example, a regression model aims to explain the 
reported probability of voting for the Green/Left Party, Groen/Links, in the Dutch 
parliamentary election of 1994.9 The dependent variable is a ten-point scale on which 
respondents indicate how likely it is that they will ever vote for this party.10 
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Two explanatory variables are included in the ordinary least square regression. The first 
explanatory variable is respondents’ self-placement on a nuclear-plants-scale that ranges from 
1 (more nuclear plants should be built) to 7 (no more nuclear plants should be built). Table 1 
reports that 96% of the respondents who report a value on the dependent variable (probability 
to vote) also had an opinion on the issue of nuclear power and provided an answer to the 
survey question. 
The second explanatory variable of voting for the Green Party is a feeling thermometer (like-
dislike) that measures sympathy for Mohamed Rabbae, one of the two Green/Left party 
leaders at that time. Mohamed Rabbae was widely unknown among the electorate: 41% of the 
sample reported not knowing him. The high rate of incomplete data on the question of the 
Green party leader results in all likelihood from the unfamiliarity of many respondents with 
this politician and not from measurement problems.11 Asking the same question of like-dislike 
about Wim Kok (PvdA), Elco Brinkman (CDA) and Hans van Mierlo (D66) produces only 
marginal non-response. About 99% of the sample reported an opinion on these three party 
leaders, suggesting that respondents, who reported not knowing Mohamed Rabbae, provide 
the correct and legitimate answer. The result may not be surprising, keeping in mind that there 
are often more than ten parties represented in the Dutch parliament and party leaders of small 
parties do not receive as much attention by the mass media as leaders of large parties. 
Mohamed Rabbae was not even the most unknown party leader in the 1994 parliamentary 
election. A majority of 80% respectively 87% of the respondents is unfamiliar with the party 
leaders of the two small orthodox Protestant parties SGP and RPF, Bas van der Vlies and 
Leen van Dijke. In sum, about 95% of the individuals know at least five out of nine party 
candidates surveyed in the DPES’94, however, only 8% report an opinion on all nine 
candidates. 
 

<Table 1> 
 
Given a simple model that explains voting for the Dutch Green Party by a vital environmental 
party issue, nuclear power, and by the evaluation of the party leader, Mohamed Rabbae, a 
reasonable research question could be the following: what was more important for supporting 
the Green Party in 1994, voters’ positions on the nuclear plant issue or their evaluation of the 
candidate Mohamed Rabbae? 
Many scholars would probably not approach the question on the basis of the given data with 
the argument that 43% non-response comprises too much slippage to draw reasonable 
conclusions. Disregarding these reservations, a linear regression model of the complete cases 
(Model 1, Table 2) suggests that Mohamed Rabbae was more important for vote choice than 
the issue of nuclear plants. The estimated effects based on listwise deleted data are of course 
correct, as long as one is interested in the group of respondents who happen to know 
Mohamed Rabbae. However, since analysts usually are interested in the whole sample, these 
findings are at least controversial. It is implausible to conclude a strong effect of the 
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evaluation of Mohamed Rabbae in the whole sample if this variable causes 41% item non-
response. 
 

<Table 2> 
 
If missing data is included in the analysis by means of an advanced imputation technique, one 
obtains results reported in the following column of Table 2 (Model 2). This solution is based 
on the importance-weighted Expectation Maximization (EMis) algorithm proposed by King et 
al. (2001). The multiple datasets were generated by using the Amelia imputation software 
developed by Honaker et al. (1999). Without going into detail about the procedure, it may be 
noted that there is some agreement among experts that this is an advanced solution to the 
missing data problem (Allison, 2002). Beside variables of the model, additional variables 
(age, sex, education, interest in politics) are included in the imputation process. Results of the 
EMis imputation illustrate that such imputation methods reduce standard errors of the 
parameter estimates by including all cases in the analysis. From a substantive point of view, 
however, one finds rather similar effect parameters than for the complete case analysis. The 
counterintuitive result is confirmed that Mohamed Rabbae was more important than nuclear 
plants for voting Green. But what one estimates here is the counterfactual prediction of what 
voting would have looked like if all respondents had known Rabbae. 
 
The column of Table 2 on Model 3 reports the results based on a multiple complete random 
imputation of missing data. Again, standard errors are smaller compared to the complete case 
solution, but effect parameters and the goodness of fit statistic are also reduced. According to 
the number of missing cases (few for the first and many for the second explanatory variable) 
estimated parameters decrease in magnitude. These results correspond with what one 
intuitively would expect: the evaluation of Mohamed Rabbae is less important for voting 
Green/Left than the issue of nuclear plants. The low R2 also more accurately reflects what one 
actually observes on the relationship between opinions on nuclear power and the evaluation of 
Mohamed Rabbae on the one hand, and the probability of voting for the Green Party on the 
other. One has, in fact, less information than the variance reduction in the first two models 
suggests. Given the set of explanatory variables included in the model, the solution of a 
multiple complete random imputation realistically reflects the fact that the model of vote 
choice in the example does not apply to almost half of the sample. 
 
The example illustrates that different solutions to the missing data problem affect substantive 
findings drawn from statistical models. The results clearly are different, yet one cannot judge 
which result is correct based on expectations and prior knowledge. The question of which 
approach to choose has to be decided before the imputation of missing data, based on the 
applicability of the assumptions underlying the different methods. The concluding section of 
this paper will discuss this point. 
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4.3  Mixed effects in samples consisting of observed and imputed data 
 
In a multiple complete random imputed dataset, one obtains two (possibly different) 
coefficients for one relationship: a zero-effect, bmis, in the group of respondents who validly 
say that they do not know the answers, and an estimate bobs in the group of respondents who 
use the answer categories provided. The latter corresponds to the estimate one derives from a 
complete case analysis. Model 4 in Table 2 illustrates this point (see Section 4.1 for a formal 
argument). If one uses an interaction term to distinguish the candidate effect for respondents 
with complete information from the effect for respondents who do not know Mohamed 
Rabbae, one obtains an effect for the reference category (respondents who know Rabbae) of b 
= 0.55 (Model 4), which is very similar to the estimate based on complete cases only, b = 0.54 
(Model 1). The estimated deviation in the party candidate effect on vote choice for 
respondents who do not know the politician is b = –0.55. Hence, the effect among those who 
say ‘I don’t know’ is approximately zero.12 

In a joint analysis of both imputed and complete data (Model 3), the overall estimate b
)

 is the 

weighted average of respective estimates misb
)

 and obsb
)

 in both parts of the sample. This 

describes what is also referred to in the statistical literature as a situation of a heterogeneous 
sample or mixed distribution of effects, i.e. groups with different coefficients mixed in one 
sample (e.g., Laird 1978; Arminger et al., 1995; Böhning and Seidel, 2003). In estimating the 
overall effect, the procedure of a multiple complete random imputation may bear the risk of 
producing coefficient b in the whole sample which describes none of the two groups 
accurately if they are homogeneous.13 
 
As long as effect heterogeneity is uncorrelated with variables of the model, ordinary least 
square regressions will provide an unbiased though not efficient estimation of parameters 
(Greene, 2000: 501). Nevertheless, to control for mixed effects and to investigate such 
differences, which are of interest from a conceptual point of view, additional model 
specifications are applied to the empirical vote choice data: continuous and discrete random 
effect models.14 
 
The hypothesis of mixed effects as a consequence of the multiple complete random 
imputation implies that estimates are more variable in a dataset consisting of complete and 
imputed data than in a dataset of only complete data. To test this hypothesis one requires 
variation in estimated coefficients. This variation can be obtained by drawing on hierarchical 
(multilevel data) or repeated observations (e.g., across time or items). In the DPES’94, the 
probability to vote question and the evaluation of party leaders are surveyed not only for 
Green/Left but for nine parties in parliament (see Table 1), which leads to 11,043 observations 
of the relationship between candidate evaluation and party preference (= 1,227 respondents x 
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9 parties). The repeated observations for respondents i across parties j allow to estimate 

individual variation in the candidate effect ib
)

 on vote choice. If the hypothesis of unobserved 

heterogeneity holds true, ib
)

 should be clustered in imputed datasets between imputed and 

observed data or should at least in imputed datasets be more variable between respondents 
than in complete datasets. 
 

To test for the possibility of higher variability of bi

)
 in imputed datasets, models in Table 3 fit 

continuous random effect regressions of the probability to vote for a party on the evaluation of 
respective party candidates. This is done for the data deleted listwise (Model 5), for the EMis 
imputed data (Model 6) and for the complete random imputed data (Model 7).15 Note that 
about 29% of the observations contain missing information on candidate evaluations. 
 

<Table 3> 
 
The estimates of Models 5 to 7 indicate that variation in effect parameters is evident for all 
datasets. The estimated standard deviation of the candidate effect across respondents reported 
in the second part of the table exerts statistical significance for these models. However, in 
contrast to the hypothesis of inflated heterogeneity due to imputations, the EMis and the 
complete random imputed data do not show more variation in the candidate effect than the 
data deleted listwise. Thus, there is no indication of inflated effect heterogeneity attributable 
to the joint analysis of complete and imputed data in one sample. 
 
Although continuous random effect models do not indicate increased heterogeneity in a 
sample that consists of complete and imputed data, one may argue that this kind of 
unobserved heterogeneity is more appropriately modeled by discrete random effects. To the 
extent that effect parameters differ between observed and imputed data, a discrete random 
effects model16 should detect these two groups and ascribe different estimates to them. To test 
for such latent classes, Table 4 reports discrete random effect models regressing the reported 
probability to vote for a party on respective candidate evaluation in the complete data (Model 
8), the EMis imputed data (Model 9) and the complete random imputed data (Model 10). 
 

<Table 4> 
 
The estimates of Models 8 to 10 show correspondences. In all three cases, mixture models 
identify two latent classes of respondents that significantly differ in the weight they give to 
party candidates when considering whether to vote for a party.17 In class 1, which contains in 
all three models less then 20% of the sample, party candidates have a weaker effect on vote 
choice than in class 2.18 The negative deviation of class 1 from the mean effect does not differ 
substantively between the datasets consisting of complete and imputed data and the data 
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deleted listwise. The similarity of random effects between the complete case analysis and 
analyses on imputed samples suggests that the latent classes defined by these mixture models 
cannot unanimously be attributed to the difference of observed and imputed data.19 
Apparently there are other reasons for these two groups of respondents relying more heavily 
either on their evaluation of party candidates when assessing their party choice. In brief, 
continuous random effect models do not show signs of inflated effect heterogeneity and 
discrete random effect models do not show signs of mixed effects due to the imputation of 
incomplete data. 
 
The discussion of mixed effects between imputed and observed data in this section has been 
the discussion of a technical obstacle. Conversely, one may argue that effect heterogeneity is 
not a consequence of the imputation technique but – provided that the assumptions underlying 
the method hold – an accurate reflection of empirical reality. Hence, mixed effects are a 
characteristic of the phenomenon analyzed and is therefore of substantive interest. It is not, 
however, a defect of the imputation procedure. This leads then to the crucial question under 
which circumstances the assumptions of the method do or do not hold true. 
 
 
5. Conclusion: choosing a method 
 
Every potential solution to the missing data problem rests on assumptions about the data. The 
use of different methods therefore hinges upon the correctness of assumptions, something that 
has to be judged for each variable in the dataset separately. Deleting all missing data without 
considering the consequences can produce biased results. But the idea of cleaning datasets by 
universally applying multiple imputation techniques is also problematic. 
 
If one encounters data missing at random (MAR) and is confident that measurement problems 
are at the root of item non-response, i.e. that a true score for each missing score exists, 
obtainable multiple imputation techniques are the proper choice. They provide estimates of 
the unobserved scores. Such methods apply in all cases in which respondents are asked to 
report facts like demographics or past behavior. Irrespective of whether respondents answer 
questions on their age or education, they nonetheless have a certain age and education. Also, 
even if respondents state that they do not know whether they attended religious services, 
either they did or did not go to church. For a number of variables that do not concern facts, 
there exists established evidence that measurement problems often occur in form of refusals. 
Questions on socially desirable behavior, such as vote intentions, can be named in this respect 
(cf. Tourangeau et al., 2000). It seems plausible to assume that all respondents have an idea 
what is meant by this question and whether or not they consider casting a ballot. Missing 
values on this question most likely reflect measurement problems. 
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The multiple complete random imputation is the preferable choice if one can be confident that 
‘don’t know’ answers are valid, i.e. in the absence of a true score to the survey question. 
When respondents are asked to report their opinion on an external stimulus one has to take 
into consideration that the stimulus of the question may be unknown to some respondents or 
that they are not affected by it. Preferably, one would select respondents who are unfamiliar 
with a certain item before prompting them to report an opinion on the stimulus. However, 
many surveys do not contain such filter questions.20 In general, if the likelihood of 
measurement problems is low but many respondents are probably really not familiar with the 
stimulus, a multiple complete random imputation is a sensible solution. 
The method avoids problems related to data missing at random (MAR) when incomplete data 
results from inapplicable survey questions. By including all cases in the analysis, the 
estimation of statistical models becomes more efficient. Moreover, variables can be 
incorporated in the analysis according to their substantive interest to the analyst rather than to 
their proportion of item non-response. Most importantly, this procedure prevents sample 
selection of the listwise deletion as well as selective misspecification bias in the form of 
counterfactual estimates due to falsely applying alternative imputation techniques. Finally, in 
the empirical example provided in this paper, there is no clear indication that the method of a 
multiple complete random imputation generates problems of effect heterogeneity between 
observed and imputed data. The existence of mixed effects is, however, a possibility that 
should preferably be tested and if necessary be modeled by means of, for instance, random 
effect models or simply interaction models when applying imputation procedures. 
 
In many situations one cannot know with certainty what caused certain scores to be missing. 
Research on survey response may indicate how likely measurement problems are for different 
variables. If one does not have such information to reject or support either the application of 
existing imputation techniques or the application of a multiple complete random imputation, 
the latter may be regarded as the more conservative method. As illustrated in the empirical 
example, statistical models based on multiple complete random imputations tend to decrease 
effect parameters. Methods of data augmentation, conversely, tend to generate effect 
parameters more similar to those found in the complete data. Hence, the error one makes 
when applying falsely existing imputation techniques is that of overestimating a relationship 
that does not exist. The other case, where a multiple complete random imputation is applied 
although there is a relationship underlying incomplete data means underestimating 
relationships in the whole sample. The choice of complete random imputation is therefore the 
more conservative approach. 
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1 SAS users, for instance, can run multiple imputations with the MI PROX tool or with IVEWARE, which is a 
SAS-based application by Raghunathan et al. (2000). MICE by van Buuren and Oudshoorn (2000) contains S-
PLUS software. Honaker et al. (1999) wrote Amelia, an imputation software which can be used as GAUSS 
application or as Windows program. 
2 For instance, if politically uninformed respondents show item non-response on questions regarding their 
political opinions more frequently than politically informed respondents, uninformed respondents will have a 
higher likelihood of being excluded from analyses of the multivariate patterns of such opinions, leading to over-
representation of knowledgeable respondents. If the patterns in opinions differ between informed and 
uninformed respondents, one will introduce bias in the estimation of these patterns due to the omission of 
observations with incomplete data. 
3 Not missing at random (NMAR) can be encountered, for example, if wealthy respondents are more reluctant to 
report their income. Heckman models for selection bias are a tool used to handle this specific missing data 
problem (Heckman, 1979). 
4 The difference derives basically from the application of different estimation techniques in arriving at a 
prediction of unobserved data. 
5 Researchers often add a category of missing information to the variable affected by non-response to jointly 
analyze all cases. Collapsing the variable affected by high rates of item non-response into a discrete one with 
(few) values that represent the topic surveyed and one value for ‘I don’t know’ answers means to lose 
information of a more detailed (possibly metric) response scale. Alternatively, a modified zero-order regression 
is often applied to model missing data. This refers to a model in which missing scores on an explanatory variable 
are replaced with a constant (e.g., zero) and an additional binary variable is included in the analysis that 
distinguishes between observed and unobserved scores on this variable. As Greene (2000) points out, this 
procedure is algebraically identical to the simple mean substitution. But this mean substitution is also not a 
solution to the problem of incomplete data. As, for example, Little (1992: 1231) notes, the simple mean 
substitution biases the sample (co)variance and “cannot be generally recommended”. 
6 Bartels’ (1996) analysis of uninformed and fully informed vote choices is an example of studies in which such 
counterfactual data is explicitly sought. 
7 One would prefer to draw on established evidence from experimental research on response functions for 
different ‘fake’ questions. In other words, how do respondents in an experiment form an opinion on policies, 
politicians, etc. that do not exist if no ‘I don’t know’ answer category is provided? The problem with such an 
approach is, however, that respondents’ answers may depend heavily on cues included in the specific stimulus 
and experimental knowledge on response functions may thus be difficult to generalize. For instance, responses 
may depend on the position of the question in the questionnaire, the domain (e.g., international politics, public 
health, the economy), the concept (e.g., evaluation, feeling, importance, judgment), certain formulations (e.g., 
using phrases like “problem”, “crises”, “benefits”)  and other associated characteristics of the survey item (e.g., 
time reference or labeling of answer categories). 
8 Suppose, for instance, that on average women tend to have a different opinion on issue x than men do, thus the 
distribution of opinions differs between the two groups. One could use these two distributions for the generation 
of two random variables and replace item non-response for women and men separately. 
9 For contextual information on the Dutch political system and the 1994 parliamentary election see e.g. 
Anderweg and Irvin (2002). 
10 For discussion of the validity and applicability of the measure see for example van der Eijk (2002), Kroh and 
van der Eijk (2003) and van der Brug et al. (2003). 
11  The DNES’94 distinguishes three forms of non-response on this variable: (a) don’t know, (b) don’t know this 
politician, and (c) refusal. Of the missing data on the feeling thermometer of Mohammed Rabbae, more than 
90% falls into the category ‘do not know this politician’, about 9% of the respondents with missing information 
said ‘I don’t know’ without giving a specific reason, and 3 respondent refused to answer the question (Anker and 
Oppenhuis, 1997: 77). These figures are indicative of the assumption that non-response on the feeling 
thermometer on Mohammed Rabbae is motivated predominantly by the lack of information about this politician 
and not by measurement problems. 
12 Table 2 reports for Models 4 a significantly positive effect of not having an opinion on Mohammed Rabbae on 
the probability of voting for the Green party (b = 2.29). The effect denotes a comparison between respondents 
who evaluate Rabbae with the score 1 (dislike Rabbae very much) with respondents who report not to know this 
politician. The former have, as one would expect, a significantly lower probability of voting for the Green Party 
than the latter. 
13 Although it may be the case that a multiple complete random imputation generates variation in estimates 
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bbetween observed and imputed data and thus larger confidence intervals for 
)

, one may expect that these two 
groups are not discrete ones and therefore not homogenous in their effect. Some respondents may lack relevant 
information and may thus be so uncertain of their opinion on an issue that they decide not to respond. Others 
may feel fairly uncertain, though, just sufficiently informed to give an answer, and again others may be fully 
informed about the topic surveyed and may therefore be very certain of their answer (cf. Alvarez and Franklin, 
1994). A multiple complete random imputation defines the effect of the variable as zero for which respondents 
validly say that they do not know the answer. However, in the group in which respondents are fairly uncertain of 
their response, this answer in all likelihood has an unsystematic or weak impact on other variables, while in the 
group of respondents with answers given with certainty, this variable presumably has more relevance for third 
variables analyzed. In other words, in many instances the distribution of b

)
 in the overall sample may form a 

new, continuous distribution and not two discrete ones. The overall mean point estimate b
)

may then properly 
describe the average respondent who is only fairly certain of her answer. 
14 As argued in the previous footnote, one may often expect a continuous distribution of effects rather than a 
discrete one. The overall sample of complete and imputed data may comprise not only of two distinct and 
therefore homogenous groups of respondents fully informed and respondents fully uniformed about a topic 
surveyed, but also of respondents that can be located on a scale of certainty, which positively moderates the 
effect of the variables analyzed. This is why the existence of effect heterogeneity is also tested by means of a 
continuous random effects model. 
15 The imputation of missing scores is performed for each party separately. As in the previous example of voting 
Green, the EMis imputation is based on the variables of the model (the probability to vote for a party and the 
candidate evaluation associated) and additional covariates (age, gender, education and interest in politics). 
16 Discrete or non-parametric random effect models are often also referred to as latent class or (finite) mixture 
regression models. 
17 Allowing for more than two latent classes does not improve the model fit significantly. In general, altering 
model specifications in the example often leads to unstable results or even non-convergence of the ML 
algorithm, which is indicative of identification problems of latent classes in the data. 
18 For instance, in the multiple complete random imputed data (Model 10), the candidate effect on the reported 
probability of voting for a party in class 1 is the estimated deviation from the main effect, thus 0.55 – 0.15 = 
0.40, whereas the candidate effect in class 2 is 0.55 + 0.04 = 0.59. Note that Table 4 does not report standard 
errors for the location of the second class, because these parameters, z2, deterministically derive from the 
estimated location of class 1, z1, and the estimated group size, π1, as z2 = z1 π1 / (1 – π1). 
19 Continuous and discrete random effect regressions test for unobserved heterogeneity. However heterogeneity 
due to imputation can be easily identified. Fitting a covariate effect of a variable indicating which values are 
observed and which ones are imputed on the estimated random candidate effect (not reported in form of a table), 
leads to similar results as reported in Tables 3 and 4. The covariate effect of not knowing certain candidates is 
stronger in the case of complete random imputed data (see also Model 4 in Table 2) than in the case of EMis 
imputed data, yet it does not notably contribute to the explanation of continuous or discrete random effects. 
20 This leads to a situation in which some respondents, who are unfamiliar with the content of a survey question, 
voluntarily admit that they do not have an opinion. Others, who are unfamiliar with a stimulus will provide an 
substantive answer because they feel that this is expected in the interview situation. 
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Table 1  Descriptive statistics. 
 Range Mean Variance Missing 

Probability to vote Groen/Links (GL, Green-Left) 1 – 10 4.13 7.93 - 
Nuclear plants issue 1 – 7 5.14 3.60 0.04 
Party candidates     
 Wim Kok (PvdA, Labor) 1 – 10 7.37 4.37 0.01 
 Elco Brinkman (CDA, Christian-Democrats) 1 – 10 5.53 5.59 0.01 
 Hans van Mierlo (D66, Left-Liberals) 1 – 10 7.11 3.81 0.01 
 Hans Janmaat (CD, Extreme Right) 1 – 10 1.34 1.03 0.02 
 Frits Bolkenstein (VVD, Right-Liberals) 1 – 10 5.65 5.08 0.05 
 Mohamed Rabbae (GL, Environmentalists) 1 – 10 5.51 5.79 0.41 
 Gerrit Schutte (GVP, Orthodox Protestants) 1 – 10 5.26 5.96 0.46 
 Bas van der Vlies (SGP, Orthodox Protestants) 1 – 10 4.76 5.25 0.80 
 Leen van Dijke (RPF, Orthodox Protestants) 1 – 10 4.57 5.98 0.87 
Number of unknown party candidates 0 – 9 2.64 1.84 - 
Data Source. DPES’94. N=1,227 
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Table 2  Linear regression models of the reported probability of vote for the Dutch Green Party. 

 Listwise Deletion Multiple EMis 
imputation Multiple complete random imputation

 Model 1 Model 2 Model 3 Model 4 
Intercept - 0.48   (0.32) - 0.23   (0.28)  0.42   (0.29)   - 0.33   (0.28) 
Nuclear plants issue  0.39*** (0.05)  0.33*** (0.04)  0.38*** (0.04)   0.34*** (0.04)
Evaluation of Rabbae  0.54*** (0.04)  0.49*** (0.04)  0.32*** (0.04)   0.55*** (0.04)
Rabbae x don’t know Rabbae  - - -  - 0.55*** (0.09) 
Don’t know Rabbae - - -   2.29*** (0.49)
N 704 1,227 1,227 1,227 
Adjusted R2 0.29 0.25 0.15 0.22 
Note. *** p < 0.01; ** p < 0.05; * p < 0.10; standard errors in parentheses. Data Source. DPES’94. 
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Table 3  Continuous random effect models of the reported probability to vote for a party. 

 Listwise deletion Multiple EMis 
imputation 

Multiple complete 
random imputation 

 Model 5 Model 6 Model 7 
Fixed effects    
 Intercept   0.76*** (0.06)   0.55*** (0.06)   1.00*** (0.06) 
 Evaluation of party candidates   0.69*** (0.01)   0.65*** (0.01)   0.55*** (0.01) 
Random candidate effect, second level    
 Standard deviation of effect   0.10*** (0.01)   0.08*** (0.01)   0.08*** (0.01) 
NRespondents, second level 1,224 1,227 1,227 
NObservations, first level 7,796 11,043 11,043 
Note. *** p < 0.01; ** p < 0.05; * p < 0.10; standard errors in parentheses. Data Source. DPES’94. 
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Table 4  Discrete random effect models of the reported probability to vote for a party. 

 Listwise deletion Multiple EMis 
imputation 

Multiple complete 
random imputation 

 Model 8 Model 9 Model 10 
Fixed effects    
 Intercept   0.77*** (0.06)   0.56*** (0.06)   1.01*** (0.06) 
 Evaluation of party candidate   0.69*** (0.01)   0.65*** (0.01)   0.55*** (0.01) 
Random candidate effect, second level    
 Deviation of effect in  class 1  - 0.19*** (0.03)  - 0.17*** (0.04)  - 0.15*** (0.05) 
              class 2   0.04   0.03   0.04 
 Size of          class 1 0.19 0.15 0.19 
              class 2 0.81 0.85 0.81 
NRespondents, second level 1,224 1,227 1,227 
NObservations, first level 7,796 11,043 11,043 
Note. *** p < 0.01; ** p < 0.05; * p < 0.10; standard errors in parentheses. Data Source. DPES’94. 
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